
 
  

1 

 
Abstract 

Analyzing a larger dataset is sometimes assumed, in 
itself, to give a greater degree of validity to the results of a 
study.  In biometrics, analyzing an “operational” dataset 
is also sometimes assumed, in itself, to give a greater 
degree of validity.  And so studying a large, operational 
biometric dataset may seem to guarantee valid results.  
However, a number of basic questions should be asked of 
any “found” big data, in order to avoid pitfalls of the data 
not being suitable for the desired analysis.   We explore 
such issues using a large operational iris recognition 
dataset from the Canada Border Services Agency’s 
NEXUS program, similar to the dataset analyzed in the 
NIST IREX VI report. 

1. Introduction 
NEXUS is a highly successful Canada Border Services 

Agency (CBSA) program for expedited crossing of trusted 
travelers at the US-Canada border [1].  The NEXUS 
program uses iris biometrics to recognize identity.  In this 
paper, we analyze a version of the NEXUS iris recognition 
dataset that is a superset of that analyzed in IREX VI [2].  
Our version includes additional metadata that gives deeper 
insight into the origins of the iris match scores    

The IREX VI report is titled “Temporal Stability of Iris 
Recognition Accuracy” [2].  It reports conclusions that are 
at odds with those of other studies on iris template ageing 
[3,4,5].  Those other studies analyze smaller datasets 
acquired for research purposes. IREX VI suggests that 
analyzing a larger, operational dataset contributes to the 
validity of its conclusions [2]; e.g.,“Using two large 
operational datasets, we find no evidence of a widespread 
iris ageing effect. Specifically, the population statistics 
(mean and variance) are constant over periods of up to 
nine years”, “Our best estimate of iris recognition ageing 
is derived from a 7876 person subset of an operational 
registered traveler deployment …”, and “In conclusion, 
we assert that operational logs of successful recognition 
attempts are an invaluable resource, not least because of 
their large size”. 

Our analysis shows how big data, and especially big 
data from an operational scenario, can contain subtle and 
unanticipated complexities. We point out how these 
complexities can complicate analysis of such datasets to 

answer research questions.  In particular, complexities that 
arise in a large, operational dataset can make it difficult to 
obtain a meaningful answer to an apparently simple 
research question such as iris template aging. 
 

2. One Data Stream or Many? 
One potential pitfall associated with “big data” is that 

the bigger that the dataset, the greater the chances that it 
was collected at multiple points, at multiple times, or in 
multiple ways.  This concern is especially important when 
the dataset is “found” data.  By “found”, we mean data 
created as a result of an operational scenario run with the 
goal of an efficient and user-friendly application, rather 
than a dataset whose collection was conceived and 
executed to support research.  Therefore, a fundamental 
question to ask is – Can the “big data” dataset be 
appropriately analyzed as one homogenous dataset? 

Table I of [2] describes its OPS-XING dataset as 
collected in 2003-2012, at airport border crossings, 
involving 521,474 eyes of 350,566 people, and containing 
5,710,434 (assumed) genuine match scores.  It does not 
mention the number of airports or kiosks involved. 
NEXUS is in fact a large, comprehensive program serving 
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Figure 1. Border-crossing transactions by airport location. 
Five locations account for most of the data; lowest-traffic 
locations not shown on histogram. 
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Canada-US travelers at 11 locations: Toronto terminals T1 
and T3, Ottawa, Vancouver, Montreal, Calgary, 
Edmonton, Halifax, Winnipeg, Fort Erie and Billy Bishop 
Toronto City Airport.  As shown in Figure 1, Toronto T1 
is the highest-traffic location, and five of the locations 
account for a large fraction of the data.  Our analysis 
focuses primarily on data from these five locations. 

At most locations, there are multiple iris kiosks.  A 
traveler initiates a border-crossing transaction without 
making an identity claim.  The iris image is acquired and 
the resulting iris code compared to those of enrolled 
travelers until an acceptable match is found.  Once an 
acceptable match is found, the search ends and 
comparisons are not made to any remaining enrollment 
records. This “token-less” and “1-to-first” recognition 
process emphasizes convenience and speed for the 
traveler. If an acceptable match is found, meta-data 
recorded with the match score includes location, crossing 
direction (into CA or into US), kiosk number and other 
data.  If no acceptable match is found, no data is recorded. 

There are kiosks for traffic into CA and for into US, in 
different places in the airport.  Figure 2 displays the mean 
normalized Hamming distance (nHD) by month for the 
five highest-traffic locations, collectively, broken out by 
into CA / into US.  (The normalization step appears to be 
that proposed by Daugman [6] to adjust match scores for 
different numbers of bits participating in the iris match.) 
One surprise in Figure 2 is that traffic into CA has on 
average a better iris match score than traffic into US!  

For a given month, the difference in mean nHD may be 
0.005 or larger for travelers coming into CA versus into 
US.  The annual rate of change stated as the “best 
estimate” of iris aging in IREX VI is 8 x 10-7 [2].  Thus 
the difference in sampling data from the CA stream versus 
the US stream, something not accounted for in the IREX 
VI analysis, is about four orders of magnitude greater than 
the effect that IREX VI claims to measure.  
 Another surprise in the data in Figure 2 is that there is a 
seasonal pattern of highs and lows in the mean nHD!  The 
US data shows a low nHD in September of each year from 
2009 to 2013, and a high nHD in December in four of 
those five years.  The CA data shows a low mean HD in 
September or October, and a high typically in March.  The 
difference in the seasonal high and low can be as large as 
0.007 in HD; compare September to December of 2009 in 
the US data.  The seasonal pattern in the data introduces 
an additional element of complexity for the analysis of any 
trend over time. 
 As shown in Figure 3, there are also clear differences in 
mean nHD between airport locations! For the CA 
locations, Vancouver generally has the highest mean nHD 
and Calgary the lowest.  The difference between them is 
on the order of 0.01.  For the US locations, Calgary and 
Vancouver generally have the highest mean nHD, and 
Montreal is generally the lowest. 
 Note that, not only are the data streams from the 
individual airport locations different from each other, they 
also differ in some respects from the aggregate data 

 
Figure 2. Mean nHD for left iris by month, five highest-traffic locations together, by US / CA.  Circles indicate number of HD 
scores, bars indicate standard error of the estimate (SEE); note difference in US and CA, and seasonal high/low pattern. 
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stream.  For example, the same clear pattern of seasonal 
min and max nHD in the aggregate US data in Figure 2 is 
not consistently repeated in all of the US individual 
location data streams in Figure 3.   
 The data streams from kiosks at a given airport location 
also show differences.  Figure 4 illustrates this for three 
US kiosks at Toronto T1.  The data streams for kiosks 
OK64 and OK65 are roughly similar, but the stream for 
OK66 represents a generally lower mean nHD than for 
either of the other two kiosks.  The difference in mean 
nHD between two kiosks at the same location in a given 
month is as high as 0.007.  
 It seems clear that this big, operational dataset is a 
collection of individual datasets that have some significant 
differences.  This of course raises the question of how to 

best take these differences into account in a study of, for 
example, iris template aging.  The existence of such 
differences also raises a more important question: What 
can we learn about the design at some airport locations in 
order to design more consistent and more accurate 
operational scenarios?  

3. Seasonal Variation In the Data 
Another factor in “big data” becoming big is that it may 

be acquired continuously over time.  If this is the case, it is 
important to ask if there is change in the data stream over 
time, or time-based patterns of variation in the data.  We 
have seen that the dataset considered here exhibits a 
degree of seasonal variation. 

 
Figure 3. Mean nHD by month, individually for five highest-traffic locations, by US / CA. 

 

Figure 4. Mean nHD for left iris by month for three selected kiosks at location Toronto T1 US. 
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The seasonal variation in nHD may seem puzzling.  
However, the data contains clues to possible causes.  
Figure 5 shows the mean pupil dilation ratio of the probe 
iris image, broken out by CA / US.  (Probe dilation ratio is 
an item of metadata recorded with each match score.) 
Note that the values for US transactions vary over a wider 
range than those for CA transactions. Note also that the 
mean pupil dilation for US transactions is at a low each 
year in July and at a high each year in December.  
Consider that in this location the mean number of hours of 
daylight is at its low in December and its high in July [7].  
Low mean dilation occurs when seasonal daylight is high, 

and high mean dilation occurs when seasonal daylight is 
low.  This suggests that at least some airport locations 
have kiosks placed where the seasonal level of daylight is 
affecting the pupil dilation.  

Figure 6 shows the data in Figure 5 broken out by 
airport location.  The pattern of pupil dilation clearly 
differs between airports.  In the US data, Toronto T1 and 
Vancouver appear to have kiosks in locations where 
natural light plays a large role.  Calgary, Montreal and 
Toronto T3 appear to have kiosks where natural light 
plays a lesser role, and Calgary appears to have the lowest 
level of ambient indoor lighting (causing highest dilation).   

Figure 5. Mean pupil dilation ratio of probe iris, by month, by US / CA. 

 
 
Figure 6. Mean pupil dilation ratio of probe iris, by month, by US / CA, for five highest-traffic locations. 
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Similar conclusions can be inferred from the CA data in 
Figure 6. Montreal appears to have the kiosks in an area 
influenced by natural lighting, whereas Toronto T3 seems 
to have used an indoor location with lower ambient 
lighting level.  Looking closely at the Vancouver data, it 
appears that the ambient lighting level of the kiosk 
location was changed after December 2010, moving to a 

more controlled, lower-lighting-level scenario.  
Figure 7 shows the seasonal variation in the number of 

bits used in a comparison of iris codes.  This number is 
how many of the bits in the enrolled iris code and in the 
probe iris code were unmasked in both codes.  Note the 
inverse relation in the number of bits and the level of pupil 
dilation.  When dilation is highest, in December, the 
number of bits used in an iris code match is at its lowest; 
when dilation is lower, the number of bits is higher.   

This suggests the possibility that pupil dilation in the 
probe image, the number of bits in the iris code match, and 
nHD can have some complicated inter-relationship that is 
affected by lighting at the probe kiosk.  Lower light at the 
kiosk where the probe image is acquired causes greater 
dilation.  And the difference between the probe and 
enrollment dilation, as well as high dilation in general, are 
known to cause an increase in the mean HD [8]. 

4. Is Data Collection Consistent Over Time?  
The assumption in IREX VI is that the right iris scores 

were collected following the same conditional protocol 
over the lifetime of the operational scenario [1] – “The eye 
itself, left or right, is influential: right eyes give higher HD 
values …  This occurs because the right eye is used only if 
the left eye failed or was not acquired. The number of left 
eye events in the OPS-XING database is 4,920,638 vs. 
725,300 for the right eye.” 

In actuality, while the left iris scores were collected 
consistently over time, the right iris scores were collected 
by two different protocols in different periods of time.  
(This is the reason that the analyses in this paper use only 
left iris data, rather than left and right.)  In the “SEM” 

 
Figure 7. Mean number of bits in iris code match, by US / CA. 

 
Figure 8. Distribution of assumed genuine right iris match 
scores for SEM (upper) and SEP (lower) acquisition mode. 
Left iris distributions (not shown) are essentially the same 
as the SEP (lower) right iris distribution. See Section 4. 
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protocol described above, the right iris match score is 
generated only if there is not a successful match with the 
left iris.  This protocol results in the right iris genuine 
distribution being worse than that for the left iris, as 
illustrated in Figure 8.  In the other protocol, referred to as 
“SEP”, the left and right iris match scores are both 
generated independent of the outcome of matching the left 
iris.  The SEP protocol results in the right iris genuine 
distribution being the same as the left iris genuine 
distribution. The collection protocol, SEM or SEP, is an 
element of recorded meta-data. This property of the CBSA 
dataset was also noted in [9].  (For insight into the idea 
that the conditionally acquired score has a worse 
distribution, see [11].) 

The important question illustrated here is – Does the 
collection protocol vary over time in any known way?  

5. Discussion and Conclusions 
 One factor contributing to the bigness of “big data” may 
be that it is acquired in multiple locations.  When data is 
acquired in multiple locations, there is the chance for 
variations in the data stream based on factors specific to 
the different locations.  
 Another factor contributing to the bigness of “big data” 
may be that it is acquired continuously over a period of 
time.  When data is acquired over a long period of time, 
there is the possibility for seasonal variation in the data, as 
well as the possibility of change in locations, protocols or 
other factors in the data collection.   
 A factor that is especially relevant for operational data 
is that it is acquired with attention to specific goals other 
than research.  The conditions of acquisition may change 

 
Figure 9. Mean nHD for time since enrollment, for five highest-traffic locations, by CA / US. 
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to provide better service to the customer, to better 
accommodate the goals of the sponsoring agency, to deal 
with growth in the application, or for other reasons.   
 The general pitfall in each instance is in assuming that 
the big, operational data is simpler than it is in reality – 
assuming that there are no important differences across 
data collection locations, that there are no important 
differences of a time-varying or seasonal nature, or 
assuming that the acquisition protocol remained constant.  
Every such assumption needs to be examined to verify that 
it is true to the extent that it does not affect the analysis 
needed for the research question.  This principle can be 
seen as an extension of the guidelines given by [10] about 
use of datasets in biometrics research. 
 Research datasets are typically smaller than operational 
datasets, and do not exhibit the rich complexity of 
operational datasets.  This may make it hard to answer 
some questions.  But it also may make it easier to employ 
analysis methods that are appropriate to the dataset.  
Operational datasets are typically (much) larger, and by 
definition have the full complexity of the real application.  
But that complexity may make it exceedingly difficult to 
find appropriate methods of analysis.  And some 
operational datasets may simply have not recorded 
sufficient meta-data to even understand the complexity of 
the data.  We are fortunate in this particular instance that 
the CBSA dataset was acquired with rich meta-data, 
allowing us a glimpse of the complexity involved in the 
data. The essential message is not that research datasets 
are better, or that operational datasets are better, but that 
methods of analysis need to be appropriately matched to 
properties of the dataset, in the context of the question to 
be studied.   
  One major conclusion from our analysis is that 
lighting is an important design element of an operational 
iris recognition scenario.  The use of natural light in the 
acquisition area appears to be at the root of variations in 
the recorded nHD in this scenario.  Placing kiosks where 
there is a large element of natural lighting may be 
motivated by considerations of having an acquisition 
environment that is user-friendly in aesthetic terms. 
However, for the technical goal of minimum variation in 
nHD, consistent low dilation at both enrollment and 
recognition is desirable, and so a significant component of 
natural light may not be good.  

What, if anything, can be said about iris template aging 
based on this dataset?  Figure 9 shows different patterns of 
change in nHD with time since enrollment at the level of 
the five highest-traffic locations.  The first point on the 
plots is the mean nHD recorded within the first year after 
enrollment, the second point is the mean nHD recorded in 
the second year after enrollment, and so on.  In some cases 
the pattern might be interpreted as strong template aging; 
for example, in Vancouver the change in mean nHD over 
seven years is about 0.008.  In other cases, the pattern 

might be interpreted as an early improvement in nHDs, 
possibly due to users learning how to use the system, 
followed by a template aging effect setting in; for 
example, Toronto T1 or T3.  However, given the number 
and variety of uncontrolled factors involved in the data 
collection, it would be speculative at this point to make 
any conclusion about “the” cause of any time-varying 
trend in the match scores. 

In future research, we hope to develop a better 
understanding of the seasonal and location-dependent 
fluctuations in the iris match scores. 
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