
For Review
 O

nly

1

Gender Classification from the Same Iris Code
Used for Recognition

Juan E. Tapia, Student Member, IEEE Claudio A. Perez, Senior Member, IEEE Kevin W. Bowyer Fellow
Member, IEEE

Abstract—Previous researchers have explored various approaches
for predicting the gender of a person based on features of the iris
texture. This paper is the first to predict gender directly from
the same binary iris code that could be used for recognition.
We found that information for gender prediction is distributed
across the iris, rather than localized in particular concentric
bands. We also found that using selected features representing
a subset of the iris region achieves better accuracy than using
features representing the whole iris region. We used measures of
mutual information to guide the selection of bits from the iris
code to use as features in gender prediction. Using this approach,
with a person-disjoint training and testing evaluation, we were
able to achieve 89% correct gender prediction using the fusion
of the best features of iris code from the left and the right eyes.

Index Terms—Gender Classification, Iris, Feature Selection.

I. INTRODUCTION

One active area of ’soft biometrics’ research involves classify-
ing the gender of the person from the biometric sample. Most
work done on gender classification has involved the analysis of
face images [1]. Various types of feature extraction, selection
and classifiers have been used in gender classification.
In terms of matching iris codes for recognition of identity,
iris codes of different individuals, and even of the left and
right eyes of the same individual, have been shown to be
independent. At the same time, several authors have reported
that, using an analysis of iris texture different from that used
for recognition of identity, it is possible to classify the gender
of the person with accuracy much higher than chance.
Nowadays, essentially all commercial systems to identify peo-
ple from iris are based on the iris-code proposed by Daugman
[2]. Therefore, the iris-code is already being computed in iris
recognition systems and could be used for other purposes
such as gender prediction, either to help speed the matching
process, and / or to know something about people who are
not recognized. Commercial iris recognition systems typically
do not also acquire face images or fingerprint images, and so
gender-from-iris is the only option for gender info in an iris
recognition system. Our approach is the first to classify gender
from the same iris-code used to identify people. If the gender
is computed before a search for a match to an enrolled iris
code, then the average search time can potentially be cut in
half. In instances where the person is not recognized, it may be
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useful to know the gender and other information about people
trying to gain entry.
There are a number of reasons why ’gender-from-iris’ is an
interesting and potentially useful problem. One possible use
arises in searching an enrolled database for a match. If the
gender of the sample can be determined, then it can be used to
order the search and reduce the average search time. Another
possible use arises in social settings where it may be useful
to screen entry to some area based on gender, but without
recording identity. Gender classification is also important for
demographic information collection, marketing research, and
real time electronic marketing. For example, displays at retail
stores could offer products according to the person’s gender.
Another possible use is that in high-security scenarios, there
may be value to knowing the gender of the persons who
attempt entry but are not recognized as any of the enrolled
persons. And, at a basic science level, it is of value to more
fully understand what information about a person can be
extracted from analysis of their iris texture.
Gender classification using iris information is a rather new
topic, with only a few papers published [3], [4], [5], [6].
Most gender classification methods reported in the literature
use texture features from the whole iris for classification
or identification [3], [4], [5]. As a result, gender-irrelevant
information might be fed into the classifier which may result
in poor generalization.
Thomas et al. [5] were the first to explore gender-from-iris
problem. They used a set of over 50,000 left-iris images, and
performed several different experiments. They segmented the
iris region, created a normalized iris image, and then created a
log-Gabor filtered version of the normalized image. In addition
to the log-Gabor texture features, they used seven geometric
features of the pupil and iris. They developed a random
subspace ensemble of decision trees to predict gender based
on the iris texture and the geometric features, and reported
accuracy close to 80% in certain circumstances.
Lagree et al. [4] computed texture features separately for
eight five-pixel horizontal bands, running from the pupil-iris
boundary out to the iris-sclera boundary, and ten twenty-four-
pixel vertical bands from a 40x240 image. The normalized
image is not processed by the log-Gabor filters that are used
to create the iris code that is used for identity recognition
purposes. Also, this work does not use any geometric features
such as used in [5]. Classifiers are developed to predict gender
and ethnicity based on the texture features computed from
the normalized iris image. Using a dataset of 600 images
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and representing 60 persons, they reported achieving accuracy
close to 62% for gender prediction, and close to 80% for two-
class (Asian, Caucasian) ethnicity prediction.
Bansal et al. [3] used a statistical feature extraction tech-
nique based on correlation between adjacent pixels, that was
combined with a 2D wavelet tree based on feature extraction
techniques to extract significant features from the iris image.
This approach yielded an accuracy of 83.06% for gender
classification. However, the database used in this experiment
was small (300 images, and without person-disjoint training)
compared to other studies.
Tapia et al. [6] explored using different implementations of
Local Binary Patterns (LBP) from the normalized iris image
masked for iris region occlusion. They found that Uniform
LBP with concatenated histograms significantly improved
accuracy of gender prediction relative to using the whole
iris image. Although the results in [6] using 1,500 images
were intended to be computed on the basis of a person-
disjoint training and testing division of the dataset, this was not
actually achieved due to the dataset having multiple images for
some subjects, with an average of about six images per subject.
The highest accuracy achieved with any of the LBP variants
was just over 91% correct gender prediction. This current
paper improves on the work in [6] in several ways. One, the
texture features for gender prediction are taken directly from
the binary iris code that could be used for identity recognition.
Two, this paper uses a new dataset that has only one image
per iris, making it possible to compute performance for a truly
person-disjoint train and test split of the data and three, the
proposed feature selection method selects groups of features
instead of pairs as done by traditional methods.
None of the previous gender-from-iris work has attempted to
predict gender from the same binary iris code that is computed
for recognizing/verifying identity. The various approaches
have each computed their own different type of texture feature
from the iris image or a Gabor-filtered version of this image.
Also, most of the approaches have used features computed
from the whole iris region, rather than selecting features
representing a subset of iris area to try to maximize accuracy.
Hollingsworth et al. [7] were the first to present an experiment
documenting that some bits are more consistent than others.
While their work was done in the context of person recognition
rather than gender classification, the idea that not all bits of the
iris code are equally useful may apply to both problems. The
fragile-bits results suggest that using a selected subset of the
iris, rather than the whole iris region, may improve accuracy.
We propose a new method to select a subset of bits from the
binary iris code to improve gender classification. (A bit posi-
tion within the iris code corresponds to a particular location
on the iris). We first conduct a simple experiment to determine
whether information for gender prediction is localized in only
some bands of the iris, See Figure 1. We find that information
for gender prediction appears to be present throughout the iris.
We then consider feature selection methods based on Mutual
Information (MI) in order to select a subset of the available
features. We explore four feature-selection methods based on
MI as a measure of relevance and redundancy among features:

minimal Redundancy and Maximal Relevance (mRMR) and
Conditional Mutual Information Maximization (CMIM) using
pairs of features, and two improved methods Weighted mRMR
(W-mRMR) and Weighted CMIM (W-CMIM) using groups
of features.Using the weighted CMIM (W-CMIM) approach
to select the best features (bits) present in the iris code, we
were able to achieve over 89% correct gender classification,
computed on a person-disjoint training and testing set.
The main novelties of the work reported here are: (a) to find
a new high accuracy for gender-from-iris, (b) to show that
selecting a subset of possible features improves performance,
and (c) to show that person-disjoint methodology is needed to
make a realistic performance estimate.
The remainder of the paper is organized as follows. Section
2 reviews background concepts in iris recognition and infor-
mation theory, and explains our proposed method. Section
3 details the dataset used in our experiments. Section 4
describes the experiments and results. Finally, conclusions and
discussion are given in Section 5.

II. METHODS

A. Feature Extraction

The iris feature extraction process involves the following steps.
First, the iris sensor acquires a near-infrared image of the eye.
Near-infrared illumination allows iris texture to be imaged in
both dark and light eyes. Then the iris region is segmented,
and transformed into a fixed-size rectangular ’unwrapped’ iris
image. This facilitates creating a fixed-size iris code that is
easily compared to other codes.
A texture filter is applied at a grid of locations on this
unwrapped iris image, and the filter responses are quantized
to yield a binary iris code [8]. Our method is intended
to find gender from the iris code because the iris code is
increasingly being used in large-scale identity verification
systems. Iris classification has become increasingly important
in large populations as in UAE, Canada, and India in recent
years [9], [10], [11], and therefore the possibility to classify
gender from iris is a reality.
The radial resolution (r) and angular resolution (θ) used dur-
ing the normalization or ’unwrapping’ step determine the size
of the rectangular iris image, and can significantly influence
the iris recognition rate. In this work we use a rectangular im-
age of 20(r)x 240(θ) created using the IrisBee implementation
[12]. IrisBee also creates a segmentation mask of the same size
as the rectangular image. The segmentation mask indicates the
portions of the normalized iris image that represent occlusion
by eyelids, eyelashes or specular reflections.
The 2D normalized pattern is broken up into a number of
1D signals, and then these 1D signals are convolved with 1D
Gabor filters with the followings parameters: the wavelength
(in pixels) of the log Gabor filter was 18 pixels and the ratio
(σ/f0) of the log Gabor filter was 0.5, where σ denotes
bandwidth and f0 denotes the central frequency [12].
The output of the Gabor filters is transformed into the binary
iris code by quantizing the phase information into four levels,
representing the four quadrants in the complex plane [2].
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Figure 1: Representation of the 20 bands over the iris image.

We use the iris coded resulting from a particular instance
of Gabor filters corresponding to the default values used in
the IrisBee Software [12]. The bits selected by the feature
selection methods represent this encoding information of the
texture on the iris. If we make a drastic change to the
parameters of the Gabor filter, then the features to select
from would be different and so different features would be
selected. Some Gabor filter parameters may be better or worse
for representing the gender information in the iris texture.
However, since a number of researchers have reported gender
prediction results using various different filters [12], gender
information can be captured by a variety of different filters.
The iris image is represented as an array of complex numbers
with 20 rows and 240 columns. We extracted only the real
component at this stage, to be used as the texture features.
(The imaginary component is in a sense redundant [13].) Thus
the binary iris code generated by IrisBee and used in this work
is 20 x 240 = 4,800 bits in size.
The IrisBee implementation incorporates a ’fragile bits’ mask-
ing step [7]. For a given iris image, a bit in its corresponding
iris code is defined as fragile if there is any substantial
probability of it ending up a 0 for some images of the iris
and a 1 for other images of the same iris. We used the IrisBee
default threshold of masking the 25% most fragile bits for each
iris code. Therefore, although the iris code is 4,800 bits as
originally computed, fragile-bit masking reduces this to 3,600
potentially used for matching iris codes.
Figure 2 illustrates the creation of the iris code. Part (a)
shows two example images, the left and right eyes of a female
subject. Part (b) illustrates the image segmentation found by
IrisBee. Part (c) shows the corresponding normalized images.
Part (d) illustrates the binary encoding of the texture filter
result, the iris code. In the binary iris code, one concentric
band of the iris is represented by 240 bits. Therefore, we have
20 bands with 240 bits each. Band 1 is the closest to the
pupil and band 20 is closest to the sclera. (See Figure 1.) In
section 4, we consider whether the texture features relevant to
gender-from-iris are localized to a particular band of the iris.

B. Mutual Information

A feature is statistically relevant if its removal from a feature
set will reduce the prediction power [14]. A feature fi, can

become redundant due to the existence of other relevant
features, which provide similar prediction power as fi . Some
researchers propose to remove redundant features from the
feature list, as this may improve the prediction accuracy [15].
Other researchers noticed that the removal of the redundant
features may cause the exclusion of potential relevant features
[14]. Therefore, they propose to find surrogate features by
measuring feature correlations, or group features with similar
patterns into feature clusters. Thus, we use Mutual Information
to measure the relationship between features.
MI is defined as a measure of how much information is jointly
contained in two variables [16], [17], or the degree to which
knowledge of one variable determines the other variable. It
forms the basis of information-theoretic feature selection, as
it provides a function for calculating the relevance of a variable
with respect to the target class.
MI is a measure of statistical independence that has two
main properties. First, it can measure any kind of relationship
between random variables, including nonlinear relationships
[16]. Second, MI is invariant under transformations in the
feature space that are invertible and differentiable, e.g., trans-
lations, rotations, and any transformation preserving the order
of the original elements of the feature vectors [18]
The MI between two variables, x and y, is defined based on
their joint probability distribution p(x; y) and the respective
marginal probabilities p(x) and p(y) as:

MI(x, y) =

ˆ ˆ
p(x, y)log

p(x, y)

p(x)p(y)
dxdy (1)

We use categorical MI in this paper, which can be estimated
by tallying the samples of categorical variables in the data
building adaptive histograms to compute the joint probability
distribution p(x, y) and the marginal probabilities p(x) and
p(y) based on the Fraser algorithm [19].
If a feature in the iris texture is uniformly distributed across
different classes, its MI with respect to these classes is zero.
If a feature is strongly differentially expressed for different
classes, it should have large MI . Thus, we use MI as a
measure of relevance of features present in the iris with
minimum redundancy among them.
In this paper, we propose to improve on previous approaches
to using MI in feature selection [20], [15], [21] by computing
the weight for each feature in relation to the other features.
This helps to guide the selection method in search of the most
relevant features.

C. Weighted Minimum redundancy and maximal relevance
(W-mRMR)

Two forms of combining relevance and redundancy operations
are used in [20], mutual information difference (MID),
and mutual information quotient (MIQ). Thus the mRMR
feature set is obtained by optimizing MID and MIQ simul-
taneously. Optimization of both conditions requires combining
them into a single criterion function [20] as:

fmRMR(fi) =MI(c; fi)− 1

S

∑
MI(fi; fs) (2)
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Right eye Left Eye
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b)

c)

d)

Figure 2: Images of the right and left eye of a female subject. (a) Original image, (b) Segmented image, with eyelids and
eyelashes detection in yellow (c) Normalized image with mask in yellow (d) Binary iris code, with mask and fragile bits in
white.

where, MI(c; fi) measures the relevance of the feature fi to be
added for the class c and the term 1

S

∑
fiεS

MI(fi; fs) estimates
the redundancy of the fith feature with respect to the subset
S of previously selected features fs.
However, there are two limitations for the above MI feature
selection methods. Firstly, for any individual feature to be
considered relevant it must be dependent with the target class.
Groups of features that become relevant only as a group will
not be discovered. The second weakness is that most of the
methods simply consider pairwise feature dependencies. To
overcome the above problem we propose a weighted approach.
We propose to compute a weight for each feature in relation
to the other features in the subset based on Euclidean distance
and MI , determining the relationships among features, and
use the weight to guide the selection of the most relevant
group of features. The procedure for computing the weights
is based on the principles of the Relief-F method [22].
The weights are estimated as follows. To reduce computation,
a given number of images are randomly sampled from the
training data. For each randomly-sampled image, its k nearest
neighbors from the same class (’hits’) and k nearest neighbors
from the opposite class (’misses’) are found. See Figure 3.
(Datasets with more than two classes are handled by finding
the nearest neighbors from each class that are different from
the currently sampled image). The nearest neighbors’ contri-
bution is determined by the prior probability and MI of each
class estimated from the training data.
The weight vector value is the average over the randomly-

Figure 3: Representation of modified Relief-F with three
nearest neighbors, k=3. Ri is a random image; F represents
Nearest Hits and M represent Nearest Misses. In this work
during the normalization process determines the size of the
rectangular iris image. We use a rectangular image of 20(r) x
240(θ)= 4,800.

sampled images of the magnitude of the difference in distance
to the k nearest hits and the distance to the k nearest misses,
projecting on the Ri image. The greater the value of the
weight, the greater the ability to differentiate between classes.
The k nearest neighbors for the weight vector are selected
from the complete set of training data. Therefore we know
the position, the value and the k neighbors used for each
feature. Then, we re-sort the weights and select the best
subset using the Haussdorf distance [23] between them. We
use these weights in the traditional feature selection methods
but including the rank and weight for the best number of
features, computed in the previous stage. Finally, using a
wrapper method with SVM, we estimate the best number of
features in relation with the k neighbors and classification rate
employing forward elimination [24]. This approach allows us
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to determine the most useful subset of the available features.
This relationship was used as a measure of information, or as
a measure of class separability based on that feature subset,
in order to apply to W-mRMR and W-CMIM. The proposed
feature selection method selects groups of features instead of
pairs of features as done by MI traditional methods.
Our weighting approach calculates the relevance and redun-
dancy and adds the weight information function. Therefore
wi(fi) is used instead of the feature fi, directly while
computing MI score to make the ranking of relevance,
fW−mRMR(fi) =

MI(c ; fi)×w(fi)2− 1

S

∑
MI(fi ; fs)×w(fi)×w(fs),

(3)
where w(fi)2 , w(fi) and w(fs) are used to weight the
importance of the relation among features.

III. DATASET

We present results for three different iris image datasets.
Examples are shown in Figure 2. For comparison to previous
work, we present results on the dataset used in [6]. The dataset
used in [6] was intended to have images from 1,500 different
persons, but due to an error in image selection it contains
images from less than 500 different persons. This means
that results computed with this dataset in [6] are not person-
disjoint in training and testing. For a more realistic estimate of
accuracy, we also present results on a gender-from-iris (GFI)
dataset that does represent 1,500 distinct persons and so does
support person-disjoint training and testing. We also used an
additional dataset for a validation test, we named UND_V. This
dataset is person-disjoint from the original dataset with and
additional 972 distinct persons and allows further validation
of the results obtained on GFI dataset. Both the original dataset
and this additional validation dataset will be made available
at the URL referred to below 1.
Each dataset (GFI and corrected GFI) contains 3,000 images:
750 left-iris images from men, 750 right-iris images from men,
750 left-iris images from women and 750 right-iris images
from women. Of the 1,500 distinct persons in the GFI dataset,
visual inspection of the images indicates that about 1/4 are
wearing clear contact lenses. Results computed for a person-
disjoint train and test are generally expected to be lower than
for train and test that is not person-disjoint. However, person-
disjoint train and test should yield an accuracy estimate more
realistic for generalization to new data. Comparing the results
between these two datasets allows us to gauge the importance
of using a person-disjoint train and test method.
A UND_V dataset contains 1,944 images: three left eye images
and three right eye images for each of 175 males and 149
females. It is known that some subjects are wearing clear
contact lenses, and evidence of this is visible in some images.
Also, a few subjects are wearing cosmetic contact lenses in
some images.

1http://www3.nd.edu/~cvrl/CVRL/Data_Sets.html, ’The Gender from Iris
Dataset (ND-GFI)’

IV. EXPERIMENTS AND RESULTS

We present results for three experiments. In Experiment 1, we
consider the accuracy of gender classification using individual
bands of the iris, as illustrated in Figure 1. A band of the
iris that contains no useful information for classifying gender
should have an accuracy of approximately 50%. To validate
the results we add a new validation dataset named UND_V
to analyze how well the classifier generalizes to new data.
In Experiment 2, we classify gender using feature selection
based on MI as described in the Section II. We perform
feature selection and estimate accuracy separately for the left
and right iris because some systems work with a single iris.
Also, even systems that can work with two irises need to be
able to work with only one if the other is covered for some
reason. In Experiment 3, we evaluate possible approaches to
fusing information from the left and right iris.
In the second and third experiments we use a segmentation
mask of the same size as the rectangular image and addition-
ally masked by IrisBee default 25% of fragile bits [7]. There is
a unique mask for each image, which means that a particular
bit may be masked in one image and not in another image.
A training portion of the 1,500-person dataset was created
by randomly selecting 80% of the males and 80% of the
females. We used 10-fold cross-validation on this training
set of 80% of the original data to select parameters of each
method. Once parameter selection is finalized, the selected
parameterization of the method is trained on the full 80%
training data, and a single evaluation is made on the 20% test
data. In each experiment, an SVM classifier with Gaussian
kernel was trained using LIBSVM implementation [25]. To
validate the results we add a new validation dataset named
UND_V to analyze how well the classifier generalizes to new
data.
It is important to note that iris images of different persons, or
even the left and right iris images for a given person, may not
present exactly the same imaging conditions. The illumination
by the LEDs may come from either side of the sensor, specular
highlights may be present in different places in the image, the
inclination of the head may be different, the eyelid occlusion
may be different, and so forth. See Figure 4. Therefore we
expect to select different features from each eye.

Figure 4: Illustration of different imaging conditions for the
two eyes of one subject.

A. Is Gender Information Distributed Across All Bands?

In many irises, the bands nearer to the pupil have a more
visually apparent texture pattern. Due to the structure of the
eye, the bands nearer to the sclera are thought to change
relatively less with changes in pupil dilation. The band of the
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iris located near the pupil and the band located near the sclera
will naturally have noise from inaccuracies in segmenting the
iris boundary, and the boundary not being perfectly circular.
Also, some previous researchers have suggested that some
bands of the iris may be more important than others in terms
of information for recognition of identity. Some bands perform
better than others, because they are located further from the
areas of occlusion or are more stable across different subjects,
in terms of location and occlusion. For these various reasons,
it seems worth considering whether useful gender-from-iris
information is distributed across all bands of the iris.
To look at this question, a separate SVM was trained for each
of the 20 bands of each of the left and the right iris. (Fragile
bit information, segmentation mask, and feature selection are
not used in this experiment). Figure 5 shows the gender
classification accuracy using each one of the bands. Note that
the accuracy from each of the 20 bands, for both the left and
the right iris, is greater than 50%. This indicates that useful
information for gender classification is present in all the bands
of the iris. The accuracy appears to be generally higher in the
inner half of the iris, bands 1 to 10, than in the outer half
of the iris, bands 11 to 20. For the left iris, the best results
are from bands 2, 4, 5 and 6 with 68.33%, 65.00%, 62.00%
and 63.66% respectively. For the right iris, the best results are
from bands 2, 6, 7 and 8 with 65.66%, 65.00%, 65.33% and
63.00% respectively. These results show that with only one
band of an iris, corresponding to only 1/20 of the iris area,
gender classification can be accomplished with the average
accuracy as high as around 65%.

Figure 5: Gender Classification rate using only one band at
a time from GFI database. The classification rate for left-iris
data is in red, and for right-iris data is in blue.

Figure 6 shows the classification rate by band of the iris
computed for 1/3 of the UND_V database described in Section
III, one left eye image and one right eye for each of 175
males and 149 females, subject-disjoint from the GFI dataset,
created a person disjoint dataset. The results are similar to
those in Figure 5, validating that the results in Figure 5 are
not dependent on the particular persons in the GFI dataset,
and that useful information for gender classification is present
in all the bands.

Figure 6: Gender classification rate using only one band at
time from UND_V database. The classification rate for the
left iris data is in red, and for right iris data is in blue.

B. Feature Selection from the bands

The results of our first experiment show that there is gender-
from-iris information in all bands of the iris. However, using
the whole iris code would result in a large feature vector.
In experiment two, we apply the feature selection methods
discussed in Section II to find a reduced feature vector and
compare the accuracy to that of using the whole iris code for
gender prediction.
The top row of Table I shows the accuracy achieved when
an SVM is trained for gender classification using the whole
1,200-element training set, where each training element is
a 4,800-bit iris code. This approach results in 77.33% and
74.66% accuracy for the left iris and the right iris, respectively.
The analogous approach used with the non-subject-disjoint
dataset in previous work [6] achieved accuracy of 87.33% for
the left iris and 84.66% for the right iris. This shows how
important it is to use a subject-disjoint dataset in order to
obtain realistic accuracy estimates.
The next four rows of Table I give the accuracy for the
mRMR and the CMIM approaches to feature selection, with
and without weighting of features. The number of bits selected
from the iris code is given in parentheses below the accuracy
number. We select the number of best features employing for-
ward selection in steps of 100 features. Comparing the CMIM
and mRMR approaches, we see that the CMIM achieves
slightly higher accuracy than mRMR. This is true when feature
weighting is used for both approaches, or not used for both.
We also see that for either approach, weighting the features
improves accuracy. Comparing the subject-disjoint evaluation
results of this paper with the non-subject-disjoint results in [6],
we see that non-subject-disjoint evaluation consistently results
in unrealistically high accuracy estimates. For the highest-
accuracy approach in Table I, W-CMIM, the optimistic bias
introduced by non-subject-disjoint evaluation is about five
percentage points. Finally, note that using W-CMIM to select
features results in an improvement of about ten percentage
points over using with whole iris.
W-CMIM uses conditional mutual information to measure
the values of relevance and redundancy using the informa-
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Table I: Gender classification rates for the left and right
iris code considering all bits and those selected by mutual
information measures mRMR, CMIM, W-mRMR and W-
CMIM. In parenthesis appear the number of selected features.
k is the number of nearest neighbors.

Method Left eye (%) Right eye (%) Left eye (%) Right eye (%)

[6] [6] GFI GFI

Whole Iris 87.33 +/- 0.72 84.66 +/- 0.77 77.33 +/- 0.78 74.66 +/- 0.75

Code (4,800) (4,800) (4,800) (4,800)

mRMR 87.66 +/- 0.67 87.00 +/- 0.63 79.66 +/- 0.84 81.00 +/- 0.87

(2,800) (3,400) (900) (1,100)

CMIM 88.66 +/- 0.66 88.66 +/- 0.71 82.66 +/- 0.89 81.66 +/- 0.91

(1,900) (4,200) (900) (1,200)

W-mRMR 88.00 +/- 0.73 85.66 +/- 0.70 84.00 +/- 0.78 82.00 +/- 0.75

(900) (400) (900) (1,200)

(k=10) (k=10) (k=10) (k=10)

W-CMIM 91.00 +/- 0.63 89.00 +/- 0.60 85.33 +/- 0.73 84.33 +/- 0.69

(1,200) (3,200) (2,200) (3,200)

(k=5) (k=5) (k=10) (k=10)

tion between two features previously selected and a third
feature candidate. The W-mRMR approach uses traditional
mutual information, making a trade-off between relevance
and redundancy using only pairs of features. Thus, both
weighted feature selection methods proposed in this paper may
choose different distinctive bits of the iris-codes because they
use different measures to estimate the relationships among
different features.
Figure 7 illustrates the results of the W-CMIM feature selec-
tion. The features were selected separately for the left eye and
right eye. The best 200 features are show in the top two rows,
and the best 1,000 features are shown in the bottom two rows.
In the first and third rows, the features are overlaid onto an
example female pair of iris codes, and in the second and fourth
rows, the features are overlaid onto an example male pair of
iris codes. The selected features are distributed throughout the
iris region, but there is some denser selection in the region that
may correspond to where eyelid and eyelashes can occlude the
iris texture.

C. Fusion of information from the left and right eyes

We consider multiple different approaches to fusing results
from the left and the right iris. In one approach, feature-
level fusion is done by concatenating the vectors of the
left (1x4,800) and right iris (1x4,800) to obtain a person-
level vector of 1x9,600 bits. Results of this approach are
summarized in Table II. The results are largely analogous to
those obtained in Table I for considering the left and the right
iris individually. The W-CMIM approach to selecting features
from the two-iris feature vector results in the best accuracy.
However, the accuracy achieved is not significantly better than
the accuracy achieved for a single iris. This could be due in
part to the high dimensionality of the two-iris feature vector
making the feature selection process more difficult.
In the second approach, we fuse results from the best features
selected independently from the left and right irises based on

Table II: Gender classification rates for the left and right iris
code. In parenthesis appear the number of selected features. k
is the number of nearest neighbors.

Method Accuracy (%) Male (%) Female (%)

Raw 72.66 +/- 0.91 73.66 71.66
Fusion (9,600)

mRMR 82.16 +/- 0.90 82.33 81.99
Fusion (4,000)

CMIM 83.00 +/- 0.90 83.66 82.33
Fusion (4,000)

W-mRMR 82.33 +/- 0.87 83.00 81.66
Fusion (4,000)

(k=5)

W-CMIM 84.16 +/- 0.92 84.99 83.33
Fusion (5,000)

(k=5)

Table III: Gender classification rates for the fusion of left
and right iris codes using GFI database. In parenthesis appear
the number of selected features. k is the number of nearest
neighbors.

Method Accuracy (%) Male (%) Female (%)

Best- mRMR 82.00 +/- 0.75 83.00 81.00

Fusion (2,000)

Best -CMIM 85.00 +/- 0.77 84.66 85.33

Fusion (2,100)

Best W-mRMR 85.33 +/- 0.70 85.00 86.66

Fusion (2,100)(k=5)

Best W-CMIM 89.00 +/- 0.68 88.33 89.66

Fusion (5,400)(k=5)

results in Table I. These results are summarized in Table III.
Analogous to the results in Tables I and II, the W-CMIM
feature selection results in the highest accuracy. The W-CMIM
fusion result in the last row of Table III is for fusion of the
vector of best features from the left eye (1x2,200) and the
right eye (1x3,200) as found in Table I. Using this 1x5,400
bit feature vector for the two irises achieves an accuracy of
89.00%. This represents a substantial improvement, of about
five percentage points, over the accuracy obtained with a single
iris.
We added two new experiments using the mirroring images
from the left and the right iris-code. First, we select the best N
features separately. The results show that the selected features
were the same and only changed the feature index (relative
position); therefore, the accuracy of the gender classification
did not change. Second, we added another test with the fusion
of the mirrored images. We used left images and its mirroring
images for the same subject and the right images and its
mirroring images. Then, we selected features from the fusion
of 9,600 bits. Interestingly, the feature selection methods only
select features from one side of the image (left or right)
and removed the similar index features. This is because the
method detects the redundancy between the features (bits) with
equal mutual information values, thus mirrored features are
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Right Left

(a)

(b)

(c)

(d)

Figure 7: Four different pairs of (left, right) iris images are shown. Features selected for female irises are shown in blue in a)
and c), and for male irises are shown in green in b) and d). The best 200 features selected are shown in a) and b), and the
best 1,000 features selected are shown in c) and d). The feature selections shown are those found with W-CMIM.

discharged and ranked in the last position.

D. Validation Test

The analysis of the misclassified images for the new validation
database UND_V is presented in Table IV. The UND_V
database does not have labels regarding problems for seg-
mentation. Therefore, we assigned labels manually for the
following tags: Straight eyelashes, Contact lenses (Texture-
Cosmetic, Circular and clear contact lenses), Wrong segmen-
tation, Blurred images and Well Segmented. Each image was
labeled according to the main feature detected visually. For
example, if one image has textured contact lenses and also has
some blur, it is labeled with texture contact lenses tag because
the texture contact lens impedes feature extraction for gender
classification. For the case of fusion left and right iris codes,
we use the tag with the main problem assigned to any of these
images. For example if at least one of images (left or right iris)
is tagged ’Wrong segmentation’, the fusion is also tagged as
’Wrong segmentation’.
In analyzing the results of the validation dataset, we found
that mascara applied to eyelashes presents a problem for
correct classification of female iris images. This is because
the iris segmentation algorithm does not effectively mask out
the instances of occlusion by eyelashes. For eyelashes without
mascara, the effect on the image is relatively small, but with
the presence of mascara it is larger. Of the images that have
’straight eyelashes’ that cause occlusion of the iris texture, 67
of 117 left iris images were incorrectly classified, and 78 of
117 right iris images were incorrectly classified. An example
of two of these misclassified images appears in Figure 8.
From Table IV, it can be observed that we have an important
number of images labeled with wrong segmentation, due to
the eyelashes (mascara), problems. Images with segmentation
problems have lower gender classification accuracy. Therefore
a comparison of the gender classification accuracy was made
for manual segmentation and automatic segmentation with Iris-
Bee software for the GFI Database and the UND_V database.
The results were reported in Table V.

Table IV: Manual labelling of the UND_V database: Miss
represent the misclassified images. Left and right Contact
Lenses represents: 13 texture, 57 circular and 101 clear contact
lenses.

Labels Left Miss % Right Miss %
Fusion

Miss

Straight
117 67 57.26 117 78 66.67 37

Eyelashes

Contact
171 47 27.49 171 54 31.58 44

Lenses

Wrong
399 60 15.04 418 11 16.75 55

Segmentation

Blurred
3 2 66.67 24 35 37.50 16

images

Well
282 22 7.80 242 8 0 20

Segmented

Subtotal 690 198 – 730 70 – 172

Total 972 972 – 972 9 – 172

(a) (b)

Figure 8: Segmentation resuts: (a) an image with straight
eyelashes and with the occlusion mask, (b) an image with
mascara and a wrong segmentation.

E. Statistical Test

The ANOVA test [26] was applied to determine whether or
not differences among results were statistically significant. We
applied this method to the results of different bands selected
from the iris and to the results of left and right eyes. A small
p-value (p ≤ 0.05) indicates strong evidence against the null
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Table V: Best gender classification rates for automatic seg-
mentation in the GFI and UND_V database and for the manual
segmentation for the UND_V database.

Automatic Automatic Manual

Segmentation Segmentation Segmentation

Best case GFI_Dataset (%) UND_V (%) UND_V (%)

Method Left Right Left Right Left Right

Table I 85.33 84.33 76.66 78.33 84.66 85.33

Left - Right +/- 0.89 +/- 0.95 +/- 1.05 +/- 0.87 +/- 0.96 +/- 0.91

Table II

Fusion 84.33 +/- 0.78 77.99 +/- 0.84 81.33 +/- 0.90

Left - Right

Table III 89.00 +/- 0.86 82.33 +/- 0.90 85.99 +/- 0.89

Best Left

Best right

Figure 9: Mean accuracy and standard deviation for different
bands of the left and right eyes. The central mark in red is the
mean; the edges of the box are the 25th and 75th percentiles.

hypothesis, so we can reject the null hypothesis. A large p-
value (p > 0.05) indicates weak evidence against the null
hypothesis, so we fail to reject the null hypothesis. P values are
calculated based on the assumptions that the null hypothesis is
true. For the results of different band numbers of the iris, we
get a p-value of 1.5580e-05, suggesting that the hypothesis that
the information is the same across the bands can be rejected.
The results are shown in Figure 9.
Table VI shows the p-values from each left-right pair of bands.
Bands 1, 18, 19, 20 have p value larger than 0.05 (p > 0.05),
thus the information present on these bands is not statistically
significantly different between the left and right bands. The p
values for the other bands are lower than (p < 0.05) which
means that there is different information from the bands of
the left and right irises. Also we applied the ’Bonferroni
Adjustment’ [27] to the ANOVA test and reduced the threshold
using p-value/number of test (0.05/10)=0.005. Due to the low
p value shown in Table VI, the statistical significance of the
bands did not change.
For the analysis of the results from the left and right eyes,
we obtained a p value of 0.67, indicating that the accuracy is
not statistically significantly different between the left and the
right irises. We can see the results in Figure 10.

Figure 10: Mean accuracy and standard deviation for the left
and right eyes. The central mark in red is the mean; the edges
of the box are the 25th and 75th percentiles.

V. CONCLUSIONS

The major contributions of this work are as follows. One, we
present results that achieve the highest accuracy yet published
for person-disjoint gender-from-iris. Two, we present results
that show that non-person-disjoint evaluation is biased toward
unrealistically high accuracy. Three, this is the first paper
to publish gender from iris-code. Four, feature selection is
a broad field in continuous evolution, since selection of the
most relevant and non-redundant features is not solved for
complex problems such as in iris classification [14], [28], [29],
[30]. Eliminating relevant or non-redundant features would
result in poor behavior of the classifier. We present a new
strategy to select the most important features (relevant and
non-redundant) using neighbors’ information based on mutual
information. Since relevant features are often unknown a
priori, irrelevant and redundant features may be introduced
to represent the domain. Our results show that improvements
in gender classification are reached with our proposed feature
selection method. We compared our results to those of tradi-
tional mutual information methods such as mRMR and CMIM.
Besides, reducing the number of selected features reduces the
computational burden in feature extraction. Five, we make two
new iris image datasets available to the research community, so
that others can study this problem, whereas previous works on
this problem have generally not made their datasets available.
The binary iris code used for recognition is, in effect, a set
of coarse texture features. Previous works in predicting gender
from iris have relied on computing a separate, different texture
representation [3], [4], [5]. Our results presented here are the
first to show that gender can be successfully predicted from
the binary iris code. There are clear computational advantages
to predicting gender from the binary iris code rather than
computing another different texture representation.
Our approach achieves gender prediction accuracy of 89%
based on fusing the best features from the left and the right
iris. The highest accuracy reported in previous work on gender-
from-iris is 91% [6]. However, our results here are computed
using a person-disjoint train-and-test, which produces an ac-
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Table VI: ANOVA p-values with ’Bonferroni Adjustment’ test for each left-right pair of bands.

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 Band 9 Band 10
0.87 5.40e-9 1,16e-8 9.9e-14 6.28e-11 2.34e-6 1.94e-8 1.47e-5 2.46e-10 3.79e-10

Band 11 Band 12 Band 13 Band 14 Band 15 Band 16 Band 17 Band 18 Band 19 Band 20
2.37e-13 7.10e-11 2.45e-8 2.75e-10 8.66e-12 2.79e-10 4.04e-8 0.74 0.81 0.95

curacy estimate that generalizes better to unseen data. In our
comparison of results that are person-disjoint and non-person-
disjoint manner, non-person disjoint accuracy estimates came
out 5% or more higher than person-disjoint estimates, for the
same methodology and same size dataset. (See Table I.)
Our initial experiments suggest that information relevant to
gender-from-iris is distributed throughout the whole iris re-
gion. (See section 4.A.) However, our results also show that
selecting features that represent the areas of the iris that allow
the most stable texture computations improves performance
relative to using features from all areas of the iris. This is likely
due to a combination of the high feature dimensionality when
using the whole area of the iris, and the fact that segmentation
inaccuracies can make some areas of the iris less stable for
texture computation.
We explored feature selection using four mutual information
measures: mRMR, CMIM using pairs of features and W-
mRMR and W-CMIM. We found that using W-CMIM, for
selecting groups of features, results reached the best accuracy.
It obtained 85.33% and 84.33% on the left and right iris code
experiments, respectively. It also obtained 89% using the best
bits for the left and right iris code.
In this way, the problem dimensionality can be reduced,
improving classification rate and shortening the computational
time required. In the presence of a very large number of
features (tens of thousands), it is common to find a large
number of features that do not contribute to the classification
process because they are irrelevant or redundant with respect
to a particular class.
Certainly one goal of this research is to establish the rela-
tionship between the features useful for predict gender and
biological insight. The results reported in this paper add
to the evidence that it is possible to classify gender from
iris texture; in this paper, even the highly abstract texture
representation that is the iris code. We also show that gender
information is distributed across different bands of the iris.
The statistical analysis supports this assumption due to the
mean of the bands are different. The results also show that
the difference in gender-from-iris accuracy between left and
right eyes is not statistically significant. It appears to be due to
only the random variation of dataset and the influence of the
illumination, segmentation quality, and other factors. However
the same features selected (bits from the iris-code) from GFI
database performed well in a subject-disjoint dataset such as
UND_V. This shows that the gender information is available
in the structure of the iris. The authors believe that more
work must be done to establish general conclusions in relation
to biological insight and features selected, such as: test with
different sensor types and other datasets.
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