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1Abstract 

 
Current iris biometric systems enroll a person based on 

the best eye image taken at the time of acquisition. 
However, recent research has shown that simply taking the 
best eye image and ignoring pupil dilation leads to 
degradations in system performance. In particular, the 
probability of a false non-match increases when there is a 
considerable variation in pupil size between the enrolled 
eye image and the probe eye image. Therefore, methods of 
enrollment that take into account pupil dilation are needed 
to ensure reliability of an iris biometric system. Our 
research examines a strategy to improve system 
performance by implementing a dilation-aware enrollment 
phase that chooses eye images based on their respective 
empirical dilation ratio distribution. We compare our 
strategy of enrollment to that of the randomly chosen eye 
images, which is the current enrollment procedure for most 
iris biometric systems. Our results show that there is a 
noticeable improvement over the random scenario when 
pupil dilation is accounted for during the enrollment phase. 
 

1. Introduction 
Recent research has shown that the performance of an 

iris biometric system tends to degrade when large 
variations in pupil dilation exist between the enrolled iris 
image and the iris image to be recognized or verified [1-3]. 
In particular, Hollingsworth et al. [1] demonstrated that 
when the pupil dilation of the enrolled iris image and probe 
iris image differ, the number of false non-matches tend to 
increase. The degradation in current system performance 
found in [1] was also verified by the National Institute of 
Standards and Technology (NIST) [3] in a larger study of 
iris biometric systems. In particular, the NIST study 
examined the effects of pupil dilation across multiple 
datasets using various commercial iris biometric software. 
To account for the degradations in system performance due 
to pupil dilation each study recommended that knowledge 
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of pupil dilation be incorporated into an iris biometrics 
system either at the enrollment phase or decision phase.  

Hollingsworth suggested including meta-data that 
specifies the degree of pupil dilation for each enrolled iris 
image. The pupil dilation meta-data could then be used to 
assign a reliability measure to the match score of two iris 
codes. At the final decision phase, the reliability measure 
would then be used to determine the best match for a given 
probe against the gallery of iris codes. While Hollingsworth 
suggested including meta-data based on pupil dilation that 
could be used in determining a final match, the NIST report 
recommended an approach aimed at the enrollment phase 
of an iris biometric system. In particular, the NIST study 
proposed enrolling a person with multiple iris images with 
varying degrees of pupil dilation to help offset the 
detrimental effects pupil dilation has on the performance of 
an iris biometric system.  

Following the recommendations of the NIST report, we 
examine a method of enrolling multiple iris images with 
varying degrees of pupil dilation. The approach developed 
determines the iris images for enrollment based on the 
empirical pupil dilation distribution for the respective eye 
of a given subject. Presented in this paper is an 
investigation of using pupil dilation information via the 
respective empirical distribution as part of the enrollment 
phase of an iris biometric system. 

1.1. Background  

The main purpose of an iris is to vary the diameter of the 
pupil in order to control the amount of light that can enter 
the eye. The primary mechanism the iris uses to change the 
dilation size of the pupil are the sphincter muscles and the 
dilator muscles. The sphincter muscles constrict the pupil 
(decease the size of pupil dilation) while the dilator muscles 
expand the size of the pupil. In both operations 
(constriction and dilation) the texture and shape of the iris 
surface undergoes changes due to the behavior of the 
sphincter and dilator muscles [3,4]. The change in texture 
surface of an iris is particularly important to biometric 
systems that are based on identifying and using patterns 
found within the iris.  

The most widely used approach to iris biometrics was 
developed by Daugman [5-7]. In general, Daugman’s 
method consists of five main stages: 1.) capturing an image 
of the eye in the near infrared spectrum; 2.) segmenting the 
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eye image to find the iris texture area; 3.) normalizing and 
unwrapping the iris texture area to a rectangular grid of a 
fixed pixel resolution; 4.) filtering the unwrapped image to 
find the most representative textures; and 5.) encoding the 
texture information to a binary code also called an iris code. 
For an in depth discussion on the development of iris 
biometrics and respective commercial and research iris 
recognition technologies refer to [5-8]. The final phase of 
an iris biometric system is the construction of a database for 
iris codes of different individuals.  

The process of populating a database consisting of iris 
codes from various individuals is referred to as gallery 
construction or more specifically iris image enrollment. In 
most iris biometric systems individuals have one or both of 
their eyes processed and their iris code included in a 
database. Once a gallery has been constructed it can be used 
for identification or verification purposes at a later time. In 
either identification or verification the similarity measure 
used to compare two iris codes is the fractional Hamming 
distance as defined in [6]. In general, the fractional 
Hamming distance counts the number of disagreeing bits 
between two iris codes and normalizes the count by the 
number of bits used for comparison. The described method 
of iris biometrics has shown to perform well for a large 
class of eye images. However, system performance begins 
to degrade when the difference in pupil dilation size 
between eye images used for enrollment and those used to 
test the system becomes large.  

 In the Daugman method, fluctuations of the iris texture 
due to pupil variation are accounted for by the 
normalization phase. Changes of iris texture surface are 
modeled by assuming that variations in texture occur in a 
linear fashion. As described in [6], invariance of the iris 
texture mapping can be achieved by the translation of the 
captured data to a double dimensionless pseudo-polar 
coordinate system. The model used to account for iris 
texture change is generally referred to as a “homogenous 
rubber-sheet model”. The rubber sheet model has been 
shown to be a good representation of iris texture for 
moderate pupil dilation changes. However, research has 
shown that when differences in the pupil dilation between 
the enrolled iris image and the probe image grow, errors in 
performance begin to increase. As a result, it is speculated 
that the rubber sheet model may not adequately account for 
nonlinear texture changes due to large variations in pupil 
dilation.  

As a visual example Figure 1(a) and Figure 1(b) show 
the left eye of a given subject at two different dilation 
degrees. From Equation (1) the dilation ratio found for 
Figure 1 (a) is 0.3832 and Figure 1 (b) the dilation ratio is 
0.6423. The two eye images seen in Figure 1 display the 
considerable change in iris texture due to pupil dilation. 

 

   
Figure 1: Eye images of Subject nd1S0583. (a) Pupil dilation ratio 

of: 0.3832. (b) Pupil dilation ratio of: 0.6423  
 
The effect that pupil dilation has on the performance of 

an iris biometric system was examined in [1]. Their 
research found that as the variation in pupil dilation 
between the enrolled eye image and the probe image 
increased, so too did the number of false non-matches. The 
most noticeable performance degradation came at the 
largest variation in pupil dilation size. Their findings were 
also confirmed independently by a NIST study [3] into iris 
biometric systems. In both instances it was recommended 
that knowledge of pupil dilation be incorporated into an iris 
biometric system to prevent such degradations. This paper 
examines a way in which eye images can be chosen for 
enrollment based on pupil dilation. In particular, we study 
the performance of choosing eye images based on the 
empirical distribution function of the dilation ratios.  

        

2. Dilation Aware Enrollment 
The material found in the following sections detail the 

background and methodology used to incorporate pupil 
dilation information into a biometric system. Section 2.1 
covers the measure and empirical distribution function for 
pupil dilation. Section 2.2 and Section 2.3 describe the iris 
image enrollment methodologies used for analysis.  

2.1. Pupil Dilation 

The dilation ratio described in [1] is used as the measure 
for pupil dilation. The measure is defined in terms of the 
pupil and iris radii found from the segmentation phase. 
Specifically, pupil dilation is measured as the ratio of pupil 
radius to iris radius given as,  

 

radiusiris

radiuspupil
        (1.) 

 
The calculated pupil dilation ratio   of a segmented eye 
image will also be referred as the dilation ratio throughout 
this paper. While the pupil dilation ratio can in principle 
vary between zero and one, the range of values experienced 
in practice is from about 0.2, representing a highly 
constricted pupil, to about 0.7, representing a highly dilated 
pupil. To use pupil dilation as a part of the enrollment phase 
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of an iris biometric system, we examine the empirical 
distribution function found from dilation ratio samples. In 
analysis it is assumed that there are an adequate number of 
eye image samples such that a probability distribution can 
be estimated and used for enrollment purposes.  

For a particular subject who has multiple iris images 
available for enrollment, the probability distribution of 
dilation ratios can be estimated from the empirical 
distribution function. The empirical distribution function is 
calculated from the dilation ratios found over each of the 
available iris images for the respective eye (Left or Right). 

Following [9], assume the observations nXX ,,1   are 

independent and identically distributed with a common 

cumulative distribution function  xF . The order statistic 

of the observations are denoted with the parenthetical 

subscript such that      nXXX  21 . Where  1X  

and  nX are the minimum and maximum respectively. The 

empirical distribution function  xFn  corresponding to 

the n  observations is defined by the order statistics given 
as,  
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In terms of enrolling eye images through the statistical 
properties of their dilation ratio, the empirical distribution 
can be directly used. 

We examine two types of enrollment methodologies to 
determine if there is an improvement due to the inclusion of 
iris images that have varying pupil dilation ratios. The two 
methods are referred to as random enrollment and quantile 
enrollment. The quantile process of enrolling iris images 
directly uses statistical information from the empirical 
distribution function. It is a structured way in which to 
include information about pupil dilation into the enrollment 
phase. Random enrollment is used as a comparison to 
model the enrollment process of most iris biometric 
systems. Specifically, random enrollment does not take into 
account any knowledge of pupil dilation when determining 
which iris image to enroll. Both enrollment strategies are 
discussed in the following sections. 

2.2. Random Enrollment 

The gallery constructed based on random enrollment 
mimics the enrollment process for most iris biometric 
systems. Meaning, for each subject an iris image is chosen 
at random without regard to pupil dilation. If more than one 
iris image is allowed per subject in the gallery, the random 

enrollment process samples iris images without 
replacement. Figure 2(a) displays the random enrollment 
process for the case in which three iris images are allowed 
in the gallery for each subject.  

2.3. Quantile Enrollment 

In contrast to random enrollment, the quantile enrollment 
strategy uses pupil dilation information to decide which eye 
images should be included in the gallery for a given 
individual. The general idea behind the quantile enrollment 
is to choose eye images for a given subject based on the 
empirical distribution of their pupil dilation ratios. In 
particular, quantile enrollment is accomplished by 
choosing the iris images that are associated to the points 
taken at equal intervals from the empirical distribution of 
the dilation ratios. It divides the ordered data into q  equal 

sized subsets. The points denoting the boundaries of 
consecutive subsets are commonly known as the quantiles. 

In terms of the empirical distribution, the thk  quantile for 

the random variable X  is value x  such that, 
 

  qkqkxFn  0, .    (3.) 

 

Following [9], the equally spaced points of the empirical 
distribution are given by the realization sequence of the 

order statistics as defined in Section 2.1. Where nxx ,,1   

is considered to be a realization of the random sequence

nXX ,,1  , and      nxxx  21  is a realization of 

the order statistics. In general, let  1,0p  with the 

sample quantile associated to p  specified by the rank 

statistic whose index is  1np . Since  1np may not 

have an integer value we let   1 npj  be the integer 

part of the desired rank. Where    is the floor function. 

Correspondingly,   jnpt  1  is defined as the 

fractional part of the desired rank. Therefore, the sample 
quantile px  of order p is given as the following 

interpolated value. 
 

     11  jjp xtxtx .     (4.) 

 
Therefore, quantile enrollment chooses m iris images for 

the gallery that are near the m quantile points found by 

segmenting the ordered observations into 1m  equal 
subsets. To simulate the behavior of this process the 
quantile points are used as a reference in which to randomly 
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sample iris images that have pupil dilations near the defined 
quantile points. Section 4 discusses this in detail.    

To illustrate the quantile method for enrollment, assume 
three iris images are to be used for enrollment for a given 
subject. The empirical distribution of the dilation ratios 
calculated from the eye image samples is divided into four 
equal subsets with three quantiles division points 
corresponding to the 0.25, 0.50 and 0.75 quantiles. The 
three eye images with pupil dilation ratio values that are the 
closest in terms of absolute difference to the quantile points 
are chosen as the enrolled eye images for that particular 
subject. Conceptually, Figure 2(b) displays the quantile 
enrollment process for the case when three iris images are 
allowed per subject.  

  

 
Figure 2: Random Enrollment (a). Quantile Enrollment (b) 

 

3. Data and Software 
To evaluate each of the enrollment strategies described 

in Section 2.2 and Section 2.3, iris image data collected at 
the University of Notre Dame between 2008 and 2010 
using the LG IrisAccess 4000 camera was used. The dataset 
consists of 294 unique subjects with 10,823 left eye iris 
images and 10,885 right eye images. Each subject used in 
the study had at least twenty eye images per eye. The data 
contained subjects which ranged from 18 years of age to 63 
years of age, with a median age of 22 years old.    

The software used for segmentation and encoding of raw 
eye images was based on the implementation of Masek [10] 
and modified and updated by Liu [11]. The applied 
software implements a version of the general approach to 
iris biometrics due to Daugman [5-7] and Wildes [12]. The 
software implements a Canny edge detector to determine 
the limbus and pupillary boundaries. The iris texture area is 
considered to be the segment bounded by the limbus and 
pupillary demarcations. The iris texture area is unwrapped 
and normalized to a rectangular grid of a fixed size. The 
normalized iris image is filtered using a bank of log-Gabor 
filters. The log-Gabor filters are used to represent the 
texture information contained within the normalized iris 

image. The texture information found through the filtering 
stage is then mapped to a binary code based on the phase 
information of the complex filter outputs. The final iris 
code size for a processed iris image is 10x240 bits. For each 
iris image the pupil dilation ratio information is calculated 
using Equation 1.  

3.1. Pupil Dilation Ratio Statistics 

The aggregate distribution of the pupil dilation ratios per 
eye can be seen in Figure 3. The pupil dilation histograms 
for each eye location found in Figure 3 show that there is a 
wide distribution in dilation ratios across all of the subjects 
within the dataset.  

 
Figure 3: Distribution of dilation ratios for each eye location of the 

sampled subjects for the LG4000  
 

4. Experimental Method 
To evaluate the random and quantile methods of iris 

image enrollment we examine the performance of enrolling 
multiple eye images for each subject. In construction of 
each gallery type, it is assumed that every subject will be 
represented by m  iris images determined by the respective 
enrollment methods. A given experiment examines the 
effect of a specified number of iris images to be enrolled for 
each subject. For instance, if there are 294 subjects to be 
enrolled in the gallery each will have m enrolled iris 
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images for a total of 294 m enrolled iris images in the 
gallery.  

To estimate the behavior of incorporating pupil dilation 
information within the enrollment phase, the quantile 
enrollment method finds for each subject the m quantiles 
for their respective iris images. For a particular dilation 
ratio quantile, a single iris image is randomly selected from 
the set of iris images that have dilation ratio values within a 
1% tolerance range of the quantile value. Thus, the quantile 
gallery will have m  iris images that are representative of 
the calculated quantile values. In contrast, the random 
gallery is constructed by sampling m  iris images for each 
subject without regard to pupil dilation.  

For a given simulation iteration the iris images used in 
building both the random and quantile galleries are 
removed from the testing set. Additionally, the 
corresponding iris images acquired on the same day as 
those used for enrollment are also removed from the testing 
set. The samples that remain for each subject are used as a 
common probe set for testing. The fractional Hamming 
distance defined in [6] is used to calculate the distance 
between gallery and probe set iris codes. The described 
simulation process is iterated 300 times for a varying 
enrollment size of 1 to 4 iris images per subject per eye 
location (Left and Right). The match and non-match 
distances are calculated using the fractional Hamming 
distance. The match and non-match distances found and are 
used to produce a receiver operating characteristic (ROC) 
curve. The ROC curve for a given iteration is estimated by 
varying the decision threshold of fractional Hamming 
distance values from 0 to 1 in linear step sizes of 1/300 and 
calculating the false accept rate (FAR) and true accept rate 
(TAR) at each threshold value. We aggregate the FAR and 
TAR values for each threshold value to calculate the 
average ROC curve behavior. Under normality 
assumptions for each threshold value, we estimate the mean 
FAR and TAR and respective 95% confidence intervals.  

4.1. Results 

Figures 4-7 display the average ROC curves of the 
quantile and random enrollment methods for the enrollment 
sizes of 1 to 4 iris images per subject. In each ROC plot we 
display the estimated mean FAR and TAR for each of the 
threshold values. In each graph the confidence interval for 
the mean TAR is plotted as lines about the solid curves. In 
terms of performance, an accurate process should have an 
ROC curve that quickly rises and is oriented toward the 
left-hand border. We found that in each experiment the 
quantile enrollment strategy outperformed the scenario in 
which random eye images are used for enrollment. 
However, we note the case where two images are allowed 
per subject Figure 5.  In this case there was only a slight 
gain performance. This may be due to the observation that 
the quantiles chosen as enrollment points are wide and 

excluded eye images corresponding to the median dilation 
or the 0.5 order quantile value. In each of the other 
experiments the median is used or there were enough 
divisions such that the omission of the median did not 
affect performance. From Figures 4-7 we can also see that 
the performance difference between the two enrollment 
strategies becomes smaller. This is primarily a result of 
having a greater chance of a match due to an increased 
number of iris images per subject in the gallery.    

 

 
Figure 4: ROC of quantile enrollment and random enrollment 

number for 1 iris image selected per subject.  
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Figure 5: ROC of quantile enrollment and random enrollment 

number for 2 iris images selected per subject. 
 
 

 
Figure 6: ROC of quantile enrollment and random enrollment 

number for 3 iris images selected per subject. 
 

 
Figure 7: ROC of quantile enrollment and random enrollment 

number for 4 iris images selected per subject. 
 

 

5. Conclusions  
We found that the incorporation of pupil dilation 

information into the enrollment phase resulted in a 
noticeable improvement over the random selection 
strategy. The largest observed performance gain was in the 
case of choosing a single iris image for the gallery. This 
leads us to conclude that if we are allowed only one iris 
image per subject for the gallery the iris image with the 
median pupil dilation ratio should be selected for 
enrollment.  

 

6. Future Work 
The research presented was focused primarily on the 

enrollment phase of an iris biometric system. The next 
natural step to take in advancing the idea of incorporating 
pupil dilation in a complete iris biometric system is to 
develop a decision strategy that also uses information 
regarding pupil dilation. It would be beneficial to examine 
and abstract at the decisions phase those factors that 
degrade performance in an iris recognition system. And 
much like the process examined in this study use that 
information to possibly improve overall performance. 
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