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Abstract—Previous performance evaluation of range image seg-
mentation algorithms has depended on manual tuning of algorithm
parameters, and has lacked a basis for a test of the significance of
differences between algorithms. We present an automated frame-
work for evaluating the performance of range image segmenta-
tion algorithms. Automated tuning of algorithm parameters in this
framework results in performance as good as that previously ob-
tained with careful manual tuning by the algorithm developers. Use
of multiple training and test sets of images provides the basis for
a test of the significance of performance differences between al-
gorithms. The framework implementation includes range images,
ground truth overlays, program source code, and shell scripts. This
framework should

a) make it possible to objectively and reliably compare the per-
formance of range image segmentation algorithms;

b) allow informed experimental feedback for the design of im-
proved segmentation algorithms.

The framework is demonstrated using range images, but in prin-
ciple it could be used to evaluate region segmentation algorithms
for any type of image.

Index Terms—Performance evaluation, range image segmenta-
tion, region segmentation.

I. INTRODUCTION

PERFORMANCE evaluation of computer vision algorithms
has received increasing attention in recent years [1], [2],

[3], [4], [5], [6]. This paper presents an automated framework
for objective performance evaluation of region segmentation al-
gorithms. While the framework is developed in the context of
range images, in principle it is applicable to any type of imagery.

Earlier work in performance evaluation of range image seg-
mentation compared four algorithms that segment images into
planar regions [7]. In this comparison, the training to select pa-
rameter values for the algorithms was done manually by the al-
gorithm developers. This work was extended to include algo-
rithms that segment range images into curved-surface patches
[8], to evaluate additional planar-surface algorithms [9], and to
use an automated method of training to select algorithm parame-
ters [10], [11]. None of these works provided a means to test for
the significance of observed performance differences between
algorithms.
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We introduce an automated framework for objective perfor-
mance evaluation of region segmentation algorithms for range
images. This framework includes image data sets for planar-sur-
face and curved-surface scenes, corresponding manually-spec-
ified ground truth for the images, a tool for scoring of perfor-
mance metrics, a tool for training to select algorithm parame-
ters, source code for baseline algorithms for performance com-
parison, and a test for statistical significance of observed perfor-
mance differences. The framework is available to the research
community on our website http://www.nd.edu/~cvrl.

The remaining sections of this paper are organized as follows.
The next section defines how instances of correct and incorrect
region segmentation are scored. Section III then defines how
these instances of correct and incorrect segmentation are sum-
marized in a performance curve for a given algorithm and set
of images. Section IV describes how the performance curve is
used in an automated search of the segmenter’s parameter space
to determine the appropriate number of parameters and their set-
tings. Section V outlines the framework for benchmarking the
performance of a new algorithm and comparing it to a known
baseline algorithm. Section VI steps through the details of the
framework implementation and an example comparison of two
algorithms.

II. DEFINITION OF PERFORMANCE METRICS

The specific definition of region segmentation that we use is
the same as used by Hoover et al. [7] and is repeated here for ref-
erence. A segmentation of an image into regions
is defined by the following properties.

1) . Each pixel belongs to some region.
2) Every region is spatially connected. Our implementation

currently uses four-connectedness as the definition of spa-
tially connected.

3) , . Regions do not overlap
each other.

4) . All pixels in a region satisfy a
specified similarity predicate; in the case of range images,
they belong to the same scene surface.

5) and are four-connected
and adjacent, . If two regions are
four-connected and adjacent, then they represent different
surfaces.

6) There are “artifact regions” in the image where no valid
measurement was possible which all have the same label
(violating rule 2) and for which rules 4 and 5 do not apply.
In the ground truth, these generally represent sensor ar-
tifacts that the region segmentation algorithm is not ex-
pected to handle correctly as normal regions.
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Fig. 1. Example range image and corresponding ground truth image. The
ground truth specifies four surface regions: two planar, one cylindrical, and
one conical.

For each image used in the train or test sets, a ground truth
(GT) segmentation is manually specified using an interactive
tool developed for this purpose. Fig. 1 shows an example range
image and its corresponding ground truth. The scene has one
conical surface and one cylindrical surface in the foreground,
and two planar surfaces in the background. The GT contains a
region for each of these surfaces, plus “artifact regions” for the
areas that correspond to significant artifacts in the image. For ex-
ample, the “shadow region” that is cast onto the cylindrical sur-
face by the conical surface is marked as an artifact region in the
GT. The shapes in the curved-surface scenes are all formed from
quadratic surface patches, and the GT segmentation is in terms
of these quadratic surface patches: planar, cylindrical, spherical,
conical, and toroidal. This may present challenges for the eval-
uation of segmentation algorithms that describe a region patch
using more general curved surfaces [12].

A machine segmentation (MS) of an image can be compared
to the GT specification for that image to count instances of
correct segmentation, under-segmentation, over-segmentation,
missed regions, and noise regions. The definitions of these met-
rics are based on the degree of mutual overlap required be-
tween a region in the MS and a corresponding region in the
GT. An instance of “correct segmentation” is recorded if and
only if an MS region and its corresponding GT region have
greater than the required threshold of mutual overlap. Multiple
MS regions that correspond to one GT region constitute an in-
stance of over-segmentation. One MS region that corresponds
to several GT regions constitutes an instance of under-segmen-
tation. A GT region that has no corresponding MS region con-
stitutes an instance of a missed region. A MS region that has
no corresponding GT region constitutes an instance of a noise
region. Fig. 2 illustrates these definitions of the performance
metrics. Results are automatically scored using a tool that com-
pares an MS result to its corresponding GT at a specified overlap
threshold.

III. PERFORMANCE CURVES FOR REGION SEGMENTATION

The meaningful range of required overlap between a given
MS result and its corresponding GT image is

. As the overlap threshold is varied from lower (less
strict) to higher (more strict) values, the number of instances of
correct segmentation generally decreases. At the same time, the
number of instances of the different errors generally increases.
This is shown in Fig. 3. A performance curve can be created for

Fig. 2. Illustration of definitions for scoring region segmentation results.

Fig. 3. Performance curve examples for instances of (a) correct segmentation
and (b) missed regions.

each individual metric (correct segmentation, under-segmenta-
tion, etc.) for each image in a data set. The performance curve
shows how the number of instances of the given metric changes
for the given image as the overlap threshold varies over its mean-
ingful range. Also, an average performance curve can be cre-
ated for an image data set as a whole. Everingham et al. [13]
proposed as a performance measure the use of Pareto front that
allows trade-offs between multiple performance criteria in eval-
uation of image segmentation algorithms.

If algorithm A has consistently better performance than algo-
rithm B, then its performance curve for the correct detections
metric will lie above that of algorithm B. This comparison can
be given a quantitative basis using the area under the curve. Per-
formance curves can be normalized to a basis where the ideal
curve has an area of 1. Thus the “area under the performance
curve” (AUC) becomes an index in the range of , repre-
senting the average performance of an algorithm over a range
of values for the overlap threshold. It is of course possible that
the AUC index will obscure situations where, for example, algo-
rithm A is better than algorithm B for low values of the overlap
threshold, but worse at high values. Thus, in comparing two al-
gorithms, it is important to also consider whether the perfor-
mance curves cross each other.

The performance curve and the AUC metric as used here
have a similarity to the receiver operating characteristic (ROC)
curve and the area under the ROC curve [14]. However, pre-
cisely speaking, the performance curve as used here is not le-
gitimately an instance of an ROC curve, or of a free-response
ROC curve (FROC). The image segmentation problem as de-
fined here is to specify a complete decomposition of the image
into a set of regions. This is different from the problem defini-
tions that give rise to the ROC or FROC curve. In essence, the
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Fig. 4. Illustration of the adaptive sampling of parameter space in the training
process.

problem definition underlying the ROC curve is to classify a
given region as “positive” or “negative,” and the definition un-
derlying the FROC curve is to detect the “positive” regions in an
image. Thus the problem underlying the ROC or FROC curve
is in some sense simpler.

For experiments reported in this paper, the AUC values are
computed using a trapezoid rule with overlap threshold sampled
at ten values: 0.51, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, and
0.95. Our general experience is that the performance of current
range segmentation algorithms drops rapidly with a threshold
any stricter than 0.8, and so there is little value in sampling be-
yond 0.95.

IV. MANUAL VERSUS AUTOMATED PARAMETER TRAINING

Manual training of algorithm parameters will produce results
that are dependent on the knowledge, skill and effort of the ex-
perimenter. If the algorithm developer and a new algorithm user
each spend equal time manually tuning the algorithm parame-
ters, their results are likely to be different. Similarly, if two dif-
ferent users spend different amounts of time and effort in manual
tuning, their results are likely to be different. For these rea-
sons, an automated training procedure is preferable to manual
training. This is especially true if automated training can be
shown to produce performance at least as good as that produced
by manual training done by algorithm developers well motivated
to tune the performance of their algorithm.

We use the following adaptive search for our training proce-
dure. Assume that the number of parameters to be trained, and
the allowed range of each parameter, are specified. The range of
each parameter is sampled by five evenly-spaced points. In case
the parameter type is an ordered set, such as integer or Boolean,
those five points will be rounded and redundant points will be
deleted. If parameters are trained, then there are 5 initial
parameter settings to be considered. The segmenter is run on
each of the training images with each of these 5 parameter set-
tings. The segmentation results are evaluated against the ground
truth using the comparison tool. Performance curves are con-
structed for the number of instances of correct region segmen-
tation, and the areas under the curves are computed. The highest
performing one percent of the 5 initial parameter settings, as
ranked by area under the performance curve on the training set
of images, are selected for refinement in the next iteration (e.g.,
the top six settings carried forward in training four parameters).

The refinement in the next iteration creates a 3 3
3 sampling around each of the parameter settings carried for-
ward. See Fig. 4 for an illustration. In this way, the resolution of

the parameter settings becomes finer with each iteration, even
as the total number of parameter settings considered is reduced.
The expanded set of points is then evaluated on the training set,
and area under the performance curves again computed. The
top-performing points are again selected to be carried forward
to the next iteration. Iteration continues until the improvement
in the area under the performance curve drops below 5% be-
tween iterations. (A value of 1% was also tried for this cutoff,
but there was minimal change in the results and it was judged
not to be worth the increased execution time.) Then the current
top-performing point is selected as the trained parameter setting.
Our search algorithm is a form of multi-locus hill climbing. The
algorithm in its concept does not guarantee to find the global
minima and that is why we set a larger number of initial points.
We compared our algorithm to an exhaustive search at the same
resolution of sampling parameter space and found no statisti-
cally significant difference in the performance of the selected
points.

A more complex approach for searching the parameter space
has recently been considered by Cinque et al. [15]. They ex-
plored an approach based on genetic algorithms. They suggest
that the training of the University of Bern (UB) algorithm [16]
for planar and curved-surface images is relatively sensitive to
the composition of the training set. They do not report details
of training execution times or composition of training sets used,
and so we cannot make a direct comparison of our training ap-
proaches on these points.

Segmenters may vary in the number of parameters provided
for performance tuning. The number of parameters trained is a
major factor in the effort required in the training process. For
example, training four parameters of the UB algorithm [17] on
10 six-image training sets (256 256 images) takes about one
day as a background process on a Sun Ultra 5 workstation.

An important question is whether automated training can pro-
duce performance as good as manual training. Example compar-
isons of performance curves obtained by manual and automated
training appear in Figs. 5 and 6. The performance curves rep-
resenting the manually-tuned parameters of the four different
segmentation algorithms for each of the two data sets are the
same as those reported in [7]. The algorithm developers are as-
sumed to have been well motivated in producing these results,
as they were producing them for a public comparison of algo-
rithm performance. The parameters of the UB algorithm [16]
are also assumed to have been well-tuned because the algorithm
performed well in this comparison. We also used the same UB
algorithm with our automated parameter tuning algorithm to ob-
tain a performance curve for each data set. This allows a direct
comparison of results for manual versus automated tuning of
parameters (see Fig. 7).

Note that the differences between the performance curves
of the UB algorithm for manual versus automated training are
small, with manual training having a slight advantage on one
data set and automated training having a slight advantage on the
other data set. Also important is the fact that the differences in
performance here due to manual versus automated training are
small in comparison to differences between segmenters. This in-
dicates that automated training provides results comparable to
those from manual training for the algorithms tested, and that



266 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 1, FEBRUARY 2004

Fig. 5. Manual versus automated training to select parameter values.

Fig. 6. Manual versus automated training to select parameter values.

Fig. 7. Train, validation, and test performance evaluation framework.

automated training can reasonably replace manual training in
algorithm comparisons.

The UB planar-surface segmenter has seven parameters that
control its operation, as listed in Table I. These parameters are
thresholds on various values in the segmentation algorithm.
The table gives the values of the seven parameters as found by
manual training [7]. The first two parameters are considered
to be the most critical. For this experiment, automated training
was done on the four most important parameters, and the three
less important parameters were fixed at the same values as
found by the manual training [7]. The parameter values found

TABLE I
MANUAL AND AUTOMATED TRAINING RESULTS FOR

UB PLANAR-SURFACE SEGMENTER

by automated training are generally close to those selected
by manual training, but not identical. This appears to be
simply an instance of different sets of parameter combinations
resulting in similar performance on the test set. Note that the
automated parameter tuning adaptively refines the resolution of
the parameter sampling, and will not necessarily sample all the
same values sampled in the manual tuning. Also, the automated
tuning stops when the improvement falls below 5% between
refinements.

V. VALIDATION SET TO CONTROL NUMBER OF PARAMETERS

Our performance evaluation framework uses separate sets of
images for train, validation, and test. The training step searches
for the “best” parameter settings. The validation step decides
how many of the segmenter’s parameters should have their value
learned through training versus left at the default value. The test
step determines performance curves to be used in comparing
different segmenters. Because the selected parameter settings
may vary based on the particular set of training images, we
create multiple different training sets by random sampling from
a larger pool of training images. Because the measured perfor-
mance also may vary based on the particular images in the test
set, we create multiple test sets.

In general, algorithms have a number of parameters that con-
trol their operation, and there are default values for each pa-
rameter. This introduces the question of how many of the avail-
able parameters should have their value set as a result of training
versus left at their default value. Training on parameters
naturally produces training results that are at least as good as
training on parameters. This can lead to over-training on the
number of parameters, and reduced performance on the test set.
The framework uses a validation step to avoid this over-training
problem.

After training on a given number of parameters, the parameter
values for each training set are run on each validation set. If there
are training sets and validation sets, then perfor-
mance curves are produced. If the area under the validation per-
formance curves is statistically significantly improved in going
from to parameters, and additional parameters are
available, then training is repeated using parameters. (A
sign test is used to test for statistical significance, as explained
later.) If there was no significant improvement in going to pa-
rameters available, then the -parameter training result is
kept. If there are no additional parameters, then the -param-
eter result is kept. Although the current implementation of the
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framework uses the validation sets only to avoid overtuning the
number of parameters, the framework might be enhanced if the
validation sets are also used in handling the values of param-
eters. That is, the optimization of a parameter can be stopped
when the performance on the validation sets, rather than the
training sets, start to decline.

Using training and validation sets, it is still possible that one
algorithm could generalize better than another. For instance, in
an evaluation of edge detection algorithms using the results of
a structure-from-motion task, it was found that the ranking of
different algorithms changed from the training results to the test
results [18]. For this reason, once the right number of parameters
and their appropriate settings are found through training and
validation, the performance of the algorithm is then measured
using separate test data. The final trained parameter values from
each training set are run on each test set, resulting in

performance curves. The areas under these curves are used
as the basis of a test for statistical significance of an observed
difference in performance between segmenters.

Note that the performance results of the baseline and
challenger algorithms are “paired” according to the train and
test sets. This is important for the comparison of algorithm
performance. Relative performance of two algorithms should
first be assessed by visual inspection of the corresponding
performance curves. If there is a consistent pattern of one
algorithm performing better than the other at lower values
of the overlap threshold but worse at higher values, then the
comparison becomes more problematic. However, in general,
performance can be compared quantitatively and statistically by
using the paired differences in the areas under the performance
curves. Two types of statistical test are possible.

Assume that we are comparing a “challenger” algorithm to
a “baseline” algorithm. The test statistic will be the difference
between the areas under the corresponding performance curves,
paired by train and test sets. The sign test can be used to check
for statistical significance without requiring the assumption that
the differences follow a normal distribution [19]. The null hy-
pothesis is that there is no true difference in average perfor-
mance between the algorithms. Under the null hypothesis, each
algorithm has a 0.5 probability of generating the larger area
under the performance curve on any given trial. The number
of trials for which one algorithm generates a larger area than
the other should follow a binomial distribution. A more pow-
erful statistical test that may be applicable in some cases is the
paired- test [19]. The value is then the differ-
ence in the areas under the paired performance curves. The test
statistic is the mean of the divided by the standard deviation
of the . The test statistic can be compared against limits of the

distribution for the appropriate number of degrees of freedom
and chosen level of confidence, and the null hypothesis rejected
if the test statistic is sufficiently far from zero.

Our framework implementation automatically reports the re-
sults of a sign test rather than the paired- test. This is because
of the less strict assumptions about the distribution of the data.
However, the paired- test may be used if justified after exam-
ining the distribution of the differences.

One objection could be raised against the use of either statis-
tical test in the current implementation of the framework. In the

Fig. 8. Pool of 14 training images for planar-surface scenes.

current implementation, a particular image from the pool of test
images may appear in more than one test set. Also, parameters
found with one training set are evaluated with more than one test
set. Thus the possible objection is that the different trials used
in the statistical test are not as independent as they should be.
This objection could be addressed through using larger pools of
train, validation, and test images.

VI. IMPLEMENTATION OF THE EVALUATION FRAMEWORK

The implementation of the framework consists of the various
image datasets, the corresponding ground truth overlays, the
comparison tool, the control structure for the framework, and
baseline segmentation algorithms for planar-surface [16] and
curved-surface [17] scenes. The implementation of the frame-
work is available in the form of a compressed UNIX tar file.
The programs are in the form of C source code and simple UNIX
scripts. The framework should be able to be installed on most
UNIX systems with minimal effort.

A. Image Data Sets

Two image data sets are used in the framework.1 For planar
scenes, we use the same set of forty ABW range images used in
Hoover et al. [7]. For curved-surface scenes, we use a new dataset
of forty Cyberware images acquired specifically for this purpose.
(The image set used in [8], from the K2T structured-light scanner,
was dropped from this study due to problems with data quality.)
The average number of GT regions in an image is 16.5 for the
ABW image set and 9.0 for the Cyberware image set.

Each set of forty images is divided into a pool of fourteen
training images, thirteen validation images, and thirteen test im-
ages. Ten different training sets of six images each are created by
random sampling from the pool of training images. Similarly, 10
validation sets of six images each are created by sampling from
the pool of validation images, and 10 test sets of six images each
are created by sampling from the pool of test images. Thus the
decision about how many parameters to train is based on com-
parison across 100 (10 10) performance curves. Similarly,
comparisons between segmenters would be based on 100 test
performance curves. The pools of training, validation, and test
images for planar-surface scenes are shown in Figs. 8–10, re-
spectively. The pools of training, validation, and test images for
curved-surface scenes are shown in Figs. 11–13, respectively.

1See www.abw-3d.de/home-e.html and www.cyberware.com for specifica-
tions on the scanners.
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Fig. 9. Pool of 13 validation images of planar-surface scenes.

Fig. 10. Pool of 13 test images of planar-surface scenes.

Fig. 11. Pool of 14 training images of curved-surface scenes.

Fig. 12. Pool of 13 validation images of curved-surface scenes.

The framework is extensible in the sense that the number
of images in the train, validation, and test sets can easily be
increased, if desired. Increasing the number of images in the
training, validation, or test pools requires additional experi-
mental work in acquiring images and specifying the ground
truth. Increasing the number of images in each training/val-
idation/test set, or the number of sets used, translates into
increasing the compute time required to use the framework.

Fig. 13. Pool of 13 test images of curved-surface scenes.

Fig. 14. Performance curves of UB planar-surface algorithm on the 10 training
sets.

One possible motivation for increasing the size of the frame-
work would be to make it possible to reliably measure smaller
differences between algorithms. Possible motivations for
changing the pools of images used might be to focus on a
different type of range imaging technology, or a specific type
of scene content.

B. Performance Results of the Baseline Algorithm

The first step in using the framework is to verify that it is in-
stalled correctly on the local system. This is done by running a
script to train the baseline algorithm. This should reproduce the
known training results for the baseline algorithm. The visible
result of training either the baseline planar- or curved-surface
algorithm is the set of performance curves shown in Figs. 14 or
15, respectively. Each curve in one of these figures represents
segmenter performance on a different set of six images, with
the segmenter parameter values trained for best performance
on that set of images. For each curve, there is a corresponding
area under the curve, and a corresponding set of trained pa-
rameter settings used to create the curve. The implementation
checks the areas under the training curves against their known
values to verify that the implementation is correctly installed.
The area-under-the-curve values for the training of the baseline
algorithms are listed in Table II. Values are listed for correct re-
gion segmentation for the baseline algorithm for planar-surface
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Fig. 15. Performance curves of UB curved-surface algorithm on the 10
training sets.

TABLE II
AREAS UNDER THE 10 BASELINE ALGORITHM TRAINING CURVES

[16] and curved-surface [17] scenes, automatically trained on
each of 10 different six-image training sets.

Once the local installation of the framework is verified
to work correctly, it can be used in the development and
comparison of a “challenger” algorithm. The first step is to
train the challenger algorithm using the same process as used
to reproduce the performance curves of the baseline algorithm.
If the challenger algorithm does not show better performance
on the training and validation sets than the baseline algorithm,
then the next step is most likely to analyze the results and
redesign the challenger algorithm. The framework provides
information that should prove useful in re-design of algorithms.
In addition to the performance curves for the number of cor-
rectly segmented regions, the framework also produces curves
for instances of under-segmentation, over-segmentation, noise
regions, and missed regions.

The performance curves shown for the curved-surface seg-
menter [17] in Fig. 15 appear somewhat “flat” over the range
of about 0.51 to 0.8 for the overlap threshold. This is due to an
interaction of the properties of the data set and the algorithm.
In effect, many of the regions in the images are either “easy” or
“hard” for the algorithm to segment correctly, regardless of the
value of the overlap threshold. For example, a flat background
region is typically segmented correctly over a broad range of the
overlap threshold. Conversely, two separate quadratic patches
that have a smooth join are difficult to segment correctly re-
gardless of the overlap threshold. This problem is inherent to
the algorithm using a general quadratic surface equation as its
similarity predicate for defining a region.

Fig. 16. Distribution of difference in test AUC values: (UB-YAR). Note
that all of the differences are positive, indicating that the UB algorithm out-
performs the YAR algorithm on each trial, and that the distribution does not
appear Gaussian, as it has a long “tail” skewed toward the higher values.

C. Example Performance Comparison

As an example of comparing two segmentation algorithms,
we step through a comparison of the yet another range (YAR)-
segmentation algorithm [20] to the UB algorithm for seg-
menting planar-surface scenes. Fig. 16 shows a histogram of
the 100 values of the difference in test AUC between the two
algorithms. In general, a statistical test is needed to determine if
the result is significant. However, in this particular comparison,
the UB algorithm had at least a slightly higher AUC for each
of the 100 paired values, and so the result of the statistical test
is clear.

The test for significant difference in performance is also used
during the training of the segmentation algorithm as part of de-
termining the appropriate number of algorithm parameters to
tune. The framework assumes that the parameters are specified
in decreasing order of importance, and that each parameter has
a default value. The training then begins with the first-specified
parameter, and continues to add parameters to the training as
long as there is a statistically significant increase in performance
on the validation sets. Fig. 17 shows the distribution of AUC dif-
ferences underlying the decision of whether or not to train the
UB curved-surface segmenter on three or four parameters. This
plot shows that the differences are centered near zero, with a
few outliers on the negative side. Thus it is clear that the use of
four parameters with the UB curved-surface segmenter offers
no systematic performance advantage over the use of three pa-
rameters.

In general, under the null hypothesis, the challenger algo-
rithm would be expected to show better performance than the
baseline algorithm on fifty of the one hundred tests. The stan-
dard deviation would be . Thus any result
outside the range of forty to sixty (plus/minus two standard de-
viations from the mean) would provide evidence at the
level of a statistically significant difference in performance be-
tween the baseline and challenger algorithms.
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Fig. 17. Distribution of difference in validation AUC values: UB (3
parameter–4 parameter).

Fig. 18. Example of the contents of an evaluation configuration file.

D. Configuration Files and Execution

There are basically just two steps to configuring the frame-
work for a challenger algorithm: a framework configuration file
and a segmenter configuration file. The segmenter configuration
file specifies the data type for the various parameters of the seg-
menter, the allowable range of values for each parameter, and its
default value. The framework configuration file specifies the di-
rectories in which the various image data sets are located, along
with the naming of the results files. See Fig. 18 for an example.
Once the configuration files are created, the framework can be
started up on one or more machines sharing the same distributed
file system. If more than one machine is used, semaphore files
are created to coordinate the execution of the segmenter on the
various images.

VII. CONCLUSION

We have described an automated framework for objective
performance evaluation of region segmentation algorithms.
Parameters of a segmentation algorithm are automatically
trained on a number of training sets. The number of segmenter
parameters involved in the training is determined using valida-
tion sets. Finally, the benchmark performance of the algorithm
is determined using separate test sets. The framework imple-

mentation comes with source code for baseline algorithms
that segment range images into planar- and curved-surface
regions. The baseline algorithms were shown in previous work
to offer state-of-the-art performance [7], [8], [9]. A challenger
algorithm’s contribution in terms of improved experimental
performance can be measured by improvement over the
baseline algorithm’s performance. The framework includes a
statistical test for the significance of difference in performance
between a challenger algorithm and the baseline algorithm.

There are several important contributions involved in the de-
velopment of this framework. First, we have demonstrated that
automated parameter tuning performs as well as manual tuning
done by the algorithm developers. This should make it possible
for algorithm tuning to be done in a more consistent and repeat-
able manner. Second, we have pointed out the need for using a
validation set of images in order to avoid over-training on the
number of parameters tuned to a value different from their de-
fault. From the perspective of sound pattern recognition method-
ology this may not be a “new” result, but it should be a “wake
up call” for experimental methods in computer vision. Third, we
have suggested an appropriate test for statistical significance of
the performance difference between two segmenters. These con-
tributions are implemented in a conceptual framework that can
readily be extended in several directions. First, as mentioned, it is
applicable to other types of imagery. For example, the set of tex-
ture images used in [21] might be used in the framework to eval-
uate texture-based segmentation algorithms. Also, the number of
images and/or the number of training/validation/test sets can be
increased. The current implementation should be more than suf-
ficient for recognizing coarse-grain performance improvements,
appropriate to the current state of the art in range image segmen-
tation as demonstrated in [7]. However, as the general perfor-
mance level of range image segmentation algorithms improves,
it may become necessary to modify the framework by adding
images of more and/or harder-to-segment scenes.

While we have focused on the performance metric for in-
stances of correct segmentation, it is possible to also look at
secondary error metrics such as over-segmentation, under-seg-
mentation, missed and noise. The error metrics can be impor-
tant, for example, in applications where the cost of the different
types of errors varies significantly.

Lastly, we should emphasize that there are both short-term
and long-term contributions to this work. Providing a means
to compare the performance of existing algorithms is only the
more visible short-term contribution. The longer term and more
important contribution is to enable the design of better algo-
rithms. Being able to measure the frequency of different types
of errors in segmentation should make it possible to identify
the important failure modes of existing algorithms. Once the
failure modes of an existing algorithm are identified, it should
be possible to design improved algorithms that address these
failure modes. In this way, development of new algorithms can
be guided by rigorous experimental performance data.
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