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Abstract—No published prior work has shown any advantage
of the use of video over still images. We take advantage of the
temporal continuity in an iris video to improve matching perfor-
mance using signal-level fusion. From multiple frames of a frontal
iris video, we create a single average image. For comparison, we
re-implement three score-level fusion methods (Ma et al., Krichen
et al., and Schmid et al.). We find that our signal-level fusion of N

images performs better than Ma’s or Krichen’s score-level fusion
methods of N Hamming distance scores. Our signal-level fusion
performs comparably to Schmid’s log-likelihood method of score-
level fusion, and our method achieves this performance using
less computation time. We compare our signal fusion method
with another new method: a multi-gallery, multi-probe method
involving score-level fusion of N

2 Hamming distances. The multi-
gallery, multi-probe score fusion has slightly better recognition
performance, while the signal fusion has significant advantages
in memory and computation requirements.

Index Terms—Iris biometrics, iris code, image averaging, noise
reduction, signal-level fusion, score-level fusion, iris video.

I. INTRODUCTION

THE field of iris recognition is an active and rapidly

expanding area of research [2]. Many researchers are

interested in making iris recognition more flexible, faster, and

more reliable. Despite the vast amount of recent research

in iris biometrics, past published work has relied mainly on

still iris images. Zhou and Chellappa [3] reported that using

video can improve face recognition performance. We postu-

lated that employing similar techniques for iris recognition

could also yield improved performance. There is some prior

research in iris recognition that uses multiple still images;

for example, [4]–[8]. However, no researchers have published

techniques focusing on the use of additional information

available in iris video.

There are drawbacks to using single still images. One

problem with single still images is that they usually have a

moderate amount of noise. Specular highlights and eyelash

occlusion reduce the amount of iris texture information present

in a single still image. With a video clip of an iris, however, a

specular highlight in one frame may not be present in the next.

Additionally, the amount of eyelash occlusion is not constant

throughout all frames. It is possible to obtain a better image

by using multiple frames from a video to create a single, clean
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iris image. A second difficulty with still images is that lighting

differences can cause an increased Hamming distance score in

a comparison between two stills. By combining information

from multiple frames of a video, we can reduce variations

caused by changes in lighting.

Zhou and Chellappa suggested averaging to integrate tex-

ture information across multiple video frames to improve

face recognition performance. By combining multiple images,

noise is smoothed away, and relevant texture is maintained. In

this paper, we present a method of averaging frames from an

iris video. Our experiments demonstrate that that our signal-

level fusion of multiple frames in an iris video can improve

iris recognition performance.

We perform image fusion of iris images at the pixel level.

Our experiments show that the traditional segmentation and

unwrapping of the iris can be used as a satisfactory method of

image registration. We compare two methods of pixel fusion:

using the mean and using the median.

There have been a number of papers discussing score-level

fusion for iris recognition, but there has not been any work

done with signal-level fusion for iris recognition. Since we

are the first to propose the use of signal-level fusion for iris

recognition, we show that this type of fusion can perform

comparably to score-level fusion. We focus on reimplementing

multiple score-level fusion techniques to show that signal-

level fusion can achieve at least as good recognition rates

as score-level fusion. Our experiments show that our method

achieves superior recognition rates to some score-level fusion

techniques suggested in the literature. Additionally, our signal-

fusion method has a faster computation time for matching than

the score-level fusion methods.

The fusion method proposed in this paper involves a pixel-

by-pixel average. This method has the advantage of being

simple, but can come at the expense of reduced contrast.

There are a number of other possible methods for performing

image fusion [9]. Such methods have potential to yield fur-

ther performance improvements, although such improvements

would come at a cost of increased computational complexity.

An in-depth comparison of these other ideas could easily be

the topic of another full paper and would be a good topic of

future research. For brevity, we focus this paper on comparing

a pixel-level average image fusion method to various score-

fusion methods.
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II. RELATED WORK

A. Video

Video has been used effectively to improve face recognition.

A recent book chapter by Zhou and Chellappa [3] surveyed

a number of methods to employ video in face biometrics.

In contrast, there is very little research using video in iris

biometrics. In an effort to encourage research in iris biometrics

using unconstrained video, the U.S. government organized the

Multiple Biometric Grand Challenge [12]. The data provided

with this challenge included two types of near infrared iris

videos: (1) iris videos captured using an LG 2200 camera,

and (2) videos containing iris and face information captured

using a Sarnoff Iris on the Move portal [13].

There has been a small amount of work published using the

MBGC data. First, some preliminary results were presented at

a workshop [14]. In addition, two conference papers using

MBGC iris videos were published in the most recent Interna-

tional Conference in Biometrics. The first paper was our initial

version of this research [1]. The second paper by Lee et al. [15]

presented methods to detect eyes in the MBGC portal videos

and measure the quality of the extracted eye images. They

compared portal iris videos to still images. At a false accept

rate of 0.80%, they achieved a false reject rate of 43.90%.

A recent journal paper by Zhou et al. [16] also presented

some results on the MBGC iris video data. Zhou et al.

suggested making some additions to the traditional iris system

in order to select the best frames from video. First they

checked each frame for interlacing, blink, and blur. They

used interpolation to correct deinterlacing, and they discarded

blurry frames and frames without an eye. Selected frames

were segmented in a traditional manner and then assigned a

confidence score relating to the quality of the segmentation.

They further evaluated quality by looking at the variation

in iris texture, the amount of occlusion, and the amount of

dilation. They divided the iris videos into five groups based on

quality score, and showed that a higher quality score correlated

with lower equal error rate.1

Our work differs from Lee’s [15] and Zhou’s [16] in that we

use videos for both gallery and probe sets. Also, we compare

the use of stills and the use of videos directly, while theirs do

not. In addition, their papers focus on selecting the best frame

from a video to use for subsequent processing. In contrast,

the main focus of this work is to how to combine information

from multiple frames using signal-level fusion.

B. Still Images

Some iris biometric research has used multiple still images,

but all such research uses score-level fusion, not signal-

level fusion. The information from multiple images has not

been combined to produce a better image. Instead, these

experiments typically employ multiple enrollment images of

a subject, and combine matching results across multiple com-

parisons.

1Lee et al. [15] and Zhou et al. [16] both investigate quality of video frames.
A number of papers have investigated quality of still images including Vatsa
et al. [17], Belcher and Du [18], and Proença and Alexandre [19].

Du [4] showed that using three enrollment images instead

of one increased their rank-one recognition rate from 98.5%

to 99.8%. The paper reported, “We randomly choose three

images [of] each eye from the database to enroll and used the

rest [of the] images to test. We did [this] multiple times and the

average identification [accuracy] rate is 99.8%. If two images

are randomly selected to enroll, ... the average identification

accuracy rate is 99.5%. If one image is randomly selected

to enroll ... the average identification accuracy is 98.5%.”

In another paper [5], Du et al. used four enrollment images

instead of three.

Ma et al. [6] also used three templates of a given iris in their

enrollment database, and took the average of three scores as

the final matching score. Krichen et al. [7] performed a similar

experiment, but used the minimum match score instead of the

average. Schmid et al. [8] presented two methods for fusing

Hamming distance scores. They computed average Hamming

distance and also a log-likelihood ratio. They found that in

many cases, the log-likelihood ratio outperformed the average

Hamming distance. In all of these cases, information from

multiple images was not combined until after two stills were

compared and a score for the comparison obtained. Thus, these

researchers used score-level fusion.

Another method of using multiple iris images is to use

them to train a classifier. Liu et al. [20] used multiple iris

images for a linear discriminant analysis algorithm. Roy and

Bhattacharya [21] used six images of each iris class to train

a support vector machine. Even in training these classifiers,

each still image was treated as an individual entity, rather

than being combined with other still images to produce an

improved image.

III. DATA

We used the Multiple Biometric Grand Challenge (MBGC)

version 2 iris video data [12] in our experiments. The videos

in this data set were acquired using an Iridian LG EOU 2200

camera (Figure 1). To collect iris videos using the LG2200

camera, the analog NTSC video signal from the camera

was digitized using a Daystar XLR8 USB digitizer and the

resulting videos were stored in a high bit rate (nearly lossless)

compressed MP4 format.

The MBGCv2 data contains 986 iris videos collected during

the spring of 2008. However, three of the videos in the data set

contain less than ten frames. We dropped those three videos

from our experiments and used the remaining 983 videos.

The data includes videos of both left and right eyes for each

subject; we treated each individual eye as a separate “subject”

in our experiments. There are a total of 268 different eyes in

these videos. We selected the first video from each subject to

include in the gallery set and put the remaining 715 videos

in our probe set. For each subject, there were between one

and seven iris videos in the data set. Any two videos from

the same subject were acquired between one week and three

months apart. The MBGC data is the only set of iris videos

publicly available.
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Fig. 1. The Iridian LG EOU 2200 camera used to acquire iris video
sequences.

IV. AVERAGE IMAGES AND TEMPLATES

A. Selecting Frames and Preprocessing

Once each iris video was acquired, we wanted to create a

single average image that combined iris texture from multiple

frames. The first challenge was to select focused frames

from the iris video. The auto-focus on the LG 2200 camera

continually adjusts the focus in attempts to find the best view

of the iris. Some frames have good focus, while others suffer

from severe blurring due to subject motion or illumination

change.

We used a technique described by Daugman with a filter

proposed by Kang to select in-focus images. As described by

Daugman in [22], a filter can be applied to an image as a fast

focus measure, typically in the Fourier domain. By exploiting

Parseval’s Theorem, we were instead able to apply the filter

within the image domain, squaring the response at each pixel.

We summed the responses over the entire image, applying

the filter to non-overlapping pixels within the image and then

averaged the response over the number of pixels the kernel

was applied to. The kernel described by Kang and Park [23]

was applied to each frame, and the ten with the highest scores

were extracted from the video for use in the image averaging

experiments.

The raw video frames were not pre-processed like the still

images that the Iridian software saved. We do not know what

preprocessing is done by the Iridian system, although it ap-

pears that the system does contrast enhancement and possibly

some deblurring. Differences between the stills and the video

frames are likely due to differences in the digitizers used to

save the signals. We used the Matlab imadjust function [24]

to enhance the contrast in each frame. This function scales

intensities linearly such that 1% of pixel values saturate at

black (0), and 1% of pixel values saturate at white (255).

Our next step was to segment each frame. Our segmentation

software uses a Canny edge detector and a Hough transform

to find the iris boundaries. The boundaries are modeled as

(a) (b)

(c) (d)

Fig. 2. The frames shown in (a) and (c) were selected by our frame-
selection algorithm because the frames were in focus; however, these frames
do not include much valid iris data. In our automated experiments presented
in this paper we kept frames like (a) and (c) so that we could show how
our software performed without any manual quality checking. In our semi-

automated experiments we manually replaced frames like (a) and (c) with
better frames from the same video like (b) and (d). We expect that in the
future, we may be able to develop an algorithm to detect blinks and off-angle
images so that such frames could be automatically rejected.

two non-concentric circles. A description of the segmentation

algorithm is given in [25]. Our segmentation algorithm is

designed to work for frontal iris images acquired from co-

operative subjects. A possible area of future work would be to

obtain a segmentation algorithm that could work on off-angle

irises and test our image-averaging technique on that type of

iris images.

Our segmentation and eyelid detection algorithms are not as

finely tuned as commercial iris recognition software. To make

up for this limitation, we ran two types of experiments for

this paper. The first type of experiments uses the data obtained

from the completely automated frame selection, segmentation,

and eyelid detection algorithms. We also ran a second set of

experiments that included manual steps in the preprocessing.

We manually checked all 9830 frames selected by our frame-

selection algorithm. A few of the frames did not contain valid

iris information; for example, some frames showed blinks.

We also found some off-angle iris frames. We replaced these

frames with other frames from the same video (Figure 2).

In total, we replaced 86 (0.9%) of the 9830 frames. Next

we manually checked all of the segmentation results and

replaced 153 (1.6%) incorrect segmentations (Figure 3). We

corrected the eyelid detection in an additional 1765 (18%)

frames (Figure 4).

B. Signal Fusion

For each video, we now had ten frames selected and

segmented. We wanted to create an average image consisting

only of iris texture. In order to align the irises in the ten
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(a) (b)

Fig. 3. Our automated experiments contain a few incorrect segmentations
like the one shown in (a). In our semi-automated experiments we manually
replaced incorrect segmentations to obtain results like that shown in (b).

(a) (b)

Fig. 4. Our automated software did not correctly detect the eyelid in all
frames. In our semi-automated experiments we manually replaced incorrect
eyelid detections to obtain results like that shown in (b).

frames, we transformed the raw pixel coordinates of the iris

area in each frame into normalized polar coordinates. In polar

coordinates, the radius r ranged from zero (adjacent to the

pupillary boundary) to one (adjacent to the limbic boundary).

The angle θ ranged from 0 to 2π. This yielded an “unwrapped”

iris image for each video frame selected.

In order to combine the ten unwrapped iris images, we

wanted to make sure they were aligned correctly with each

other. Rotation around the optical axis induces a horizontal

shift in the unwrapped iris texture. We tried three methods of

alignment. First, we identified the shift value that maximized

the correlation between the pixel values. Second, we tried

computing the iris codes and selecting the alignment that

produced the smallest Hamming distance. Third, we tried the

naive assumption that people would not actively tilt their head

while the iris video was being captured and thus assumed

that no shifts were needed. The first two approaches did not

produce any better recognition results than the naive approach.

This is because the images used in our experiments are frontal

iris images from cooperative users. A different method of

alignment would be necessary for iris videos with more eye

movement. Since the naive approach worked well for our data,

we used it in our subsequent experiments.

Parts of the unwrapped images contained occlusion by

eyelids and eyelashes. We masked eyelid regions in our image.

Then we computed an average unwrapped image from un-

masked iris data in the ten original images, using the following

algorithm. For each (r, θ) position, we find how many of

the corresponding pixels in the ten unwrapped images are

unmasked. If a pixel is occluded in nine or ten of the images,

we mask it in the average image. Otherwise, an average pixel

Fig. 5. From the ten original images on the top, we created the average
image shown on the bottom.

value is based on unmasked pixel values of the corresponding

frames. (Therefore, the new pixel value could be an average

of between two and ten pixel intensities, depending on mask

values.) Section V will give more details on averaging the

pixel values.

Using this method, we obtained 268 average images from

the gallery videos. We similarly obtained 715 average images

from the probe videos. An example average image is shown in

Figure 5. On the top of the figure are the ten original images,

and on the bottom is the average image fused from the original

signals.

C. Creating an iris code template

Our software uses one-dimensional log-Gabor filters to

create the iris code template. The log-Gabor filter is convolved

with rows of the image, and the corresponding complex coef-

ficients are quantized to create a binary code. Each complex

coefficient corresponds to two bits of the binary iris code

– either “11”, “01”, “00”, or “10” – depending on whether

the complex coefficient is in quadrant I, II, III, or IV of the

complex plane.

Complex coefficients near the axes of the complex plane do

not produce stable bits in the iris code, because a small amount

of noise can shift a coefficient from one quadrant to the next.

We use fragile-bit masking [26], [27] to mask out complex

coefficients near the axes, and therefore improve recognition

performance.

V. COMPARISON OF MEDIAN AND MEAN FOR SIGNAL

FUSION

Using the basic strategy described in IV-B and IV-C, we

needed to determine the best method of averaging pixels.

Recall that each (r, θ) position in the new average image is

the average of corresponding, unoccluded pixels in the ten

original unwrapped iris images. We considered two ideas:
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using a median rule to combine the pixel values, or using

a mean rule.2

To determine which of these two methods was most ap-

propriate for iris recognition, we compared all images in our

probe set to all images in our gallery and graphed a detection

error tradeoff (DET) curve [28]. Figure 6 shows the result. It

is clear from the graphs that using the mean rule for creating

the average images produces better recognition performance

than using the median rule.

The median is a useful statistic for removing outliers. How-

ever, it is possible that many of the extreme outliers in these

iris images have already been removed by eyelid detection.

Furthermore, since we are averaging only a small number

of pixels (ten or fewer), the median statistic may be less

useful that if we had more available data. While the median

statistic uses information from only one or two pixels, the

mean statistic involves information from all available pixels.

Therefore, in this context, the mean rule is a better averaging

rule than the median.

VI. HOW MANY FRAMES SHOULD BE FUSED IN AN

AVERAGE IMAGE?

As described in subsection IV-B, we fuse ten frames to-

gether to create an average image. However, ten frames may

not be the optimal number of frames to use. Fusing more

frames can give a better average. On the other hand, we add

the best focused frames first, so as we increase the number of

frames, we are fusing poorer quality data. To investigate this

trade-off, we ran an experiment varying the number of frames

to use in the fusion.

Recall that from each video, we had frames selected,

segmented, and unwrapped into normalized polar coordinates.

For this experiment, rather than using all ten selected frames

to create an average image, we selected the four frames having

the highest focus scores and we created an average image. In

this manner, we collected a gallery set of four-frame average

images, and a probe set of four-frame average images. We

compared all gallery images to all probe images and graphed

the corresponding DET curve (red dash-dot line, Figure 7).

We repeated this procedure, this time using six of our

selected frames to create each average image. The set of

six frames from each video was a superset of the set of

four frames. We created a gallery set of six-frame average

images, and a probe set of six-frame average images, tried all

comparisons, and graphed the DET curve on the same axes as

the four-frame curve (green solid line, Figure 7).

We repeated the same procedure three more times, using

eight, nine, and ten frames. All DET curves are shown together

in Figure 7.

With the automated segmentation, each increase in the

number of frames fused yielded an increase in performance.

With the manually corrected segmentation, this trend holds

for four, six, and eight frames. However, the DET curves for

eight, nine, and ten frames all overlap, suggesting that we

2To compute the mean, we first summed original pixel values, then divided
by the number of pixels, then rounded to the nearest unsigned 8-bit integer.

have approached the limit of the benefit that can be gained by

adding frames.

In a previous paper [1], we used six frames instead of ten,

but in that paper, we had a different data set and different

frame selection algorithm. The data set in our previous paper

was a pre-release version of the MBGCv2 videos. 617 of

those videos were included in MBGCv2 and we also had an

additional 444 iris videos captured during the same semester

that were not included in MBGCv2.

In our previous paper [1], we chose to use the same frames

as were selected by the special Iridian software that came

with the camera. That frame selection technique picked two

frames captured while the top camera LED was lit, two frames

captured while the right LED was lit, and two frames captured

while the left LED was lit. Therefore that technique guaranteed

some lighting differences between the frames selected. Our

current frame selection technique does not enforce such a

requirement, so the ten frames selected using our current

method may have fewer variations between them. With fewer

variations between the frames, it makes sense that we could

average more frames before losing any important texture in

the iris.

We imagine that the optimal number of frames to fuse in

creating an average image depends both on the data set and on

the frame selection algorithm. For this paper, we decided to use

ten frames in creating our average images. Using ten frames

gave the best performance using the automated segmentation.

The choice between using eight, nine, or ten frames for the

manually corrected segmentation was not as clear, but ten

frames still gave the best equal error rate, and gave reasonable

performance across the whole DET curve.

VII. HOW MUCH MASKING SHOULD BE USED IN AN

AVERAGE IMAGE?

We initially allowed a pixel to be unmasked in the average

image if at least two corresponding pixels from the ten

frames were unmasked. However, we suspected that a different

masking rule could improve performance. We could require

that all unmasked pixels in an average image be an average of

ten unmasked pixel values from the ten frames (instead of an

average of at least two pixels). This requirement could result

in average images with not much available unmasked data. If

any one frame had a large amount of occlusion, the average

image would be heavily masked. On the other hand, we could

use any unmasked pixel values from the frames in creating

the average image, so that an average pixel value could be

an average of between one and ten pixel intensities from the

frames, depending on mask values in the frames.

We defined a parameter, the masking level, to specify how

much masking is done in an average image. A masking level

of 100% means that we only have unmasked pixels in the

average image if all ten of the corresponding pixels from our

ten frames were unmasked. A masking level of 10% means

that the new pixel value could be an average of between

one and ten pixel intensities, depending on mask values. A

masking level of 50% means that we require at least half of the

corresponding pixels to be unmasked before we compute an
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Fig. 6. Using a mean fusion rule for fusing iris images produces better iris recognition performance than using a median fusion rule. Graph (a) shows this
result using automated segmentation. Graph (b) shows the same result using the manually corrected segmentations.
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Fig. 7. Fusing ten frames together yields better recognition performance than fusing four, six, or eight frames.

average and create an unmasked pixel in the average image. At

this level, the new pixel value could be an average of between

five and ten pixel intensities, depending on mask values.

When we mask too much, we do not have as much iris

data in our images from which to make appropriate decisions.

With less iris data, and consequently fewer unmasked bits in a

comparison, we get fewer degrees of freedom in the nonmatch

distribution. To illustrate this phenomenon, we graphed the

nonmatch distribution for a range of masking levels (Figure 8).

As the masking level increased, the histogram of nonmatch

scores got wider, causing an increased false accept rate. In

contrast, when we mask too little, we lose the power gained

from combining data from a number of different images. The

result would be like using too few gallery images in a multi-

gallery biometrics experiment.

The optimal masking level depends partly on the quality

of the segmentation. We created DET curves showing the

verification performance as we varied the masking level used

in creating the average images (Figure 9). With our automated

segmentation, a higher masking parameter is better to mitigate

the impact of segmentation errors. With the manually corrected

segmentations, the quality of the segmentation is good enough
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Fig. 8. Too much masking decreases the degrees of freedom in the nonmatch
distribution, causing an increased false accept rate. (This graph shows the
trend from the automatically segmented images. The manually corrected
segmentation produces the same trend.)

for us to use a smaller masking parameter and thus avoid as

large an increase in false accept rate. For our current data set

and segmentation, we chose to use a masking level of 80% for

the automated segmentation experiments, and a masking level
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Fig. 9. The amount of masking used to create average images affects performance. When using the manually corrected segmentation, we can use a smaller
masking level (masking level = 60%). With the automated segmentation, a higher masking level (masking level = 80%) mitigates the impact of missed eyelid
detections.

of 60% when using the manually corrected segmentation.

VIII. COMPARISON TO OTHER METHODS

We now present experiments comparing our method to

previous methods. We compare our signal-fusion method to

the multi-gallery score-fusion methods described by Ma [6]

and Krichen [7]. Then we compare signal-fusion to Schmid’s

log-likelihood method [8]. Our last experiment compares

signal-fusion to a new multi-gallery, multi-probe score-fusion

method.

A. Comparison to Previous Multi-gallery Methods

In biometrics, it has been found that enrolling multiple

images improves performance [29]–[31]. Iris recognition is no

exception. Many researchers [6]–[8] enroll multiple images,

obtain multiple Hamming distance scores, and then fuse the

scores together to make a decision. However, the different

researchers have chosen different ways to combine the infor-

mation from multiple Hamming distance scores.

Let N be the number of gallery images for a particular sub-

ject. Comparing a single probe image to the N gallery images

gives N different Hamming distance scores. To combine all of

the N scores into a single score, Ma et al. [6] took the average

Hamming distance. We will call this type of experiment an

N-to-1-average comparison. Krichen et al. [7] also enrolled N

gallery images of a particular subject. However, they took the

minimum of all N different Hamming distance scores. We call

this type of experiment an N-to-1-minimum comparison.

In our signal-fusion method, we take N frames from a

gallery video and do signal-level fusion, averaging the images

together to create one single average image. We then take

N frames from a probe video and average them together to

create a single average image. Thus, we can call our proposed

method a signal fusion-1-to-1 comparison.

One automatic advantage of the signal fusion method is that

storing a single, average-image iris code takes only a fraction

of the space of the score-fusion methods. Instead of storing

TABLE I
SIGNAL-FUSION COMPARED TO PREVIOUS METHODS

Method d′ EER FRR@FAR=0.001

no fusion 4.62 1.56 × 10−2 3.32 × 10−2

score fusion: N-to-1 avg 5.02 8.62 × 10−3 1.90 × 10−2

score fusion: N-to-1 min 5.49 7.55 × 10−3 1.36 × 10−2

signal fusion: 1-to-1 6.06 6.99 × 10−3 1.10 × 10−2

N gallery templates per subject, the proposed method only

requires storing one gallery template per subject.

In order to compare our method to previous methods, we

have implemented the N-to-1-average and N-to-1-minimum

methods. For our experiments, we let N = 10. For each of

these methods, we used the same data sets. Table I shows

statistics for from these experiments for the manually corrected

segmentation, and Figure 10 shows the detection error tradeoff

curves. As an additional baseline, we graph the DET curve

for a single-gallery, single-probe experiment (No Fusion). The

DET curve shows that the proposed signal fusion method has

the lowest false accept and false reject rates of all methods

shown here.

We conclude that on our data set, the signal-fusion method

generally performs better than the previously proposed N-to-

1-average or N-to-1-minimum methods. In addition, the signal

fusion takes 1/N th of the storage and 1/N th of the matching

time.

B. Comparison to Previous Log-Likelihood Method

Schmid et al. [8] enrolled N gallery images of a particular

subject and also took N images of a probe subject. The

N gallery images and N probe images were paired in an

arbitrary fashion and compared. Thus they obtained N different

Hamming distance scores. They combined the N different

Hamming scores using the log-likelihood ratio.

We give a brief summary of the log-likelihood method

here. A more detailed description can be found in [8]. Let

X1, X2, ..., XN be a sequence of N iriscodes representing a
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Fig. 10. The proposed signal-fusion method has better performance than using a multi-gallery approach with either an “average” or “minimum” score-fusion
rule.

single subject in the gallery. Let Y1, Y2, ..., YN be a sequence

of N iriscodes representing a single subject as a probe. Let

d = [d1, d2, ..., dN ] be a vector of N Hamming distances

formed from these two iriscode sequences. The impostor

hypothesis H0 states that the vector d is Gaussian distributed

with common unknown mean for all entries m0, and unknown

covariance matrix C0. The genuine hypothesis, H1 states that

the vector d is Gaussian distributed with a common unknown

mean m1 and unknown covariance matrix C1. Denote p(d|Hi)
the conditional probability density function for the vector d
under hypothesis Hi. The log-likelihood ratio test statistic is

lN = (1/N)log[p(d|H1)/p(d|H0)]. (1)

The statistic lN can be computed as a function of

m0, m1, C0, C1, d, and N . The values m0, m1, C0, C1 are

obtained using training data, and a vector of Hamming dis-

tances d is obtained using testing data. Fractional Hamming

distance scores are bounded between zero and one, but log-

likelihood test statistics have a wider range. In our experiments

we obtained scores between −1.99 to 44.60. Low scores are

from impostor comparisons and high scores are from genuine

comparisons.

The log-likelihood method requires both training and testing

data, so we split our gallery and our probe each in half. We

used the first half of the gallery videos (gallery-set-A) and

the first half of the probe videos (probe-set-A) for training

and obtained a set of maximum-likelihood parameters. Next

we compared the second half of the gallery videos (gallery-

set-B) and the second half of the probe videos (probe-set-

B); applying the the maximum-likelihood parameters to the

resulting Hamming distance vectors gave us log-likelihood

scores from the test data B.

Of course, it would be better to have as many scores as

possible from our data, so we repeated the experiment, this

time using set B to train the maximum-likelihood parameters

and set A to test. We obtained log-likelihood scores from test

data A. We combined all log-likelihood scores and created a

DET curve representing the performance of the log-likelihood

method.

TABLE II
SIGNAL-FUSION COMPARED TO LOG-LIKELIHOOD METHOD

Method d′ EER FRR@FAR=0.001

log-likelihood 3.90 2.65 × 10
−3

9.20 × 10
−3

signal fusion 6.06 6.99 × 10−3 1.10 × 10−2

The curves showing performance of the log-likelihood

method in comparison with the signal fusion method are

shown in Figure 11, and corresponding statistics for the

manually corrected segmentations are in Table II. The log-

likelihood method has a lower equal error rate, but the signal

fusion method performs better at smaller false accept rates.

In addition, the signal fusion takes 1/N th of the storage and

1/N th of the matching time.

C. Comparing Signal-Fusion to Large Multi-Gallery, Multi-

Probe Methods

The previous subsections compared our signal-fusion

method to previously-published methods. Each of those score-

fusion methods fused N Hamming distance scores to create the

final score. We also wished to consider the situation where for

a single comparison, there are N gallery images and N probe

images available, and all N2 possible Hamming distance scores

are computed and fused. We would expect that the fusion of

N2 scores would perform better than the fusion of N scores.

Although this multi-gallery, multi-probe fusion is a simple

extension of the methods listed in subsection VIII-A, we do

not know of any published work that uses this idea for iris

recognition.

We tested two ideas: we took the average of all N2

scores, and also the minimum of all N2 scores. We call

these two methods the (1) multi-gallery, multi-probe, average

method (MGMP-average) and the (2) multi-gallery, multi-

probe, minimum method (MGMP-minimum). The MGMP-

average method produces impostor Hamming distance distri-

butions with small standard deviations. Using the “minimum”

rule for score-fusion produces smaller Hamming distances
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Fig. 11. Signal fusion and log-likelihood score fusion methods perform comparably. The log-likelihood method performs better at operating points with a
large false accept rate. The proposed signal-fusion method has better performance at operating points with a small false accept rate.

TABLE III
SIGNAL-FUSION COMPARED TO A MULTI-GALLERY, MULTI-PROBE

METHOD

Method d′ EER FRR @ FAR=0.001

MGMP-average 5.32 5.47 × 10
−3

1.17 × 10
−2

MGMP-minimum 6.51 1.60 × 10
−3

3.08 × 10
−3

signal fusion 6.06 6.99 × 10
−3

1.10 × 10
−2

than the “average” rule. However, both the genuine and

impostor distributions are affected. Based on the DET curves

(Figure 12), we found that for these two multi-gallery, multi-

probe methods, the “minimum” score-fusion rule works better

than the “average” rule for this data set.

We compared the MGMP methods to the signal fusion

method. The signal-fusion method presented in this subsection

is unchanged from the previous subsection, but we are pre-

senting the results again, for comparison purposes. Statistics

for the signal fusion and the MGMP methods are shown in

Table III. The error rates for signal fusion in Table I and

Table III are the same because we are running the same

algorithm on the same data set.

Based on the equal error rate and false reject rate, we

conclude that the multi-gallery, multi-probe minimum method

that we present in this section achieves the best recognition

performance of all of the methods considered in this paper.

However, the signal-fusion performs well, while taking only

1/N th of the storage and 1/N2 of the matching time.

D. Computation Time

In this subsection, we compare the different methods pre-

sented in this paper in terms of processing time. We have

three types of methods to compare: (1) the multi-gallery,

multi-probe approaches (both MGMP-average and MGMP-

minimum) which require N2 iris code comparisons before

fusing values together to create a single score; (2) the multi-

gallery approaches (Ma and Krichen) which compare N gallery

iris codes to one probe before fusing scores together; and (3)

the signal-fusion approach which first fuses images together,

and then has a single iris code comparison.

For this analysis, we first define the following variables.

Let P be the preprocessing time for each image, I be the iris

code creation time, and C be the time required for the XOR

comparison of two iris codes. Let N be the number of images

of a subject in a single gallery entry for the multi-gallery

methods. Let A be the time required to average N images

together (to perform signal-fusion). Finally, suppose we have

an application such as in the United Arab Emirates where each

person entering the country has his or her iris compared to a

watchlist of one million people [32]. For this application, let

W be the number of people on the watchlist. Expressions for

the computation times for all three methods are given in terms

of these variables in Table IV.

The multi-gallery, multi-probe methods must do preprocess-

ing and iris code creation for N images to create one gallery

entry. Thus, the gallery preprocessing time for one gallery

subject is NP+NI. They also preprocess and create N iris codes

for a probe subject, so the probe preprocessing time is also

NP+NI. To compare a single probe entry to a single gallery

entry takes CN2 time because there are N2 comparisons to be

done. To compare a probe to the entire watchlist takes WCN2

time. Similar logic can be used to find expressions for the

time taken for the other two methods. All such expressions

are presented in Table IV.

From Daugman’s work [22], we can see that typical pre-

processing time for an image is 344 ms. He also notes that

iris code creation takes 102 ms and an XOR comparison of

two iris codes takes 10 µs. Throughout this paper, we have

used ten images for all multi-gallery experiments. The time to

compute an average image from ten preprocessed images is 5

ms. Lastly, we know that the United Arab Emirates watchlist

contains one million people. By substituting these numbers

in for our variables, we found the processing time for all of

our three types of methods. These numeric values are also

presented in Table IV.

A graph of the total computation time for these methods

over a number of different sizes of watchlist is shown in
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Fig. 12. The MGMP-minimum achieves the best recognition performance of all of the methods considered in this paper. However, the signal-fusion performs
well, while taking only 1/Nth of the storage and 1/N2 of the matching time.

TABLE IV
PROCESSING TIMES FOR DIFFERENT METHODS

Method Gallery Preprocessing Probe Preprocessing Comparison
to Watchlist

Total Time

MGMP NP+NI = 4.46 s NP+NI = 4.46 s WCN2 = 1000 s 1008.9 s
Multi-gallery NP+NI = 4.46 s P+I = 0.446 s WCN = 100 s 104.9 s
signal fusion NP+A+I = 3.55 s NP+A+I = 3.55 s WC = 10 s 17.09 s
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Fig. 13. Even though a large multi-gallery, multi-probe experiment achieves
better recognition performance, it comes at a cost of much slower execution
time. The proposed signal fusion method is the fastest method presented in
this paper, and it achieves better recognition performance than previously
published multi-gallery methods.

Figure 13. From this analysis it is clear, that although a multi-

gallery, multi-probe method may have some performance

improvements over the signal fusion method, it comes at a

high computational cost.

IX. FUTURE WORK

One recent area of interest in iris biometrics is performance

on less-cooperative data. Researchers have collected data

simulating less-cooperative acquisitions environments. As an

example, the UBIRIS database was collected using methods

aimed “to minimize the requirement of user cooperation” [33].

The method proposed in this paper was designed to be

applied to video. Unfortunately, there are no less-cooperative

iris video data publicly available yet. The portal data from

MBGC may be termed “less-cooperative video data”; however,

those videos typically have fewer than twenty frames and

contain only one or two images of sufficient quality for iris

matching.

One possible area of future work could be to obtain some

lower-quality iris videos and apply image averaging to such

videos. Lower-quality data may require some changes to

the current technique. In our current technique, we fuse ten

focused frames to create an average image. If the only frames

available have poor focus, we might need to combine fewer

frames, to preserve all available texture. We could design a

system that automatically adjusted the number of frames fused

based on the focus scores.

Videos of less-cooperative subjects may not have any frontal

iris images. In such a situation, we could model the boundaries

of the iris as an ellipse and apply an off-axis gaze correction

technique like the method proposed by Schuckers et al. [34].

Whether image averaging would work on gaze-corrected im-

ages is still an open question.

Poorer data might also necessitate a different method of

aligning unwrapped images. With our current data, aligning

images using Hamming distance or correlation did not improve

performance, but with more challenging data, a complex

alignment approach could be beneficial.

X. CONCLUSIONS

We perform fusion of multiple biometric samples at the

signal level. Our signal fusion approach utilizes information
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from multiple frames in a video. This is the first published

work to use video to improve iris recognition performance.

Our experiments show that using average images created from

ten frames of an iris video performs very well for iris recog-

nition. Average images perform better than (1) experiments

with single stills and (2) experiments with ten gallery images

compared to single stills. Our proposed multi-gallery, multi-

probe minimum method achieves slightly better recognition

performance than our proposed signal-fusion method. How-

ever, the matching time and memory requirements are lowest

for the signal-fusion method, and the signal-fusion method

still performs better than previously published multi-gallery

methods.
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