Sensitivity Analysis of the Weights of the Composites Under Partial Least-Squares Approach to Structural Equation Modeling Supplementary Material A

This supplementary material contains the numerical results on weight changes for a model with 4 latent variables and 13 indicators. The path diagram representing the model is given by Figure 3 of the article. The solid arrows in the figure represent a unidimensional model that PLS-SEM methodology aims to estimate, while the dashed arrows represent additional parameters/relationships that may exist in the population. Note that ξ_1 does not directly predict η_2 in the model. Such a specification has a direct implication for PLS-SEM. In particular, correlated errors between the blocks of ξ_1 and η_2 do not affect the weights under modes A, B_A and B. This will be illustrated numerically below. Similarly, ξ_1 and ξ_2 are not considered as directly connected under PLS-SEM, and correlated errors between the blocks of ξ_1 and ξ_2 do not affect the weights under the three modes.

For the illustration, the factor loadings over the solid arrows are $\lambda_{x\xi_1} = (0.8, 1.0, 1.2)'$, $\lambda_{x\xi_2} = (1.1, 0.8, 1.3)'$, $\lambda_{y\eta_1} = (1.0, 0.8, 1.2)'$, and $\lambda_{y\eta_2} = (1.0, 1.2, 0.8, 1.5)'$. The variances of the measurement errors with the 6 exogenous indicators are $\psi_x = (.55, .60, .40, .35, .45, .50)'$, and those with the 7 endogenous indicators are $\psi_y = (.58, .60, .40, .60, .65, .63, .45)'$. The parameters characterizing the relationship of the latent variables are $\phi_{11} = \text{Var}(\xi_1) = 1.0$, $\phi_{12} = \text{Cov}(\xi_1, \xi_2) = 0.5$, $\phi_{22} = \text{Var}(\xi_1) = 1.0$; $\gamma_{11} = 0.4$, $\gamma_{12} = 0.5$, $\gamma_{22} = 0.6$, $\beta_{21} = 0.5$; and the variances of the two prediction errors are $\sigma_{\zeta_1}^2 = .80$ and $\sigma_{\zeta_2}^2 = .75$. These are the population values of parameters for a correctly specified unidimensional model, denoted as θ_0 . Let Σ_0 be the population covariance matrix of the 13 variables generated by θ_0 according to the solid arrows in Figure 3. Then, the weight vectors of fitting the model to Σ_0 by PLS-SEM mode A are proportional to the factor loadings λ_0 , and those under modes B_A and B are proportional to $\Psi_0^{-1}\lambda_0$, where λ_0 and Ψ_0 are respectively the vector of factor loadings and the diagonal matrix of the error covariances for each block of indicators.

There are many possible ways of misspecification for a model with 13 variables and 4 constructs. We select one for each category, and they are represented by the dashed arrows in Figure 3. Four two-way dashed arrows representing within-block error covariances, they are $\psi_{x_2x_3}$, $\psi_{x_5x_6}$, $\psi_{y_2y_3}$, and $\psi_{y_6y_7}$. Six two-way dashed arrows representing between-block error covariances, they are $\psi_{x_3x_6}$, $\psi_{x_2y_2}$, $\psi_{x_2y_5}$, $\psi_{x_5y_2}$, $\psi_{x_6y_7}$, $\psi_{y_3y_5}$. Twelve one-way dashed arrows represent cross-loadings: $\lambda_{x_3\xi_2}$, $\lambda_{x_2\eta_1}$, $\lambda_{x_2\eta_2}$; $\lambda_{x_5\xi_1}$, $\lambda_{x_5\eta_1}$, $\lambda_{x_6\eta_2}$; $\lambda_{y_2\xi_1}$, $\lambda_{y_2\xi_2}$, $\lambda_{y_3\eta_2}$; $\lambda_{y_6\xi_1}$, $\lambda_{y_7\xi_2}$, $\lambda_{y_5\eta_1}$. There are a total of 22 one-way and two-way dashed arrows in Figure 3, representing different locations of model misspecification. Note that the first indicator in each block does not have cross-loadings nor correlated errors in the design. This is because the weight of the first indicator in each block is set at 1.0 according to equation (15), and

an intact first indicator facilitates the examination of relative weight changes due to model misspecification.

As with the illustration for the model with two latent variables, we choose the values of the error covariances and cross-loadings to represent small to medium sized misspecification so that the commonly used fit indices still endorse the adequacy of the model. In particular, the value of an error covariance is either .3 or -.3 and that of an omitted cross-loading is either .5 or -.5. Such choices generate a total of 44 conditions of population. Let Σ_* be the covariance matrix of the 13 indicators corresponding to one of the 44 conditions of population. Then the model represented by the solid arrows in Figure 3 (with 31 parameters and 60 degrees of freedom under CB-SEM) is misspecified for the population covariance matrix Σ_* . When the unidimensional model is fitted to Σ_* by NML, the values of RMSEA across the 44 conditions of population range from .016 to .075, with an average value of .050. The model would be regarded as acceptable for all the 44 conditions of population according to established cutoffs (Hu & Bentler, 1999; MacCallum, Browne & Sugawara, 1996). For each condition, the values of the factor loading λ_* corresponding to Σ_* are obtained and so are the population weights of the composites under PLS-SEM modes A, B_A and B. These weights are further rescaled according to equation (15).

Parallel to the results in Table 1, Table A1 contains the relative changes of weights for the 8 conditions of within-block error covariances. The pattern of the changes is the same as in Table 1. Notable results are that, under mode B, w_{y_2} is negative under the condition $\psi_{y_2y_3} = .3$, and w_{y_6} is negative under the condition $\psi_{y_6y_7} = .3$. Results for the 12 conditions of between-block error covariances are in Table A2, and they agree with the analytical results obtained in section 3 of the article. Notable results are for the conditions with $\psi_{x_3x_6} = \pm .3$ and $\psi_{x_2y_5} = \pm .3$, where the weights under PLS-SEM modes A, B_A and B are identical to those of a correctly specified model. This is because ξ_1 and η_2 are not directly connected in Figure 3 and the two-way arrow between ξ_1 and ξ_2 is not regarded as a direct connection under the PLS-SEM methodology.

Results for the 24 conditions of cross-loadings are in Table A3, and they all agree with the analytical results presented in section 3. A notable result is that mode A yields a negative w_{x_2} under the condition $\lambda_{x_2\eta_1} = -.5$, and consequently mode B_A also has a negative weight under this condition. Other notable results are that PLS-SEM mode B may yield negative weights even when cross-loadings are positive. There are also multiple conditions of Heywood case (negative error variance) when the model in equation (8) is estimated by the LS method. Then the negative error variance is changed to .05 in computing the weight \mathbf{w}_{b_a} using equation (7).

by omitting within-block error covariances of size $\psi_h = \pm 0.3$.								
	$\psi_{x_2x_3}$ =	$=\psi_{x_3x_2}$ =	= .3, RMS	EA=0.016	$\psi_{x_2x_3}$ =	$=\psi_{x_3x_2}$ =	=3, RN	$ISEA = 0.02\overline{4}$
variable	λ_*/λ_0	PLS-A	$PLS-B_A$	PLS-B	λ_*/λ_0	PLS-A	$PLS-B_A$	PLS-B
x_1	0.901	1.000	1.000	1.000	1.089	1.000	1.000	1.000
x_2	1.125	1.000	1.075	0.160	0.885	1.000	0.950	3.040
x_3	1.110	1.000	1.514	0.933	0.905	1.000	0.796	2.267
x_4	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_3	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_4	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_7	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	$\psi_{x_5x_6}$ =	$=\psi_{x_6x_5}$ =	= .3, RMS	EA=0.036	$\psi_{x_5x_6}$ =	$=\psi_{x_6x_5}$ =	=3, RM	ISEA=0.044
variable	λ_*/λ_0	PLS-A	$PLS-B_A$	PLS-B	λ_*/λ_0	PLS-A	$PLS-B_A$	PLS-B
x_1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_3	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_4	0.898	1.000	1.000	1.000	1.069	1.000	1.000	1.000
x_5	1.150	1.000	0.816	0.042	0.912	1.000	1.146	3.292
x_6	1.117	1.000	0.992	0.983	0.929	1.000	1.005	2.350
y_1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_3	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_4	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
-	1 000	1 0 0 0	1 0 0 0	1 000		1 000	1 000	1 000
y_6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Table A1. Relative population weight changes $(r_j^{(s)} \text{ in equation 15})$ for the three modes of PLS-SEM when the model in Figure 3 (4 latent variables and 13 indicators) is misspecified by omitting within-block error covariances of size $\psi_b = \pm 0.3$.

			100		maca).			
	$\psi_{y_2y_3}$ =	$=\psi_{y_3y_2}=$	= .3, RMS	EA = 0.028	$\psi_{y_2y_3} =$	$=\psi_{y_3y_2}=$	=3, RMS	SEA = 0.035
variable	λ_*/λ_0	PLS-A	$PLS-B_A$	PLS-B	λ_*/λ_0	PLS-A	$PLS-B_A$	PLS-B
x_1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_3	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_4	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_2	1.220	1.000	0.930	-0.200	0.865	1.000	1.057	3.400
y_3	1.182	1.000	1.275	1.067	0.896	1.000	0.866	2.133
y_4	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_7	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	$\psi_{y_6y_7}$ =	$= \psi_{y_7 y_6} =$	= .3, RMS	EA = 0.042	$\psi_{y_{6}y_{7}} =$	$= \psi_{y_7 y_6} =$	=3, RMS	SEA=0.041
variable	λ_*/λ_0	PLS-A	$PLS-B_A$	PLS-B	λ_*/λ_0	PLS-A	$PLS-B_A$	PLS-B
x_1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_3	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_4	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_3	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_4	1 000	1 000	1 000	1 000	1.000	1.000	1.000	1.000
÷	1.000	1.000	1.000	1.000				
y_5	0.999	1.000	1.022	1.000	1.004	1.000	0.982	1.000
$egin{array}{c} y_5 \ y_6 \end{array}$	0.999 1.121	1.000 1.000 1.000	$1.022 \\ 0.976$	1.000 -0.366	1.004 0.938	$\begin{array}{c} 1.000 \\ 1.000 \end{array}$	$0.982 \\ 1.023$	$1.000 \\ 3.297$

Table A1 (continued).

by omitting between-block error covariances of size $\psi_h = \pm 0.3$.										
	$\psi_{x_3x_6}$ =	$=\psi_{x_6x_3}$ =	$= .3, \mathrm{RMS}$	SEA = 0.055	$\psi_{x_3x_6}$ =	$=\psi_{x_6x_3}$ =	=3, RN	4SEA = 0.053		
variable	λ_*/λ_0	PLS-A	PLS-B _A	PLS-B	λ_*/λ_0	PLS-A	$PLS-B_A$	PLS-B		
x_1	0.990	1.000	1.000	1.000	1.005	1.000	1.000	1.000		
x_2	0.988	1.000	1.000	1.000	1.006	1.000	1.000	1.000		
x_3	1.015	1.000	1.000	1.000	0.992	1.000	1.000	1.000		
x_4	0.990	1.000	1.000	1.000	1.005	1.000	1.000	1.000		
x_5	0.996	1.000	1.000	1.000	1.002	1.000	1.000	1.000		
x_6	1.012	1.000	1.000	1.000	0.994	1.000	1.000	1.000		
y_1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
y_2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
y_3	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
y_4	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
y_5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
y_6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
y_7	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
0.	$\psi_{x_2y_2}$ =	$=\psi_{u_{2}x_{2}}=$	= .3, RMS	EA=0.056	$\psi_{x_2y_2}$ =	$=\psi_{u_2x_2}=$	=3, RM	ISEA=0.055		
variable	$\frac{\lambda_{*}}{\lambda_{*}}$	PLS-A	PLS-B _A	PLS-B	$\frac{\lambda_{292}}{\lambda_{*}/\lambda_{0}}$	PLS-A	PLS-B _A	PLS-B		
$\overline{x_1}$	1.000	1.000	1.000	1.000	0.999	1.000	1.000	1.000		
x_2	1.009	1.125	1.690	2.615	0.993	0.885	0.638	0.498		
x_3	0.993	1.000	0.845	1.000	1.006	1.000	1.289	1.000		
x_A	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
ж4 ХБ	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
т. Т.	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
$\frac{\omega_0}{\mathcal{U}_1}$	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
91 1/2	1.007	1.059	1.311	1.908	0.995	0.950	0.799	0.759		
92 119	0.997	1.000	0.930	1,000	1.003	1,000	1.080	1.000		
93 11₄	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000		
94 11=	1.000	1.000	1.000	1 000	1 000	1.000	1 000	1 000		
95 11c	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
90 117	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
97	<u>- 1.000</u>	$\frac{1.000}{- \frac{1}{2}}$	- 3 RMS	EA = 0.051	<u>- 1.000</u>	$\frac{1.000}{- y/y}$ -	3 RN	$\frac{1.000}{(SEA - 0.051)}$		
variable	$\frac{\varphi_{x_2y_5}}{\lambda_1/\lambda_0}$	$-\frac{\varphi_{y_5x_2}}{\text{PLS-A}}$	$\frac{-0.5, 1000}{\text{PLS-B}}$	PLS-B	$\frac{\varphi_{x_2y_5}}{\lambda_1/\lambda_0}$	$\frac{-\varphi_{y_5x_2}}{\text{PLS-A}}$	$\frac{-1.0, 100}{\text{PLS-B}}$	PLS-B		
	$\frac{\chi_{*}}{1.000}$	1 000	1000	1 000	$\frac{\chi_{*}}{1.000}$	1 000	$100 D_{\rm A}$	1 000		
x_1	1.000	1.000	1.000	1.000	0.000	1.000	1.000	1.000		
$\frac{x_2}{x_2}$	1.001 0.000	1.000	1.000	1.000	1 001	1.000	1.000	1.000		
<i>x</i> 3 <i>x</i> .	1 000	1.000	1.000	1.000	1.001	1.000	1.000	1.000		
x_4	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
л5 ж.	1 000	1 000	1 000	1 000	1 000	1 000	1 000	1 000		
x6	1,000	1.000	1,000	1.000	1,000	1,000	1,000	1.000		
y_1	1,000	1.000	1,000	1.000	1,000	1.000	1.000	1.000		
y_2	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000		
y_3	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
y_4	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
y_5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
y_6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
u_7	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		

Table A2. Relative population weight changes $(r_j^{(s)} \text{ in equation 15})$ for the three modes of PLS-SEM when the model in Figure 3 (4 latent variables and 13 indicators) is misspecified by omitting between-block error covariances of size $\psi_h = \pm 0.3$.

	$\psi_{rrus} =$	$=\psi_{u_0r_r}=$	= .3, RMS	EA=0.069	$\psi_{rruo} =$	$=\psi_{u_0x_r}=$	=3, RM	ISEA=0.069
variable	$\frac{\lambda_{3g_2}}{\lambda_*/\lambda_0}$	PLS-A	PLS-B _A	PLS-B	$\frac{\lambda_{3g2}}{\lambda_{*}/\lambda_{0}}$	PLS-A	PLS-B _A	PLS-B
x_1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_3	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_4	0.999	1.000	1.000	1.000	1.001	1.000	1.000	1.000
x_5	1.003	1.065	1.373	1.774	0.998	0.939	0.746	0.651
x_6	0.999	1.000	1.002	1.000	1.001	1.000	0.998	1.000
y_1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_2	1.003	1.041	1.204	1.632	0.998	0.963	0.849	0.754
y_3	0.998	1.000	0.949	1.000	1.001	1.000	1.056	1.000
y_4	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_7	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	$\psi_{x_6y_7}$ =	= $\psi_{y_7x_6}$ =	= .3, RMS	EA = 0.052	$\psi_{x_6y_7}$ =	= $\psi_{y_7x_6}$ =	=3, RM	SEA = 0.050
variable	λ_*/λ_0	PLS-A	PLS-B _A	PLS-B	λ_*/λ_0	PLS-A	$PLS-B_A$	PLS-B
x_1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_3	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_4	0.987	1.000	1.000	1.000	1.009	1.000	1.000	1.000
x_5	0.994	1.000	1.058	1.000	1.002	1.000	0.936	1.000
x_6	1.016	1.038	1.355	1.747	0.989	0.963	0.752	0.727
y_1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_3	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_4	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_5	0.999	1.000	0.975	1.000	1.000	1.000	1.031	1.000
y_6	1.000	1.000	1.032	1.000	1.000	1.000	0.965	1.000
y_7	1.010	1.039	2.172	2.486	0.994	0.962	0.601	0.576
	$\psi_{y_3y_5}$ =	$=\psi_{y_5y_3}=$	= .3, RMS	EA = 0.052	$\psi_{y_3y_5}$ =	= $\psi_{y_5y_3}$ =	=3, RM	SEA = 0.051
variable	λ_*/λ_0	PLS-A	$PLS-B_A$	PLS-B	λ_*/λ_0	PLS-A	$PLS-B_A$	PLS-B
x_1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_3	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_4	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_2	1.001	1.000	1.014	1.000	0.999	1.000	0.986	1.000
y_3	1.015	1.020	1.207	1.356	0.990	0.981	0.848	0.967
y_4	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_5	1.007	1.044	1.523	2.534	0.995	0.957	0.703	0.168
y_6	1.000	1.000	1.029	1.000	1.000	1.000	0.969	1.000
y_7	0.997	1.000	0.875	1.000	1.003	1.000	1.198	1.000

Table A2 (continued)

Table A3. Relative population weight changes $(r_j^{(s)} \text{ in equation 15})$ for the three modes of PLS-SEM when the model in Figure 3 (4 latent variables and 13 indicators) is misspecified by omitting cross-loadings of size $\lambda_h = \pm 0.5$. Heywood cases are indicated by a supper script H and the negative error variance is changed to .05 in computing w_{b_a} in equation (7).

	$\widetilde{\lambda}_{x_3\xi_2}$	$_{2} = 0.5,$	RMSEA=	0.038	$\lambda_{x_3\xi_2}$	=-0.5,	RMSEA=	=0.051
variable	λ_*/λ_0	PLS-A	$PLS-B_A$	PLS-B	λ_*/λ_0	PLS-A	$PLS-B_A$	PLS-B
x_1	0.906	1.000	1.000	1.000	1.012	1.000	1.000	1.000
x_2	0.905	1.000	0.941	1.000	1.038	1.000	1.188	1.000
x_3	1.340	1.449	6.065	5.032	0.747	0.551	0.170	-0.060
x_4	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_3	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_4	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_7	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	$\lambda_{x_2\eta_1}$	$_{1} = 0.5,$	RMSEA=	0.048	$\lambda_{x_2\eta_1}$	= -0.5,	RMSEA=	=0.059
variable	λ_*/λ_0	PLS-A	$PLS-B_A$	PLS-B	λ_*/λ_0	PLS-A	PLS-B _A	PLS-B
x_1	0.917	1.000	1.000	1.000	0.926	1.000	1.000	1.000
x_2	1.500	2.085	$^{H}34.641$	-21.438	0.612	-0.085	-0.046	-1.634
x_3	0.893	1.000	0.632	1.000	1.092	1.000	0.770	1.000
x_4	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_3	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_4	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_7	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	$\lambda_{x_2\eta_2}$	$_{2} = 0.5,$	RMSEA=	0.069	$\lambda_{x_2\eta_2}$	= -0.5,	RMSEA=	=0.075
variable	λ_*/λ_0	PLS-A	$PLS-B_A$	PLS-B	λ_*/λ_0	PLS-A	$PLS-B_A$	PLS-B
x_1	0.930	1.000	1.000	1.000	0.925	1.000	1.000	1.000
x_2	1.481	1.865	11.173	10.915	0.622	0.135	0.046	-1.108
x_3	0.900	1.000	0.671	1.000	1.093	1.000	1.938	1.000
x_4	0.998	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_5	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_6	0.998	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_3	0.997	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_4	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_7	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

	$\lambda_{x_5 \xi}$	= 0.5,	RMSEA=	=0.060	$\lambda_{x_5 \xi_1}$	= -0.5,	RMSEA=	=0.063
variable	λ_*/λ_0	PLS-A	$PLS-B_A$	PLS-B	λ_*/λ_0	PLS-A	$PLS-B_A$	PLS-B
x_1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_3	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_4	0.981	1.000	1.000	1.000	1.005	1.000	1.000	1.000
x_5	1.374	1.488	1.959	2.467	0.657	0.512	0.234	-0.433
x_6	0.981	1.000	1.005	1.000	1.004	1.000	0.993	1.000
y_1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_3	1.001	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_4	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_7	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	$\lambda_{x_5\eta_2}$	$_{1} = 0.5,$	RMSEA=	=0.063	$\lambda_{x_5\eta_1}$	= -0.5,	RMSEA=	=0.069
variable	λ_*/λ_0	PLS-A	$PLS-B_A$	PLS-B	λ_*/λ_0	PLS-A	$PLS-B_A$	PLS-B
x_1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_3	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_4	0.957	1.000	1.000	1.000	1.006	1.000	1.000	1.000
x_5	1.554	1.975	43.185	13.732	0.517	0.025	0.012	-1.881
x_6	0.957	1.000	1.010	1.000	1.005	1.000	0.999	1.000
y_1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_3	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_4	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_7	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	$\lambda_{x_6\eta_2}$	$_{2}=0.5,$	RMSEA=	=0.040	$\lambda_{x_6\eta_2}$	= -0.5,	RMSEA=	=0.058
variable	λ_*/λ_0	PLS-A	$PLS-B_A$	PLS-B	λ_*/λ_0	PLS-A	$PLS-B_A$	PLS-B
x_1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_3	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_4	0.923	1.000	1.000	1.000	1.062	1.000	$^{H}1.000$	1.000
x_5	0.929	1.000	1.291	1.000	0.967	1.000	0.247	1.000
x_6	1.484	1.697	$^{H}27.522$	-83.315	0.584	0.303	0.018	-0.597
y_1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_3	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_4	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
u_7	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Table A3 (continued)

	$\lambda_{u_2 \xi}$	= 0.5,	RMSEA=	=0.051	$\lambda_{y_2\xi_1}$	= -0.5,	RMSEA=	=0.053
variable	λ_*/λ_0	PLS-A	PLS-B _A	PLS-B	$\frac{\lambda_*}{\lambda_0}$	PLS-A	$PLS-B_A$	PLS-B
x_1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_3	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_4	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_2	1.352	1.559	3.433	4.682	0.689	0.441	0.189	-1.006
y_3	0.985	1.000	0.797	1.000	1.022	1.000	1.618	1.000
y_4	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_7	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	$\lambda_{y_2\xi}$	$_{2} = 0.5,$	RMSEA=	=0.049	$\lambda_{y_2\xi_2}$	= -0.5,	RMSEA=	=0.052
variable	λ_*/λ_0	PLS-A	$PLS-B_A$	PLS-B	λ_*/λ_0	PLS-A	$PLS-B_A$	PLS-B
x_1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_3	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_4	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_2	1.396	1.631	5.051	6.309	0.665	0.369	0.153	-1.270
y_3	0.984	1.000	0.778	1.000	1.028	1.000	1.684	1.000
y_4	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_7	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	$\lambda_{y_3\eta}$	$_{P_2} = 0.5,$	RMSEA=	=0.037	$\lambda_{y_3\eta_2}$	= -0.5,	RMSEA=	=0.058
variable	λ_*/λ_0	PLS-A	$PLS-B_A$	PLS-B	λ_*/λ_0	PLS-A	$PLS-B_A$	PLS-B
x_1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_3	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_4	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_2	1.001	1.000	1.104	1.000	0.958	1.000	0.690	1.000
y_3	1.556	1.568	$^{H}16.677$	117.537	0.592	0.432	0.073	-0.205
y_4	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_7	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Table A3 (continued)

	λιιά	= 0.5	RMSEA=	$\frac{100058}{0058}$	$\frac{\lambda}{\lambda}$	= -0.5	BMSEA	=0.058
variable	$\frac{\lambda_{y_6\xi_1}}{\lambda_*/\lambda_0}$	-0.0, PLS-A	PLS-B _A	PLS-B	$\frac{\lambda_{y_6\xi_1}}{\lambda_*/\lambda_0}$	- 0.0, PLS-A	PLS-BA	PLS-B
$\frac{x_1}{x_1}$	1.000	1.000	$\frac{120 D_{\rm A}}{1.000}$	1.000	1.000	1.000	1.000	1.000
x_2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_3	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_A	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
$\frac{1}{2}$	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
$\frac{g_1}{U_2}$	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
92 U3	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000
$\frac{93}{U_A}$	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
94 115	1.000	1.000	0.961	1.000	1.000	1.000	1.039	1.000
95 U6	1.222	1.345	1.922	3.656	0.782	0.655	0.352	-1.080
$\frac{30}{U_7}$	0.997	1.000	0.802	1.000	1.003	1.000	1.299	1.000
91	$\lambda_{u-\epsilon_0}$	= 0.5.	RMSEA=	0.037	λ_{u}	= -0.5.	RMSEA:	=0.041
variable	$\frac{\lambda_*}{\lambda_*}$	PLS-A	PLS-B _A	PLS-B	$\frac{1}{\lambda_*/\lambda_0}$	PLS-A	PLS-B _A	PLS-B
x_1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_3	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
$\tilde{x_4}$	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
$\dot{x_6}$	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_3	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_4	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_5	0.999	1.000	0.945	1.000	1.002	1.000	1.133	1.000
y_6	1.001	1.000	1.074	1.000	0.999	1.000	0.878	1.000
y_7	1.206	1.279	$^{H}13.987$	32.782	0.815	0.721	0.213	-0.140
	$\lambda_{y_5\eta_1}$	= 0.5,	RMSEA=	0.048	$\lambda_{y_5\eta_1}$	= -0.5,	RMSEA=	=0.051
variable	λ_*/λ_0	PLS-A	$PLS-B_A$	PLS-B	λ_*/λ_0	PLS-A	$PLS-B_A$	PLS-B
x_1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_3	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_4	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x_6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_3	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_4	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
y_5	1.279	1.415	12.067	9.063	0.739	0.585	0.204	-1.005
y_6	1.001	1.000	1.089	1.000	1.000	1.000	0.872	1.000
u_7	0.992	1.000	0.705	1.000	1.011	1.000	4.001	1.000

Table A3 (continued)