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The Best Bits in an Iris Code
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Abstract—Iris biometric systems apply filters to iris images to extract information about iris texture. Daugman’s approach maps the
filter output to a binary iris code. The fractional Hamming distance between two iris codes is computed and decisions about the identity
of a person are based on the computed distance. The fractional Hamming distance weights all bits in an iris code equally. However, not
all of the bits in an iris code are equally useful. Our research is the first to present experiments documenting that some bits are more
consistent than others. Different regions of the iris are compared to evaluate their relative consistency and, contrary to some previous
research, we find that the middle bands of the iris are more consistent than the inner bands. The inconsistent-bit phenomenon is
evident across genders and different filter types. Possible causes of inconsistencies, such as segmentation, alignment issues, and
different filters, are investigated. The inconsistencies are largely due to the coarse quantization of the phase response. Masking iris
code bits corresponding to complex filter responses near the axes of the complex plane improves the separation between the match

and nonmatch Hamming distance distributions.

Index Terms—Iris biometrics, iris code, texture filter, false reject rate.

1 INTRODUCTION

THE human iris has extraordinary variations in texture,
and it has been shown that iris texture can be used to
identify a person. One typical method of using the iris for
recognition involves applying a texture filter to an image of
the iris and extracting a representation of the texture, called
the iris code. The iris code is a set of bits, each one of which
indicates whether a given bandpass texture filter applied at
a given point on the iris image has a negative or
nonnegative result. Many different texture filters and many
different lengths of iris code have been investigated,
although the Gabor filter proposed by Daugman [2] is
considered the traditional approach. Readers interested in
other approaches may look at [3] and [4]. In addition, [5]
presents a comparative study of different iris recognition
algorithms.

For a given iris image, a bit in its corresponding iris code is
defined as “fragile” if there is any substantial probability of it
ending up a 0 for some images of the iris and a 1 for other
images of the same iris. The possibility that fragile bits exist in
the iris code was initially suggested by Bolle et al. [6]. They
model the theoretical lower bounds for the false accept rate
(FAR) and the false reject rate (FRR) of an iris biometrics
system and find that “the reported empirical FRR perfor-
mance degradation is significantly more stable with respect to
the system threshold variation than predicted by the theory.
This implies that the invariant bits in the iris code representa-
tion are dramatically robust to the imaging noise.” As a
possible explanation for the difference between the empirical
and theoretical results, they suggested “... that perhaps not
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all bits are equally likely to flip, that there are some
particularly “fragile” bits.” In this paper, we use the terms
“fragile” and “inconsistent” interchangeably, to refer to this
phenomenon.

To investigate the existence of fragile bits, we compared
iris codes from multiple images of the same eye, for
24 different eyes. This comparison shows that, indeed, some
bits are more reliable than other bits in an iris code.

2 DATA AND SOFTWARE

The data used for this experiment was collected at the
University of Notre Dame and provided to the US National
Institute of Standards and Technology (NIST) for use in the
Iris Challenge Evaluation (ICE) [7]. All images were
acquired using an LG2200 EOU iris imaging system [8].
The subset of the ICE data set used for the experiments in
this paper contains over a hundred different images for
each of several irises. No more than six images were
acquired for a particular iris of a particular subject in any
given week. To test the fragility of individual bits in an iris
code, we selected images that were mostly unoccluded by
eyelids or lashes. Sample images from this data set are
shown in Figs. 1, 2, 3, and 4. We selected a subset of the ICE
data that contains 24 subjects, with between 15 and
118 images of the left eye of each subject, for a total data
set of 1,226 left iris images. This data set contains four Asian
and 20 Caucasian subjects. Ten of the subjects are female
and 14 are male.

We used software similar to the software IrisBEE [7] to
create the iris codes. This software uses 1D log-Gabor
wavelets to create a 240 x 20 x 2-bit iris code. The software
we used contains improvements to the segmentation as
described in [9]. Our software automatically found correct
inner and outer boundaries of the iris in all 1,226 images
selected for the study (verified by visual inspection). The
images were selected to minimize the effects of segmenta-
tion errors; however, some minor imperfections in the
segmentations could not be avoided. One difficulty in iris
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Fig. 1. Sample image 04233d1145 from our data set. This image has no
occlusion by eyelids or eyelashes. However, part of the sclera is
included in the segmentation of this iris region. Also, some specular
highlight is evident in the iris region near the lower eyelid.

segmentation lies in the fact that iris boundaries are not
exactly circular. Therefore, even the best circle caught part
of the sclera or eyelid above and below some of the irises
(Fig. 1). Also, there are specular highlights on irises of some
of the images (Fig. 2). To deal with these segmentation
difficulties, we later consider how masking parts of the iris
affects our results.

In cases where the segmentation software detected
occlusion by eyelids, parts of the iris region were masked
(Fig. 3). If part of the iris code was masked in even one
image of a subject, the bits from that part of the iris code
were left out of all computations in our experiments on that
subject. Some of the images have sharp focus, but a few
images are less well focused (Fig. 4). Our experiments show
that some bits are consistent across all images, even when a
few poorly focused images are included in the experiment.
This result is consistent with Bolle’s assertion that “the
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Fig. 2. Sample image 02463d1268 from our data set. This iris contains
specular highlights near the bottom of the iris and near the pupil.
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Fig. 3. In this image, parts of the top and bottom of the iris were masked
before the iris code was computed. The corresponding parts of the iris
code of all images of this iris were dropped from the experimental
analysis. This is image 04239d1060 from our data set.

invariant bits in the iris code representation are dramati-
cally robust to the imaging noise” [6].

Two different iris codes from the same eye are not
necessarily in the same orientation when acquired from the
raw images and, therefore, may have to be rotated about the
optical axis to be aligned correctly. We wrote a program
that would rotate the iris codes so that all codes from the
same eye could be aligned and compared for consistency.
We used the first iris code as a reference and aligned each
subsequent code to the first code. The rotation that gave the
minimum fractional Hamming distance was used.

From this set of aligned binary iris code templates, we
created a 240 x 20 x 2 matrix, where each entry in the
matrix contains the average value for the corresponding bit
in the iris code. Half of these entries corresponded to the
real part of the output from the texture filtering process,
and half of the entries corresponded to the imaginary part.
In order to see patterns in the output, we divided each

e

Fig. 4. Despite including some poorly focused images in the data set, on
average 15.96 percent of bits in the iris codes were perfectly consistent.
This is image 04336d692 from our data set.
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Fig. 5. Black areas in each rectangle are inconsistent parts of the iris
code, and white areas are consistent. Each rectangle represents data
from the iris codes of at least 15 different images of the same eye. Two
rectangles are shown for each subject; one rectangle shows the real bits
in the iris code, and the next rectangle shows the imaginary bits. Light
gray regions are masked regions. The numbers on the side are the
subject numbers associated with images in the ICE data set.

matrix into two 240 x 20 x 1 matrices, where one matrix
represented the real bits of the iris code, and the other
represented the imaginary bits.

3 EXISTENCE OF FRAGILE BITS

All subjects had three different regions apparent in their iris
codes: areas consistently equal to 0, areas consistently equal
to 1, and inconsistent areas. The inconsistent areas tended to
occur at the boundaries between regions of zeros and
regions of ones. Examples of the inconsistent regions in the
iris codes are shown in Fig. 5. For this particular figure, we
arbitrarily defined 30 percent as our threshold for determin-
ing inconsistent bits. If a bit was equal to one the majority of
the time but was equal to zero 30 percent of time, then we
say that the bit “flipped” in 30 percent of the iris codes. If a
bit was zero the majority of the time but one for 30 percent
of the time, we also say that the bit “flipped” in 30 percent
of the iris codes. In this figure, the black regions correspond
to bits that were flipped in at least 30 percent of the iris
codes. If we are less strict in our definition of what
constitutes an inconsistent bit, then there will be a greater
number of inconsistent bits. Fig. 6 shows that if we consider

Fig. 6. The number of fragile bits depends on the threshold used. There
are fewer bits that flip in at least 40 percent of the iris codes than there
are that flip in at least 20 percent of the iris codes. (a) p = 20%.
(b) p = 30%. (c) p = 40%.
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Fig. 7. There is no difference in the average fragility of iris code bits
between the two different genders.

any bit that flips more than 20 percent of the time to be
fragile, then there will be many fragile bits. If we consider
any bit that flips more than 40 percent of the time, then
there will be fewer fragile bits. In our study we found that,
on average across our set of images, 15.96 percent of the bits
in an iris code were perfectly consistent; that is, 15.96 per-
cent of the unmasked bits were always equal to 1 or always
equal to 0, for all iris codes for an iris. The sample standard
deviation across the 24 irises was 6.39 percent. The subject
with the smallest fraction had 4.74 percent of the bits
perfectly consistent and the subject with the largest fraction
had 33.2 percent of the bits perfectly consistent. One reason
why some of our subjects have a greater number of
perfectly consistent bits than another is that some subjects
have fewer images in our data set than others. As we
acquire more images of an iris, there are more opportunities
to acquire outliers in any given bit in the iris code.

In addition to considering perfectly consistent bits, we
also looked at the average fragility of the unmasked bits of a
subject. For each bit, the percentage of the images in which
the bit flips must lie between 0 percent and 50 percent. We
found the frequency that each bit flipped and took the
average across all bits for a subject. This average fragility for
each subject is not correlated with the number of images we
had for the subject. The correlation coefficient between
these factors is only —0.1730, which is not statistically
significant (p-value 0.4188).

Fragile bits show up in about equal amounts in both
males and females. We use average fragility in making
comparisons between genders because average fragility did
not appear to be dependent on number of images. Fig. 7
shows the average fragility of the 24 subjects when divided
into groups of males and females. We applied a two-tailed
Student’s ¢-test to the null hypothesis that the mean average
fragility for males was equal to the mean average fragility
for females. The alternative hypothesis was that the means
were unequal. We found no evidence to reject the null
hypothesis (p-value 0.6751), so there appears to be no
difference between the two genders.

The spatial pattern apparent in these consistent and
inconsistent regions likely comes as a result of how the iris
image is processed to generate the code. A Fourier transform
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Fig. 8. These 54 complex numbers, each from the same region on
54 different images of the same subject’s eye, all correspond to the
same location on the iris code. Each complex number is mapped to two
bits. This particular part of the iris code had a highly consistent real bit
and a highly inconsistent imaginary bit.

is applied to the unwrapped, polar representation of the
iris, and then, the values are multiplied by a log-Gabor
filter. Next, an inverse Fourier transform is applied,
yielding 4,800 complex filter responses in the spatial
domain. Rather than storing the complex numbers as the
iris codes, the phase of each complex number is quantized
to one of the four quadrants. A complex number in the
first quadrant of the complex plane is mapped to the
value, 11; the second quadrant, 01; the third quadrant, 00;
and the fourth quadrant, 10. If a region of the iris image
were associated with a complex number near the negative
imaginary axis, small changes in the complex number
could make that region of the iris map to a 00 some of the
time, and a 10 at other times. In this case, we would
expect the real bit to be fragile because half of the time
that bit would be a 0, and half of the time that bit would
be a 1. Furthermore, we would expect the imaginary bit to
be consistent, because the imaginary bit is equal to zero
no matter whether the complex number is in the third or
fourth quadrant.

Fig. 8 shows an example of the distribution of 54 complex
numbers from 54 different images of the same iris. Each of
these 54 complex numbers is associated with the same
location in the iris code. In particular, this location on the
iris code had a highly inconsistent imaginary bit and a
highly consistent real bit. As we expected, the complex
numbers associated with these two bits of the iris lay close
to the positive real axis.

4 OUTLIERS

We examined the distributions of complex numbers for
multiple subjects and multiple positions on the iris. We found
that many of these distributions had outliers (for example, see
Fig. 8). For one particular subject (subject 02463), we
manually marked and examined all outliers that fell more
than four sample standard deviations away from the mean
in their data set.
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TABLE 1
Sources of Outliers

Percent of Outliers due
to this Source

85.9% (1270 of 1478)
11.8% (174 of 1478)

Source

Light regions

Dark borders around specular high-
lights

Shadows

2.3% (34 of 1478)

The majority of the outliers were due to spots on the iris
that were lighter than the surrounding region (Table 1). These
light spots seem to be specular highlights. Some of the
brightest specular highlights have a dark border surrounding
them. The dark borders also cause outliers in the data. Fig. 9
displays a portion of a sample iris image showing outliers
caused by specular highlights and dark borders.

There are surfaces in the eye that reflect light and thus
create the highlights that are causing outliers. For instance,
light can be reflected off of the 1) outer and 2) inner surfaces
of the cornea and off the 3) outer and 4) inner surfaces of the
lens of the eye. These four types of reflections are called
Purkinje images [10]. Since the lens is located behind the
iris, the light regions seen on the iris are probably not
reflections from the lens, but they could be reflections from
the cornea. In some instances, there appears to be faint
specular reflections close to and in line with brighter
specular reflections. Fig. 10 shows examples of these types
of highlights.

While most outliers occurred on or near light regions of
the iris image, some outliers appeared on shadows in the
image that were not near any highlights. We surmise that
these outliers are due to shadows on the iris or perhaps

Iris |
Specular highlight

Specular highlight
with dark border

Eyelid

Fig. 9. Close-up view of image 02463d1323 showing specular highlights.
Triangles mark the positions on the iris that resulted in outliers after the
1D log-Gabor filter was applied. A zoomed-in portion of the correspond-
ing normalized iris is also shown.
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Fig. 10. Faint reflections often appear close to brighter reflections. This
image contains (A) bright reflections on the eyelid, (B) a nearby, faint
reflection on the iris, (C) a bright reflection in the pupil, and (D) a nearby,
faint reflection on the iris. Both of the faint reflections marked in this
image (B and D) caused outliers in the complex data (image
02463d1329).

features that are small enough that they only show up in the
best-focused images. Fig. 11 shows an example of this type
of outlier.

5 INNER VERSUS OUTER RADIAL BANDS
OF THE IRIS

Several researchers [11], [12], [13] have suggested using
only the inner part of the iris for recognition. Du et al. [14]
suggested that “a more distinguishable and individually

Fig. 11. Some outliers showed up on dark regions of the iris image
(02463d1276).
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Fig. 12. This figure shows the percent of fragile bits in each row of the iris
code. Rows in the middle of the iris code (rows 5 through 12) are the
most consistent.

unique signal is found in the inner rings of the iris” and that
“as one traverses to the limbic boundary of the iris, the
pattern becomes less defined and ultimately less useful in
determining identity.” Since the inner part of the iris is less
likely to be occluded, we suspect that it is the occlusion,
rather than the lack of texture, that might make outer bands
less valuable. To test this idea, we graphed the percent of

fragile bits that occurred at each radial band in the iris.
Using a consistency threshold of 40 percent, we

calculated the percent of bits that were fragile for each
row of the “unwrapped” iris image (corresponding to a
radial band), for all 24 iris images. We found that the
middle rows of the iris were the most consistent (Fig. 12).
Our experiment yields the same conclusion as that of

another contemporary experiment [15].
Despite our efforts to obtain unoccluded images for the

data set, we suspected that specular highlights close to the
eyelids could be affecting our measurements of the
consistency of the different bands of the iris code. Therefore,
we applied a mask to the data to disregard the upper and
lower quarters of the iris and then we looked at the percent
of fragile bits for each row of the iris code in the unmasked
quarters of the iris (left and right sides of the iris). The mask

used is shown in Fig. 13, and the result is shown in Fig. 14.
We also performed the same test using fragility thresh-

olds of 30 percent and 20 percent. In all cases, masking the
top and bottom quarters improved the consistency of the
outer rows. Clearly, the quality of the segmentation and
highlight detection affects the value of the outer rows of the
iris. Another possible reason for some of the inconsistencies
is that our software uses circles in modeling the iris
boundaries. If we allowed noncircular boundaries, the
inner and outer rows might be more consistent. Dilation is
another factor that could affect consistency, especially in the
rows closest to the pupil [15].



Fig. 13. Mask used for evaluating the consistency of the inner versus
outer bands of the iris. When we consider only the right and left sides of
the iris and disregard the top and bottom sections, which had the most
specular highlights and occlusion, there is not as much spread in the
fraction of fragile bits across the rows. There still seems to be a high
percentage of fragile bits in rows 1 and 2 of the iris code; however, the
general trend shows that all rows of the iris code have a high amount of
consistent information.

6 EFFECT OF GRANULARITY OF IRIS ALIGNMENT ON
CONSISTENCY

Since we have experimentally shown the existence of fragile
bits, it is reasonable to ask how small modifications in the
iris recognition algorithm might affect the consistency of the
bits in the iris code. One important requirement of an iris
recognition algorithm is that the algorithm must be rotation
invariant. That is, a small tilt of the head should not cause
the recognition algorithm to fail. Daugman [2] suggested
that to achieve rotation invariance, an enrolled iris code
could be compared to several different shifts of the probe
iris code and the shift that yielded the smallest fractional
Hamming distance could be taken as the correct orientation
of the probe image.

pupil sclera
0.4 T T T T T
unmasked
+ -~ masked
0.35+ 1
0.3 1
0.25 4

0.2} R

2 4 6 8 10 12 14 16 18 20
Row Number

Average fraction of fragile bits per row

Fig. 14. When the regions most affected by specular highlights and
occlusion are masked, the consistency of the outer rows of the iris code
improves.
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Effect of Shift Size on Consistency
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Fig. 15. In matching a pair of iris codes, multiple different orientations of
the probe iris code are considered. Allowing for smaller possible
rotations decreases the percent of fragile bits.

Our software shifts the iris code by two angular steps at a
time by default, which is equivalent to rotating the original
iris image by 3 degrees. In order to be as thorough as
possible, we used shifts of the iris code as small as one step
(1.5 degrees) when testing for the existence of fragile bits.
We subsequently needed to check whether changing the
shift size would affect the consistency of the bits.

We tested for the existence of fragile bits using shift sizes
as small as 1.5 degrees and as large as 7.5 degrees. The
general trend showed that using a finer resolution tended to
yield a larger number of consistent bits. However, if we
extrapolate on the data, it is clear that the y-intercept of the
graph is greater than zero, implying that fragile bits exist
regardless of shift resolution. Therefore, even if we could
have an infinitesimal shift size, there would still be fragile
bits. A graph showing the effect of shift size is shown in
Fig. 15. Each line in the graph represents one of our
24 subjects. As in the previous section, we used a threshold
of 40 percent to determine which bits were fragile.

7 EFFECT OF FILTER ON CONSISTENCY

Our software uses 1D log-Gabor wavelets in creating the
iris code, but there are many different types of filters that
can be used in an iris recognition algorithm [16]. We
explored the effect of a different filter on the fragile bit
patterns in the iris code.

In order to try a different filter implementation, we
obtained an open-source iris recognition system, OSIRIS
[17]. For segmentation, we used the centers and radii of the
irises and pupils generated by our own software. OSIRIS
does not currently mask eyelids and eyelashes. However,
the images in this data set were selected because they did
not contain much occlusion due to eyelids. In addition, in
creating the iris code, we chose to ignore the 20 percent of
the iris closest to the limbic boundary, instead using sample
points closer to the pupil so we would avoid the regions
affected by the eyelid (this restriction applies to this section
of the paper only).
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Fig. 16. Each rectangle shows the fragile bits from part of the OSIRIS iris
code. Black bits represent fragile bits. The rectangles shown here are
the part of the iris code created with the imaginary part of the largest
Gabor filter used.

To create the iris code, OSIRIS first processes the
segmented iris image to yield a normalized image that is 64
by 512. Next, OSIRIS applies 2D Gabor filters to selected
sample points in this image. The filter bank that comes with
OSIRIS contains six filters, three for real parts and three for
imaginary parts. The filters come in three different sizes: 9 by
15,9by 27,and 9by 51. We selected 1,280 sample pointsina 16
by 80 grid pattern on the 80 percent of the normalized image
closest to the pupil. Therefore, the resultantiris code is 80 x 16
x 6.0Once again, we graphed which parts of the iris code were
fragile. As in Fig. 5, the black regions correspond to bits that
were flipped in at least 30 percent of the iris codes. Since
OSIRIS uses three filters, and each filter has real and
imaginary parts, we have six rectangles to display the fragile
bits for each iris. The fragile bit patterns for the imaginary
parts of the largest filter are shown in Fig. 16 for a few subjects.
Clearly, the phenomenon of fragile bits is apparent even
when a different filter is used.

In Section 3, we remarked that inconsistent areas in our
iris codes tended to occur at the boundaries between
regions of zeros and regions of ones. The same pattern is
apparent in many of the iris codes for the large filter of
OSIRIS. One example of this phenomenon is illustrated in
Fig. 17. In this figure, areas consistently equal to 1 are
marked in red and areas consistently equal to zero are
marked in blue. The yellow and green areas represent
inconsistent areas, that are 1s in some of the iris codes for
the subject and Os in other of the iris codes for the subject.
The yellow regions clearly are sandwiched between an area
of red on one side and blue on the other. Interestingly, this
trend is not apparent when a smaller filter is used. We
suspect that this trend would appear if we selected sample
points that were closer together.

(@)

02463

(b)

02463

Fig. 17. For the large filter, inconsistent regions of the iris code (shown in
yellow) often fall in between regions consistently equal to one (shown in
red) and regions consistently equal to zero (shown in blue). In the lower
pane, the corresponding black and white figure is shown, with
inconsistent regions drawn in black.

Our initial impressions of the fragile bit maps were that
the smaller filters had fewer consistent bits than the larger
filters. To test this idea, we made histograms showing the
consistency of the bits for each of the six filters, across all
images of all subjects. These histograms are displayed in
Fig. 18. The z-axis shows the percent of times that bits
flipped. Bits that fell in the first bin are the most consistent
and flipped between 0 and 5 percent of the time. Bits that
fell in the last bin are the most fragile and flipped between
45 and 50 percent of the time. The largest filters had the
highest number of bits in the first bin and, therefore, in
general, the largest filters seem to produce the most
consistent bits.

8 THEORETICAL IMPACT OF FRAGILE BITS ON
FALSE REJECT RATE

Knowing which bits in a particular subject’s iris code are
fragile could improve recognition performance. At
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Fig. 18. The largest filters had the highest number of bits in the first bin
and, therefore, in general, the largest filters seem to produce the most
consistent bits.
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enrollment, a sequence of iris images could be taken and
analyzed to create the enrollment iris code and a mask
that would mask out inconsistent bits. Such a mask could
be used in addition to a mask for masking out eyelids
and eyelashes. This section presents the theoretical FRR
for an iris recognition scenario and then shows how this
rate can be improved by masking out the fragile bits in
the iris code. We try to follow as closely as possible the
notation presented by Bolle et al. [6] in their calculations
of FRR. We make two different calculations for FRR. The
first calculation presents the error rate for a traditional
method that uses all bits in the iris code, and the second
calculation presents the error rate for a method that
masks fragile bits and only uses the more consistent bits.
Let Q@ and R be “ground truth” iris codes of length N,
both from the same iris. When iris code @ is calculated
by the iris acquisition system, some of the bits flip so that
the result, Q, is only an approximation to the true iris
code, and does not match iris code R exactly. If enough
of the bits flip so that the Hamming distance h(Q,R)
exceeds the decision threshold, dr, then a false reject
occurs. In this instance, the “Hamming distance” is the
number of bits that disagree, rather than the fraction of
bits that disagree. Bolle et al. [6] showed that the FRR is

FRR(dy) = Pr(h(Q, R) > dr|h(Q,R) = o)

i (JZY)p"’(l*p)N*i, W

i=dp+1

where p is the probability that a bit will flip and (1 —p) is
the probability of not flipping a bit. Since we showed that
not all bits have the same probability of flipping, we modify
Bolle et al.’s equation to include two different probabilities.
Suppose that k of the bits have probability p; of flipping,
and N — k have probability ps of flipping. The first k bits
will be termed “Set 1” and the second k bits are “Set 2.” Let
p1 > pa so that Set 1 contains the more fragile bits. Let i be
the number of bits that flip when iris code @ is acquired.
The fractional Hamming distance is the fraction of bits in
the two iris codes that disagree, so the probability of a false
reject is the probability that i/N > dr or, equivalently, that
i > N -dr. Let j be the number of bits from Set 1 that flip
and let i — j be the number of bits from Set 2 that flip. The
probability of j bits flipping, out of & bits from Set 1, is

(5)wra-m. )

The probability of i — j bits flipping, out of the N — £ bits in
Set 2, is

(N - k)(zaz)i*f(l — ) ®)

=]
Thus, the total FRR when using all N bits from the iris code is

Z;(f) (1;7_—;@) (p) (1 = p1)* 7 (p2) (1 = po) ",
(4)
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summed over all possible values for 7 and j: i ranges from
N.-dr to N and j ranges from maz{i— N+ k,0} to
min{i, k}.

Now, consider the situation where the % fragile bits from
Set 1 are masked out. Let i* be the number of remaining bits
that flip. The probability of a false reject is the probability
that i* /(N — k) > dp. The total FRR when using N — k bits is

]\ik (N: k> (p2)" (1= p2)" ™" ®)

i
#*=(N—k)dy

To compare the situation of using all NV bits to the second
situation of using only N' — kbits, we assume some numerical
values. Bolle et al. [6] used N = 173 because Daugman’s 1993
paper [18] found 173 independent degrees of freedom in the
iris code. In order for our results to be easily comparable to
Bolle et al., we also take N =173. We analyzed the
experimental consistency data so we could choose reasonable
values for k, p1, and p,. For each subject, we divided the bits
into two groups: fragile bits with probability greater than 0.4
of flipping and consistent bits with probability less than 0.4 of
flipping. We counted how many bits fell into each group. On
average, 15.0 percent of bits had probability greater than 0.4 of
flipping and 85.0 percent of bits had probability less than 0.4
of flipping. The probability of a bit from the first group
flipping averaged 0.4483 and the probability of a bit from the
second group flipping averaged 0.1467. Fifteen percent of 173
is approximately 26, so we let k = 26. We also let p; = 0.4483
and let p, = 0.1467. Assuming these numerical values, the
FRR for the traditional scenariois 1.31 x 107° and the FRR for
the scenario that masks the fragile bits is 3.33 x 10~%. Thus,
detecting fragile bits at enrollment and masking them out at
matching could reduce the FRR by three orders of magnitude.

9 EwmPIRICAL EVIDENCE OF IMPROVED ACCURACY

To test the situation described in the previous section, we
would have to select some subset of images from each
subject and assign them to be “enrollment images” while
using the remaining images as “probe images.” Alterna-
tively, we could try to predict which bits in the iris code
would be fragile, by using our knowledge that complex
numbers near the axes of the complex plane yielded
inconsistent bits in the iris code. Such an approach would
only be an approximation to truly detecting and masking
fragile bits, but it would be simpler because it would only
require one iris image to decide which bits to mask.

In Section 3, we demonstrated that complex numbers
near the imaginary axis of the complex plane resulted in
fragile real bits, and complex numbers near the real axis
resulted in fragile imaginary bits. This idea suggests that
one simple way to mask out fragile bits is to mask real bits
from complex numbers too close to the imaginary axis and
mask imaginary bits too close to the real axis." We ran two
recognition experiments; the first experiment used our
normal iris recognition software and, in the second
experiment, we masked bits close to the axes.

1. Although we have not found documentation in the published
literature, we understand that publicly deployed iris recognition algorithms
already use this idea.
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Fig. 19. This figure shows the match and nonmatch distributions for our
software, without any masking of fragile bits.

For the gallery in our experiment, we took the first image
from each subject. The remaining images for each subject
were used as the probes. Since we have 24 subjects, we had
a total of 24 images in our gallery and 1,202 images in our
probe. For both experiments, we had 100 percent rank-one
recognition. Therefore, in order to distinguish between the
two experiments, we graphed the histograms of the match
and nonmatch distributions for each experiment. The
experiment resulting in a better separation between the
match and the nonmatch distributions is the better method.
The result of the first experiment, with no masking of fragile
bits, gives the histogram shown in Fig. 19. The mean
fractional Hamming distance for all match comparisons was
0.2772 and the mean fractional Hamming distance for all
nonmatch comparisons was 0.4649.

For the second experiment, we modified the code for
creating the mask of our iris code templates. We took the
real parts of all 4,800 complex numbers for the image, took
their absolute value, and then sorted them. Next, we
identified all the numbers in the lowest quartile of this
set. For each complex number with its real part in the lower
quartile of the data, we masked the corresponding real bit
in the iris code. Finally, we applied the same procedure to
sort and mask the lower quartile of the imaginary numbers.
This procedure had the effect of masking all real bits close
to the imaginary axis of the complex plane, and masking all
imaginary bits close to the real axis of the complex plane.?
The result of this second experiment yields the histogram
shown in Fig. 20. The mean fractional Hamming distance
for all match comparisons was 0.1689 and the mean
fractional Hamming distance for all nonmatch comparisons
was 0.4459.

The nonmatch distribution grew slightly wider in the
second experiment. The mean of the nonmatch distribution
has shifted slightly to the left, by 0.0190. However, the
match distribution has also shifted a significant distance to

2. We would like to thank J. Daugman for the idea of masking the lower
quartile of numbers (as opposed to trying to tune our program using a
specific cutoff threshold). From personal communication with Daugman,
we understand that he has previously developed and used techniques
described in this section.
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Fig. 20. This figure shows the match and nonmatch distributions for our
software when bits close to the complex axes are masked. The match
distribution has moved a significant amount to the left, closer to 0, as
desired. In addition, the nonmatch distribution has also widened slightly.

the left. The mean of the match distribution has decreased
by 0.1083. In the first experiment, the distance between the
two means was 0.1877 and the distance between the two
means in the second experiment was 0.2770, a large
improvement over the previous performance.

10 CONCLUSIONS

The consistency of the different bits in an iris code has not
been studied in any other previously published work. Our
experiments prove the existence of fragile bits and show
that the fragile-bit phenomenon is evident across genders
and different filter types. There appears to be no gender
difference in the consistency of iris code bits. There does
seem to be a difference in consistency of iris code bits based
on the size of filter used.

Contrary to some conventional wisdom in the iris
biometrics field, we find no significant difference in the
value of the inner rings of the iris versus the outer rings.
Perhaps surprisingly, our results indicate that the middle
bands may be slightly better than either the inner or the
outer bands. As noted earlier, this result could arise from
the fact that our segmentation process uses enforced
circular boundary models.

We show that there are “outliers” in the distribution of
values underlying a given iris code bit and that these are
largely due to specular reflections. Some of these specular
reflections are faint and have generally been overlooked;
however, they have a noticeable, negative impact on the
consistency of those regions of the iris code.

We present a theoretical argument showing that masking
out fragile bits can reduce the FRR in an iris code system by
several orders of magnitude. Subsequently, we present an
experiment that masks many of the fragile bits in the iris
code. This modification of the algorithm significantly
increases the separation between the match and nonmatch
distributions.

In the future, iris biometrics could potentially be used with
extremely large populations. Any application of iris bio-
metrics on a nationwide scale would necessitate extremely
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low error rates. Based on our numerical evaluations, we
expect that we could reduce the FRR by three orders of
magnitude by using our knowledge of consistent and
inconsistent bits.
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