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Abstract

Medical studies have shown that average pupil size de-
creases linearly throughout adult life. Therefore, on aver-
age, the longer the time between acquisition of two images
of the same iris, the larger the difference in dilation between
the two images. Several studies have shown that increased
difference in dilation causes an increase in the false non-
match rate for iris recognition. Thus, increased difference
in pupil dilation is one natural mechanism contributing to
an iris template aging effect. We present an experimental
analysis of the change in genuine match scores in the con-
text of dilation differences due to aging.

1. Introduction

Like every part of the human body, the eye is subject
to aging effects [1]. The effect of aging on the size of the
pupil was first studied by Birren [2], and he observed that
the size of the pupil tends to decrease as one ages. A fur-
ther study by Winn et al. [3] which accounted for various
illumination levels also found that as we age our eye’s pupil
size decreases linearly as a function of age under all illu-
mination levels. A smaller study by Bitsios et al. [4] found
that the pupil’s reflexive response time due to change in illu-
mination levels also decreases. The results of these studies
should inform the general understanding of how iris recog-
nition works, and particularly how aging and pupil dilation
interact.

Several studies [5, 6, 7] have found that an increased dif-
ference in pupil dilation between two images of the same
iris is correlated with an increase in the false non-match
rate (FNMR). Researchers [8, 9, 10, 11, 12, 13] have also
shown that an increase in the time lapse between two im-
ages of the same iris is correlated with an increase in the
false non-match rate. However, the studies that examined
pupil dilation differences and those that examined template
aging have not previously taken into account the fact that

average pupil dilation changes due to the natural aging of
the eye. In this paper, we use two iris matching software
packages, VeriEye [14] and IrisBEE [15], to generate match
data that we use to model (1) average pupil dilation as a
function of age, and (2) genuine match score as a function
of difference in dilation. Thus we explore how the natural
aging of the eye, in particular the decrease in average pupil
size with age, links studies on pupil dilation difference af-
fecting the FNMR with studies reporting a template aging
effect.

2. Related Work

Several studies in the medical literature have examined
the effects of age on the pupil [2, 3, 4]. Winn et al. [3]
conducted a study involving 91 subjects who ranged in age
from 17 to 83. They examined pupil size under several dif-
ferent illumination levels. They found that, for each illu-
mination level, the pupil size decreased linearly with age.
An earlier study by Birren [2], did not control for varying
illumination levels, and found a nonlinear decrease in pupil
size with age. A more recent study by Bitsios et al. [4],
in addition to finding that the average pupil size decreases
linearly with age, also found that the response time of the
pupil due to a change in illumination level also diminishes
with age.

The studies which show that the average pupil size de-
creases as we age help to explain the observed increase in
FNMR of iris recognition due to both differences in pupil
dilation and template aging. Hollingsworth et al. [5, 6]
found that as the difference in pupil dilation grows so too
does the FNMR. Additional studies into this effect and ways
to mitigate its impact were reported by Grother et al. [7] and
by Ortiz and Bowyer [16]. Iris template aging has a similar
impact on iris biometric systems.

Iris biometric template aging was initially studied by
[8, 12] in which each of the authors found that as the time
difference between an enrolled iris template and a corre-
sponding probe template increased so did the probability



of a false non-match. Further investigation into this ob-
servation was made by Fenker et al. [9, 10] with a larger
sample set, with a similar result. A more recent study
by Czajka [13] examined template aging over three differ-
ent iris matchers, Neurotechnology’s VeriEye, SmartSen-
sors’ MIRLIN, and their own iris matcher referred to as
BiomIrisSDK. Czajka found evidence of iris template aging
in the case of each of the three iris matchers, and suggested
that the aging effect was more noticeable in the results from
more accurate matchers. Each of the authors studied how
elapsed time between probe and gallery template acquisi-
tion affect the performance in terms of match detection at
a given threshold. These studies however, did not attempt
to model the behavior of time difference and match scores.
The research by Sazonova et al. [11] does model the be-
havior of match scores and time differences in a template
comparison.

The authors of [11] studied the behavior of genuine
match scores in terms of template aging as a linear regres-
sion model. In their models, the independent variable was
elapsed time (in days) between probe and gallery template
acquisition and the dependent variable was match score.
They analyzed genuine match scores from two different
iris matchers, VeriEye and Iris-BEE. They found that Iris-
BEE’s fractional Hamming distance tended to increase lin-
early with increase in time lapse. Analogously, they found
that VeriEye’s similarity score tended to decrease linearly
with increase in time lapse. They also suggested that the
effect was more noticeable when the analysis was restricted
to a higher-quality subset of the images.

Fairhurst and Erbilek [17] consider age-related factors
that affect iris biometrics. They found that when account-
ing for errors in segmentation, aging effects are seen more
as a function of the changes in pupil dilation size as one
ages. They state [17] ”...dilation of the pupil (specifically,
the dilation ratio) decreases with age and this increases the
attainable recognition performance.” so two images of an
older person, both taken when the person is older, may each
show more of the iris by having low dilation, and thereby
give a better match than two images of the same person both
taken when the person was younger. But matching an older
to a younger image would not be better. Their study pro-
vides the initial link to examine and model template aging
effects in the context of dilation changes due to age.

In this paper, we link the results from the medical lit-
erature on how pupil size changes with age [2, 3, 4], with
the results from the iris recognition literature on difference
in pupil dilation causing an increase in FNMR [5, 6, 7], in
order to better understand one underlying cause of an iris
template aging effect [8, 9, 10, 11, 12, 13]. We perform this
analysis through the use of linear regression models for both
the effect of age on dilation, and the effect of dilation dif-
ference on fractional Hamming distance scores and VeriEye

match scores for genuine comparisons. Figure 1 provides a
graphical summary of past research into template aging, di-
lation difference, and medical studies of the change of pupil
dilation over time.

Figure 1. Outline of past work leading up to this current study

3. Data and Software

The image data used in this study was collected between
2008 and 2011 using the LG IrisAccess 4000 camera. The
dataset contains 955 unique subjects with a combined total
of 49936 eye images (left: 25160, right: 24776). In terms
of age, the dataset contains representative samples from the
ages of 18 to 64. Figure 2 shows the distribution of image
samples per age of the subject at the time of acquisition.
We note that the number of subjects declines substantially
for ages greater than 25 years.

Figure 2. Histogram of eye image samples per age



Each eye image in the dataset is processed using VeriEye
[14] and IrisBEE [15]. VeriEye is a commercial iris matcher
created by Neurotechnology [14] that achieved good perfor-
mance in the NIST IREX study [7]. The IrisBEE software
is a modified version of iris biometrics due to Daugman
[18, 19, 20] and Wildes [21]. IrisBEE is based on a im-
plementation first described by Masek [22] and improved
and updated by Liu [15]. Both VeriEye and IrisBEE pro-
vide information regarding pupil dilation.

VeriEye gives a measure of pupil dilation named
”PupilIrisRatio” within its metadata for each iris template
created. IrisBEE requires the measure of dilation to be com-
puted from the found segmentation information. For Iris-
BEE, the pupil dilation ratio metric described in [5] is used.
The pupil dilation ratio is defined as the ratio of the pupil
radius Rp to the iris radius Ri (Rp/Ri) Where Rp and Ri

are determined in the segmentation phase of IrisBEE.
There was no documentation regarding how VeriEye’s

”PupilIrisRatio” is computed. Therefore we compared di-
lation ratios from IrisBEE spanning the range from dilated
to constricted to the corresponding ”PupilIrisRatio” calcu-
lated by VeriEye. As a reference, the dilation ratios calcu-
lated using IrisBEE range in value from 0.15 (constricted)
to 0.73 (highly dilated). The corresponding range in the di-
lation measure used by VeriEye is seen to vary from 37 to
174. Figure 3 is a scatter plot of VeriEye’s ”PupilIrisRa-
tio” and the dilation ratio calculated from IrisBEE, showing
good agreement between the two metrics.

Figure 3. Scatter plot of VeriEye’s PupilIrisRatio and the dilation
ratio from IrisBEE

We first analyze the relationship between pupil dilation
and age in our dataset. Our result follows the general pat-
tern of analogous studies in the medical literature [2, 3, 4].
Our approach to measuring pupil dilation differs from that
in [2, 3, 4], in that it is based on IrisBEE segmentation in-
formation from an eye image and the reported dilation data
from VeriEye. Also, subjects in the medical studies [2, 3, 4]

may have been screened on conditions of normal eye func-
tion, or use of medications, whereas such restrictions were
not enforced in collecting the iris recognition images. How-
ever, the overall pattern of results shown in Figure 4 and
Figure 5 follows that which appears in [2, 3, 4].

The metric used for comparing two iris templates also
differs between VeriEye and IrisBEE. IrisBEE uses the frac-
tional Hamming distance (FHD) [18, 19]. The FHD is de-
fined as the number of disagreeing bits in two iris codes
(templates) divided by the total number of bits compared,
accounting for occlusions through each of the iris template’s
masks. Thus a small FHD provides evidence that the two
images are of the same iris, and a large FHD provides evi-
dence that the two images are of different irises. However,
the metric reported by VeriEye is a similarity score in which
a large value corresponds to match and a low value to a non-
match.

Along with the calculation of the IrisBEE’s fractional
Hamming distance and VeriEye’s similarity score we use
each software’s metric of dilation and calculate the absolute
value of the dilation difference. Letting DA and DB denote
the measures of dilation for eye image A and eye image B,
the difference in dilation used is simply ∆D = |DA −DB |.

For each pair of same-eye images, we calculate the Iris-
BEE dilation difference and match score and the VeriEye
dilation difference and match score. We omit pairs of im-
ages acquired on the same acquisition day. In total there
were 1, 003, 807 match instances. The following section
uses linear regression models to analyze dilation in terms
of age and match scores in terms of dilation difference.

4. Linear Regression Models
We model the relationship of age and dilation to esti-

mate the expected amount of dilation change due to aging.
We then model the relationship between fractional Ham-
ming distance and measured dilation difference. The two
models are then used to estimate the impact that changes
in dilation due to aging have on match scores for genuine
match comparisons. For each of the linear models we ex-
amine the statistical significance of the estimated intercept
and slope. In particular, we follow the traditional analysis
of linear models in that the null hypothesis for the estimated
parameters is that there exists no linear relationship between
the observed data and its covariates. In the context of this
analysis, the null hypothesis is that the estimated slope is
zero. Therefore a small p-value indicates that there is evi-
dence to reject the null hypothesis in favor of the alternative
which is that a linear relationship exists. For a review of
applied regression models see [23, 24].

4.1. Age and Pupil Dilation

Let YD denote the dependent variable of pupil dilation
and X the independent variable of age of the subject at the



time of acquisition. The corresponding linear regression
model to be estimated has the following form:

YD = β0 + β1X. (1)

Given the paired raw data observations for pupil dila-
tion and age (see Figure 4 and Figure 5) we find the cor-
responding estimates β̂0, β̂1 under the least squares formu-
lation. The results along with respective 95% confidence
intervals (CI) and p-values for VeriEye data can be found in
Table 1, and for IrisBEE in Table 2.

Table 1. PupilIrisRatio and age linear model parameter estimates

Parameter Estimate 95% CI p-value

β̂0 121.7370 [121.2367, 122.2373] ∗
β̂1 -0.7438 [-0.7634, -0.7242] ∗

∗ p-values less than 1e−15

Table 2. Dilation ratio and age: linear model parameter estimates

Parameter Estimate 95% CI p-value

β̂0 0.4914 [0.4894, 0.4935] ∗
β̂1 -0.0029 [-0.0030, -0.0029] ∗

∗ p-values less than 1e−15

The adjusted R-square values were found to be 0.1 and
0.0933 for the linear models of the VeriEye and IrisBEE
data respectively. Plots of the data and estimated regression
line are seen in Figure 4 and Figure 5.

Figure 4. Dilation in terms of age of person at time of acquisition

4.2. Match Score and Dilation Difference

Let Yscore denote the dependent variable corresponding
to the metric used for comparing two iris templates. For

Figure 5. Dilation in terms of age of person at time of acquisition

IrisBEE Yscore is a distance measure while for VeriEye
Yscore is a similarity score. We denote ∆D the independent
variable to be the absolute value of the dilation difference
between two eye images. Thus the corresponding linear re-
gression model to be estimated has the following form:

Yscore = α0 + α1∆D. (2)

The model estimates α̂0, α̂1, respective 95% confidence
intervals (CI) and p-values are reported in Table 3 (VeriEye
data) and Table 4 (IrisBEE data). Figure 6 and Figure 7 dis-
play the estimated linear regression model for the VeriEye
data and IrisBEE data respectively. The adjusted R-square
values for each model are 0.074 and 0.083 for the VeriEye
and IrisBEE data respectively.

Table 3. VeriEye similarity score and difference in pupil dilation:
linear model parameter estimates

Parameter Estimate 95% CI p-value

α̂0 1127.9499 [1126.7261, 1129.1737] ∗
α̂1 -12.0041 [-12.0872, -11.9210] ∗

∗ p-values less than 1e−15

Table 4. Fractional Hamming distance and difference in pupil di-
lation: linear model parameter estimates

Parameter Estimate 95% CI p-value

α̂0 0.1133 [0.1131, 0.1134] ∗
α̂1 0.3971 [0.3945, 0.3997] ∗
∗ p-values less than 1e−15



Figure 6. Linear regression of VeriEye similarity score and dilation
difference

Figure 7. Linear regression of IrisBEE FHD score and dilation dif-
ference

4.3. Composite Model

To estimate how aging acts through pupil dilation to af-
fect the fractional Hamming distance and VeriEye’s simi-
larity score, we first find the difference in pupil dilation in
terms of the estimated regression model for age and dila-
tion. Once found, it is used as an input to the estimated
model of match score and dilation difference for the respec-
tive iris matchers. This creates a composite model account-
ing for change in genuine match score with age. A brief
derivation and results are given in this section.

Using the model YD and found estimates (β̂0, β̂1) for age
and dilation given in Equation 2 we can determine the form
of dilation difference in terms of changes in age. We let X1

andX2 be ages such thatX2 > X1, the corresponding pupil
dilation estimates from the regression model are YD1 and
YD2 respectively. Using the absolute value of the dilation
difference ∆D we find the following,

∆D′ = |YD1 − YD2|
=

∣∣∣β̂1(X1 −X2)
∣∣∣ (3)

We use ∆D′ as input for the estimated regression model of
Yscore to estimate how a change in age in years |(X1−X2)|
affects the match score. Specifically we find the following,

Yscore = α̂0 + α̂1∆D′

= α̂0 + α̂1|β̂1| |(X1 −X2)| (4)

Thus the factor α̂1|β̂1| gives the rate of change of match
score per unit change in years. See Table 5 for the com-
puted factor α̂1|β̂1| for VeriEye and IrisBEE observations
and respective linear models.

Table 5. Composite Model

Composite Regression Model α̂1|β̂1|

VeriEye -8.9286
IrisBEE 0.0012

Thus we see that for both VeriEye and IrisBEE there is a
measurable degradation in match score due to dilation dif-
ference caused by aging effects.

5. Conclusions and Discussion
In this study we found that dilation changes due to age

have a measurable effect on the match score for genuine
match comparisons. In particular, there is an increase in
fractional Hamming distance in terms of the size change of
the pupil due to age effects as seen in the IrisBEE data. Sim-
ilarly there is a decrease in similarity score of the VeriEye
data as we observe dilation differences grow due to aging.
We modeled the effects of age and pupil dilation size as seen
in previous studies. In addition, we modeled the behavior
of the match score and difference in pupil dilation.

A composite model was derived from the two estimated
models to account for the pupil dilation change due to age.
From the composite model we showed the rate at which the
FHD increases as well as the rate at which VeriEye’s simi-
larity score decreases due to pupil dilation change in terms
of aging. In each of the estimated models we found the pa-
rameter estimates and results to be statistically significant.
Thus the degradation of the match score will lead to an in-
crease in the false non-match rate if the effect of aging on
pupil size is not accounted for by some aspect of the iris
biometric system.

The most direct way to account for effects of age related
pupil dilation difference is to control the pupil size at the
time of acquisition and enrollment. Accounting for pupil
dilation can be accomplished in a number of ways. Ortiz
and Bowyer [16] enroll subjects’ eye images based on their



pupil dilation statistics. The IrisGuard [25] sensor controls
for large pupil dilations by activating a set of visible lights
to reduce the pupil dilation level. Both approaches can be
used to minimize the difference in pupil dilation during en-
rollment and image acquisition.

Our study examined a linear regression model for match
score behavior in terms of pupil dilation difference. Future
research could examine a multiple linear regression model
that accounts for a myriad of differences in eye images.
Such differences can include the following: pupil dilation
difference, template aging, illumination variations, and fre-
quency component differences. Modeling the various fac-
tors that contribute to match score degradation may provide
insights into how improve iris recognition performance.
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