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Abstract

This is the first work to explore template aging in 3D face
recognition. We use a dataset of images representing 16
subjects with 3D and 2D face images, and compare short-
term and long-term time-lapse matching accuracy. We find
that an ensemble-of-regions approach to 3D face matching
has much greater accuracy than whole-face 3D matching,
or than a commercial 2D matcher. We observe a drop in
accuracies with increased time lapse, most with whole-face
3D matching followed by 2D matching and the 3D ensem-
ble of regions approach. Finally, we determine whether the
difference in match quality arising with an increased time
lapse is statistically significant.

1. Introduction

A major motivation for studying 3D face recognition is
its potential to achieve higher recognition accuracies and
advantages over 2D intensity images [7, 10, 15]. 3D face
recognition is robust to variations in illumination and pose
which are the major factors impeding 2D face recognition.
However the presence of facial expressions and occlusions
in 3D face scans is known to diminish recognition perfor-
mance [1, 3, 4].

Template aging is defined as ”the increase in error rates
caused by time related changes in the biometric pattern, its
presentation and the sensor” [8]. The face is known to un-
dergo various changes with age which have been well re-
searched and modeled. The phenomenon is well summa-
rized as - ”Facial aging reflects the dynamic, cumulative
effects of time on the skin, soft tissues, and deep struc-
tural components of the face, and is a complex synergy
of skin textural changes, loss of facial volume, progressive
bone resorption, decreased tissue elasticity, and redistribu-
tion” [5]. The effect of template aging in face biometrics is
inevitable with the degree of changes the human face under-
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goes [9, 12, 13]. Practical applications of face recognition
systems such as surveillance or use in passports - which
require identification after long periods of time - may not
be effective if the problem arising due to an increased time
lapse is not considered.

This paper reports on the first work to look at template
aging in 3D face recognition, which we also contrast with
2D recognition. We use a database of sixteen subjects with
over 200 3D face scans in all. The scans have been captured
over a decade, making the database appropriate to study
template aging. 2D face recognition has been performed
using the Verilook SDK 5.0 [11]. For 3D face matching we
use an ensemble of face regions matched individually using
ICP, as proposed in [6], and also compare it with whole-face
ICP matching. Using these algorithms we match scans over
short and long time lapse to determine if template aging is
present. We also study how aging effects matching con-
cerning each 3D region. We assess if the variation in face
recognition performance over short and long time lapse is
statistically significant. Finally, we compare the magnitude
of 3D and 2D template aging.

The paper is organized as follows. In section 2 and 3
we give information regarding the dataset and the protocol
used to study the template aging phenomenon. Section 4 de-
scribes an automatic method for preprocessing the 3D scan
data. Section 5 details our techniques to match scans of sub-
jects in the 2D and 3D domain. We then present the results
of the matching algorithms and discuss whether template
aging is present in 3D and 2D face recognition. Finally, we
conclude our findings.

2. Dataset
The dataset was created by selecting all of the subjects

out of the Notre Dame database who had a five-year time
lapse between earliest and latest 3D face scan. 214 scans
of sixteen subjects captured over a period from 2003 to
2012 are utilized, and made available from the University
of Notre Dame1. The number of subjects is on the small
side, but five years of time lapse with the same 3D face sen-
sor is very rare and difficult to obtain. Table 1 summarizes
the demographic information of the subjects. The minimum

1For info on obtaining the dataset: http://www.nd.edu/∼cvrl



Figure 1: Sample 3D meshes and intensity images (underlying text is date of acquisition).

Table 1: Demographic information of the subjects.

Subjects Gender Race Age at enrollment

16
Male 50%
Female 50%

White 87.5%
Hispanic 6.25%
Asian 6.25%

19 - 56 yrs

number of scans that a subject has is 5, while 24 is the max-
imum. Each scan consists of 3D and 2D data, with a spatial
resolution of 640× 480.

Each scan is a frontal, shoulder-level-up view of the sub-
ject. Sample scans in 3D and their corresponding inten-
sity images for a subject are shown in Figure 1. A 3D scan
has approximately 300,000 points, of which typically about
100,000 are valid 3D points. The number of points varies
due to a number of factors, including subject-to-sensor dis-
tance, the lens used, and hair covering the face.

Each subject chosen for the study has some scans cap-
tured within a short time lapse, say three months, and some
captured after a long time lapse, say five years, from the
first capture. Variations in pose leading to lack of 3D points
through self occlusion, or expression instigate a drop in
recognition performance. Hence, for an authoritative study
of the template aging effect, all included scans are frontal
head pose and bear neutral facial expressions. We have as-
sumed that sensor aging does not play a significant role. The
same physical sensor was used at Notre Dame the whole
time, kept under a maintenance contract.

3. Protocol To Study Template Aging
For each subject, the earliest scan is taken as the enroll-

ment scan. The gallery has the 16 enrollment scans, one
per subject. The remaining scans for each subject form the
probe set. If the time lapse between the verification scan

Table 2: Number of Short/Long, Authentic/Impostor pairs.

Short Term Long Term
Authentic 44 154 198
Impostor 287 2310 2597

331 2464 2795

and the enrollment scan is within three months it is termed
as Short Term, while a time lapse greater than five years is
termed Long Term. The Short Term period is too small for
major modifications of the human face, while over a mini-
mum five year period changes are generally visible. A com-
parison of face recognition performance over the Short and
Long Term period would give an insight into the template
aging effect.

A pair of enrollment and verification scans belonging to
the same subject are called authentic, while those belong-
ing to different subjects are called impostor. For the exper-
iment, all verification scans in the probe set are matched to
all the enrollment scans in the gallery. An enrollment veri-
fication scan pair may be Short Term or Long Term depend-
ing on the time lapse between their capture, and either au-
thentic or impostor according to the subject they belong to.
An enrollment verification scan pair is discarded if it does
not belong to either the Short Term or Long Term category.
Table 2 presents the number of subject pairs belonging to
each of the four categories as defined above.

We look at the verification scenario in which the user
claims an identity and the captured verification scan is
matched to the enrollment scan of the claimed identity.
The receiver operating characteristic (ROC) curve for Short
Term, Long Term, and both types of pairs (Complete curve)
are plotted as the performance measure.



Figure 2: A scan represented as a set of points in the Eucle-
dean space. The XY and YZ plane view of the high curva-
ture regions marked red has been potrayed.

4. 3D Scan Preprocessing

3D scans may have noise spikes and holes due to ab-
sorption of the triangulating laser at certain regions such
as the eyebrows. These may lead to irregular correspon-
dence of points while registration. We use the moving least
squares (MLS) surface reconstruction method to smooth
and resample noisy data. The resampling algorithm recre-
ates the missing parts of the surface by polynomial inter-
polation between the surrounding data points. The holes
caused by missing points are filled and noise points are re-
moved. Variations in subject-to-scanner distance or scanner
lens may lead to dissimilar number of points across scans.
Resampling also ensures the facial scans have similar num-
ber of points. The 3D scans do not have any major missing
portions due to self-occlusion, since all scans are chosen to
be frontal pose.

4.1. Automatic Nose Detection

An automatic technique for nose detection is performed
to obtain the nose tip which would be used to segment the
facial region. For a given scan we define the high curvature
region. For each point of the given surface the principal
curvatures p1 and p2 are calculated. The mean curvature χ
is defined as χ = (p1 + p2)/2. A point is said to belong to
the high curvature region if the value of χ for the point is
higher than the average value of χ across all points. Figure
2 illustrates a scan and the high curvature regions on it. The
nose tip is a peak on the surface and is expected to belong
to the high curvature region.

We use an iterative approach to detect the nose tip.
Each iteration chooses the max z-value point in the high-
curvature region as the candidate nose tip point, ck. The
scan is cropped using a sphere with center ck and registered
to a well-segmented template scan. ck is declared the true
nose tip if the registration error is below a threshold, else
the process is repeated eliminating points from the scan ly-
ing within a horizontal strip of 2mm of ck.

Figure 3: The cropping for an enrollment and probe scan
done through a sphere of radius 100mm and 60mm respec-
tively for the whole-face 3D matching. The regions have
been represented as a collection of points in 3D.

5. Experimental Methods
The 2D scans are matched using the commercially avail-

able Verilook SDK 5.0 [11]. For a pair of images the SDK
provides a similarity score. The scale starts from 0, which
indicates a poor match, while higher scores indicate it is
more likely are the two scans to belong to the same subject.

For 3D face matching the 3D point clouds are prepro-
cessed as described in section 4. The point clouds are trans-
lated such that the nose point becomes the origin, so that
nose tips for a pair of scans coincide. This important to
prevent ICP from settling to a local minimum. The gallery
set scans are cropped through a spherical region with the
nose point as center and a 100mm radius. Probe scans are
matched to the enrollment scans using either the whole-
face, or an ensemble of regions as formulated in [6]. The
Point Cloud Library [14] is used to process and match 3D
scans.

5.1. Whole-face 3D Matching

The cropping radius for the probe scans is set at 60mm to
be able to utilize as much of the face as possible for match-
ing. Figure 3 illustrates cropped enrollment and verification
scans of a subject. The crop radius for the probe scans is
lower than the enrollment scans to ensure correspondence
for each probe scan point to the enrollment scan points.
It also excludes irregular forehead hair points which may
cause poor matches. Pairs of scans are registered through
the ICP algorithm [2], which returns the root mean squared
distance between the closest points as the match score.

5.2. 3D Ensemble of Regions

In [6], the authors define 38 independent spherical re-
gions of the face by a sphere center (as an x and y offset
from the nose point) and a sphere radius. We employ in-
dependent region matching of the probe scans with a set of
face regions as defined in [6]. See Table 3. Positions of the
sphere centers on the face are presented in Figure 4. The de-
scribed regions are extracted from the probe scan and regis-
tered to the enrollment through the ICP algorithm producing



Figure 4: Location of the center points on the face for the
independent facial regions as proposed in [6].

Table 4: GAR at 0.1% FAR for different algorithms and
time lapse periods.

Matching Technique Short Term Long Term Complete
2D - Verilook 98.36 96.80 93.84

3D Whole-Face 86.54 62.98 64.56
3D Region Ensemble: Sum 99.04 98.15 98.23

3D Region Ensemble: Product 99.04 98.79 98.71

a set of scores. Different regions of the face age differently
and this method allows studying how each region performs
independently. Further, the region scores are fused with the
sum and product rule to seek whether a region ensemble
performs better than individual face regions. The probe re-
gion match scores are considered in the decreasing order of
their verification performance and added one after the other
to an initially empty region ensemble. Region scores are
normalized by the number of probe region points prior to
fusion to neutralize difference in probe region sizes.

6. Results

Table 4 summarizes the GAR obtained at 0.1% FAR for
the different matching algorithms. The complete match-
ing performance is 93.84% GAR for 2D face recognition
obtained through the Verilook SDK. Whole-face 3D per-
formance is 64.56% which is almost a 30% drop from
the 2D performance mark. It indicates that registering the
whole-face with ICP algorithm substantially degrades per-
formance, even though 3D face recognition has the potential
to perform better than algorithms utilizing 2D information.

Table 3 presents verification rates obtained with each re-

gion. Individual regions have a GAR as high as 97.58%
(region 2) and as low as 0%. Certain areas of the face age
visibly more than others, and matching with those regions
may not be as good as others. We observe small radial re-
gions with center near the nose perform better than larger,
or regions with center farther away. The best independent
region matching is better than the 2D performance by 4%,
supporting the claim of better 3D face recognition perfor-
mance over 2D (for this sensor, dataset, etc).

Fusion of scores from the independent region matching
further improves accuracy. The GAR with the sum and
product rule is 98.23% and 98.71%, improving over the
most-accurate single region by 1%. Peak accuracy for the
sum or product is obtained using only three regions: 2,9,7.
These regions have radii either 25 or 35 mm and center dis-
placed in the y direction within 20mm of the nose tip. Inter-
estingly, all regions fused by the product rule has a 80.48%
GAR, 16% better than whole-face 3D matching.

We look at the verification rates as the time lapse is
switched from Short to Long. There is a 24% drop from
86.54% to 62.98% for the whole-face 3D matching. The
drop is restricted to an approximate 2% for 2D matching,
0.9% for the best performing independent facial region (re-
gion 2), and 0.25% for the region ensembles. Whole-face
matching is affected most by template aging. There is a
smaller degradation in 2D matching. The effect becomes
almost negligible for the region ensemble matching.

Figure 5 shows the authentic and impostor score his-
tograms for each of the four recognition algorithms. Look-
ing at the authentic distributions of each of the four algo-
rithms, the Long Term scores are shifted towards numbers
higher than the Short Term scores. The shift of the Long
Term scores indicates a decrease in match quality. If the
increased scores due to an increased time lapse lead to fur-
ther overlap of the authentic and impostor distributions, the
performance would degrade. The impostor scores show no
direct impact of increased time lapse.

To understand the relationship between the Short and
Long Term scores of both the authentic and impostor distri-
butions we perform two statistical tests on the set of scores
obtained from the experiments of the four algorithms. We
consider the t-test with the null hypothesis that the Short and
Long term score vectors come from independent random
samples of normal distributions with equal means and equal
but unknown variances, with the alternate that the vectors
come from populations with unequal means. We then look
at the Kolmogorov-Smirnov (ks-)test. The null hypothesis
is that the the Short and Long term score vectors come from
the same continuous distribution while the alternate is that
they are from different continuous distributions.

The p-values of the results of the two tests are shown in
Table 5. All four algorithms reject the null hypothesis of
both the tests for the authentic distributions. For the impos-



Table 3: ICP matching results (GAR at FAR = 0.1%) for the independent face regions for different time lapse periods. Sphere
represents the x and y offset of the sphere center from the nose tip, and sphere radius.

Region Sphere Short Term Long Term Complete Region Sphere Short Term Long Term Complete
1 0, 10, 25 94.71 83.35 81.96 20 40, 10, 45 13.30 8.35 7.73
2 0, 10, 35 98.56 97.70 97.58 21 0, 30, 40 14.74 21.61 17.46
3 0, 10, 45 87.98 82.46 82.02 22 0, 30, 35 41.67 14.88 13.92
4 0, 0, 25 93.11 84.76 84.05 23 0, 30, 45 9.94 24.07 11.37
5 0, 0, 45 94.07 78.79 79.03 24 0, 40, 40 4.97 9.88 3.19
6 0, -10, 25 95.67 82.06 81.93 25 0, 40, 35 6.09 10.85 4.86
7 0, -10, 35 95.03 85.48 85.21 26 0, 40, 45 5.29 8.87 2.51
8 0, 20, 35 93.75 48.51 48.07 27 -15, 30, 35 42.63 8.51 7.89
9 0, 20, 25 98.72 95.73 95.14 28 15, 30, 35 16.67 8.75 8.31

10 0, 20, 45 69.07 30.85 30.09 29 50, 0, 45 13.62 7.26 7.22
11 -20, 10, 25 85.42 74.44 72.55 30 -50, 0, 45 4.33 2.02 2.00
12 20, 10, 25 78.69 89.19 82.67 31 -40, 30, 45 0.00 7.02 0.00
13 20, 0, 25 64.90 59.80 57.96 32 40, 30, 45 4.17 0.81 0.84
14 -20, 0, 25 75.16 38.63 37.69 33 30, 40, 45 5.29 0.04 0.06
15 -15, 15, 45 80.29 44.92 45.14 34 -30, 40, 45 0.16 3.75 0.03
16 -40, 10, 45 1.28 4.15 0.32 35 0, 60, 35 2.24 1.13 1.16
17 -30, 20, 45 0.96 21.49 2.45 36 30, -20, 35 62.50 9.35 8.31
18 15, 15, 45 88.62 19.35 18.75 37 -30, -20, 35 68.91 4.64 4.03
19 30, 20, 45 20.35 6.41 5.38 38 0, -55, 35 12.34 0.73 0.68

Table 5: The p-values for the t-test and the Kolmogorov-
Smirnov test on the authentic and impostor distributions.

Authentic Impostor
Matching Technique t-test ks-test t-test ks-test

2D - Verilook 9.01E-240 0 0 9.97E-296
3D Whole-Face 3.71E-14 1.47E-20 0.59 2.33E-4

3D Region Ensemble: Sum 2.53E-22 3.06E-19 0.005 0.002
3D Region Ensemble: Product 9.42E-10 1.43E-19 0.27 0.013

tor distributions, the 2D and region ensemble matching with
sum rule algorithms reject the null hypothesis of the t-test,
while the whole-face 3D matching in addition to these two
reject the null hypothesis of the ks-test. The 3D whole-face,
and region ensemble matching with the product rule fail to
reject the null hypothesis of the t-test. The region ensem-
ble matching with the product rule fails to reject the null
hypothesis of the ks-test at 1% significance level.

7. Summary
We study four face recognition algorithms and observe

that 3D region ensembles outperform 2D performance, and
the whole-face 3D matching. Small facial regions centered
near the nose tip lead to high 3D recognition rates, while
larger regions and regions further from the nose have lower
performance. We look at the Short and Long time lapse per-
formance to investigate template aging for 3D face recog-
nition and to compare it with template aging for 2D face
recognition. We observe a 24% drop in GAR at 0.1% FAR
for the whole-face 3D matching, while it is 2% for the 2D
matching. 3D region ensemble matching substantially im-
proves over the 2D performance, and whole-face 3D match-
ing by restricting the drop to less than a mere 0.25%.

We look at the match scores produced by each of the al-
gorithms to study their relationship with an increased time
lapse. We observe that the impostor distributions have
poorer scores than the authentic distributions. The more dis-
tinct the two distributions are, the better are the verification
rates. We observe that, relative to the short-term distribu-
tions, the long-term authentic distribution is shifted toward
the impostor distribution. We perform two statistical tests
with null hypothesis that the Short and Long Term score
vectors are from the same distributions. Results from all
four algorithms reject the null hypothesis for both the tests
for the authentic distributions. For the impostor distribu-
tions, the whole-face 3D algorithm fails to reject the null
hypothesis of the t-test, and the region ensemble matching
with product rule score fusion fails to reject the null hypoth-
esis of both the t-test and the ks-test.

Decreasing accuracy with increased time lapse will be
a problem in almost every application of face recognition.
Re-enrollment may solve the problem, but increases cost of
running a system and may not be practical in surveillance
applications. Designing algorithms specifically seeking to
counter the effect of aging, similar to pose, illumination, or
expressions, for both 3D and 2D systems, is the work for
future research.
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