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Biometric Recognition Using 3D Ear Shape

Ping Yan and Kevin W. Bowyer, Fellow, IEEE

Abstract—Previous works have shown that the ear is a promising candidate for biometric identification. However, in prior work, the
preprocessing of ear images has had manual steps and algorithms have not necessarily handled problems caused by hair and

earrings. We present a complete system for ear biometrics, including automated segmentation of the ear in a profile view image and
3D shape matching for recognition. We evaluated this system with the largest experimental study to date in ear biometrics, achieving a
rank-one recognition rate of 97.8 percent for an identification scenario and an equal error rate of 1.2 percent for a verification scenario

on a database of 415 subjects and 1,386 total probes.

Index Terms—Biometrics, ear biometrics, 3D shape, skin detection, curvature estimation, active contour, iterative closest point.

1 INTRODUCTION

EAR images can be acquired in a similar manner to face
images and a number of researchers have suggested that
the human ear is unique enough to each individual to allow
practical use as a biometric. Several researchers have looked
at using features from the ear’s appearance in 2D intensity
images [6], [16], [5], [27], [17], [10], [11], [23], [31], whereas a
smaller number of researchers have looked at using 3D ear
shape [8], [4]. Our own previous work that compared ear
biometrics using 2D appearance and 3D shape concluded
that 3D shape matching allowed greater performance [30].
In another previous work, we compared recognition using
2D intensity images of the ear with recognition using
2D intensity images of the face and suggested that they are
comparable in recognition power [6], [27]. Also, ear
biometric results can be combined with results from face
biometrics. Thus, additional work on ear biometrics has the
promise of leading to increased recognition flexibility and
power in biometrics.

This paper builds on our previous work to present the
first fully automated system for ear biometrics using 3D
shape. There are two major parts of the system: automatic
ear region segmentation and 3D ear shape matching.
Starting with the multimodal 3D + 2D image acquired in
a profile view, the system automatically finds the ear pit by
using skin detection, curvature estimation, and surface
segmentation and classification. After the ear pit is detected,
an active contour algorithm using both color and depth
information is applied to outline the visible ear region. The
outlined shape is cropped from the 3D image and the
corresponding 3D data is then used as the ear shape for
matching. The matching algorithm achieves a rank-one
recognition rate of 97.8 percent on a 415-subject data set in
an identification scenario and an equal error rate (EER) of
1.2 percent in a verification scenario.
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This paper is organized as follows: A review of related
work is given in Section 2. In Section 3, we describe the
experimental method and materials used in our work.
Section 4 presents details of the automatic ear segmentation
system. Section 5 describes an improved iterative closest
point (ICP) approach for 3D ear shape matching. In
Section 6, we present the main experimental results, plus
additional ear symmetry and off-angle studies. Section 7
gives the summary and conclusions.

2 LITERATURE REVIEW

Perhaps the best known early work on using the ear for
identification is that of Iannarelli [18], who developed a
manual technique. In his work, over 10,000 ears were
examined and no indistinguishable ears were found. The
results of this work suggest that the ear may be uniquely
distinguishable based on a limited number of features or
characteristics. The medical report [18] shows that variation
over time is most noticeable during the period from four
months to eight years old and over 70 years old. Due to the
ear’s uniqueness, stability, and predictable changes, ear
features are potentially a promising biometric for use in
human identification [5], [18], [6], [16], [5], [27], [4].

Moreno et al. [23] experiment with three neural net
approaches to recognition from 2D intensity images of the
ear. Their testing uses a gallery of 28 people plus another
20 people not in the gallery. They find a recognition rate of
93 percent for the best of the three approaches. They consider
three methods (Borda, Bayesian, and weighted Bayesian
combination) of combining results of the different ap-
proaches but do not find improved performance over the
best individual method.

An “eigen-ear” approach on 2D intensity images for ear
biometrics has been explored by Victor et al. [27] and Chang
et al. [6]. The two studies obtained different results when
compared with the performance of facial biometrics. The
ear and the face showed similar performance in Chang’s
study, whereas ear performance is worse than the face in
Victor’s study. Chang suggested that the difference might
be due to the differing ear image quality in the two studies.

Yuizono et al. [31] implemented a recognition system for
2D intensity images of the ear using genetic search. In their
experiments, they had 660 images from 110 people with six
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TABLE 1
Recent Ear Recognition Studies

Reference Data | Dataset | Time Lapse Number | Method | Earrings | Reported
Used | Size of G/P* | Applied | /Occlu. Perfor.

Chen & | 3D 30 x 2 Same Day 1/1 ICP No 93%

Bhanu [8]

Hurley & | 2D 63 x 4 5 Month 1/1 PCA No 99.2%

Nixon [17]

Moreno et | 2D 28 x 6 Different Days 11 Neural Not men- | 93 %

al. [23] Net tioned

Yuizono et | 2D 110 x 6 | Same Day 3/3 Genetic | Not men- | 100%

al. [31] search tioned

Victor & | 2D 88 x 2 15 Month 1/1 PCA No 73%

Chang [6]

Choras [10] | 2D N/A Same Day N/A Feature- | No 100%

based

*G = Gallery and P = Probe.

images per person. The images were selected from a video
stream. The first three of these are used as gallery images and
the last three are probe images. They reported that the
recognition rate for the registered people was approximately
100 percent and the rejection rate for unknown people was
100 percent.

Bhanu and Chen [4] presented a 3D ear recognition
method using a local surface shape descriptor. Twenty range
images from 10 individuals are used in the experiments and a
100 percent recognition rate is reported. In [8], Chen and
Bhanu used a two-step ICP algorithm on a data set of
30 subjects with 3D ear images. They reported that this
method yielded two incorrect matches out of 30 people. In
these two works, the ears are manually extracted from profile
images. They also presented an ear detection method in [7]. In
the offline step, they built an ear model template from each of
20 subjects using the average histogram of the shape index
[21]. In the online step, first, they used step edge detection and
thresholding to find the sharp edge around the ear boundary
and then applied dilation on the edge image and connected-
component labeling to search for ear region candidates. Each
potential ear region is a rectangular box, and it grows in four
directions to find the minimum distance to the model
template. The region with minimum distance to the model
template is the ear region. They get 91.5 percent correct
detection with a 2.5 percent false alarm rate. No recognition
results are reported based on this detection method.

Hurley et al. [16] developed a novel feature extraction
technique using force field transformation. Each image is
represented by a compact characteristic vector which is

invariant to initialization, scale, rotation, and noise. The
experiment displays the robustness of the technique to extract
the 2D ear. Their extended research applies the force field
technique to ear biometrics [17]. In the experiments, they used
252 images from 63 subjects with four images per person
collected during four sessions over a five month period; any
subjectis excluded if the earis covered by hair. A classification
rate of 99.2 percent is claimed on this 63-person data set. The
data set comes from the XM2VTS face image database [22].

Choras [10], [11] introduces an ear recognition method
based on geometric feature extraction from 2D images of the
ear. The geometric features are computed from the edge-
detected intensity image. They claim that error-free recogni-
tion is obtained on “easy” images from their database. The
“easy” images are images of high quality with no earring and
hair covering and without illumination changes. No detailed
experimental setup is reported.

Pun and Moon [25] surveyed the literature on ear
biometrics up to that point in time. They summarized
elements of five approaches for which experimental results
have been published [6], [16], [4], [5], [31]. In Table 1, we
compare differentaspects of these and other published works.

We previously looked at various methods of 2D and 3D ear
recognition and found that an approach based on 3D shape
matching gave thebest performance. The detailed description
of the comparison of different 2D and 3D methods can be
found in [29]. This work found that an ICP-based approach
statistically and significantly outperformed the other ap-
proaches considered for 3D ear recognition and also statisti-
cally and significantly outperformed the 2D “eigen-ear”
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Fig. 1. Sample images used in the experiments. (a) Two-dimensional image. (b) Minor hair covering. (c) Presence of earring. (d) Three-dimensional
depth image of (a). (e) Three-dimensional depth image of (b). (f) Three-dimensional depth image of (c).
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Fig. 2. Examples of images discarded for quality control reasons. (a) Hair-covered ear. (b) Hair-covered ear. (c) Subject motion.

result [6]. Approaches that rely on the 2D intensity image
alone can only take into account pose change in the image
plane in trying to align the probe image to the gallery image.
Approaches that take the 3D shape into account can account
for more general pose change. Based on our previous work, an
ICP-based approach for 3D ear shape is used as the matching
algorithm in this current study.

Of the publications reviewed here, only two [8], [4] deal
with biometrics based on 3D ear shape. The largest data set
for 2D or 3D studies, in terms of number of people, is 110
[31]. The presence or absence of earrings is not mentioned,
except for [30] and [6] in which earrings are excluded.

Comparing with the publications reviewed above, the
work presented in this paper is unique in several aspects.
We report results for the largest ear biometrics study to date
in terms of number of people, which is 415, and in terms of
number of images, which is 1,801. Our work is able to deal
with the presence of earrings and with a limited amount of
occlusion by hair. Ours is the only work to fully auto-
matically detect the ear from a profile view and segment the
ear from the surroundings.

3 EXPERIMENTAL METHODS AND MATERIALS

In each acquisition session, the subject sat approximately
1.5 meters away from the sensor with the sensor looking at
the left side of the face. Data was acquired with a Minolta

Vivid 910 range scanner. One 640 x 480 3D scan and one
640 x 480 color image were obtained in a period of several
seconds. Examples of the raw data are shown in Figs. la
and 1d. The Minolta Vivid 910 is a general-purpose
3D sensor, which is not specialized for application in face
or ear biometrics.

From 497 people that participated in two or more image
acquisition sessions, there were 415 who had good-quality
2D and 3D ear images in two or more sessions. Among them,
there are 237 males and 178 females. There are 70 people who
wore earrings at least once and 40 people who have minor
hair covering around the ear. This data is not a part of the Face
Recognition Grand Challenge (FRGC) data set (http://
face.nist.gov/frgc/), which contains frontal face images
rather than profile images.

No special instructions were given to the participants to
make the ear images particularly suitable for this study and,
as a result, 455 out of 2,256 images were dropped for
various quality control reasons: 381 instances with hair
obscuring the ear and 74 cases with artifacts due to motion
during the scan. See Fig. 2 for examples of these problems.
Using the Minolta scanner in the high-resolution mode that
we used may make the motion artifact problem more
frequent as it takes 8 seconds to complete a scan.

The earliest good image for each of the 415 people was
enrolled to create the gallery for the experiments. The
gallery is the set of images that a “probe” image is matched
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Fig. 3. Data flow of automatic ear extraction.

against for identification. The later good images of each
person were used as probes. This results in an average of
17.7 weeks time lapse between the gallery and probe images
used in our experiments.

4 SEGMENTING THE EAR REGION FROM A PROFILE
IMAGE

Automatically, extracting the ear region from a profile image
is a key step in making a practical ear biometric system. In
order to locate the ear in the profile image, we need to have a
robust feature extraction algorithm which is able to handle
variation in ear location in the profile images. After we find
the location of the ear, segmenting the ear from the
surrounding is also important. Any extra surface region
around the ear could affect the recognition performance. In
our system, an active contour approach [20], [13], [28] is used
for segmenting the ear region.

Initial empirical studies demonstrated that the ear pitis a
good stable candidate as a starting point for an active contour
algorithm. When there is so much of the ear covered by hair
that the pit is not visible, the segmentation will not be able to
be initialized. But, in such cases, there is not enough ear shape
visible to support reliable matching anyway. From the profile
image, we use skin detection, curvature estimation, and
surface segmentation and classification to find the ear pit
automatically. Fig. 3 presents the steps that are involved in
accomplishing the automatic ear extraction.

4.1 Ear Pit Detection

The first step is to find the starting point for the active
contour algorithm, which is the ear pit. Ear pit detection
includes four steps: preprocessing, skin detection, curvature
estimation, and surface segmentation and classification. We
illustrate each step in the following sections.

4.1.1 Preprocessing
We start with the binary image of valid depth values to find
an approximate position of the nose tip. Given the depth
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Fig. 4. Using the nose tip as the center to generate a circle sector.
(a) Original 2D color image. (b) Depth image. (c) Nose tip location.
(d) Circle sector.

values of a profile image, the face contour can be easily
detected. An example of the depth image is shown in
Fig. 4b. A valid point has an (z,y, z) value reported by the
sensor and is shown as white in the binary image in Fig. 4c.

We find the X value along each row at which we first
encounter a white pixel in the binary image, as shown in
Fig. 4c. Using the median of the starting X values for each row,
we find the approximate X value of the face contour. Within a
5 cm range of X, cdian, the median value of the Y values for
each row is at an approximate Y position of the nose tip.
Within a 6 cm range of the Y),.4iqn, the valid point with the
minimum X value is the possible nose tip.

Then, we fit a line along the face profile. Using the point
P(XNoseTips YnoseTip) s the center of a circle, we generate a
sector spanning +/ — 30 degrees perpendicular to the face
line with a radius of 15 cm. One example is presented in
Fig. 4d. Sometimes, the possible nose tip might be located
on the chin or mouth, but, in those situations, the ear still
appears in the defined sector.

4.1.2 Skin Region Detection

Skin detection is computationally faster than the surface
curvature computation and, so, we use skin detection to
reduce the overall computational time. A skin detection
method is applied to isolate the face and ear region from the
hair and clothes as much as possible (Fig. 5). We do not expect

(a)

(b)

Fig. 5. Ear region with skin detection. (a) Original 2D color image. (b) After preprocessing. (c) After skin detection.

(©
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that the hair and clothes are fully removed. Our skin detection
method is based on the work of Hsu et al. [15]. The major
obstacle to using color to detect the skin region is that the
appearance of skin-tone color can be affected by lighting. In
their work, a lighting compensation technique is introduced
to normalize the color appearance. In order to reduce the
dependence of skin-tone color on luminance, a nonlinear
transformation is applied to the luma, blue, and red chroma
(YCbCr) color space. A parametric ellipse in the color space is
then used as a model of skin color, as described in [15].

4.1.3 Surface Curvature Estimation

This section describes a method that can correctly detect the
ear pit from the region obtained by previous steps. We know
that the ear pit shows up in the 3D image as a “pit” in the
surface curvature classification system [3], [14]. Flynn and
Jain [14] evaluated five curvature estimation methods and
classified them into analytic estimation and discrete estima-
tion. The analytic estimation first fits a local surface around a
point and then uses the parameters of the surface equation to
determine the curvature value. Instead of fitting a surface, the
discrete approach estimates either the curvature or the
derivatives of the surface numerically. We use an analytic
estimation approach with a local coordinate system deter-
mined by principal component analysis [14], [26].

In practice, the curvature estimation is sensitive to noise.
For stable curvature measurement, we would like to smooth
the surface without losing the ear pit feature. Since our goal
at this step is only to find the ear pit, it is acceptable to
smooth out other more finely detailed curvature informa-
tion. Gaussian smoothing is applied on the data with an
11 x 11 window size. In addition, “spike” data points in
3D are dropped. A “spike” occurs when an angle between
the optical axis and a surface normal of observed points is
greater than a threshold. (Here, we set the threshold as
90 degrees.) Then, for the (x, y, z) points within a
21 x 21 window around a given point P, we establish a
local X, Y, Z coordinate system defined by principal
component analysis (PCA) on the points in the window
[14]. Using this local coordinate system, a quadratic surface
is fit to the (smoothed, despiked) points in the window.
Once the coefficients of the quadratic form are obtained,
their derivatives are used to estimate the Gaussian
curvature, K, and mean curvature, H, for that point.

4.1.4 Surface Segmentation and Classification

The surface type at each point is labeled based on H and K.
Points are grouped into regions with the same curvature
label. In our experience, segmentation of the ear image by the
sign of H and K is straightforward and the ear pit can always
be found in the ear region if it is not covered by hair or clothes.

After segmentation, we expect that there is a pit region,
defined as K > 0 and H > 0, in the segmented image that
corresponds to the actual ear pit. Due to numerical error and
the sensitivity of curvature estimation, thresholds are
required for H and K. Empirical evaluation showed that
Tk = 0.0009 and T = 0.00005 provide good results. Fig. 6¢
shows an example of the face profile with curvature
estimation and surface segmentation. Also, we find that
the jawline close to the ear always appears as a wide valley
region (K < 0and H > 0) and is located to the left of the ear
pit region.

(b) (©)

(d

Fig. 6. Steps of finding the ear pit: (a) 2D or 3D raw data, (b) skin
detection, (c) curvature estimation, (d) surface curvature segmentation,
and (e) region classification, ear pit detection. In (c) and (d), black
represents pit region, yellow represents wide valley, magenta represents
peak, and red represents ridge, wide peak, and saddle ridge.

It is possible that there are multiple pit regions in the
image, especially in the hair around the ear. A systematic
voting method is developed to select the pit region that
corresponds to the ear pit. Three types of information
contribute to the final decision: the size of the pit region,
the size of the wide valley region around the pit, and
how close the ear pit region is to the wide valley. Each
category is given a score in the range of 0 to 10,
calculated as the fraction of max area or distance at a
scale of 10. For example, the largest pit region P in the
image has a score of 10 and the score of any other pit
region P, is calculated as Area(P,)/Area(P;) x 10. The pit
with the highest average score is assumed to be the ear
pit. In order to validate our automatic ear extraction
system, we compare the results (X uto_Ear_pit, YAuto_Ear_pit)
with the manually marked ear pit (Xaanual_Bar_pits
Yiranual_Ear_pit) for the 1,801 images used in this study.
The maximum distance difference between (X auto_Ear_pits
YAum,Ear,Pit) and (AXMamml,Em;Pit/KMa,nual,Ea,r,Pit) is 29 PiX@lS-
There are slightly different results from the active
contour algorithm when using automatic ear pit finding
versus manual ear pit marking. But, the difference does
not cause problems for the active contour algorithm
finding the ear region, at least on any of the 1,801 images
considered here. Using a manual marking of the center of
the ear pit rather than the automatically found center of
the ear pit results in a minimal difference in rank-one
recognition rate, 97.9 to 97.8 percent. Fig. 7 illustrates
that, as long as the starting point is near the ear pit, the
active contour algorithm can find a reasonable segmenta-
tion of the ear region, which is useful for recognition.

Our experiments used several parameters obtained from
empirical results. Ear pit finding can be more complicated
when great pose variation is involved. Therefore, further
study combining ear features should result in more robust
results.
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(@) (b)

Fig. 7. Varying ear pit location versus segmentation results. (a) Ear pit
(automatically found). (b) Ear pit (manually found).

4.2 Ear Segmentation Using Active Contour
Algorithm

The 3D shape matching of the ear relies upon correct and
accurate segmentation of the ear. Several factors contribute
to the complexity of segmenting the ear out of the image.
First, ear size and shape vary widely between different
people. Second, there is often hair touching or partially
obscuring the ear. Third, if earrings are present, they
overlap or touch the ear but should not be treated as a part
of the ear shape. These characteristics make it hard to use a
fixed template to crop the ear shape from the image (as in,
for example, [6]). A bigger template will include too much
hair, whereas a smaller template may lose shape informa-
tion. Also, it is hard to distinguish the ear from hair or
earrings, especially when hair and earrings have a similar
color to the skin or are very close to the ear.

Edges are usually defined as large magnitude changes in
image gradient. We wish to find edges that indicate the
boundary of the visible ear region. The classical active
contour function proposed by Kass et al. [20] is used to grow
from the ear pit to the outline of the visible ear region. Thus,
we have

1

E= / Ens(X(5)) + Eun(X(s))ds, (1)

0
Jo— 1 X! 2 X" 2 9
int *2 a| (5)| +ﬁ| (8)‘ ’ ( )
Eext = Ez‘magﬁ + Econ: (3)
Eimage = VImage(m, y)’ (4)
Econ = —Weon ;7: (5)~ (5)

The contour X(s) starts from a closed curve within the
region and then grows under internal and external
constraints to move the curve toward local features (1).
Following the description in [20], X'(s) and X"(s) denote
the first and second derivative of the curve X(s). « and 3 are
weighting parameters for measuring the contour tension
and rigidity, respectively. The internal function Ej,;
restrains the curve from stretching or bending. The external
function E.,; is derived from the image so that it can drive
the curve to areas with high image gradient and lock on to
close edges. It includes Ejy.p and E. Ejyqge is image
energy, which is used to drive the curve to salient image
features such as lines, edges, and terminations. In our case,
we use edge feature as Ejqge-

The traditional active contour algorithm suffers from
instability due to image force. When the initial curve is far

(a) (b)

Final Contour

Initial Contour

/Smrting Point

() (d)

Fig. 8. Active contour growing on ear image. (a) Original image. (b) Energy
map of (a). (c) Energy map of ear. (d) Active contours growing.

away from image features, the curve is not attracted by
the FEj.e and would shrink into a point or a line,
depending on the initial curve shape. Cohen [12]
proposed a “balloon” model to give more stable results.
The “pressure force” E,,, (5) is introduced and it pushes
the curve outward so that it does not shrink to a point or
a line. Here, 7(s;)(x,y) = W, s; is the point i on
curve s. Fig. 8 shows how the active contour algorithm
grows toward the outline of the ear region.

Starting with the ear pit determined in the previous step,
the active contour grows until it finds the ear edge. Usually,
there is either depth or color change, or both, along the ear
edge. These attract the active contour to grow toward and
stop at the ear boundary.

Initial experiments were conducted on the 3D depth
images and 2D color images individually. For the 2D color
images, three color spaces (RGB, HSV, and YCbCr), were
examined. YCbCr’s Cr channel gave the best segmentation
results. For the 3D images, the Z (depth) image is used.
Results show that using color or depth information alone is
not powerful enough for some situations, in particular,
where the hair touches the ear and has similar color to skin.

Fig. 9 shows examples when only color or depth informa-
tion is used for the active contour algorithm. When there is no
clear color or depth change along the ear edge, itis hard for the
algorithm to stop expanding. As shown in Figs. 9a and 9b, by
using 2D alone or 3D alone, the active contour can easily keep
growing after it reaches the boundary of the ear. We ran the
active contour algorithm using color or depth alone on the
415 gallery images. Using only color information, 88 out of
415 (21 percent) images are incorrectly segmented. Using only
depth information, 60 out of 415 (15 percent) images are
incorrectly segmented. All of the incorrectly segmented
images in these two situations can be correctly segmented
by using the combination of color and depth information.
These examples in Fig. 9 imply that, in order to improve the
robustness of the algorithm, we need to combine both the
color and 3D information in the active contour algorithm. To
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Fig. 9. Active contour results using only color or depth information. (a) Only using color (incorrect segmentation). (b) Only using depth (incorrect

segmentation).

(@) (b)

(©) (d

Fig. 10. Active contour growing on a real image. (a) Iteration = 0. (b) Iteration = 25. (c) Iteration = 75. (d) Iteration = 150.

do this, the .4 in (3) is replaced by (6). Consequently, the
final energy F is represented by (7):

EImugc - wdcpthvlmagedapth (.T, y) + wCr‘VImafgecW(xa 9)7 (6)

= [5[alXF + o o))

0 (7)
+ w[l(’,pthVImagedeth($7 y) + wC’rVImageCr (.Z', y)

— Weon N (s).

In order to prevent the active contour from continuing to
grow toward the face, we modify the internal energy of
points to limit the expansion when there is no depth jump
within a 3 x5 window around the given point. The
threshold for the maximum gradient within the window
is set as 0.01. With these improvements, the active contour
algorithm works effectively in separating the ear from the
hair and earrings and the active contour stops at the jawline
close to the ear.

The initial contour is an ellipse with the ear pit as center.
Approximately, the major axis is 15 mm and the minor axis
is 10 mm and the major axis is vertical. Fig. 10 illustrates the
steps of active contour growing for a real image. Fig. 11
shows examples in which the active contour deals with hair
and earrings. The 3D shape within the final contour is
cropped out of the image for use in the matching algorithm.

5 MATCHING 3D EAR SHAPE FOR RECOGNITION

We have previously compared using an ICP approach on a
point-cloud representation of the 3D data and a PCA-style
approach on a range-image representation of the 3D data
[29] and found better performance using an ICP approach
on the point-could representation. The problem with using
a range image representation of the 3D data is that
landmark points must be selected ahead of time to use for
normalizing the pose and creating the range image. Errors
or noise in this process can lead to recognition errors in the
PCA or other algorithms that use the range image. Our
experience is that the ICP style approach using the point
cloud representation can better adapt to inexactness in the
initial registration, though, of course, at the cost of some
increase in the computation time for the matching step.

Given a set of source points P and a set of model points X,
the goal of ICP is to find the rigid transformation T that best
aligns P with X. Beginning with a starting estimate 75, the
algorithm iteratively calculates a sequence of transforma-
tions T; until the registration converges. At each iteration,
the algorithm computes correspondences by finding closest
points and then minimizes the mean square distance
between the correspondences. A good initial estimation of
the transformation is required and all source points in P are
assumed to have correspondences in the model X. The ear
pit location from the automatic ear extraction is used to give
the initial translation for the ICP algorithm. The following
sections outline our refinements to improve the ICP
algorithm for use in matching ear shapes.
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Fig. 11. Active contour algorithm dealing with earring and blonde hair. (a) Earring and blonde hair. (b) Blonde hair. (c) Earring and blonde hair.

(d) Earring. (e) Earring and blonde hair. (f) Earring and blonde hair.

5.1 Computation Time Reduction

It is well known that the basic ICP algorithm can be time
consuming. In order to make it more practical for use in
biometric recognition, we use a k-d tree data structure in the
search for closest points, limit the maximum number of
iterations to 40, and stop if the improvement in mean square
difference between iterations drops below 0.001. This allows a
probe shape to be matched against a gallery of 415 ear shapes
in 10 minutes or better than 40 shape matches per minute.
This is with an average of 6,000 points in a gallery image and
1,400 in a probe image. The ICP algorithm is implemented in
C++ based on the VIK 4.4 library [1] and run on a dual-
processor 2.8-GHz Pentium Xeon system. The current
computation speed is obviously more than sufficient for a
verification scenario in which a probe is matched against a
claimed identity. It is also sufficient for an identification
scenario involving a few tens of subjects.

5.2 Recognition Performance Improvement

Ideally, if two scans come from the same ear with the same
pose, the error distance should be close to zero. However,
with pose variation and scanning error, the registration
results can be greatly affected by data quality. Our approach
to improve performance focuses on reducing the effect of
noise and using a point-to-surface error metric for sparse
range data.

5.2.1 Outlier Elimination

The general ICP algorithm requires no extracted features or
curvature computation [2]. The only preprocessing of the
range data is to remove “spike” outlier points. In a 3D face
image, the eyes and mouth are common places for holes
and spikes to occur. Three-dimensional ear images do
exhibit some spikes and holes due to oily skin or sensor
error, but these occur less frequently than in 3D face images.

An “outlier” match occurs when there is a poor match
between a point on the probe and a point on the gallery. To
improve performance, outlier match elimination is accom-
plished in two stages. During the calculation of the
transformation matrix, the approach is based on the
assumption that, for a given noise point p on the probe
surface, the distance from p to the associated closest point g,
on the gallery surface will be much larger than the average
distance [32], [19]. For each point p on the probe surface, we
find the closest point g, on the gallery surface. Let D =
d(p, gp) represent the distance between the two points. Only
those pairs of points whose D is less than a threshold are
used to calculate the transformation matrix. Here, the
threshold is set as mean distance + R * 2, where R is the
resolution of the probe surface.

The second stage occurs outside the transformation matrix
calculation loop. After the first step, a transformation matrix
is generated to minimize the error metric. We apply this
transformation matrix on the source surface S and obtain a
new surface 5. Each point on the surface S’ will have a
distance to the closest point on the target surface. We sort all
of the distance values and use only the lower 90 percent to
calculate the final mean distance. Other thresholds (99, 95, 85,
80, and 70 percent) were tested and 90 percent gives the best
performance, which is consistent with the experiments of
other researchers [24].

5.2.2 Point-to-Point versus Point-to-Surface Approach

Two approaches are considered for matching points from
the probe to points on the gallery: point-to-point [2] and
point-to-surface [9]. In the point-to-point approach, we try
to find the closest point on the target surface. In the point-
to-surface approach, we use the output from the point-to-
point algorithm first. Then, from the closest point obtained
earlier on the target surface, all of the triangles around this
point are extracted. Then, the real closest point is the point
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TABLE 2
ICP Performance by Using Point-to-Surface, Point-to-Point, and Revised Version, and
Time Is for One Probe Matched to One Gallery Shape

G = Gallery Point-To-Surface Point-To-Point Mixed: P-To-P and P-To-S
P =Probe | Performance | Run Time (s) | Performance | Run Time (s) | Performance | Run Time (s)
G1P1 97.3% 15-18 sec 96.6% 5-6 sec 97.6% 5-8 sec
G1P2 96.9% 2-3 sec 96.6% 1-2 sec 97.1% 1-2 sec (*)
G1P4 96.1% 1-2 sec 95.7% 0.3-0.7 sec 95.9% 0.5-0.7 sec
G2P2 96.1% 2-4 sec 95.7% 0.7-1.3 sec 96.4% 0.7-1.3 sec
G2P4 96.4% 0.7-1.3 sec 95.2% 0.2-0.3 sec 96.1% 0.2-0.3 sec
G4P4 93.3% 0.6-1.2 sec 72.8% 0.1-0.2sec 88.4% 0.1-0.2 sec

*Recognition rates and execution times quoted elsewhere in the paper are for the G1, P2 instance of the algorithm using our “mixed” ICP.

on any of these triangles with the minimum distance to the
source point. In general, point-to-surface is slower, but also
more accurate in some situations.

Asshownin Table 2, the point-to-pointapproachis fastand
accurate when all of the points on the source surface can find a
good closest point on the target surface. But, if the gallery is
subsampled, the point-to-point approach loses accuracy.
Since the probe and gallery ear images are taken on different
days, they vary in orientation. When both gallery and probe
images are subsampled, it is difficult to match points on the
probe surface to corresponding points on the gallery surface.
This generally increases the overall mean distance value. But,
this approach is much faster than point-to-surface.

On the other hand, the greatest advantage of the point-
to-surface approach is that it is accurate through all of the
different subsample combinations. Even when the gallery is
subsampled by every four rows and columns, the perfor-
mance is still acceptable.

Our final algorithm attempts to exploit the trade-off
between performance and speed. The point-to-point ap-
proach is used during the iterations to compute the
transformation matrix. One more point-to-surface iteration
is done after obtaining the transformation matrix to compute
the error distance. This revised algorithm works well due to
the good quality of the gallery images, which makes it
possible for the probe images to find the corresponding
points. As a biometrics application and especially in a
verification scenario, we can assume that the gallery image
is always of good quality and the ear orientation exposes the
most part of ear region. The final results reflecting the revised
algorithm are shown in Table 2.

Table 2 leads to two conclusions: The first is that, when
the gallery and probe surfaces have similar resolution, the
mixed algorithm is always more accurate than pure point-
to-point matching and has similar computation time. The
second is that, when the gallery surface is more densely
sampled than the probe surface, the mixed algorithm is
both faster and more accurate than point-to-surface ICP.

6 EXPERIMENTAL RESULTS

In an identification scenario, our algorithm achieves a rank-
one recognition rate of 97.8 percent on our 415-subject data
set with 1,386 probes. The cumulative match characteristic
(CMC) curve is shown in Fig. 12a. In a verification scenario,
our algorithm achieves an EER of 1.2 percent. The receiver
operating characteristic (ROC) curve is shown in Fig. 12b.
This is an excellent performance in comparison to previous
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Fig. 12. The performance of ear recognition. (a) CMC curve. (b) ROC
curve.
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Fig. 13. Examples of asymmetric ears. (a) Right ear. (b) Left ear. (c) Right
ear. (d) Mirrored left ear.

work in ear biometrics; where higher performance values
were reported, they were for much smaller data sets.

Also, the rank-one recognition is 95.7 percent (67 out of
70) for the 70 cases that involve earrings. This is a difference
of just one of the 70 earring probes from the rank-one
recognition rate for probes without earrings. Thus, the
presence of earrings in the image causes only a minimal loss
in accuracy.

Chang et al. [6] obtained a 73 percent rank-one recognition
rate for an “eigen-ear” approach on 2D intensity images with
88 people in the gallery and a single time-lapse probe image
per person. Our rank-one recognition rate for PCA-based ear
recognition using 2D intensity images for the first 88 people in
our 415 person data set is 76.1 percent, which is similar to the
result obtained by Chang et al., even though we used a
completely different image data set acquired by a different
sensor and used different landmark points. For the same
88 people, our ICP-based ear recognition gave a 98.9 percent
rank-one recognition rate.

6.1 Ear Symmetry Experiment

The ear data used in our experiments in previous sections
are gallery and probe images that are approximately
straight-on views of the same ear which were acquired on
different days. One interesting question to explore is the use
of bilateral symmetry; for example, matching a mirrored left
ear to a right ear. This means that, for one subject, we enroll
his right ear and try to recognize using his mirrored left ear.
One example is shown in Figs. 13a and 13b. For our initial
experiment to investigate this possibility, both ear images
were taken on the same day. The rank-one recognition rates
from matching a mirrored image of an ear are around
90 percent on a 119 subject data set [30]. By analyzing the
results, we found that most people’s left and right ears are
approximately bilaterally symmetric. But, some people’s
left and right ears have recognizably different shapes.
Fig. 13 shows an example of this. Thus, it seems that
symmetry-based ear recognition cannot be expected to be as

TABLE 3
Results of Off-Angle Experiments with a 24-Subject Data Set
Straight-on | 15° off | 30° off | 45° off | Average

straight-on 100% | 87.5% | 70.8% | 86.1%
15° off 100% 100% | 87.5% | 95.8%
30° off 87.5% 100% 95.8% | 94.4%
45° off 79.2% 87.5% | 100% 88.9%
Average 88.9% 95.8% | 95.8% | 84.7%

accurate, in general, as matching two images of the same
ear.

6.2 Off-Angle Experiment

Another dimension of variability is the degree of pose change
between the enrolled gallery ear and the probe ear. To explore
this, we enroll a right ear that was viewed straight on and try
to recognize a right ear viewed at some amount of angle. In
this experiment, there are four different angles of view for
each ear: straight-on, 15 degrees off center, 30 degrees off
center, and 45 degrees off center, as shown in Fig. 14. The
45 degree images were taken on the first week. The 30 degree
images were taken the second week. Finally, the 15 degree
and straight-on images were both taken on the third week. For
each angle of ear image, we match it against all images in the
different angle data sets.

Twenty-four subjects participated in this set of image
acquisitions. Two observations are drawn from Table 3. The
first is that 15 and 30 degrees off center have better overall
performance than the straight-on and 45 degrees off center.
This observation makes sense since there is more ear area
exposed to the camera when the face is 15 and 30 degrees
off center. Also, matching is generally good for 15 degrees
difference, but gets worse for more than 15 degrees. This is
an initial experiment and additional work with a larger data
set is still needed.

7 SUMMARY AND DISCUSSION

We have presented a fully automatic ear biometric system
using 2D and 3D information. The automatic ear extraction
algorithm can crop the ear region from the profile image,

(@) (b)

© ()

Fig. 14. Example images acquired for off-angle experiments. (a) Straight-on. (b) Fifteen degrees off. (c) Thirty degrees off. (d) Forty-five degrees off.



YAN AND BOWYER: BIOMETRIC RECOGNITION USING 3D EAR SHAPE

separating the ear from hair and earring. The recognition
subsystem uses an ICP-based approach for 3D shape
matching. The experimental results demonstrate the power
of our automatic ear extraction algorithm and 3D shape
matching applied to biometric identification. The system
has a 97.8 percent rank-one recognition rate and a 1.2 percent
EER on a time-lapse data set of 415 persons with 1,386 probe
images.

The system as outlined in this paper is a significant and
important step beyond existing work in ear biometrics. It is
fully automatic, handling preprocessing, cropping, and
matching. The system addresses issues that plagued earlier
attempts to use 3D ear images for recognition, specifically
partial occlusion of the ear by hair and earrings.

There are several directions for future work. We
presented techniques for extracting the ear image from hair
and earrings, but there is currently no information on
whether the system is robust when subjects wear eye-
glasses. We intend to examine whether eyeglasses can cause
a shape variation in the ear and whether this will affect the
algorithm. Additionally, we are interested in further
quantifying the effect of pose on ICP matching results.
Further study should result in guidelines that provide best
practices for the use of 3D images for biometric identifica-
tion in production systems. Also, speed and recognition
accuracy remain important issues. We have proposed
several enhancements to improve the speed of the algo-
rithm, but the algorithm might benefit from adding feature
classifiers. We have both 2D and 3D data and they are
registered with each other, which should make it straight-
forward to test multimodal algorithms.

The 2D and 3D image data sets used in this work are
available to other research groups. See the Web page at
www.nd.edu/~cvrl for the release agreement and details.
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