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1  INTRODUCTION

In the event of a natural disaster such as hurricane or earthquake, estimating the extent of 
damage is necessary for implementing fast and effective recovery measures. Images of af-
fected areas are easily obtained through satellite or aerial sensors. The key objects of interest 
in such images are buildings, as damage directly impacts lives. This work aims to build a sys-
tem capable of fine-grained damage analysis by comparing before and after storm images. 
While much of this type of assessment is currently still done manually, we present an auto-
mated system for hurricane damage analysis. Previous approaches were limited by the num-
ber of control points in manual registration (Bitelli et al, 2004). They (Chen and Hutchinson, 
2009; Matsuoka and Yamazaki, 2004; Womble et al 2007) either do not extract buildings or 
only provide approximate estimates. Previous methods in damage classification do not com-
bine color-based and edge-based measures, while a fusion of the two is explored this study. 
Thus the work presented in this study aims at minimizing the manual interaction required in 
previous works and introduces new techniques for damage classification.  We also deal with 
the challenge of creating an automatic system that can work with aerial or satellite images. 
The main contributions of this work can be summarized as: 1) application of a pre-processing 
stage where images are registered and roof-tops are extracted by novel algorithms, and 2) pro-
posal and evaluation of intuitive, high-level features that can be used to distinguish damage 
states of a roof-top. 

In section 2, we describe the first step in pre-processing the images, image registration. 
Accurate image registration is required for damage analysis from before and after event im-
ages. We discuss a reliable and fast automatic technique that computes a large number of 
landmark points. Additionally, an efficient and robust way to match corresponding landmark 
points is described. In section 3, we introduce the second step in pre-processing; a novel al-
gorithm that detects buildings of a broad range of variations in shape, texture or color. Intro-
ducing this robust object extraction technique into the framework of damage detection has 
opened up new possibilities in analysis from high-resolution imagery. Finer details of damage 
at a per-building basis can now be captured. In section 4, we identify relevant features that are 
intuitive and useful for classification into qualitative damage states. We evaluate and discuss 
the results from each of these individual steps in section 5. Finally, section 6 concludes the 
work presented in this paper.

2  IMAGE REGISTRATION

The satellite or aerial images from before and after a disaster may have been taken by differ-
ent cameras at different altitudes, angles and positions. While image providers may provide 
registered or georeferenced images, often this is not the case. As a result, images of the same 
location may vary in overlap and viewpoint. By registering two images, such differences can 



be corrected. For registering before and after damage images, we extract low-level features 
from both images and find a one-to-one matching. 

2.1  Feature extraction 
For feature extraction we adopt  a scale- and rotation-invariant  interest  point  detector and 
descriptor, coined SURF (Speeded Up Robust Feature) first introduced in (Bay et al, 2006). 
The choice of SURF features for this application is inspired by the fact that they are more ro-
bust and faster than other state-of-the-art detectors and descriptors while maintaining high ac-
curacy in matching. The interest points thus detected are described by the distributions of the 
intensity content within their neighborhood using Haar wavelet responses in the vertical and 
horizontal directions. This is represented as a descriptor vector. For more details the reader is 
advised to refer to (Bay et al, 2008).  See Figure 1 for an example of interest point detection. 

Figure 1. Before (left) and after storm (right) images are shown with detected interest points marked in red 
circles.

2.2  Matching and Transformation

Once the interest points are detected, we need to find a one-to-one correspondence between 
the detected points. This task is complicated by the fact that there may be outliers. First, a k-
Nearest Neighbor algorithm (Muja et al, 2009) is used to find the first and second nearest 
neighbors in terms of descriptor vectors. A Euclidean distance between the descriptor vectors 
is used. A matching pair is accepted if its distance is closer than the threshold (t = 0.7) times 
the distance of the second nearest neighbor. Once the matching is done, we find the trans-
formation matrix. Satellite images can be treated as 2D projections being viewed through a 
camera viewfinder. Because the camera’s position, orientation, and field of view may change 
for before-and-after disaster images, we assume that a homographic transformation on the 
matched points is sufficient to correct the changes. Given a homographic transformation mat-
rix H with elements h ij  we determine the value of the matrix by minimizing the back projec-
tion error:

 min∑i x ' i−h11∗x ih12∗y ih13÷h31∗xih32∗y ih33
2

. 
 y ' i−h21∗xih22∗y ih23÷h31∗x ih32∗y ih33

2

This is done by using a RANSAC algorithm (Zhang Z et al, 1999) to try many different ran-
dom subsets of 4 matched pairs each. To further ensure than the best subset of 4 matched 
pairs is used, we reject any subset where collinearity and cyclic order of the points are viol-
ated. For example, if 4 points in the before image are collinear, we expect them to be collin-



ear in the after image as well. It then estimates the homography matrix using each subset. The 
quality/goodness of each subset is computed based on the total number of inliers. The best 
subset is then used to produce the initial estimate of the homography matrix. The computed 
homography matrix  is  refined  further  (using  inliers  only)  with  the  Levenberg-Marquardt 
method in order to reduce the re-projection error further. This homographic transformation 
can then be applied to one of the images to correct it with respect to the other (See Figure 2). 

Figure 2. Before (left) and after storm (right) images are shown after homographic transformation. 

3  BUILDING DETECTION

Many image repositories do not contain metadata, therefore we require automatic building de-
tection from post-disaster images. However most repositories also lack stereo or multi-sensor 
information. Hence, the case addressed in this section is a challenging monocular object re-
cognition task based on purely optical data. The common property of the previous techniques 
(Noronha and Nevatia, 2001; Sirmacek and Unsalan, 2009; Song et al, 2006) is that they are 
based on one or more specific assumptions (like presence of unique roof colors, shadows and 
shadow filters, strong edges, homogeneous roofs, only a few typical building structures, or 
simple 3-D models can be fit), but they fail if the features used are missing or less discrimin-
ative for the input data. Due to the several restrictions of edge-based techniques, we adopt a 
region-based scheme. 

In the proposed region-based scheme, the first stage is segmentation where we group to-
gether pixels of similar spectral content. We assume an N dimensional multispectral space. 
While the images used in this evaluation have N = 3 (R, G and B channels), the use of addi-
tional bands can improve the segmentation performance. We use maximum likelihood classi-
fication to predict the spectral class of each pixel. Sufficient training pixels for each spectral 
class must be available to allow reasonable estimates to be obtained. For each image, regions 
belonging to 11 classes were manually labeled. For each class, 4 regions with at least 100 
pixels each were used for training. Classes included ocean, grass, vegetation, road, white roof, 
blue roof, dark roof, gray roof, pavement, land and shadows. The maximum-likelihood classi-
fication results in salt and pepper noise as the class conditional mean vector and covariance 
matrix is calculated only from a fraction of the total pixels. To reduce the noise, classifica-
tion, over-segmentation and under-segmentation, we require more training pixels. However, 
to minimize supervision in the detection process, we instead use a k-means clustering al-
gorithm to improve the results of the maximum likelihood classifier. Using the means of the 
labeled training classes as seeds, a clustering is performed over pixels of the entire image. 
The means and covariance of the resultant clusters are then used with the maximum-likeli-



hood classifier and shadows. The resultant segmentation can now be used to identify build-
ings. 

Buildings are considered to be objects composed of one or more building segments, and 
which fulfill certain properties such as presence of shadows in a certain direction, compact-
ness, meeting area threshold etc. However, in practice due to variations in rooftop texture 
buildings are usually over-segmented. A highly robust way to overcome this problem is to 
consider buildings as objects consisting of at most 'r' segment classes ,which may include 
non-building classes as well (r = 4 in our experiments). Each segment formed from each com-
bination of r classes can then be tested with threshold values for shape and shadow based 
measures to make a building/non-building decision.  The shape based measures include area 
(defined as number of pixels within a segment) and compactness. Compactness is defined as:

Compactness=4 area
perimeter2

and has a maximum value of 1 for a circle,. We propose a  new measure, the measure of es-
timated and predicted shadow (MEPS), to describe the ‘shadow strength’ of an object. The 
first step in computing the MEPS feature is finding an approximate estimation of the direc-
tion in which we expect the shadow to be present. This shadow direction can be denoted by a 
direction vector v sh . If the time at which the image was acquired is available then computing 
v sh  is trivial. Otherwise segments that were classified as buildings can be used to estimate 
v sh . Due to noise and misclassifications there maybe disagreements between building seg-

ments on the direction of v sh . This can be overcome by a voting process. In the second step, 
based on v sh  we predict the pixels that could be marked as shadow along the perimeter of 
any object. The MEPS feature is then computed based on the number of predicted pixels. We 
can define MEPS feature MEPS x  for a contour x as MEPS x=N sh÷N x

where N sh  is the number of points on the contour where at least a shadow pixel was found 
along the profile and N x  is the number of points where we predicted shadow to be present. 
MEPS x  takes up a value between 0 and 1 with higher values for for elevated surfaces like 

rooftops and lower values for flat areas like roads, pavements and parking lots.  Finally, as de-
scribed earlier, each segment formed from each combination of 'r' classes can then be tested 
with threshold values for compactness C th , area A th  and MEPS value MEPS th . In our ex-
periments we ignored shadow and grass classes as their omission did not affect performance. 
See Figure 3 for an example of building detection.

4  DAMAGE ESTIMATION

Building damage appears as changes in shape, lines, colors, texture, or other image proper-
ties. Previous research has shown that the severity of damage to buildings can be estimated 
from the extent of change in the roof structure (Womble, 2005). Our approach assumes that 
there can be three basic types of damage. Minor damage includes removal of tiles, slight ir-
regularities in edges etc.  Moderate damage includes holes in the roof, dislodged decking and 
partial change in elevation of the roof. The third kind is when the rooftop collapses or is miss-
ing.  The change measures extracted from the images should be able to  discriminate  well 
between these three general categories. Change measures are not calculated per building. In-
stead, we divide each building into a grid of cells, extract the features and calculate the dam-
age measure for each cell.  This allows for determining different levels of damage for differ-
ent parts of a building.

4.1  Damage-based features
To characterize the 3 types of damage (collapsed roof, cavities and removed tiles) we use 3 
different features. When a roof collapses, the image shows an increase in the number of new 
edges and non-linearity of existing edges. Canny edge detection performed on the difference 



of before-and-after images can capture this change in appearance of edges. We propose edge 
density as a measure of number of pixels that appear as new or changed edges per unit area.

Figure 3. An image from coastal florida (left). Extracted buildings are shown in white (right).

Conversion into HSV color model helps identify features that intuitively have more dis-
criminating capacity. The V (value) component can be used to discriminate roofs with cracks, 
openings or holes. This happens when the roof structure is partially or completely destroyed, 
leaving a huge cavity. A Bhattacharya distance of V histograms of before and after cells re-
spectively is computed for each cell. 

Lastly, the variation in color that occurs in the case of milder damage like removed tiles, 
exposed decking etc is noticeable in the hue spectrum. Hence we compute another measure, 
the hue means, to capture the change in hue spectrum. We define Hue means as the distance 
between means of hue components for each cell in before and after images. 

4.2  Damage classification
Now we have three features for each cell of a grid; the edge density, V histogram and H 
means (see Figure 4). A grid is placed over each building such that it is a rectangle of minim-
um area that entirely circumscribes the building. The grid is used with the intention of finding 
damages that are partial and localized, such as a partial collapse, removed tiles etc. For each 
feature, the values are discretized into the k bins. For each building we count the number of 
grid cells that belong to each of the k bins. These numbers are concatenated for the 3 features, 
to get a k×3  feature vector.

This process captures localization; i.e., small areas of damage, but not necessarily the 
spatial  proximity of  damage.  This  property can  be  captured  by computing  the  proximity 
measures for each cell. Proximity of a cell is defined as the number of neighboring cells in the 
8-connected neighbors that lie in the same bin/interval as the cell. For each of the k bins, find 
the totals of proximity measures for cells that belong to each bin forming another k×3  vec-
tor. Thus concatenating the proximity values with the cell counts described earlier, we have a 
total of k×6 features for each building.

The proposed feature vector can be used to classify buildings in an image into categories 
ranging from no damage to severely damaged. In our evaluation we used  k=5 and experi-
mented with many supervised learning algorithms for predicting the damage state of buildings 
as described in section 5.



Figure 4. The first row shows a collapsed building and the corresponding false color images for edge density, V 
Histogram and H means. Notice that the edge density values are significantly higher in this case. The second row 
corresponds to a partially damaged building with a cavity in the rooftop. V histogram indicates a significant 
change in the cavity area and H means shows a minor damage on the roof.

5  EVALUATION

The aerial imagery used for this research was acquired by the NOAA Remote Sensing Divi-
sion.  The  images  were  uncorrected  and  approximately  50  cm resolution.  Each  image  is 
4077x4092 pixels. The NOAA images used were Hurricane Dennis (2005) and Hurricane 
Ivan (2004) images of Penascola, Florida. All images were in 3-channel 24-bit JPEG format. 
In addition, Google Earth images of the 2010 Haiti Earthquake and QuickBird satellite im-
ages of Punta Gorda, Florida from Digital Globe were also used. The QuickBird images con-
tained 4 spectral bands. QuickBird collects panchromatic (black and white) imagery at 60-70
cm resolution and multispectral imagery at 2.4- and 2.8-meter resolutions. 

5.1  Image Registration performance

To study the effect of image resolution on the SURF-based registration process, we used im-
ages from 15 locations in coastal Florida before and after Hurricane Dennis. These images 
were 4077x4092 and 50cm resolution originally. The image pairs vary in overlap, lighting 
conditions and viewpoint. They were downsampled to smaller versions with 1m, 2m, 4m and 
5m resolutions. For best performance, the color to grayscale conversion was done by taking 
the maximum of the R, G and B values for each pixel. While 14 of the 15 images registered 
successfully at 50cm, 1m and 2m, the performance dropped to 12 out of 15 at coarser resolu-
tions. The registration error for all registered images was found to be 1 pixel. The registration 
performed well even with low overlap and varying lighting conditions. While experiments 
show that repeatability of the SURF detector was adversely affected at lower resolutions, the 
proposed scheme is well suited for high-resolution satellite imagery.

5.2  Building Detection

Building detection experiments were performed on 3 images of coastal Florida before Hur-
ricane Dennis. Let TP be the true positives found by the detection and FP be the false posit -



ives. Let P or actual positives be the number of buildings in the Ground Truth. We define true 
positive rate (TPR) as TP/P and positive predictive value (PPV, analogous to precision) as 
TP/(TP+FP). Table 1 show the results of the detection after comparison with the ground truth. 
A high TPR ranging between 85% to 91% was observed for all images. However the PPV 
values were lower, with image 3 having the lowest value of 76%. This is due to higher FP 
with lower threshold values of Cth = 0.3 and Mth = 0.3. The longest running time observed 
was 25 minutes (for image 2).

Table 1. Performance of Building Detection

5.3  Damage Classification performance

To do a thorough assessment of the classification process, we first prepared the ground truth 
by visually inspecting the damage states and making a manual judgment of the appropriate 
damage state. The labeling is done into one of the various classes based on the damage metric 
scale used. A fine-grained 4-scale damage metric ranging from RS-A (no damage) to RS-D 
(total collapse) similar to the one used in (Womble et al, 2005) is used.  A simpler 3-scale 
metric formed by combining classes B and C was also used. A total of 150 buildings have 
been labeled into both the scales. We then used supervised classification techniques to classi-
fy each building into a damage state by using the damage features mentioned in section 4.

For the experiments, 75 buildings were used in the training set and another 75 in the test-
ing set.  We experimented with  decision  trees,  rule  learners,  perceptron based techniques, 
Bayesian Networks, and ensembles of classifiers and report only the top two performers here. 
An ensemble of J48 trees with AdaBoosting (Freund et al, 1996) performed the best for the 4-
scale damage metric while RandomForest (Breiman et al, 1996) performed better for the 3-
scale damage metric.  The best corresponding accuracies were 72% and 80% respectively. 
While studying the performance of RandomForests with varying number of trees, it was ob-
served that for 3-scale metric we find a consistent 80% accuracy when the number of trees is 
between 6 and 10. Similarly, while studying the performance of AdaBoosting with varying 
number of iterations, it was observed that the peak of accuracy for 4-scale is achieved at 3 it-
erations and for 3-scale at 7 iterations. The confusion matrices in Table 2 show the classifier 
performance for  individual  classes.  In spite  of  the  effects  of  lighting,  shadows etc.,  both 
classifiers perform well with no-damage and total-damage classes (A and C for 3-scale, A 

Table 2. A confusion matrix for 3-scale metric with RandomForest, number of trees = 7 (left) and A confusion 
Matrix for 4-scale metric with AdaBoost, number of iterations = 3 (right)



and D for 4-scale), however the predictions for intermediate classes (B and C) are more ad-
versely affected  in the 4-scale metric. This might either be due to lesser discriminant capabil-
ity of our features for partial damages or ambiguity in the definition of these classes that may 
have affected the manual ground truth preparation.

6  CONCLUDING REMARKS

This paper presented an automated system for the assessment of damage from high resolution 
imagery. While the accuracy in previous approaches was limited by the number of control 
points in manual registration, our application of SURF-based feature detection was found to 
produce near perfect registration in 14 of the 15 image pairs at 50cm-2m resolution. We pro-
posed a novel segmentation-based building detection algorithm. Our algorithm was able to 
accurately extract the boundary contours of buildings in a reasonable amount of time and 
gave a TPR (True Positive Rate) in the range of 85%-90%. We proposed change detection 
measures that reflect the kind of damage that occur after a windstorm. We used a combination 
of edge-based and color-based measures to classify damage into qualitative states. The final 
results in classification were promising; 80% accuracy for a 3-scale damage metric and 72% 
accuracy for a finer-grained 4-scale damage metric. While the proposed system attempts at 
automating every aspect of damage assessment, there are several areas that require manual su-
pervision. Further, there are areas that require improvement in terms of computational time 
and robustness. All these provide new challenges to be addressed in future work.
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