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ABSTRACT

While automatic image registration has been extensively stud-
ied in other areas of image processing, it is still a complex
problem in the framework of remote sensing for disaster re-
sponse. This problem is difficult because there can be sub-
stantial change in the image content between the two images,
and the time of day and lighting typically are different be-
tween the two images. In this work, we propose a two-step ap-
proach to achieve fast and robust registration of before- after-
disaster aerial image pairs. First, the images are coarsely reg-
istered using a phase-correlation based algorithm. In the sec-
ond step, transformed images are finely registered by match-
ing features across grids and estimating the perspective trans-
form. Our proposed algorithm is evaluated for robustness,
accuracy and speed. It is found to achieve 100% registration
success on 23 image pairs which proved challenging to either
of the component approaches.

Index Terms— image registration, remote sensing, image
processing, feature matching, phase correlation

1. INTRODUCTION

We address the problem of finding the perspective transform
required for fine image registration. The satellite or aerial im-
ages from before and after a disaster may have been taken by
different cameras at different altitudes, angles and positions.
In addition, differences in camera parameters, local reflective
properties of the object on the ground, changes due to storm
damages and changes that occur over time may be present.
Automatic registration is an important step in automated dam-
age assessment from before- and after- storm images [1].
While there is no universal solution for image registration,
this paper focuses on the combination of phase correlation
with feature-based matching as a viable solution in the context
of remote-sensing for change-detection applications. A com-
prehensive survey of general image registration methods was
published in 2003 by [2]. Various area-based and feature-
based registration algorithms were described and compared.
A first comparison of image registration algorithms purely for
remote sensing imagery was presented in [3]. They evaluated
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spatial correlation, phase correlation, iterative edge match-
ing and wavelet maxima matching techniques for registration.
These works focused on finding simple similarity transforms
for registering multiview images. In contrast, our work fo-
cuses on pre- and post-even image pairs with a high degree
of change and with perspective effects. We present a fast
matching scheme that works well with multiple resolutions,
relatively low overlap between images and substantial noise.

2. COARSE REGISTRATION

For coarse registration, we propose that perspective effects
can be approximated using similarity transformation. Thus,
approximate values for scale s, rotation θ and translation
(tx, ty) can be estimated by applying phase correlation at
a lower scale. Phase correlation relies on the translation
property of the Fourier transform, which is referred to as the
Fourier shift theorem. Let fl and f2 be the two images that
differ only by a displacement (tx, ty) i.e.,

f2(x, y) = f1(x− tx, y − ty) (1)

Their corresponding Fourier transforms F1 and F2 will be
related by

F2(ξ, η) = e−j2π(ξtx+ηty) ∗ F1(ξ, η) (2)

The cross-power spectrum of two images f1 and f2 is de-
fined as

F1(ξ, η)F
∗
2 (ξ, η)

|F1(ξ, η)F2(ξ, η)|
= ej2π(ξtx+ηty) (3)

where F ∗2 is the complex conjugate of F2, the shift the-
orem guarantees that the phase of the cross-power spectrum
is equivalent to the phase difference between the images. By
taking inverse Fourier transform of the representation in the
frequency domain, we will have a function that is an impulse;
that is, it is approximately zero everywhere except at the dis-
placement (tx, ty) that is needed to optimally register the two
images. The method can be extended to determine rotation
and scaling differences between two images by performing
phase correlation on the log polar images of the magnitudes
of Fourier transforms [4]. However in practice, the determi-
nation of rotation and scaling was found to be unreliable and



not robust to the changes between before- and after-storm im-
ages. Instead, we devise an algorithm that finds the scale and
rotation which maximizes the peak of cross power spectrum.
The proposed algorithm is detailed below.

1. Downsample: The images are smoothed and downsam-
pled to 256× 256 . This step is useful in reducing time
required per each phase correlation step while ensuring
a good approximation in computing similarity transfor-
mation.

2. Preprocessing: In practice, it is more likely that f2 will
be a linear shift of f1, rather than a circular shift. In ad-
dition noise due to changes in the scene maybe present
in f2. In such cases, inverse Fourier transform of the
cross power spectrum will not be a simple delta func-
tion, which will reduce the performance of the method.
To overcome this, a hanning window function is ap-
plied to the images so that the edge effects can be ig-
nored.

3. Phase Correlation: For smin ≤ s ≤ smax and θmin ≤
θ ≤ θmax, update s = s+ δs, θ = θ + δθ.

Scale and rotate f2 by s, θ to get f ′2. Perform phase
correlation on f ′2 and f1, obtain the peak value r. In-
stead of looking for an interpolated peak, r is stored as
the center of mass of the peak of the inverse Fourier
transform of the cross power spectrum.

4. Resampling: The s, θ, tx, ty corresponding to the max-
imum value of r is used to compute a transformation
function. f2 is then resampled with this function re-
sulting in a coarsely registered image pair.

3. SURF-BASED FEATURE EXTRACTION

For fine image registration, we adopt the use of feature-based
matching and use blob detectors which are popular in object
recognition. Our motivation for choosing this approach is that
it is more robust than correlation-based techniques and works
well even with low overlap percentage. In this approach,
features are matched and a transformation model is calcu-
lated based on the matching. For feature extraction we use
scale- and rotation-invariant interest point detector and de-
scriptor, coined SURF (Speeded Up Robust Feature) first in-
troduced in [5]. In SURF-based registration, firstly the inter-
est points are selected at distinctive locations (mainly blobs)
in the grayscale image. Next, the neighborhood of every in-
terest point is represented by a feature vector. Finally, the
descriptor vectors are matched between different images. The
choice of SURF features for this application is inspired by the
fact that they are more robust and faster than other state-of-
the-art detectors and descriptors while maintaining high ac-
curacy in matching.

4. INTEREST-POINT MATCHING

Once the interest points are detected and described, we need
to find a one-to-one correspondence between the points de-
tected from the two images. This is complicated by the fact
that there may be outliers; that is, points found in either image
that do not have a true corresponding point found in the other
image. In naive nearest neighbor (NN) algorithm, each inter-
est point in the test image is compared to each interest point
in the reference image by calculating the Euclidean distance
between their descriptor vectors. A matching pair is detected
if distance of the nearest neighbor of an interest point is closer
than the threshold (t = 0.7) times the distance of the second
nearest neighbor. Clearly, this is a O(n2) algorithm. Since
the images are coarsely registered, the images are divided into
k×k grids. Features points from corresponding grids are then
matched.

Next, we need to find the perspective transform model that
should be applied to register the images. Given a 3 × 3 per-
spective transformation matrixH with elements hij we deter-
mine the value of the matrix by minimizing the back projec-
tion error: min

∑
i((x

′
i− (h11 ∗xi+h12 ∗yi+h13)÷ (h31 ∗

xi + h32 ∗ yi + h33))
2 + (y′i − (h21 ∗ xi + h22 ∗ yi + h23)÷

(h31 ∗xi+h32 ∗yi+h33))2) . This is conventionally done by
using a RANSAC algorithm [6] to try many different random
subsets of 4 matched pairs each. For each subset, the back-
projection error is calculated and the subset that produces the
least error after a certain number of iterations is considered
the correct one. The final perspective parameters are further
refined with the Levenberg-Marquardt Algorithm.

4.1. Faster robust matching

The nearest neighbor (NN) search algorithm described previ-
ously is a slow O(n2) algorithm. This is especially true if the
size k of the grids is large and many feature points need to be
matched. Further, the ability of RANSAC algorithm to find a
good subset depends on the number of inliers present in the
matched point-pairs and termination criteria. A larger number
of iterations in RANSAC can increase robustness at the cost
of speed. To deal with the speed issues in the brute force NN
matching, we explored various approximate NN matching al-
gorithms.

Best bin first [7] is an approximate NN search algorithm
that is based on a variant of kd-tree. In general, the algorithm
returns the nearest neighbor for a large fraction of queries and
a very close neighbor otherwise. We also compared two other
approximate NN algorithms introduced in [8] , namely ran-
domized kd-trees and hierarchical k-means trees. These al-
gorithms were evaluated for their execution times. This is
reported in Figure 1. A speed-up of 30x was found at finer
resolutions (and consequently larger image sizes) for approx-
imate NN matching algorithms.

To deal with the problem of reduced inliers in approxi-



Fig. 1. Elapsed real time for matching points at different res-
olutions using randomized kd-trees, heirarchial k-means trees
and Naive NN search. The algorithms were run on a laptop
with Intel core i5 2.4 Ghz processor.

mate NN matching, we propose a modified form of RANSAC
similar to CONSAC described in [9]. The proposed con-
strained form of RANSAC is different in the following ways:
a) When subsets of 4 matched pairs were chosen, these 4 pairs
had to follow certain geometric constraints; namely, cyclic or
anti-cyclic order had to be conserved and collinearity (of any
3 points) had to be conserved. b) The upper limit on the num-
ber of iterations of RANSAC was determined by a greedy
method which counts the number of iterations since last time
the best subset was updated. An unregistered image-pair and
the transformed pair after registration using the proposed al-
gorithm are shown in Figure 2.

5. EVALUATION

To study the effect of image resolution on the proposed reg-
istration process, we used images from publicly available
NOAA and USGS aerial imagery dataset. This included 15
image pairs from different locations in coastal Florida before-
and after- Hurricane Dennis. Additionally, we used 8 im-
age pairs from Texas before and after Hurricane Ike. These
images were 4077 × 4092 and 50cm resolution originally.
They were downsampled to smaller versions with 1m, 2m,
and 4m resolutions. The image pairs vary in overlap, lighting
conditions and viewpoint. Ground truth for registration was
prepared by manually marking 25 corresponding landmark
points for each image in a pair. Registration error is cal-
culated by taking the average distance between the marked
points and the transformed points.

We evaluated phase-correlation, feature-driven registra-
tion, and hybrid phase-feature registration. Proposed methods
of evaluation include registration success, execution time and
registration error. Our metric for successful registration is the

percentage of images that are deemed to be registered with
less than a 6-pixel error in the finest resolution. The effect of
registering at various resolutions is shown in Table 1. The av-
erage registration errors and run times are shown in Table 2.
The average error figures presented represent only the image
pairs that registered with less than 50px error.

Among feature-driven methods, we evaluated 2 match-
ing schemes. They included Naive NN with RANSAC and
approximate NN with the proposed modified CONSAC. The
phase-correlation algorithm presented in Section 2 was eval-
uated with smin = 0.7, smax = 1.2, θmin = 0, θmax =
360, δs = 0.1 and δθ = 1. All the images were registered
with about 18px error and 22% of the image-pairs with less
than 6px error with phase-correlation. In Table 1, while ap-
proximate NN with modified CONSAC performed better than
the naive approach, registration using phase correlation had a
lower success rate indicating its suitability only for a coarse
registration.

Our proposed hybrid phase-feature method combines
phase-correlation for coarse registration with feature-based
matching for fine registration. The new algorithm performed
with 100% registration success on our dataset. Also, the av-
erage registration error and run time both turn out best for our
proposed approach. Using this scheme, images are registered
with 3 pixel error or less and 4x total speed up in comparison
to feature-based matching without a phase-correlation step.

Table 1. REGISTRATION SUCCESS AT VARYING IM-
AGE RESOLUTIONS

Algorithm 400cm 200cm 100cm 50cm
Naive NN and
RANSAC

22% 35% 74% 74%

Approximate NN
and modified CON-
SAC

65% 78% 78% 78%

Phase Correlation 22% 22% 22% 22%
Phase Correlation,
Approximate NN on
grids and modified
CONSAC

100% 100% 100% 100%

6. CONCLUSIONS

This work presented an automatic registration scheme which
is fast and robust enough to work well with real world re-
mote sensing imagery. From the study described in the pre-
vious section, it is clear that a combination of coarse registra-
tion using phase correlation and fine registration with an ap-
proximate nearest neighbor search algorithm combined with
a constrained RANSAC algorithm for point-pairs subset se-
lection registers the images with 4x speed-up and least regis-



Fig. 2. A sample image pair of before (top) and after (bottom) registration. This pair is of a region of Florida before- and after-
Hurricane Dennis.

Table 2. AVERAGE REGISTRATION ERROR AND EXE-
CUTION TIME AT 50CM RESOLUTION

Algorithm Error Time
Approximate NN and modified
CONSAC

9px 465sec

Phase Correlation 18px 42sec
Phase Correlation, Approximate
NN on grids and modified CON-
SAC

3px 126sec

tration error. This is done without compromising robustness
and is hence recommended for change detection and disaster
response applications.
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