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convenient from the practical viewpoint that rough models are used 
because of the ease of model input. Thus, the availability of rough 
models can be considered to be an advantage of this system. 

Object models can be approximated either by omitting details 
or replacing real complicated shapes by simple primitives. In the 
experiments, bolts and nuts were ignored and not used in recognition. 
The middle section with a complicated shape like a sphere in 
the object in Fig. 10 was also omitted from recognition due to 
the difficulty of description. Although the part is represented by 
a cylinder connecting the two flanges in Fig. 10, this is only for 
display purposes and is not used in the strategy generation process. A 
human operator must indicate this point to the system. In the object in 
Fig. 13, the handle section with a torus and some other primitives are 
approximated by a flat cylinder. Thus, only one 3-D disc FGE, which 
generates an ellipse, is considered in the strategy generation process. 
Although this approximation is valid for recognition, it cannot be 
used for localization. The operator must also point out to the system 
when such an approximation is adopted. 

We believe that such approximations are natural for a human 
operator. However, further study will be required on the suitability 
of approximated models. In particular, when similar objects may 
exist in a target scene, a modeling system that can interactively 
or automatically construct models from which efficient strategies to 
discriminate such similar objects can be generated is desirable. 

VIII. CONCLUSION 

A new model-based vision system has been proposed in this 
paper. The system generates a 3-D object recognition strategy, or 
order, for searching for features from a 3-D model of an object. A 
feature detector based on a hypothesize-and-test process finds features 
according to the strategy and recognizes the object. Then, the precise 
position and attitude of the object are obtained by comparing a line 
representation generated from the model with the image features. 
Experiments have yielded promising results. Active use of the system 
for robot vision will be studied to realize a practical vision system 
that operates under various conditions. 
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I. INTRODUCTION 

Model-based vision has been popular for some time yet still 
appears far from being able to demonstrate any general-purpose 3-D 
object recognition system. One current “hot” paradigm is “CAD- 
based vision” - the use of exact geometric descriptions as might be 
available from a CAD system. With a CAD-based vision system, a 
unique 3-D model is stored for each object that the system is able to 
recognize. Recognition may require, in the worst case, that the input 
stimuli be compared to each model. Another problem encountered 
with such systems is that the size of the database grows in direct 
proportion to the number of objects the system is made capable of 
recognizing. One way of alleviating this problem to some degree is 
to allow parameterized representations so that objects that have the 
same essential geometry or structure can be recognized [2], [6], [7]. 
Still, it seems impossible to anticipate and parameterize all possible 
geometric and/or structural variations that may occur within an object 
category. 

Consider the domain of human artifacts, that is, man-made objects 
that serve some specific purpose that is reflected in their external 
physical structure (e.g., furniture, hand tools, utensils). For any partic- 
ular object category, there is some set of functional properties shared 
by all objects in that category. It is part of the thesis of our work 
that the existence or nonexistence of these properties can be deduced 
by analyzing the shape of an object and that this information can 
be used for recognition (or, if you like, categorization). Rather than 
concentrating our initial efforts on a purely theoretical elaboration 
of this concept, we have chosen to develop a complete system for a 
particular case study category. Our system represents the definition 
of object categories and subcategories in terms of required functional 
properties and represents the functional properties using procedural 
knowledge. A major advantage of this representation scheme is 
that the system can recognize truly novel objects, at least at the 
category level, even though the system knows no specific geometric 
or structural model for any object. 

Section II reviews related research dealing with function-based 
representation. Section III describes the recognition system, followed 
by a detailed example and experimental results of the analysis of over 
100 objects in Section IV. The paper concludes in Section V with 
suggestions for future directions of research. 

Before proceeding, it is best to explicitly define some of the 
terminology we have adopted: 

l Category: Using Rosch’s terminology, we are considering the 
basic level category [lo]. Rosch states that “basic categories 
are those which carry the most information, possess the highest 
category of validity, and are, thus, the most differentiated from 
one another” (see p. 382 of [lo]). 

l Subcategory: the term given subordinate categories (categories 
below the basic level). Each subcategory has its own set of 
functional attributes that may overlap with other subcategories. 

l Input Object: an input to the system in the form of an uninter- 
preted 3-D boundary description. 

l Exemplar: an object categorized by the system as belonging to 
a specific subcategory. 

l Functional Plan: the function-based definition of a specific 
category or subcategory. 

. Function Label: simply a name for the functional property being 
evaluated, for example, provides sittable surface. 

l Functional Element: a portion of the input object that fulfills 
the functional requirements associated with a specific function 
label. There are three types of functional elements that can be 
identified: 1) a single surface of the object, such as the seat of 
a chair that provides a sittable surface; 2) a group of surfaces 
acting together to fulfill the required function, such as slats on 

Fig. 1. Flow of execution. 

the back of a chair act together to provide back support; 3) a 
three-dimensional portion (module) of the structure. 

l Association Measure: a measure that reflects the strength of the 
association of the function label to the functional element or, 
cumulatively, the strength of the (sub)category membership of 
an object. 

* Procedural Knowledge Primitive (PKP): primitive procedures 
used to qualitatively evaluate the shape of an input object. 

II. BACKGROUND 

Winston et al. have discussed the use of function-based definitions 
of object categories [13]. They point out that there can be an infinity 
of individual physical descriptions for objects in a category as simple 
as “cup” but that a single functional description can be used to 
represent all possible cups in a concise manner. This work is, of 
course, related to Winston’s classic “arch-learning” program [14]. 
This earlier program was able to learn structural descriptions (not 
function-based descriptions) of object families, such as “arch,” from 
line drawings of examples. 

Brady et al. also discussed the relation between geometric structure 
and functional significance in their design of the “Mechanic’s Mate” 
system [l], [3]. In part of this work, semantic net descriptions are 
computed from 2-D shapes, and a generalized structural description 
is learned from a sequence of positive examples. 

Part of the inspiration for our work came from ideas expressed by 
Minsky in his recent book [9] and in network news articles. In fact, 
the category chair is used as an example by Minsky in his suggestion 
that knowledge about function must be combined with knowledge 
about structure. 

Efforts that are more recent and closely related to ours are those of 
Ho [8] and of DiManzo et al. [4]. Ho considers two specific functional 
concepts (chair and support) in the context of what is needed to 
represent function for recognition. The analysis is done in the ideal 
2-D cross section of the object and assumes that the object appears in 
its upright orientation. DiManzo proposes a system design that utilizes 
functional knowledge within an expert system framework. Primitives 
are defined in the form of individual expert systems that evaluate 
the 3-D information. A prototype system is being implemented that 
receives a description of a scene generated by an octree solid modeler. 

III. SYSTEM DESCRIPTION 

A high-level diagram of the system is depicted in Fig. 1. 
This system reads the boundary description of an unknown 3-D 

polyhedral object in terms of face lists and vertex coordinates and, 
without user intervention, attempts to recognize whether the object 
belongs to the category chair and, if so, into which subcategory it 
falls. The size of the input object is treated as actual metric units so 
that objects may be “too big” or “too small” to function properly. (The 
system has the option of scaling the input object prior to analysis. The 
scale factor is calculated as the ratio of the volume of the convex hull 
of the input object to the volume of the convex hull of a “typical” 
straight back chair.) 

In the first stage of the evaluation process, the input object is 
analyzed to identify all potential functional elements. This includes 
a list of individual surfaces (related to the faces of the object) and 

I 
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a list of combined surfaces. A function label can be associated to 
any of the three types of functional elements described above. The 
categorization performed by the system identifies functional elements 
of an input object by associating them with their proper function label. 

At this time, the hypothesis of category chair is always made by 
the system without using any information derived from the structure 
of the input object. When the number of categories represented is 
expanded, heuristics will be invoked to hypothesize and prioritize 
a subset of categories. For example, one possible heuristic could 
evaluate the size of the object and select possible categories according 
to expected size ranges. For example, the 3-D volume of a couch 
would typically be much greater than a chair. 

Processing of the object is guided by the function-based definition 
of the hypothesized category. This control structure holds the def- 
inition of the individual functional plans. Each functional plan has 
associated requirements. In turn, each requirement is processed as an 
ordered execution of primitives that qualitatively evaluate the input 
shape. We have identified a set of five PKP’s that can be used to 
define functional requirements for the category chair. 

The output of the system consists of whether the input object 
belongs to the category chair and, if so, into which subcategory it 
falls, as well as a cumulative association measure. 

A. Procedural Knowledge Primitives 
Each function label is defined using a combination of PKP’s. The 

PKP’s currently used are relative orientation, dimensions, stability, 
proximity, and clearance. (This list is not assumed to be complete 
for all possible categories, but we expect it to be sufficient for the 
superordinate category furniture.) These primitives are procedures 
that make qualitative decisions about whether an object possesses 
a certain primitive property. During the initial system design, we 
began with a somewhat lengthier list of what we felt intuitively 
were the primitive functional concepts. As our system progressed, 
we often found that several of our intuitive primitives (for example, 
essentially parallel and essentially orthogonal) could be subsumed 
into one general routine (relative orientation), which was actually 
more useful (when we added the functional plan of the subcategory 
lounge chair). 

The PKP relative orientation analyzes the orientation between two 
surfaces by evaluating the angle between the surface normals. For 
example, the sittable surface of the chair is expected to be essentially 
parallel to the ground plane in the chair’s stable orientation. Some 
allowable ranges of orientation are more lenient than others. For 
example, the back support of a lounge chair can take on a large 
range of orientations relative to the sittable surface. 

The PKP dimensions tests the potential functional element using 
multiple metrics. For example, the sittable surface of the chair is 
expected to be within a certain size range (depth and width) and to 
be situated within a set range above the ground (height). 

The PKP stability is required for all subcategories of chair. For the 
sittable surface or seat rest to be maintained in its required orientation, 
the chair must provide stable support. Stable support is established 
by finding the convex hull of the contact points of the object with 
the ground plane in a given orientation. If a vector from the center of 
mass of the object perpendicular to the ground plane projects within 
the convex hull of the contact points, then the object is considered to 
be stable. To test if the object can act as a chair, the system applies 
weight to a distribution of points on the candidate sittable surface. 
This simply shifts the center of mass of the object, and therefore, the 
same stability test can be reapplied, 

The proximity PKP tests to make sure two surfaces are in the 
proper proximity. For example, for a functional element to act as a 
back support, it must be close to the sittable surface and opposite an 

accessible area (i.e., the front of the seat). The surface must also be 
above the level of the sittable surface and be approximately centered 
relative to the sittable surface. 

The PKP clearance is simple but extremely important. The func- 
tional elements may all be of the proper dimensions and be situated in 
the proper orientation to perform the functional requirements, but if 
the elements are not accessible by the user, they cannot be considered 
valid. Clearance is established by specifying the area that is expected 
to be accessible by the user and making sure there are no obstructions 
present. For example, the sittable surface must be clear above and “in 
front of’ so that there is room for the person’s torso and legs. 

PKP’s are invoked in a sequence dependent on the subcategory 
functional plan. All PKP’s return an association measure that reflects 
how well the functional requirements are met. 

B. Structure of the Class Definition for Chair 
The functional representation of each category is organized in a 

hierarchical graph (Fig. 2). This graph is also a control structure for 
the evaluation process. Each node of the graph is represented by a 
frame having four fields: Name, Type, Realized By, and Functional 
Plans. The Name field holds a unique identifier. Nodes are one of 
three types: Category, Subcategory, or Function. The root node in Fig. 
2 is of type Category, being a basic-level category. The Functional 
Plans field has as many arcs as there are subcategories defined for that 
node. For example, in our current implementation, we have defined 
four subcategories: Conventional Chair, Balans Chair, Lounge Chair, 
and Highchair. 

The graph structure of Fig. 2 represents our function-based descrip- 
tion of the category Chair. Each subgraph formed with a subcategory 
frame as its root denotes a separate functional plan. Therefore, 
the function-based description of the subcategory Lounge Chair is 
realized by a totally different functional plan than that of the Balans 
Chair. 

The final field of the frame is the Realized By field. This field 
points to an ordered list of function labels. The applicability of a 
given function label is evaluated by the sequence of PKP invocations 
associated with the function label node. For example, Conventional 
Chair requires the functions provides sittable surface and provides 
stable support. Both of these function labels must be satisfied at 
some threshold association measure in order to consider the object to 
be falling within the subcategory of Conventional Chair. It should be 
noted that there may be multiple potential results for a given object, 
each with its own association measure. 

Each function label has its own specified constraint values for 
each PKP invocation depending on the functional requirement being 
evaluated. These values are stored in a constraint list that is associated 
to the category definition. The constraint list is made up of unique 
constraint identifiers, along with minimum, maximum, and average 
values for each. These constraint values have been gathered from 
sources that summarize the results of ergonomic design research [5]. 

The base values for the accumulation of the association measure 
originate with the PKP invocations. For a given PKP invocation, a 
qualitative decision is first made as to whether there is any functional 
element of the input object that satisfies the specified constraint range. 
If not, then a measure of zero is returned for the PKP invocation; 
otherwise, a list of functional elements with measures between zero 
and one is returned. This list of elements may then be input to 
another PKP invocation. If a required function label for a given 
(sub)category has no possible elements, then the association measure 
for the (sub)category may go to zero and further analysis for that 
(sub)category discontinued. The association measure is passed back 
to the current (sub)category, and the association measures of the 
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Fig. 2. Category representation graph 

different function labels are combined to determine the cumulative 
association measure for the (sub)category (see [12] for more details). 

The category representation graph is the control structure for input 
object analysis. As the graph is traversed in depth-first fashion, if 
the (sub)category node has associated functional requirements, then 
those requirements are evaluated. If it is found that the requirements 
can be met by some portion(s) of the structure within some threshold 
association measure, then the functional elements are formed into a 
list. When applicable, the proper orientation for the object is also 
saved in the list. 

The subcategory nodes are constrained by the information acquired 
from the parent subcategory nodes. This restriction is called structural 
constraint propagation. Many functional elements have an implied 
association that will constrain their possible structure and position. 
For example, the functional element that acts as the back of a chair 
for the subcategory Straight Back Chair must be situated above and 
approximately perpendicular to the functional element, found at the 
Conventional Chair level, which acts as the sittable surface. 

If more than one function label is associated with a single 
(sub)category node, then the function label nodes are evaluated 
in a left to right manner. Therefore, referencing the functional 
requirements defined for the Conventional Chair (Fig. 2), the function 
label provides sittable surface must be fulfilled before initiating the 
procedural knowledge associated with provides stable support. This 
implies that structural constraint propagation exists between sibling 
function labels as well as between subcategory function labels. 

IV. IMPLEMENTATION 

The system is implemented in C on a Sun workstation. Over 100 
test objects, defined by a number of different individuals, have been 
analyzed. Each object definition is composed of a face file and a 

Fig. 3. Example objects recognized as straight back chairs. 

vertex file.’ The recognition system reads each of these files along 
with the category definition file. This file holds the information in a 
format that can be read to construct the category representation graph. 

The extent of how “generic” the function-based representation 
scheme actually is can best be seen in a sample of the objects that 
the system was capable of correctly categorizing. All of the objects 
appearing in Fig. 3 (along with many others) were categorized as 
straight back chairs. 

Each fulfills the functional requirements of provide sittable surface, 
provide stable support and provide back support in its own way. In 
order to gain a better understanding of the reasoning process, a trace 
of the analysis of a simple example is now given. Fig. 4 depicts the 
input of an Arm Chair and the labeled output produced by the system. 

The ground plane is considered to be parallel to the X-E’ plane. It is 
also assumed that gravity acts in the -Z direction. As seen in Fig. 4, 
input objects do not have to be in “upright” orientation. The system’s 
first step is to evaluate the shape of the input object. This consists 
of enumerating the surfaces and modules that can act as functional 

‘The collection of object descriptions used is available to inter- 
ested researchers through anonymous ftp on figment.csee.usf.edu under 
puh/errors_stu f f /Objects. 
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~ OUTPUT 
Subcategory: Arm Chair 

Fig. 4. Example input and output of system evaluation. 

elements. Individual surfaces are listed, along with all surfaces that 
can be formed by grouping essentially coplanar surfaces. The object 
is further evaluated by subdivision into a set of convex 3-D modules, 
which are found directly from the object geometry. The center of 
mass of the whole object is calculated, along with the area of each 
of the surface functional elements. 

A. Evaluation of 3-D Shape 
Evaluation begins with the category associated with the root node. 

Since there are no function labels associated with the node Chair, 
processing passes to the first Subcategory Conventional Chair. The 
list of PKP’s invoked to realize the first function label provides 
sittable surface is shown in Fig. 5(a). The dimensions PKP finds 
all functional elements of the input object that are of the proper size 
range to be a sittable surface. This ensures that the “seat” of the 
chair is large enough to support the seat of a normal person and not 
so large that it could be a couch or table top. The surface, or group of 
surfaces, must also provide the proper amount of contiguous surface 
area. Surfaces that survive this test include what we would think of as 
the back of the chair, the seat of the chair, and the bottom of the chair. 

The list of potential sittable surfaces found in the first procedure is 
passed to the next PKP relative orientation. This procedure attempts 
to confirm that the potential sittable surface is essentially parallel to 
the ground plane. If it is not, a transformation that will orient the 
potential sittable surface parallel to the ground plane is calculated 
and stored with the surface. 

The next PKP uses information from the prior PKP’s to test 
whether each potential sittable surface, when positioned parallel to 
the ground, can be within the proper height range. The potential 
sittable surface has been transformed such that the normal of the 
surface is aligned in the +Z direction. The dimensions test finds the 
greatest distance spanned by the object in the -2 direction. This 
gives a tentative height for the potential sittable surface. The back is 
eliminated in this test because there is no structure that can support 
the back in the proper height range. Two surfaces remain as potential 
sittable surfaces: the seat and the bottom of the chair. 

The tests performed to this point are computationally simple tests 
that are used to prune the list of possible functional elements. The next 
two tests ensure that the surviving surfaces are clear and accessible 
for use. 

A list of possible seat surfaces has now been identified (see 
Fig. 5(b)). If the list were empty, then it would be decided at 
this point that the object in question is not a conventional chair. 
An association measure of zero would be returned, and processing 
would continue with the next subcategory node Balans Chair. The 
association measure for each functional element found to this point 
is a function of the area and the potential height. Since the list is 
not empty, a list of potential sittable surfaces has been accumulated. 
This completes the tests associated with the procedural knowledge 
of provides sittable surface. The list of potential sittable surfaces is 
passed to the next function label node. 

The second function to confirm is that the object has a base 
structure that provides stable support. The only PKP associated to 

this function label is stability. The procedure tests each potential 
result in its specified orientation. The object must be able to be 
placed in a stable position and still maintain the sittable surface 
in its proper orientation. To test for stability, each potential sittable 
surface is oriented in the X-I’ plane with the surface normal in 
the +Z direction. The maximum -2 displacement is found, and 
all vertices at this level are accumulated. These are potential points 
of contact with the ground to give support to the object. One of 
three conditions must exist: 1) Only a single point is in contact; 2) 
multiple collinear points are in contact; 3) at least three noncollinear 
points are in contact. In order to have sufficient contact, there must 
be at least three noncollinear points. Hence, if one of the first two 
conditions is found, then the object must be rotated such that at least 
three noncollinear points are in contact. This can lead to multiple 
possible new orientations to test. For each possible orientation, a list 
of contact points is accumulated. The convex hull of these points 
is then calculated to be used in the test for stability. It is assumed 
that the object has homogeneous density. Therefore, the force exerted 
downward can be represented with a single vector from the center of 
mass of the object pointing in the -2 direction. If the force vector 
projects into the ground plane within the convex hull of the contact 
points, then the object is “self-stable.” It is only considered “self- 
stable” because a force applied by the weight of a person does not 
have to be exerted directly over the center of mass of the object. This 
force can be applied in different positions downward on the sittable 
surface and tested to make sure that each resultant force (object plus 
applied weight) projects inside the convex hull. 

Evidence is accumulated at the Conventional Chair node in support 
of the current hypothesis. The only surviving surface is, in fact, the 
seat of the chair (Fig. 5(d)). Face #20 (the bottom of the seat) was 
eliminated because stable support could not be verified. 

The parsing of the object continues by checking the Straight Back 
Chair’s associated function label. The list of PKP’s used to confirm 
provides buck support is given in Fig. 5(e). Each surface or group of 
surfaces that is essentially orthogonal to the potential sittable surface 
is tested. The proximity test checks to make sure the surface is close 
to and centered relative to the sittable surface. Clearance is also tested 
for the proposed back support relative to the potential sittable surface. 
There is only one surviving orientation at this point that provides all 
specified functions (Fig. 5(f)). This result is passed to the Arm Chair 
subcategory. 

The list of PKP’s used to realize provides arm support is depicted 
in Fig. 5(g). For a surface to act as an arm support, it must be oriented 
essentially parallel to the sittable surface. The arm support surfaces 
must be close and at the sides of the sittable surface. The surface must 
also be clear above for accessibility. One pair is found: one surface 
on each side of the sittable surface. These functional elements are 
labeled, and a new association measure is calculated. 

Since there are no subcategories left in this subgraph, processing 
continues at the subcategory node Balans Chair. An association 
measure of zero is returned because the functional requirements of 
provides seat rest and provides knee support cannot be fulfilled by 
the structure of the arm chair. Association measures of zero are 
also found for the subcategory Lounge Chair and the subcategory 
Highchair, though for different reasons. 

B. Experimental Results 
Each of the 101 input objects was designated as either CHAIR or 

NONCHAIR (see Figs. 6 and 7), based on the intuitive feelings of the 
designer. The objective was to compare the system’s categorization 
to the intuitive categorization assigned by the designers. Table I 
summarizes the number of objects evaluated, the number categorized 
as CHAIR/NON-CHAIR by the designer, and corresponding numbers 

I 
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Pnmltives used: 
PROVIDES SITTABLE SURFACE 

Resulling functional-element list: 

l Dimensions(%‘IDTH.DEPTH) 
Face #2 Seal 

Face #20 - Bouan 

. Dlmensions(AREA.CONTIGUOUs SURFACE) 

. R&we otientation(surface. ground. parallel) 

. Dimenswns(HEIGHT) 

l Clearanoe(ahove sillable surface) 

. ~~eamnce(m ‘from’ of smable surface) W 
(a) 

PROVIDES STABLE SUPPORT 
Resulting functional-element list: 

Primitives used: 
l Slabilify(onentalion) rovides stable suppofl 

CONVENTIONAL CHAIR concept estabbshed 
wtb 1 possible ‘front’ of chair. 

PROVIDES BACK SUPPORT 

Pnmitives used: Resulting functional-element 11%: 

l R&&e orientation(surface. seat, onhogonal) 

l Proximily(surface, seat. close and centered) 

ides back support 

(e) VI 
STRAIGHT BACK CHAIR concept established 

with 1 possible ‘front’ of chair. 
PROVIDES ARM SUPPORT 

Pnm~twes used for each am’ Resulung funcucmal-elemenl list: 

vides arm supporl 
. R&we onematmn(surface. seal,parallel) 

. Proxm~ty(surlace. seat. close and at sides) 

. clearance(ahove surface) 

(n) 

ARM CHAIR concept established 
with 1 possible ‘front’ of chair. 

(h) 

Fig. 5. Evaluation process of arm chair 

for the system. There is only one input object intuitively categorized 
by its designer as a chair but not recognized as such by the 
system. This object (see Fig. S(a)) was not categorized as a chair 
due to the fact that the system could not identify a contiguous 
sittable surface within the proper width/depth size range. The greatest 
discrepancy occurred with intuitively NONCHAIR objects that the 
system evaluated as being capable of functioning as a chair. Fig. 
S(b) depicts all objects that were counter-intuitively identified by the 
system as falling into the Straight Back Chair subcategory. All of 
these objects have in common that they have some orientation in 
which they can provide a sittable surface, provide stable support, and 
provide a back support, They can all, therefore, function as Straight 
Back Chairs. Fig. 8(c) depicts the set of objects found to be capable 

of functioning as a Conventional Chair (i.e., provides sittable surface 
and provides stable support). One example of this is the trash can 
(object #2) in Fig. 8(c). By turning the trash can over, a person could 
use the bottom as a sittable surface. 

V. FUTURE RESEARCH DIRECTIONS 

There are three areas we would like to investigate for extensions 
to the present system. First, the definition of more categories can 
be added to the knowledge base. We are completing the expansion 
of the system to include a number of basic level categories in 
the super-ordinate category “furniture.” We also plan to add cate- 
gory representation from a different super-ordinate category, perhaps 
“dishes.” This will allow us to test our assumption that the number 
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Fig. 6. Intuitive chair objects 

Fig. 7. Intuitive nonchair objects 

of PKP’s required grows very slowly with the number of categories. 
This will also allow us to investigate the formation of heuristics in 
hypothesizing the categories to use in the evaluation process. The 
structural information attained during the enumeration of functional 
elements could provide cues for the choice of hypothesis. 

Second, we plan to investigate using nonideal input. Currently, the 
input objects examined by the system are “ideal” in that they are the 

(4 (b) 

Fig. 8. Counter-intuitive chair results 

TABLE I 
EXPERIMENTAL RESULTS 

Total # of objecls 101 
#I Inmitively Calegorized as Chairs 38 
#categorized correctly as chairs by system 37 
#Intuitively Categorized as Non-chairs 63 
#categorized correctly as non-chain by system 46 

output of a CAD tool. We hope to investigate the use of two forms 
of nonideal input. First, we want to explore the use of complete 3-D 
models constructed from multiple real images of an object. Second, 
we want to explore the use of incomplete 3-D models, as might be 
obtained from a single image and/or occluded views. 

Third, we plan to investigate learning capabilities of the system. 
Through an interactive process, the system could question the user as 
to whether the structural differences found between objects catego- 
rized by the system have any functional significance. According to the 
user’s response, new subcategories could be formed, and the control 
structure could be reorganized in such a way as to reflect the new 
functional plan. In this way, the system could learn by its experience. 

[II 

PI 

131 

[41 

151 

[61 

REFERENCES 

M. Brady, P. E. Agre, D. J. Braunegg, and J. H. Connell, “The mechanics 
mate,” in Advances in Artificial Infelligence (T. O’Shea, Ed.). New 
York: Elsevier, 1985, pp. 79-94. 
R. A. Brooks, and T. A. Binford, “Representing and reasoning about 
partially specified scenes,” in Proc. DARPA Image Understanding Work- 
shop, 1980, pp. 95-103. 
J. H. Connell and M. Brady, “Generating and generalizing models of 
visual objects,” Arfijcial In& vol. 31, pp. 159-183, 1987: 
M. Di Manzo, E. Trucco, F. Giunchiglia, F. Ricci, “FUR: Understanding 
Functional Reasoning,” Int J. Intelligent Syst., vol. 4, pp. 431457, 1989 
Eastman Kodak Co., Ergonomic Design for People at Work. New York: 
Van Nostrand Reinhold, 1983, vol. 1, 
R. R. Goldberg and D. G. Lowe, “Verification of 3-D parametric models 
in 2-D image data,” m Proc. IEEE Workshop Comput. vision (Miami, 
FL), 1987, pp. 255-257. 



1104 

171 

PI 

PI 

IlO1 

[Ill 

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 13, NO. 10, OCTOBER 1991 

W. E. L. Grimson, “On the recognition of parameterized 2D objects,” [I21 
Int. J. Comput. Vision, vol. 3, pp. 353-312, 1988. 
S. Ho, “Representing and using functional definitions for visual recog- 
nition,” Ph. D. Dissertation, Univ. Wisconsin, Madison, 1987. 
M. Minsky, TheSociety ofMind. New York: Simon and Shuster, 1985. [I31 
E. Rosch, C. B. Mervis, W. D. Gray, D. Johnson, P. Boyes-Braem, 
“Basic objects in natural categories,” Cognitive Psych., vol. 8, pp. 
382-439, 1976. 
L. Stark, and K. W. Bowyer, “Achieving generalized object recognition [I41 

through reasoning about association of function to structure,” AAAI-90 
Workshop Qualifafive Axon (Boston, MA), July 1990, pp. 137-141. 

L. Stark, L. 0. Hall, and K. W. Bowyer, “An investigation of methods 
of combining functional evidence for 3-D object recognition,” in Proc. 
SPIE 1381: Intell. Robots Comput. Vision IX: Algorithms Techn. (Boston, 
MA), 1990. 
P. H. Winston, T. 0. Binford, B. Katz, and M. Lowry, “Learning phys- 
ical description from functional definitions, examples, and precedents,” 
in Proc. Int. Symp. Robotics Research (M. Brady and R. Paul, Eds.). 
Cambridge, MA: MIT Press, 1984, vol. 1. 
P. H. Winston, “Learning structural descriptions from examples,” in 
The Psychology of Computer Vision, P. H. Winston (Ed.). New York: 
McGraw-Hill, 1975. 


