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An Explerimental Comparison of Range Image 
S eg m e n t at i o n AI go r i t h m s 

Adam Hoover, Gillian Jean-Baptiste, Xiaoyi Jiang, Patrick J. Flynn, Horst Bunke, 
Dmitry B. Goldgof, Kevin Bowyer , David W. Eggert, Andrew Fitzgibbon, and Robert B. Fisher 

Abstract-A methodology for {evaluating range image segmentation algorithms is proposed. This methodology involves 1) a 
common set of 40 laser range finder images and 40 structured light scanner images that have manually specified ground truth and 
2) a set of defined performance metrics for instances of correctly segmented, missed, and noise regions, over- and under- 
segmentation, and accuracy of the recovered geometry. A tool is used to objectively-compare a machine generated segmentation 
against the specified ground truth. Four research groups have contributed to evaluate their own algorithm for segmenting a range 
image into planar patches. 

Index Terms-Experimental comparison of algorithms, range image segmentation, low level processing, performance evaluation 

In general, standardized segmentation error metrics are needed to kelp 
advance the state-of-the-art. No quantitative metrics are measured on 
standard test images in most of today’s research environments. 

-NSF Range Image Understanding Workshop, 1988 [191 

The importance of theory cannot be overemphasized. But at the same 
time, a discipline without experimentation is not scientific. Without 
adequate experimental methods, there is no way to rigorously substan- 
tiate new ideas and to eualuate different approaches. 

image segmentation can be obtained from Table 1. Note 
that none of the methods listed have been evaluated using 
pixel-level ground truth in real images. Also note that none 
of the methods have been directly compared to other meth- 
ods. The closest that there is to any common image data set 
is the ”Renault part” image, the ”coffee cup” image and, the 
”MSU data set” images, each of which are mentioned in 
more than one paper. Two papers have used ground truth 
in the sense of comparing the geometry of recovered mod- 
els to that of the shapes imaged [5], [31]. One paper, which 
emphasizes the speed of its approach, quotes execution 
times from papers describing other algorithms [22]. One 

-Jain and Binford (CVGIP: Image Understanding, 1991 [201 

Comparison of segmentation results is difficult. This is because of the 
difficulty in implementing other people’s algorithms due to [the] lack 
of necessary details. In many cases, uie have not been able to reproduce 
the published results b!y using the author‘s algorithm. This is further 
complicated by the fact that there is no standard evaluation criterion. 

-Yu, Bui, and Krzyzak (PAMI, May 1994 1421) 

1 INTRODUCTION 
MPORTANT areas of computer vision suffer from a lack of I sound experimental work [l61, [191, [201, 1341, [421. An 

overview of the state of experimental evaluation of range 
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paper, which emphasizes robust methods, compares its 
method with traditional least squares and least median of 
squares as the fitting techniques 1421. The table is not to 
single out any particular authors, or even the area of range 
segmentation. The situation is characteristic of essentially 
all of computer vision (e.g., edge detection). This deficiency 
in sound experimental work makes it difficult to assess the 
state of the art, particularly those aspects of a problem still 
requiring development. Dissemination of working theories 
to practitioners is also hampered. 

Experimental comparisons of algorithms have recently 
been attempted in the areas of optical flow 121, stereo 161, 
and shape from shading [43]. Though these efforts repre- 
sent positive steps, we feel that a guiding philosophy for 
the design of a comparative effort is lacking. A collective 
examination of these works, in addition to our own experi- 
ence in range image segmentation, suggests that several 
factors are essential for comparative experimental efforts to 
have lasting value and impact: 

1) The comparative framework is  itself a research issue, and so 
deserves appropriate conceptual energy in i ts  development. 
The framework centers around three elements: prob- 
lem definition, performance evaluation, and data set. 
One surprising (and embarrassing?) thing about 
computer vision is that many intuitive low-level con- 
cepts have not yet come to have a rigorous, uniformly 
accepted definition. The example relevant here is the 
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TABLE 1 
SUMMARY OF RECENT JOURNAL-PUBLISHED RANGE SEGMENTATION ALGORITHMS 

concept of a segmentation of an image. Highly re- 
garded texts give definitions which are largely simi- 
lar, but which vary in the details (see Section 2.1). 
Similarly, subjective visual evaluation of results 
(which has evolved as the norm) should naturally 
give rise to skepticism. The evaluation procedure 
should be automated, and based upon objective per- 
formance measures (see Section 2.4). Finally, pre- 
existing or casually created imagery generally does 
not suffice. A thorough and challenging data set 
should be developed based upon a given problem 
definition (see Section 2.2). The effort of creating this 
framework is substantial, both in creative thought and 
painstaking data acquisition. 

2 )  Metrics are needed for error measurement, in addition to 
correctlvalid perfovmance. 

Just as measurements of accuracy and precision can 
each be useful in certain situations, there is usually 
more than one way to measure algorithmic perform- 
ance. Some types of incorrect/invalid results might be 
acceptable while others are not. Thus multiple metrics 
are necessary for potential consumers to make intelli- 
gent decisions (see Section 2.4). 

3)  The comparative study must use a "large," appropriately 
designed, real image data set, complete with ground truth. 
Performance measurements based upon one or two 
images are generally worthless. Given the state of ex- 
perimental computer vision today, "large" might 
mean tens of images. As experimental work becomes 
more common, the working definition of "large" 
should grow. Real images must be used. Simulated 
images may serve as a useful supplement when the 
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tasks of obtaining and ground truthing sufficient real 
imagery is difficult. However, work that stops short 
of using real iinages inspires little confidence in its 
relevance. Establishing ground truth can require some 
ingenuity and is often :painstaking, laborious and 
time-consuming. However, there simply is no other 
option. 

Al l  input  data, r,osults and i m p h e n t a t i o n s  m u s t  be made 
publicly available, both for potential consumeys and for fu- 
ture incremental comparisons by  others. 
This is perhaps the single most important factor. It is 
bordering on uinprofessioiial to publish results on im- 
ages which are not available to other researchers. All 
input imagery, ground truth and results, as well as 
the code for the comparison tool and the segmenta- 
tion algorithms presented herein, are available via 
http: / /marathon.csee.usf.ech/seg-comp/SegComp.html. 

Some evaluations of intensky image segmentation algo- 
rithms (e.g., 1321) and thresholding algorithms (e.g., [251) 
have been done. However, ground truth based on intensity 
is considerably more subjective than that based upon ge- 
ometry. Previous works 1261, 12191 evaluate intensity image 
segmentations and offer a single overall goodness measure 
for the result. While a single mieasurement might seem ap- 
pealing, we assert that it should be avoided. Although 
"valid" or "correct" .results generally warrant only one in- 
terpretation, invalid or incorrect results are not so easily 
evaluated, let alone weighed against each other. 

This paper evaluates four segmentation algorithms on 80 
real images (40 laser range finder and 40 structured light 
scanner) with ground truth and objective performance 
measures. This type of framework for a comparative effort 
(specific problem definition, objective performance evalua- 
tion, and large numb(er of real images with ground truth) is 
essentially never used in mainstream computer vision, 
though it is standard practice in some related areas (e.g., 
optical character recognition). Besides the development of a 
philosophy of comparative experimental research, an im- 
portant contribution here is an assessment of the state-of- 
the-art in planar range image segmentation. Based on our 
results, we assert thiit this problem is not "solved." This 
finding may be surprising and possibly controversial. We 
would welcome an empirical dlemonstration that the claim 
is false. 

2 COMPARATIVE FRAMEWORK 

We restricted our work to comparison of planar seg- 
menters. One reason is simply ithat developing a compara- 
tive framework for this problem seemed ambitious enough 
for a first step. Secon'd, documenting the state of the art for 
planar segmentation seems intrinsically worthwhile. Third, 
the various algorithLms for sl-gmenting curved surface 
patches often do not allow the same set of possible surface 
types, making direct comparison more difficult. Lastly, 
there is always room for expansion of the framework in the 
future. 

2.1 Range Image Segmentation: Problem Definition 
Informally, segmenting a range image is the process of la- 
beling the pixels so that pixels whose measurements are of 
the same surface are given the same label. The general 
problem of image segmentation is classical, and yet in four 
popular computer vision and image processing textbooks 
[1], [14], 1151, [27], the formal definitions of the segmenta- 
tion problem are slightly different. For instance, consider 
([14], page 458): 

Let R represent the entire image region. We may view 
segmentation as a process that partitions R into y1 subre- 
gions, RI, R,, . . ., R,, such that 

1) U:=, Ri = R, 
2) Ri is a connected region, i = 1,2, . . ., n, 
3) R, n R j =  0 for alliand j, igj ,  
4) P(RJ = TRUE for i = 1,2, ..., n, and 
5) P(R, U R,) = FALSE for i f j ,  
where P(R,) is a logical predicate over the points in set R, 
and 0 is the null set. 

Item 5 of this definition must be modified to apply only to 
adjacent regions, as non-bordering regions may well have 
the same properties; let this be called item 5a. In (111, p. 1501, 
item 5a was advanced only as a possibile criterion. In ([27], 
p. 388), item 5a was included, but item 2 was left out. In 
([15], p. 509), the formal definition was abandoned in favor 
of informal rules. 

Besides these inconsistencies, there are technical diffi- 
culties in using this definition for range image segmenta- 
tion. Some range pixels do not contain accurate depth 
measurements of surfaces. This naturally leads to allowing 
nonsurface' pixels (areas), perhaps of various types. Re- 
garding the above definition, nonsurface areas do not sat- 
isfy the same predicate constraints (items 4 and 5) as re- 
gions that represent surfaces.2 It is also often convenient to 
use the same region label for all nonsurface pixels in the 
range image, regardless of whether they are spatially con- 
nected. This violates item 2 of the above definition. Finally, 
we also require that the segmentation be "crisp." No sub- 
pixel, multiple or "fuzzy" pixel labelings are allowed. 

2.2 imagery Design 
Given the above definition, consider the possible 
"dimensions" of the range image planar segmentation 
problem: 

1) Size (in pixels) of surface 
2) Number of surfaces in the image 
3) Incident angle of surface to viewpoint (angular differ- 

ence between surface normal and viewpoint vector) 
4) Crease edges 

a) 
b) 
c) Edge length (in pixels) 

Angle between two surfaces of edge 
Incident angle of edge to viewpoint 

1. The term "noise" is overused and in fact not encompassingly descrip- 
tive here. For instance, triangulation-based scanners produce images con- 
taining areas where no range measurements were possible, due to occlu- 
sion. 

2. In essence, they satisfy the complement of predicate 4 (which is in this 
case joint membership to a surface); hence the term nonsurface. 
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In the ideal situation, testing an algorithm on an image set 
that spanned the ranges of these dimensions would yield 

ABW test image #28 intensity image ground truth segmentation 

”failure points” or ”tolerances.” However, acquiring, 
ground-truthing, processing, and analyzing the necessary 
image data would require a prohibitive amount of effort. 
To reasonably explore the problem dimensions, we ac- 
quired 40 images (512 x 512 8-bit pixels) using an ABW3 
structured light scanner [36], and 40 images (512 x 512 12- 
bit pixels) using a Perceptron4 laser range finder [331. Al- 
though numerous methods to acquire range data have 
been demonstrated [3], [Zl], [41], these two types of sen- 
sors predominate. 

Each image contains up to five polyhedral objects placed 
in a variety of poses and with varying degrees of inter- 
object spacing5 Although this image set does not explicitly 
cover all of the problem dimensions listed above, it does 
cover many properties. For instance, the number of surfaces 
generally grows as the number of objects in a scene in- 
creases. Conversely, the size of the largest surfaces (the 

ABW train image #O intensity image ground truth segmentation 

v 

backdrop and support planes) shrinks. There is also a Zen- Perceptron test image #I4  reflectance image ground truth segmentation 
^ ^  - Y 

era1 depth difference between jump edges caused by self- 
occlusion, and jump edges caused by inter-object occlusion. 
Fig. 1 shows the ABW and Perceptron images which have 
the fewest number of surfaces (8 and 2) and the largest 
number of surfaces (36 and 32). Both of the image sets were 
randomly divided into a 10 image training set and a 30 im- 
age test set, for use in algorithm parameter setting and 
evaluation, respectively. There are 457 total ground truth 
segmented regions in the ABW test image set, and 438 total 
ground truth segmented regions in the Perceptron test im- 
age set. 

2.3 Ground Truth 
Ground truth was created for each image, consisting of a 
hand segmentation and a set of angles. The hand segmen- 
tations were created by a human operator outlining the 
boundary of each apparent surface patch in each image. 
The tracing is done in a magnification window so that each 
pixel can be considered individually in a reasonable fash- 
ion. Local contrast enhancement, the registered intensity or 
reflectance image, CAD models of the objects imaged, and 
the actual range values are all available to the operator for 
visualizing the regions. 

Ten pixel labels were reserved for various types of non- 
surface pixels; at present four have been defined. A shadow 
pixel only occurs in a structured light scanner image, where 
the sensor is unable to make a range measurement. A noise 

3. address: ABW GmbH, Gutenbergstrasse 9, D-72636 Frickenhausen, 

4. address: 23855 Research Drive, Farmington Hills, MI 48335. 
5. The two cameras have different imaging volumes (the ABWs is table- 

top size while the Perceptron’s is room size), so the same objects are not 
imaged by both. However, the two object sets exhibit similar complexity in 
terms of the number and spacing of surfaces. 

Germany. 

Perceptron test image #26 reflectance image ground truth segmentation 

Fig. 1. Four of the 80 images used in this comparison (two of each 
type) and ground truths (outlines of borders of regions). The “specks” 
were caused by the outlining of nonsurface areas. The ABW scanner 
uses structured light to obtain range values, so “shadow” areas are 
possible, Pixels in shadow areas have a value of zero and appear 
black. The larger a depth value the brighter the pixel. 

pixel is an erroneous measurement of a single surface. A 
cross-edge pixel occurs when the footprint of the sensor 
covers more than one surface (only noticable along jump 
edges). Finally, we reserved the label undiscernable sur- 
face detail for image areas where the range readings are 
valid range measurements, but there is insufficient infor- 
mation to discern separation of surfaces (for instance, a one- 
pixel wide strip, or insufficient quantization). Unlike sur- 
face pixels, nonsurface pixels are not considered to make up 
”regions,” and do not contribute to the region mappings 
used for performance measures in this work. 

Each hand segmentation was reviewed by a second hu- 
man operator to catch any obvious errors. Finally, for any 
pair of hand segmented regions that correspond to a pair of 
neighboring object faces, the angle between the faces (as 
measured on the actual objects) was recorded. 
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2.4 Performance Metrics 
Comparison of a machine segmentation (MS) of a range 
image to the ground truth (GT) is done as follows. Let M be 
the number of regions in the MS, and N be the number of 
regions in the GT. N does not iinclude any nonsurface pixel 
areas (see Section 2.3). Similarlly, M does not include any 
pixels left unlabeled (or not assigned to a surface) by the 
segmenter. Let the number od pixels in each machine- 
segmented region R,, (where ~n = 1 ... M) be called P,. 
Similarly, let the number of pixels in each ground truth re- 
gion R, (where n = 1 ... N) be called p,. Let o,,, = R, f' R ,  
be the number of pixels whose same image coordinates 
both regions R, and R, occupy in their respective images. 
Thus, if there is no overlap between the two regions, Om, = 
0, while if there is complete overlap, Om,, = P,, = P,. 

An M x N table is created, containing On,, for m = 1 . . . M 
and n = 1 ... N. Implicitly attached to each entry are the 
percentages of overlap with respect to the size of each re- 
gion. O,,/P, represents the peircentage of m that the inter- 
section of m and n covers. Similarly, O,,/P, represents the 
percentage of n that the intersection of m and n covers. 
These percentages are used in determining region segmen- 
tation classifications. 

We consider five types of region classifications: correct 
detection, over-segmentation, under-segmentation, 
missed, and noise. Over-segmentation, or multiple detec- 
tions of a single surface, results in an incorrect topology. 
Under-segmentation, or insuffilzient separation of multiple 
surfaces, results in a subset of the correct topology and a 
deformed geometry. A missed classification is used when a 
segmenter fails to find a surface which appears in the image 
(false negative). A noise classification is used when the 
segmenter supposes the existence of a surface which is not 
in the image (false positive). Obviously, these metrics could 
have varying importance in different applications. For in- 
stance, surface detection for collision avoidance would 
most likely require low instanc'es of missed regions, yet be 
less sensitive to instances of noise regions. (It is more im- 
portant to not run into anything that it is to go out of the 
way to avoid imaginary obstacles.) Conversely, a bin pick- 
ing task would likely require low instances of noise regions, 
yet be less sensitive to instances of missed regions. (Given 
the abundance of available parts in a bin, it is more impor- 
tant to be sure of grabbing one of them than to be able to 
choose from all possible parts.) 

The formulas for deciding c1,mjifications are based upon 
a threshold T, where 0.5 < T 5 1.0. The value of T can be set 
to reflect the strictness of definition desired. The following 
metrics define each classification: 

1) An instance of a correct detection classification. 

A pair of regions R,l in the GT image and R, in the MS 
image are classified as an instance of correct detection 
if 
a) Om, 2 T x P,, (at least 'T percent of the pixels in re- 

gion R, in the MS image are marked as pixels in 
region R, in the GT image), and 
O,, 2 T x P, (at least T percent of the pixels in re- 
gion R,, in the GT image are marked as pixels in 
region RI, in the MS irnage). 

b) 

2) An instance of an over-segmentation classification. 

A region R, in the GT image and a set of regions in 
the MS image Rml, ..., R,,,, where 2 5 x I M ,  are classi- 
fied as an instance of over-segmentation if 
a) Vi E x, Omzn 2 T x Pmh (at least T percent of the 

pixels in each region Rnl> in the MS image are 

marked as pixels in region R, in the GT image), 
and 

b) c:, On1,13 2 T x P, (at least T percent of the pixels 

in region R, in the GT image are marked as pixels 
in the union of regions R , ..., R, in the MS 
image). 

n? 1 

3) An instance of an under-segmentation classification. 

A set of regions in the GT image R , . . . , R , where 
n1 171 

2 5 x 5 M ,  and a region R, in the MS image are classi- 
fied as an instance of under-segmentation if 

a) c ~ ~ l O m , ,  2 T x Pm (at least T percent of the pix- 

els in region R, in the MS image are marked as 
pixels in the union of regions R,, , . . . , R, in the 
GT image), and 
Vi E x, O,, 2 T x P,?, (at least T percent of the 
pixels in each region R, in the GT image are 

marked as pixels in region R, in the MS image). 

b) 

4) An instance of a missed classification. 

A region R, in the GT image that does not participate in 
any instance of correct detection, over-segmentation or 
under-segmentation is classified as missed. 

5) An instance of a noise classification. 
A region Rrrl in the MS image that does not participate 
in any instance of correct detection, over-segmentation 
or under-segmentation is classified as noise. 

Although these definitions result in a classification for 
every region in the GT and MS images, they are not unique 
for T < 1.0. However, for 0.5 < T < 1.0 any region can con- 
tribute to at most three classifications, one each of correct 
detection, over-segmentation and under-segmentation. For 
a proof of this, see the Appendix. With any given mapping 
(of correct detection, over-segmentation or under-segmentation), 
there are two associated overall overlap metrics (computed 
as per the two parts of each definition). If for any given re- 
gion only one mapping passes its definition, then the classi- 
fication is done. When two or three mappings pass their 
definitions for the same region, then the mapping which 
has the highest average of its metric-pair is taken as the 
classification. On equal averages, we bias towards selecting 
correct detection, then over-segmentation, then under- 
segmentation. 

Once all region classifications have been determined, a 
final metric describing the accuracy of the recovered ge- 
ometry is computed, as follows. Any pair of regions R,,, 
and RnZ in the GT image which represent adjacent faces of 
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the same object in the scene have their angle recorded in the 
truth data. Call this angle A2?. If RI,, and RI?> are both classi- 
fied in instances of correct detection, then the angle be- 
tween the surface normals of their corresponding regions in 
the MS image is computed. (It is assumed that the normals 
for each region in the MS are supplied with the segmenta- 
tion.) Call this angle A,. The absolute value of the differ- 
ence between these two angles is computed, I A,, - A,,, I .  
This is done for all of the correct detection classifications. 
The number of angle comparisons made, the average error 
and the standard deviation are reported. This measure 
gives an indirect estimate of the accuracy of the recovered 
geometry of the correctly segmented portion of the image. 
Once again, it would be up to a consumer of the segmenta- 
tions to decide on the importance of this measure. For in- 
stance, the accurate geometry might be more important for 
inspection (for defects) than for recognition. 

We have created a tool which will automatically com- 
pare a specified ground truth and machine segmentation 
using these metrics. This tool was used to generate all re- 
sults shown in this paper. 

3 EXPERIMENTAL METHODS 
Four research groups each evaluated their own algorithm 
using the framework described. The algorithms are de- 
scribed in Section 3.1, while the parameter tuning processes 
(and values selected for testing) are described in Section 3.2. 

3.1 Segmentation Algorithms 
The four range segmentation algorithms evaluated here rep- 
resent substantially different design choices. The USF and UE 
algorithms might be characterized as instances of the com- 
mon approach to region segmentation by iteratively growing 
from seed regions. The WSU algorithm uses a powerful 
clustering algorithm to drive its Segmentation. The UB algo- 
rithm uses a novel approach that exploits the scan line 
structure of the image. It would certainly tax most research- 
ers to try to reason from theoretical principles which algo- 
rithm should excel on which performance metrics. 

3. I .  1 The USF Range Segmentation Algorithm 
This segmenter works by computing a planar fit for each 
pixel and then growing regions whose pixels have similar 
plane equations. A two-stage process is used to compute a 
pixel's normal. First, a growing operation is performed 
from the pixel, bounded by an N x N window. To join, a 
bordering four-connected pixel must be within Tperp range 
units. This has the effect of separating "outliers" from 
"inliers" (with respect to the central pixel), where the out- 
liers could be across a jump edge, or simple noise. If less 
than 50% of the pixels within the window are inliers, then a 
single plane equation is fit to the pixels (using the eigen- 
method of [13], [8]) .  If 50% or more of the pixels within the 
window are inliers, then a set of nine plane equations are 
computed using edge preserving sub-masks of the inliers in 
the N x N window. The nine submasks take the four com- 
pass directions, four diagonal directions, and the center. 
The plane equation from the submask which produces the 

smallest residual error is assigned as the normal of the 
pixel. For pixels close to crease edges, this procedure gener- 
ally produces more accurate normals than would be ob- 
tained using a single mask. An "interiorness" measure is 
also found for each pixel as the residual error of the plane 
equation fit to the entire N x N window. This will generally 
be higher (less "interior") closer to edges. 

The pixel with the smallest interiorness measure is cho- 
sen as a seed point for region growing. Criteria for pixels 
joining the region are 

1) konnectivity, 
2) angle between normal of pixel and normal of region 

grown so far within a threshold (Tangleo), 
3) perpendicular distance between pixel and plane 

equation of region grown so far within a threshold 
(T,,, range units), and 

4) point-to-point distance between pixel and 4- 
connected neighbor already in region below a thresh- 
old (Tpoint range units). 

The border of the region is recursively grown until no pix- 
els join, at which time a new region is started using the next 
best available seed pixel (based on interiorness measure). 
Pixels are only allowed to participate in this process once. 
Initially, the plane equation for a region is calculated from 
the seed pixel's normal and point location. Once the size of 
the region reaches T, the plane equation for the region is 
calculated from all pixels in the region. If a region's final 
size is below a threshold (Tare, pixels), then the region is 
discarded (and its pixels are not further considered). 

3.1.2 The WSU Range Segmentation Algorithm 
The WSU range image segmentation procedure traces its 
origin to the dissertation work of Hoffman and Jain 1171, 
but contains many enhancements incorporated by Flynn 
and Jain [ll]. The technique is not optimized for polyhedral 
objects but can accommodate natural quadric surfaces as 
well. For the experiments described in this paper, the algo- 
rithm was modified to accept only first-order surface fits, 
but no other special steps were taken to exploit the planar 
nature of the scenes (surfaces classified as curved are dis- 
carded before segmentation results are reported). Prior to 
any processing, the range points are uniformly scaled to fit 
within a 5 x 5 x 5 cube. All distance thresholds are in these 
arbitrary units. The WSU segmenter works as follows: 

1) Jump edge pixels are identified by thresholding the 
maximum change in z between the range pixel of in- 
terest and each of its &-neighbors. If the largest z- 
deviation is ti or greater, the pixel is labeled as a jump 
edge pixel. 

2) Surface normals are estimated at each range pixel 
with no jump edges in a k x k neighborhood. The es- 
timation procedure performs a principal components 
fit [lo] to the range pixels in the neighborhood and 
records the principal direction with the lowest vari- 
ance as the surface normal. This technique accommo- 
dates data which is contaminated with noise in all 
three coordinates. 

3) The six-dimensional image formed by concatenating I 
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the estimated surface normals to their corresponding 
pixels is subsampled on a regular grid to yield one 
thousand or fewer 6-vectors. These vectors are fed to 
a squared-error clustering, algorithm called CLUSTER 
[18], which finds groupings in the six-dimensional 
data set based on similarity between the data points. 
Since these points reflect both position and orienta- 
tion, the tendency is for CLUSTER to produce clus- 
terings consisting of connected image subsets, with 
pixels in each cluster having similar orientation. The 
internal workings of CLUSTER are quite complex. 
The only user-settable parameter is the maximum 
number k,,, of clusters desired. For these experiments 
k,,, was set to 20. CLUSTER will then produce 20 
clusterings (which will correspond to initial segmen- 
tations), containing 1 to Z!0 segments. Clustering sta- 
tistics are examined to select one clustering for further 
processing. 
The selected clustering is converted into an image 
segmentation by assigning each range pixel to the 
closest cluster center in the clustering. Connected 
components are then found to avoid identical labels 
for regions that are disjoint in the image. The result- 
ing image is typically an oversegmentation. 
An edge-based "domain-independent" merging pro- 
cedure identifies segments which are adjacent yet 
have no appreciable change in surface normal across 
their shared boundary. If the average angle between 
range pixels on one side of the edge and their neigh- 
bors on the other side is kss than t ,  (seven degrees in 
our experiments), the pal ches are merged. This pro- 
cedure repeats until no further merging is performed. 
When range images of polyhedra are processed, this 
step typically results in a segmentation very close to 
the final segmentation. " 

6) Each segment is classified as planar or nonplanar us- 
ing a regression-based test. The principal components 
fitting procedure described in step 2 above is applied 
to all of the pixels in the segment of interest, and the 
RMS error of fit is calculated. If that error is greater 
than t, (0.05 in our experiments), the segment is classi- 
fied as nonplanar and ignored in further processing 
(that is, it receives a label of zero). 

7) A further merging step joins segments of the same 
type if they are adjacent and have similar parameters. 
Specifically, planar segments are joined if their sur- 
face normals are within t, degrees of one another and 
the distance terms in their implicit equations differ by 
less than t,. In our experiments, t, = 7 and t, = 0.25. 

8) Unlabeled pixels on the 'frontier' of each segment are 
merged into it if they fit the segment to a specified ac- 
curacy. This step helps to pick up pixels which were 
dropped from consideration because they were origi- 
nally mapped to segments classified as nonplanar. For 
planar segments, a neighboring unlabeled pixel is at- 
tached to the segment if its fit error is $ or less. 

9) The above three steps are repeated until the segmen- 
tation stabilizes (no change in segment labels during 
an application of steps, 6, 7, and 8).  

Small "noise" regions can be created by the clustering 

procedure (due either to outlying range values or to poor 
estimation of the surface normal). To remove such regions, 
a simple connected-components procedure identifies and 
removes all regions with a size lower than N, pixels, where 
N, equals 20 for each iteration through the classify-merge 
loop described above, and N, equals 100 during the final 
processing. 

An additional parameter controlled subsampling for 
more rapid segmentation. The range images considered in 
this study were usually four times the size of the images 
considered in earlier work with this segmenter, and the 
processing time associated with segmentation of such im- 
ages rose dramatically. As an easily implementable modifi- 
cation, we added a parameter which identifies the level of 
subsampling t ,  the image undergoes for steps 1 through 5 
above. A value of t, = 2 will cause the image to be deci- 
mated by two in each direction for the purposes of jump 
edge detection, normal estimation, subsampling for clus- 
tering, initial classification, and domain-independent 
merging. The first iteration through the classify-merge- 
grow loop is performed on the low-resolution image; sub- 
sequent iterations use the original (the pixels omitted by 
subsampling are picked up during the first "grow" step 
since they are on the frontier of the corresponding segment 
and are usually picked up at that time). 

3.1.3 The UB Range Segmentation Algorithm 
This segmenter is based on the fact that, in the ideal case, 
the points on a scan line that belong to a planar surface 
form a straight 3D line segment. On the other hand, all 
points on a straight 3D line segment surely belong to the 
same planar surface. Therefore, we first divide each scan 
line into straight line segments and subsequently perform a 
region growing process using the set of line segments in- 
stead of the individual pixels. 

The segmentation algorithm for a range image sampled 
on a regular grid is described in [22]. Since neither the ABW 
nor the Perceptron range images have this property, the 
algorithm has been adapted as follows. The first step is a 
simple split method that recursively divides each scan line 
into line segments such that the perpendicular distance of 
the points to their corresponding line segment is within a 
threshold T, (range units). A potential seed region for re- 
gion growing is a triple of line segments on three neigh- 
boring scan lines that satisfies three conditions: 

1) all three line segments have at least length t, (range 
units), 

2) the overlapping part of two neighboring line seg- 
ments has at least t2% of the length of each line seg- 
ment, and 

3)  every pair of neighboring points on two line segments 
is within a distance t, (range units). 

The candidate with the largest total line segment length is 
chosen as the optimal seed region. In the subsequent region 
growing process, a line segment is added to the region if 
the perpendicular distance between its two end points and 
the plane equation of the region is within a threshold T, + t4 
x size/10000 (range units) where size is the number of pixels 
of the region expanded so far. This dynamic threshold re- 
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laxes the expansion condition for very large regions. This 
process is repeated until no more line segments can be 
added, at which time a new region is started using the next 
best available seed region. If a region's final size is below a 
threshold 1, (pixels), then the region is discarded. 

may be labeled. 

The boundary of the current region is extended in this 
manner as far as possible. Then the surface is refitted 
to this new data set. Finally, a contraction of the re- 
gion boundary is performed. Each pixel is tested us- 

3.1.4 The UE Range Segmentation Algorithm 
The UE segmentation algorithm is a region growing algo- 
rithm along the lines of the USF segmenter. There are four 
basic stages which are described as follows: 

1) Normal calculation/Data smoothing 

Initial surface normals are calculated at each pixel 
using a plane fit to the data in a 5 x 5 window. Depth 
and normal discontinuity detection is performed us- 
ing simple thresholds between neighboring pixels. 
The depth threshold is specified in range units, while 
the normal threshold is in degrees between normal 
vectors. Following this a discontinuity preserving 
smoothing is performed on the range data, with mul- 
tiple passes possible for greater smoothing. 

2) Initial H-K based segmentation 

Gaussian (H) and mean (K) curvature are estimated at 
each pixel using data in a window about it. Pixels can 
be labeled as belonging to particular surface types 
(elliptic, planar, etc.) based on the combined signs of 
the (H, K) values. Each curvature value is classified as 
Negative, Zero, Positive, or Unknown based on the 
values of "inner" and "outer" thresholds. The inner 
threshold determines the range of values called Zero. 
The outer threshold determines the inner limit of the 
ranges of the Negative and Positive values. Between 
these values the pixel is labeled as Unknown. Once 
each pixel is labeled properly with the signs of H and 
K, any %connected pixels of similar labeling are 
grouped to form initial regions. This segmentation map 
is then morphologically dilated and eroded in a specifi- 
able manner to fill small Unknown areas, remove small 
regions, and separate thinly connected components. 

3) Region growing 

For each region in the initial segmentation above a 
minimal size a least squares surface fitting is per- 
formed. Then each region in turn is grown (only pla- 
nar regions are actually processed in this experiment). 
Region growing is performed through an iterative ex- 
pand/refit/contract cycle. For expansion, a pixel is 
added to the current region if it meets the following 
requirements: 

a)  
b) 

c) 

d) 

it is %connected to the current region, 
the corresponding 3D point is within a minimum 
perpendicular distance to the current surface, 
the point is closer to the current surface than to 
the surface for which it may be labeled, 
the estimated pixel normal is within a minimal 
agreement with the current surface normal at that 
position, and 
the pixel normal is in better agreement with the 
current surface than with the surface for which it 

e) 

lng the previous criteria against the new surface esti- 
mate. If it is not best accounted for by the new sur- 
face, the pixel is returned to the region from which it 
was originally taken. This expand/contract cycle is it- 
erated until the region boundary stabilizes, or until a 
maximum iteration limit is reached. 

4) Region boundary refinement 

After a single pass through the surfaces, the majority 
of pixels have been labeled, and only further bound- 
ary refinement is usually needed. This is done using 
the same expand/refit/contract paradigm, but with 
different criteria for a pixel's inclusion. In this case, a 
pixel is added to a region during expansion if 

a) it is %connected to the region, 
b) the 3D point is within the minimum distance of 

the current surface, 
c) the point is on the proper side of a decision sur- 

face. 

In the case of planes, this surface is another plane 
passing through the line of intersection between the 
current plane and the plane corresponding to the cur- 
rent labeling of the pixel. This dividing plane is also 
chosen to bisect the volume of space between the two 
planes in question. As in the region growing step, the 
same criteria are used in the contraction process after 
surface refitting. Boundary refinement is performed on 
a complete pass through all of the regions. Additional 
passes may be performed for additional refinement. 

3.2 Parameters Selected by Training 
Each group agreed to explore the parameter space for their 
segmentation algorithm, once using the training set from 
the ABW images and once using the training set from the 
Perceptron images. The results of this step would yield pa- 
rameter values to be used on the test sets. 

3.2.1 Parameters from USF Training 
There are five parameters for this segmenter: N, Tangle, Tperp, 
Tpainv and Tar,, (see Section 3.1.1). For the ABW imagery, 72 
different combinations of these parameters were run on the 
training images (all combinations of N = 117, 19, 211, Tangle = 
120.0, 25.0, 30.0, 35.01, Tperp = 12.01, Tpoini = 110.0, 15.0, 20.01, 
and Tu,, = [loo, 2501). A table of average metrics for each set 
of parameters was created by running the compare tool on 
all 10 training images using the compare thresholds 
I0.51, 0.6, 0.7, 0.75, 0.8, 0.9, 0.951. The process of selecting 
the 'best' set of results is to some degree task dependent. 
For instance, one could desire the highest percentage of 
correct detection while requiring no under-segmentation, or 
one could desire any amount of correct detection and over- 
segmentation while avoiding missed regions, etc. Presuma- 
bly, the particular needs of a given task would allow one to 
assign weights to each classification category. In the ab- 
sence of such weights, we selected the set of results which 



HOOVER ET AL.: AN EXPERIMENTAL COMPARISON OF RANGE IMAGE SEGMENTATION ALGORITHMS 681 

scored the highest average measure in correct detections. 
The associated parameters were N x N = 21 x 21, Tang,, = 20.0, 
TpCrp = 2.0, T,,,,, = 10.0, and T,,, := 250. 

Similar experiments were conducted on the Perceptron 
data set, using 48 combinations of parameters (N = [17, 211, 
Tangle = 120.0, 25.0, 30.0,35.0], Tpcrp = [4.0], Tpoint = 112.0, 16.01, 
and T,,,, = [loo, 250, 5001). The range of training values for 
TpeTP and Tpoint differ from those used for the ABW imagery 
because of the difference in quantization (ABW images are 
8-bit, Perceptron images are 12-bit). Slight changes were 
made in the training ranges for N and Tar, based on the 
results from the ABW training. The parameters associated 
with the highest average measure of correct detection were 
NxN-21 x21,T,,,=25.0,T,,=:4.0,Tp,,,= 12.0,andTa,=500. 

3.2.2 Parameters from WSU Training 
The WSU segmenter has many parameters, some dealing 
with the extraction of curved. surfaces, and some whose 
effect on the segmentation quality is minimal for reasonable 
values. For that reason, we studied those parameters which 
had the most dramatic and positive effect on the quality of 
the segmentation results. These crucial parameters were: 

1) the subsampling factor t,, 
2) the size k of the neighborhood used in surface normal 

3) the jump edge threshold tl, and 
4) the threshold tf used to grow planar segments after 

Initial experiments showed that t, = 2 was an appropriate 
choice for range images with sizes on the order of 512 x 512, 
like those in this study. 

Training images from the Perceptron sensor were seg- 
mented multiple times, each segmentation corresponding 
to parameters (tf, k )  drawn from the set 10.1, 0.2, 0.3, 0.41 x 
[5, 7,9, 111. These experiments yielded 0.4 as the best value 
of ti and 7 as the best value of I(. The default value of ti = 0.2 
was judged adequate for these images. The "best" seg- 
mentations were determined visually and the different pa- 
rameter values considered usually had a dramatic effect on 
the visual quality of the result. Likewise, training images 
from the ABW sensor were segmented multiple times using 
parameter vector ( f f ,  k ,  t i )  drawn from 10.1, 0.2, 0.3, 0.41 x 
[5, 7,9, 111 x [0.05,0.1, 0.15,0.;!]. These experiments yielded 
ti= 0.3, k = 7, and t j= 0.1 as the best values. 

3.2.3 Parameters from UB Training 
There are seven parameters for this segmenter: t,, t,, t,, t,, t,, 
T,, and T2 (see Section 3.1.3). During training, five of the 
parameters were fixed, namely t,, t,, t,, t,, and t,. The other 
two more critical parameters were tuned based upon the 
training images. For the ABW iimages, t, = 4.0, t, = 0.1, t3 = 3.0, 
t, = 0.1, and t, = 100. After some tests using arbitrarily cho- 
sen values of T, and T, we localized a good region in the 
parameter space, namely R : (T,, T,) E [l ... 1.51 x [2 ... 2.51. 
The goodness of this region was verified by two methods. 
First, nine combinations of parameters, namely (T,, T2) E 

11, 1.25, 1.51 x [2,2.25, 2.51, were run on the training images 
and the segmentation results were compared with the 
ground truth through visual observation and by using the 
comparison tool. Secondly, tests on 100 randomly chosen 

calculation, 

initial classification. 

parameter pairs within the region R were carried out and 
the segmentation results were evaluated by the comparison 
tool. It turned out that within R, the segmenter was very 
stable. For all 100 test series the average values of the six 
performance quantities tabulated in this paper (correct de- 
tection, angle difference, oversegmentation, undersegmen- 
tation, missed, and noise) were similar. As a matter of fact, 
the standard deviation of these average performance quan- 
tities over the 100 tests were 0.1,0.1, 0.2, 0.1, 0.0, 0.1, 0.1 for 
an average value of 16.5, 1.6, 1.3, 1.0, 0.8, 1.0, 1.3, respec- 
tively. Finally, we selected the mean value of the region R 
as TI = 1.25, T,  = 2.25. 

For the Perceptron images, the fixed parameters were 
t, = 4.0, t, = 0.1, t, = 3.0, t, = 0.2, and t, = 150. The other two 
parameters were tuned to T, = 1.75 and T2 = 3.25. The test 
region R in the parameter space was (TI, T,) E [1.5 ... 2.01 x 
[3.0 ... 3.51 in this case and over the 100 random tests within 
R, the standard deviation of the average performance 
quantities were 0.1, 0.1, 0.1, 0.2, 0.0, 0.1, 0.1 for an average 
value of 10.6,2.8,1.9,0.9,0.1,1.0,0.5, respectively. 

3.2.3 Parameters from UE Training 
There are nearly a dozen adjustable parameters for the UE 
algorithm. Evaluating the training data over a parameter 
space consisting of ranges in each of these would not have 
been computationally feasible. Therefore, since the results 
of intermediate stages are displayed, visual inspection was 
used to select appropriate values of the less sensitive pa- 
rameters, and refined search ranges for the others. The se- 
lection of nominal values for the less sensitive parameters 
was achieved as follows: 

1) Depth discontinuity threshold-15 range units 

By looking at a produced discontinuity map, the 
threshold was adjusted starting from a value of 5, and 
incremented by 5, until spurious depth edges were 
removed from a representative set of images. 

2) Normal discontinuity threshold-180 degrees apart 

Looking at the same maps, a set of values was tested. 
A large number of spurious edges existed at all nor- 
mal thresholds due to the image noise level. There- 
fore, all normal discontinuities were ignored with the 
given threshold rather than introduce false edges. 

3) Minimum normal agreement angle for inclusion-80 
degrees 

By examining typical segmentation results, a range of 
values beginning at 180 degrees was checked, and the 
chosen value reduced the amount of under- 
segmentation without creating serious over- 
segmentation. 

4) H-K outer threshold/Plane fit ratio of eigenvalues- 
Infinity/O 

Setting these two values to the given values forced the 
system to process all regions as planar in nature, ig- 
noring any quadric interpretations. 

By examining the typical convergence of region 
boundaries over the training set, this value was chosen 

5) Expand/contract iterations-30 
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such that it would not cause premature termination. 

This value was also chosen such that it would not inter- 
fere with the convergence process over the training set. 

6) Boundary refinement passes-3 

The remaining parameters more critically affected the re- 
sults. In preparation for a search of the parameter space, 
meaningful ranges were found through visual inspection. 
By examining the intermediate H-K maps of sample im- 
ages, ranges for the number of smoothing passes, and the 
inner threshold on H-K values were determined to give 
consistent labelings in meaningful regions. Then a set of 
morphology schedules based on previous experience was 
found that filtered these labelings to produce even 
smoother responses. The segmentation results on large re- 
gions such as the floor was used to find a viable range for 
the minimum fitting residual to produce a single region. 
Checking the final results for the presence of known small 
regions gave a potential range of values for the minimum 
region size. The final range of values tested for each of 
these parameters included: 

1) Number of smoothing passes-[:! 31 
2) H-K inner threshold-[.005 .006 ,007 .0081 for Percep- 

tron images, [.011 ,012 ,013 .014 ,015 ,016 ,0171 for 
ABW images 

3) H-K morphology schedule-[dilate/erode/dilate, di- 
late /erode/ dilate/ dilate, dilate / erode / dilate / dilate / 
erode] 

4) Minimum fitting residual-[3.0 3.5 4.0 4.51 for Per- 
ceptron, 11.5 2.0 2.5 3.01 for ABW 

5) Minimum region size-[20 25 301 

The segmentation results were computed at each point 
in the combined parameter space above. The major crite- 
rium used in choosing the best set of parameters was the 
number of correct classifications at a compare tolerance of 
t = 0.8. Choosing between the leading candidates in this 
category was done using secondary considerations such as 
the correct classifications at lower thresholds, and the 
amount of over/under segmentation. The final values cho- 
sen were: 2 smoothing passes, inner H-K thresholds of .006 
(Perceptron) and ,013 (ABW), an H-K morphology schedule 
of dilate / erode / dilate / dilate / erode, minimum fitting re- 
siduals of 3.5 (perceptron) and 2 (ABW), and a minimum 
region size of 25. 

XPE RI M E NTAL RES U LTS 

"Perfect" performance for a segmenter would be correct 
detection of all regions at a compare tool tolerance of 1.0, 
with zero angle difference, and of course zero instances of 
over-segmentation, under-segmentation, missed regions, 
and noise regions. It should be no surprise that we did not 
find a perfect segmenter. However, the amount of room for 
improvement might come as some surprise. Figs. 2 and 3 
show the scores of correct detection for the four segmenters, 
graphed against the compare tool tolerance. At the weakest 
tolerance (51 %) the segmenters scored between 69% and 
89% correct detections on the ABW imagery, and between 
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40% and 76% on the Perceptron imagery. At a moderate 
tolerance of 80%, the best scores for correct detections were 
88% on the ABW imagery and 68% on the Perceptron im- 
agery. None of the segmenters scored well when the toler- 
ance was moved to 90% or higher. 

ABW Structured Light Images 
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Compare Tool Tolerance (%) 

Fig. 2. Average correct detections of four segmenters (USF, UB, WSU, 
UE) on 30 ABW test images. 

Perceptron LRF Images 
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Fig. 3. Average correct detections of four segmenters (USF, UB, WSU, 
UE) on 30 Perceptron test images. 

An "across-the-board winner" in a comparison would 
h a v e  the  h ighes t  v a l u e  for average n u m b e r  of correct  detec- 
tions and the lowest value for all the error measures, for the 
entire compare tool tolerance range. It should come as little 
surprise that we did not find an across-the-board winner. 
For instance, the UB segmenter scored highest in correct 
detections on the Perceptron imagery with a tolerance of 
70% and lower, while at a tolerance of 75% and higher the 
UE segmenter scored highest in correct detections. Table 2 
presents the average results on all performance measures 
for all four algorithms on both test sets at 80% compare 
tolerance. 
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15 
segmenters on each data set for the error metrics. Three 
interesting results appear. First, all four segmenters scored 
considerably higher measures of missed and noise regions E 

TABLE 2 
AVERAGE RESULTS OF ALL FOUR SEGMENTERS ON TEST SETS AT 80% COMPARE TOLERANCE 

-1 ._.. 

. 

~ 

~ 

ABW 30 TEST IMAGES 

re ions 

wsu 15.2 
15.2 

UE 15.2 

PERCEPTRON 30 TEST IMAGES 

wsu 
14.6 
14.6 

Units are instances of vegion-mappings between ground tvuth and machine-produced segmentations. 

1 

quired in the course of this project,'that time-if-flight LRF 
-,:rc ..-- :: , , E ~  \-""---- 

~~~ 1 -1. --'cvI data is "noisier" than structured light scanner data. How- 
ever, it must be noted that because different objects were 0.0 I ..J--A--. 

{ \Il-:iL,h 

50 60 70 80 90 100 
Compare Tool Toleranre ( X )  

imaged with each type of sensor, this observation is not 
conclusive. 

Fig. 5. Average under-segmentations (USF, UB, WSU, UE) on 30 ABW 
kB!N Structured L iyh i  Images test images. 1 o i  . ~ - - ~ / ~ ~  ... ~ , 

Fig. 4. Average over-segmentations (USF, UB, WSU, UE) on 30 ABW 
test images. 

50 60 70 SO 90 100 
Co-npaie Tool Tolcrance (W) 

Fig. 6. Average missed regions (USF, UB, WSU, UE) on 30 ABW test 
images. 
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ARW Structured Light Images 
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Fig. 7. Average noise regions (USF, UB, WSU, UE) on 30 ABW tesi 
images 

Perceptron LRF Images 
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Fig. 8. Average over-segmentations (USF, UB, WSU, UE) on 30 Per- 
ceptron test images. 

Perceptron LRF lmooes 
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Fig. 9. Average under-segmentations (USF, UB, WSU, UE) on 30 Per- 
ceptron test images. 

Perceptron LRF Images 
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Fig. 10. Average missed regions (USF, UB, WSU, UE) on 30 Percep- 
tron test images, 
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Fig. 11. Average noise regions (USF, UB, WSU, UE) on 30 Perceptron 
test images. 

None of the segmenters did worse than 2 degrees aver- 
age angle difference on the ABW images, or worse than 4 
degrees on the Perceptron images. The values of this per- 
formance metric were closely bunched for the different 
segmenters and fairly constant until the threshold T was 
increased beyond 0.9. At this point the numbers of correct 
detections diminish dramatically, making this metric less 
meaningful. Therefore, due to space considerations, the 
graphs for this metric were omitted. 

The average processing times for the algorithms on the 
ABW and Perceptron test sets, per image, were 78 and 117 
minutes (USF) on a Sun SparcStation 20, 6.3 and 9.1 minutes 
(UE) on a Sun SparcStation 5,4.4 and 7.7 minutes (WSU) on a 
HP 9000/730, and 7 and 10 seconds (UB) on a Sun SparcSta- 
tion 20. Although the UE segmenter obtains slightly better 
measures of correct detections than does the UB segmenter, 
the difference in processing speeds is noteworthy. 
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5 DISCUSSION 
The two major contributions of this work are 

1) the development of a rigorous framework for experi- 
mental comparison of range image segmentation al- 
gorithms, and 

2) an assessment of the state of the art for planar seg- 
mentation of range images. 

We feel that the first contribution is of great theoretical and 
conceptual importance, and hope that by demonstrating a 
sound experimental framework, we may influence other 
researchers to perform more work of this type. We feel that 
the second contribution is of both theoretical and practical 
importance, largely due to the public availability of the 
materials involved in this work. These materials should 
prove valuable to researchers seeking to demonstrate an 
advance in the state of the art, or to practitioners seeking to 
utilize a range image segmentation algorithm. 

A natural question that arises in reaction to the results pre- 
sented herein is what specific region properties cause incorrect 
segmentation, yielding what types of errors? Fig. 12 presents 
bar graphs of all GT regions incorrectly detected by the UB 
segmenter at an 80% compare tolerance. Each bin corresponds 
to 10% of the total GT regions, ordered by pixel size. (Graphs 
for the other three segmenters <are similar. We chose to illus- 
trate the UB segmenter by virtue of its speed and perform- 
ance.) These graphs point out that missed GT regions are pre- 
dominantly smaller in size than over-segmented GT regions, 
while under-segmentations generally involve larger and 
smaller GT regions. Note that this presentation of segmenta- 
tion errors does not include instances of MS noise regions. 

E3 missed 
over-segmentation 
under-segmeiti t ion 
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Fig. 12. Size distributions of GT regions incorrectly detected by UB 
segmenter. 

One possible perspective is to view these graphs as sup- 
port for the claim that planar segmentation algorithms are 
performing "good enough." One can envision a segmenta- 
tion consumer that is predominantly interested in large 
regions, and is affected less by errors in small regions. For 
instance, a greedy matching algorithm might be tuned in 
this manner. A second perspective is to view these graphs 
as support for the claim that there is considerable room for 
improvement in planar segmentation algorithms. It is not 
difficult to envision a segmentation consumer that can be 
severely affected by errors in small regions. For instance, 
our own experiences in CAD-based vision suggest that the 
geometry of small regions involved in segmentation errors 
is grossly worse than their large counter-parts. Of course, 
this entire discussion hinges on the subjectivity of what is 
considered "small" and "large." Regardless, Fig. 12 indi- 
cates that segmentation errors occured across the spectrum 
of GT region size. Perfect performance, even on "large" 
regions, has not yet been achieved. 

We would like to identify what we feel to be the most 
important open problems in planar patch range image 
segmentation: 

1) Figs. 4 through 11 indicate that missed and noise re- 
gions occur much more frequently than over- and 
under-segmentation. 

2) Fig. 12 illustrates that current segmenters most often 
miss small regions (on the order of 1,000 pixels or 
less). 

3) Figs. 2 and 3 illustrate that all segmenters perform 
poorly when the required tolerance is 90% or higher. 
This suggests a need for improved refinement on the 
borders of segmented regions. 

Regarding the particular algorithms, we make the follow- 
ing observations. Although the UE segmenter obtained 
slightly better results than the UB segmenter, the latter per- 
forms much faster, probably making it the segmenter of 
choice for most applications. The USF segmenter guaran- 
tees a 4-connected segmentation, which may be essential for 
some applications (indeed it was a design criteria for re- 
lated model-building research). Finally, both the UE and 
WSU segmenters have the capability to segment some 
classes of curved surfaces. 

Fig. 13 presents the ABW test image which contains the 
largest GT region that all four segmenters failed to correctly 
detect at an 80% compare tolerance. The UB and UE seg- 
menters over-segmented the region, while the USF and 
WSU segmenters missed the region. Fig. 14 presents the 
Perceptron test image which contains the largest GT region 
that all four segmenters failed to correctly detect at an 80% 
compare tolerance. The UB and WSU segmenters over- 
segmented the region, the USF segmenter missed the region 
and the UE segmenter under-segmented the region. Note 
that results for all 40 images of each type can be viewed on 
the www site. 

We note that we experienced phenomena similar to that 
reported in the JISCT stereo evaluation [6],  in which only 
three of five research groups completed the testing of their 
algorithms. During the course of this project we solicited 
participation from a number of groups. At least four other 
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groups actively looked at participating, but did not com- 
plete their evaluation for some reason. Similarly, all of the 
authors experienced some difficulty in running their algo- 
rithm implementations on all of the test images. Each group 
discovered coding errors as well as subtle possible algo- 
rithmic improvements. This extended the time required for 
the evaluation. 

As a final note, while we consider the current data set 
and evaluation methodology useful and broad, it will not 
capture every possible nuance of the range image segmen- 
tation problem. We purposely designed the framework to 
be flexible to expansion, especially where necessary to 
bring out certain important aspects of a new algorithm. For 
instance, curved surfaces represent an obvious potential 
area of expansion. Similarly, if one felt that some algorithm 
other than those presented herein would yield higher per- 
formance on either the current data set, or some expanded 
data set, we would welcome an empirical demonstration. 
We encourage such efforts by leaving all pertinent materi- 
als publicly available. 

range image intensity image ground truth segmentation 

UE segmentation UB segmentation 

USF segmentation WSU segmentation 

Fig. 13. ABW test image #8, which contains the largest GT region 
(2,960 pixels) that all four segmenters failed to correctly detect. The GT 
region’s area is shaded gray in the segmentations. The “specks” were 
caused by the outlining of isolated noise or unlabeled pixels. 

PPENDIX 
PROOF OF POSSIBILITIES FOR MULTIPLE 
CLASSIFICATIONS 

Although the metric definitions given in Section 2.4 result 
in a classification for every region in the GT and MS im- 
ages, they are not unique for T < 1.0. Fig. 15 demonstrates 

range image intensity image ground truth segmentation 

UE segmentation UB segmentation 

Fig. 14. 

USF segmentation 

Perceptron test image 

WSU segmentation 

#26, which contains the largest GT 
region (2,124 pixels) that all four segmenters failed to correctly detect. 
The GT region‘s area is shaded gray in the segmentations. The 
“specks” were caused by the outlining of isolated noise or unlabeled 
pixels 

this. Assume that region A in the GT image and region 1 in 
the MS image overlap each other at least T percent of their 
respective areas. Then we would deduce that region A in 
GT and region 1 in MS are an instance of correct detection. 
This leaves B in GT classified as missed, and 2 in MS classi- 
fied as noise (case I in Fig. 15). However, if regions A and 1 
mutually overlap at least T percent of their respective areas, 
then the union of regions A and B in GT and region 1 in MS 
would also overlap at least T percent of their respective 
areas. This satisfies the under-segmentation classification 
metric, leaving 2 in MS classified as noise (case I1 in 
Fig. 15). Similarly, the mapping of region A in GT to the 
union of regions 1 and 2 in MS would yield an over- 
segmentation classification, leaving B in GT classified as 
missed (case 111 in Fig. 15). 

However, for 0.5 < T < 1.0 any region can at most con- 
tribute to three classifications, one each of correct detection, 
over-segmentation and under-segmentation. First, consider 
the definition of a correct detection classification. It states 
that at least T percent of a GT region’s pixels must overlap 
some MS region. This implies that only 1.0 - T percent of 
the GT region’s pixels can overlap any other MS region. 
Since T > 0.5, 1.0 - T clearly cannot also be greater than T. 
Therefore no other MS region can overlap the GT region 
sufficiently to create another correct detection classification 
for the GT region. This argument applies similarly for any 
MS region in a correct detection classification. 
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GT MS 

n m  
Possible classifications: 

Fig. 15. An example where multiple region classifications could be 
given. 

Now consider the definition of an over-segmentation clas- 
sification. It states that for a set (of MS regions to contribute to 
the mapping, each MS region in the set must overlap by at 
least T percent of its pixels the candidate over-segmented GT 
region. Therefore, because T > 0.5, each MS region can be 
considered in at most one mapping of over-segmentation. In 
the other direction, if the union of the set of MS regions 
overlaps the GT region by at leaist T percent of its pixels, then 
once again there is not enough left of the GT region to use in 
another over-segmentation mapping. 

Finally, there is the possibility of considering subsets of 
the total possible set of MS regions that could contribute to 
the mapping. However, any subset causes the percentage of 
the GT region which is covereal to be lowered. If we require 
the maximum possible covering (where each MS region still 
satisfies the metric), then we require the total set. Hence, 
each GT region can be considered in at most one over- 
segmentation mapping. Reversing the direction of argu- 
ments in this discussion between GT and MS regions 
proves the same for an under-segmentation mapping. 
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