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Introduction and motivation

• Conventional null hypothesis testing (NHT) is a very important tool if the

ultimate goal is to find a difference or to reject a model or hypothesis

• NHT is clumsy if the purpose is to use a model or hypothesis for further data

analysis

• Let H0 : P = M(θ) represent that the population (P ) can be fitted by a

model M(θ), and T be the test statistic for H0 (e.g., the likelihood ratio

statistic), and (T |H0) ∼ χ2

◦ If T is statistically significant, then we reject H0 so that the model

cannot be used

◦ If T is not statistically significant, we do not know whether the model is

properly formulated or how bad the model is

• Example: When using a t-statistic to compare the means of two groups, we

need to assume equal variance in order for the t-statistic to follow a Student
t-distribution. However, there is no effective way of confirming Hσ : σ2

1
= σ2

2
.

A significant F -statistic implies Hσ does not hold. A non-significant

F -statistic does not imply that Hσ holds.

• The conventional confidence interval (CI) has the same problem. For

example, if a CI for δ = µ2 − µ1 is given by [0, 1.3], it only means that you

cannot reject H0 : µ1 = µ2, but it does not mean you can claim δ = 0. Since
another person can claim δ = 1.3.

• A lot of problems in statistics are to find a good model and then use it to
account for the relationships among the observed variables (regression, time

series, generalized linear model, growth curve model, factor model, item

response model, etc.)

• Only a small proportion of research interest is to reject a hypothesis
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• For researchers who need to use a model (rather than to reject a model), a

more proper methodology is equivalent testing.

• In NHT, the setup is to reject H0 : µ2 = µ1

• In equivalence testing, the setup is to reject H0a : |µ2 − µ1| > ε0 or a bad
model

• A key component of equivalence testing is the selection of ε0, which is a
tolerable boundary for departure from the target or model misspecification

• The method of equivalence testing has been used in:

◦ establishing the equivalence of different treatment programs (Dunnett &
Gent, 1977; Rogers, Howard & Vessey, 1993);

◦ equivalence of confidence intervals for means (Seaman & Serlin, 1998;

Tryon, 2001; Tryon & Lewis, 2008);

◦ bioequivalence or equivalence of different drugs in biostatistics (Barker et

al., 2002; Ocaña et al., 2008);

◦ testing for lack of associations among variables (Goertzen & Cribbie,

2010);

◦ Wellek (2010) gave a systematic description of the method and

illustrated its applications

We will describe its application in structural equation modeling, which has

many application in psychology, education, organization research, health and

policy
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Outlines of the development

• Test of not-close fit in power analysis (MacCallum, Browne & Sugawara et

al, 1996); Multiple-group analysis (Yuan & Chan, 2016)

• Our study includes contrasting type I error and power between equivalence

testing and NHT

• We discuss how to set tolerable size of misspecification in SEM

• We also define a concept of minimum tolerable size (T -size) of model

misspecification, which is parallel to p-value in NHT

• Connecting T -size with existing measures of model misspecification in SEM

• The single most notable property of equivalence testing is that it allows a

researcher to confidently claim that the size of misspecification in the current

model is below the T -size

• We also have R code for conducting equivalence testing in SEM
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An example of SEM/factor analysis

• Holzinger and Swineford (1939) reported a data set with cognitive test scores

on 26 items and 145 students from the Grant-White school

• Nine of the 26 variables have been used in illustrating various new

developments in SEM since Jöreskog (1969).

• We will also use the 9-variables: visual perception, cubes, lozenges;

paragraph comprehension, sentence completion, word meaning; addition,

counting dots, and straight-curved capitals.

Figure 1. A confirmatory factor model, data from Holzinger & Swineford (1939)
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Figure 2. Another confirmatory factor model, same data
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• By separating measurement errors from latent true variables, SEM allows us

to obtain unbiased estimates of the correlations among the theoretical latent
variables

• Similarly, measurement errors lead to biased estimates of regression
coefficients, and SEM removes the bias by separating measurement errors for

latent variables
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Likelihood ratio statistic

• For the first confirmatory factor model, Tml = 51.187, with p-value=.001

when referred to χ2
24

• For the second model, Tml = 28.098, corresponding to a p-value=.212 when
referred to χ2

23
.

• Can we claim the the 2nd model is the correct model?

• Can we make a claim about the quality (size of misspecification) of the 2nd

model?

• The likelihood ratio statistic Tml = nFml, where

Fml[S,Σ(θ)] = tr[SΣ−1(θ)] − log |SΣ−1(θ)| − p,

with Σ(θ) being the covariance matrix derived from the model, and p being
the number of variables

• Under standard regularity condition, Tml ∼ χ2
df(δ) with

δ = n min
θ

Fml[Σ,Σ(θ)]

• In the literature, ε0 = minθ Fml[Σ,Σ(θ)] is used to measure the discrepancy
between data and model

• More parameters tend to make ε0 smaller, but the model also becomes less
interesting

• Steiger and Lind (1980) proposed root mean square error of approximation
(RMSEA)

RMSEA0 = (ε0/df)1/2 and RMSEA = {max(Tml − df, 0)/[n × df ]}1/2

• In the literature of SEM, it is generally agreed that every model is wrong,

but some are useful, and established nominal labeling for RMSEA is

RMSEA ≤.01 (.01, .05] (.05, .08] (.08, .10] > .10
label of fit excellent close fair mediocre poor fit

• People also propose to use confidence interval for the population RMSEA0

[clower, cupper], which can be obtained from the CI for noncentrality parameter

with Tml ∼ χ2
df(δ) (Venables, 1975).
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Back to the example

• For the 2nd confirmatory factor model, Tml = 28.098, corresponding to a
p-value=.212 when referred to χ2

23
; RMSEA = .039, and the 95% CI for the

population RMSEA is [0, .090]

• Most researchers would claim that the model is perfect, since CI contains 0.

• However, because the CI contains .90, a reviewer can also claim that the

model is simply mediocre

• The conflict is simply because the conventional NHT is a clumsy tool for

model construction

• We need to use equivalence testing for structural equation modeling (SEM)
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Equivalence testing for parameters

• The null hypothesis

H0a : the difference between θ and θ0 is greater than ε0, (1)

where the difference can be the Euclidean distance, the standardized
Mahalanobis distance, or the sum of absolute differences between the

coordinates of θ and θ0

• The value ε0 is a small positive number up to our tolerance on the size of

difference between θ and θ0 or any meaningful standard

• Each meaningful measure of difference will correspond to a statistic by which

the test is performed, and the statistic stochastically increases with the

difference between θ and θ0

• The hypothesis H0a is rejected when the statistic is smaller than a critical

value determined by the distribution of the statistic and the significance level
(e.g., α = .05).

• Rejection of H0a implies that the difference between θ and θ0 is within a
tolerable size.

• If ε0 = 0, then, except the possibility of type I error, rejection of H0a implies
that θ = θ0.

• In particular, we are (1− α) confident that the unknown parameter θ is close
enough to the target θ0.

• In contrast, rejecting H0 in conventional null hypothesis testing implies that

θ does not equal θ0, while not rejecting H0 does not allow us to endorse

θ = θ0 either.
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Equivalence testing for overall model fit

• In SEM or many other disciplines of statistics, overall model evaluation is
more fundamental than parameter evaluation

• Conventional null hypothesis is

H0 : Fml0 = 0 or equivalently H0 : Σ = Σ(θ0),

and Tml is compared against χ2
df for inference.

• The hypothesis in equivalence testing is

H0a : Fml0 > ε0, (3)

where ε0 is a small positive number that one can tolerate for the size of

misspecification.

• Via the relationship of Tml and Fml, the hypothesis in (3) can be expressed in

terms of the population noncentrality parameter, H0a : δ > δ0, where
δ0 = (N − 1)ε0.

• Let cα(ε0) be the left-tail critical value of χ2
df(δ0) corresponding to cumulative

probability α.

• We reject the hypothesis H0a in (3) if Tml ≤ cα(ε0) and, under the

assumptions Tml ∼ χ2
df(δ) with δ = (N − 1)Fml0, type I error is controlled at

level α.

• When H0a is rejected, we can conclude that the size of misspecification in the

current model, as measured by Fml0, is smaller than or equal to ε0.
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Equivalence testing for overall model fit

• We can also specify the tolerable size of misspecification through
ε0 = df(RMSEA0)

2 or δ0 = n × df(RMSEA0)
2, and use the conventional

cutoff values of RMSEA (.01, .05, .08, and .10) to distinguish between

excellent, close, fair, mediocre, and poor models, respectively.

• However, as we shall see, such conventional cutoff values make equivalence

testing much more stringent on the size of misspecification than they are
used with the conventional point estimate of RMSEA (Steiger & Lind, 1980).

10



Equivalence testing vs NHT

• Equivalence testing is a special case of general statistical hypothesis testing.
Thus, it also suffers from type I and type II errors.

• Both equivalence testing and NHT use the same test statistic Tml. However,
the rejection regions are different.

◦ Equivalence testing aims to reject a model that is not qualified for

further consideration, and it happens when Tml falls in the interval

[0, cα(ε0)].

◦ NHT is to reject a correct model that we ideally would like to have, and

it happens when Tml falls in the interval (c1−α,∞), where c1−α is the

right-tail critical value of χ2

df

◦ A better (less misspecified) model corresponds to more power in

equivalence testing whereas a worse model corresponds to more power in

NHT.

• The implication of type I error in equivalence testing is different from that in

NHT.

◦ With equivalence testing, type I error occurs when claiming a

not-acceptable model (Fml0 > ε0) as acceptable, and the probability of
committing such errors is controlled at level α.

◦ With NHT, type I error occurs when claiming a correctly specified model

(Fml0 = 0) as a misspecified one (Fml0 > 0), and minimizing such errors
might seem a right thing to do. However, the error of treating a

misspecified model as a correctly specified one is left to chance.

• When cα(ε0) is smaller than c1−α and the observed statistic Tml falls between

these two numbers, we are unable to reject the null hypothesis in NHT and

cannot claim the hypothesis or model as acceptable either in equivalence
testing. Such a scenario indicates that, while not rejecting the conventional

null hypothesis, we cannot even prove that the size of model misspecification

is below a tolerable threshold.
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• When cα(ε0) is greater than c1−α and Tml falls between these two numbers,

we reject the conventional null hypothesis with NHT but at the same time,

according to ε0, we can tolerate the degree of approximation/misspecification

in the model.

• Because cα(ε0) increases with ε0, there exists an ε0 such that cα(ε0) = c1−α.

Then, equivalence testing may seem to yield an identical conclusion with
NHT. But the results or implications are different.

◦ For equivalence testing at cα(ε0) = c1−α, we have agreed that a

misspecification at size ε0 = Fml0 in the model is acceptable

◦ Under NHT we have no information on the degree of misspecification in
the current model.
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Minimum tolerable size (T -size) of misspecification

• Comparing an observed statistic to the critical value at a given level of

significance is a key step of conventional statistical inference

• A more informative element in conventional statistical inference is the

p-value, which is the area above Tml under the probability-density curve of
χ2

df .

• The concept of p-value in equivalence testing is defined similarly, it is the
area below the observed Tml under the density curve of the noncentral

chi-square distribution χ2

df(δ0).

• Like the p-value in NHT, with all other factors given, the p-value in

equivalence testing becomes smaller (more significant) as sample size

increases.

• In addition, the p-value in equivalence testing also depends on ε0, the

tolerable size of misspecification.

• An even more informative element in equivalence testing is the tolerable size

of misspecification according to which the current model is deemed as
acceptable for explaining the relationship among the observed variables.

• Clearly, if ε0 is tolerable, then any value below ε0 is also tolerable. However,
a smaller ε0 may render the current model as not acceptable.
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• We define the minimum tolerable size (T -size) of misspecification

corresponding to the observed Tml as the εt that satisfies

Tml = cα(εt), (4)

where εt = 0 if Tml ≤ cα.

• With the εt in (4), for any tolerable size ε0 that is greater than εt we can

reject the H0a in (3) and the probability of committing an error is less than α.

• If ε0 is less than εt, then we will have to tolerate a larger type I error or to

reformulate the model for research to proceed.

• The T -size in equivalence testing plays essentially the same rule as that of

p-value in NHT.

• We might relate the T -size εt to RMSEA or other fit indices, and also call

the resulting fit indices T -size.
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Continuation of the example

• For the 2nd confirmatory factor model, Tml = 28.098, corresponding to a
p-value=.212 when referred to χ2

23
; RMSEA = .039, and the 95% CI for the

population RMSEA is [0, .090]

• With equivalence testing, letting α = .05 and solving equation (4) with

Tml = 28.098 yields T -size εt = .158 and RMSEAt = .083, corresponding to

ncp δt = (N − 1)εt = 22.705.

• We are 95% confident that the size of misspecification is no more than .158

as measured by Fml0, or equivalently no more than .083 as measured by
RMSEA, or no more than 22.705 as measured by ncp.

• If we can tolerate a misspecification of RMSEAt = .083, then we can proceed
with the 2nd factor model with 95% confidence.
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Continuation of the example

• The T -size εt is simply the upper limit of the CI for Fml0 = δ/(N − 1) with

confidence level (1 − 2α) (see e.g., Venables, 1975).

• It follows from the correspondence between confidence interval and null

hypothesis testing, the T -size RMSEAt = .083 is simply the upper limit of
the .90 confidence interval for RMSEA.

• We have an R program that calculates the T -size RMSEA based on the
solution of εt in equation (4) for any 0 < α < 1.

• The R program also calculates the T -size comparative fit index (CFI) to be

introduced in the next section. The code of the program can be downloaded

at

http://www3.nd.edu/~kyuan/EquivalenceTesting/T-size_RMSEA_CFI.R,
and we briefly introduce the application of the program in an appendix.
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Equivalence Testing with comparative fit index (CFI)

• Bentler (1990) defined CFI, which involves comparing a substantively

interesting model with a base model, and the goodness of the model should

be judged relatively.

• The most widely used base model is the independence model (all observed

variables are independent)

• Let Fmli0 be the discrepancy between the population and the independence

model, and Fml0 be the discrepancy for the interesting model

• The population CFI is defined as

CFI = 1 −
δ

δi
= 1 −

Fml0

Fmli0
,

and the agreed upon value for good model is CFI ≥ .95

• Thus, in equivalence testing, the default hypothesis is

H0a : CFI < CFI0. (5)

• Instead of working out a procedure of testing the hypothesis in (5), we will

develop an estimate for T -size CFIt that satisfies

P (CFIt ≤ CFI) ≥ 1 − α, (6)

• With a CFIt that satisfies (6), we will reject the H0a in (5) for any value of

CFI0 that is smaller than CFIt, and type I error is controlled at level α.

• Alternatively, we should not accept the current model if we cannot tolerate a

misspecification with size CFIt.
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Equivalence Testing with CFI

• We will use the idea of Bonferroni correction to obtain a CFIt that satisfies
the probability specified in (6).

• Let εt and εit be defined by

Tml = cα/2(εt) and Tmli = c1−α/2(εit), (7)

• It follows from the definitions of εt and εit that (see e.g., Venables, 1975)

P (Fml0 ≤ εt) = 1 − α/2 and P (Fmli0 ≥ εit) = 1 − α/2. (8)

• Thus,

P ({Fml0 ≤ εt} ∩ {Fmli0 ≥ εit}) ≥ 1 − α. (9)

• When εt ≤ εit and εit is positive, define

CFIt = 1 −
εt

εit
, (10)

then the CFIt in (10) can serve as the T -size CFI.

• Although both εt and εit are non-negative, it is possible that εit < εt. For the

purpose of CFIt ∈ [0, 1], a modified definition of CFIt is

CFIt = 1 −
εt

max(εit, εt)
.

• In contrast, the conventional sample CFI is defined as

CFIc = 1 −
max(Tml − df, 0)

max(Tmli − dfi, 0)
,

which is simply a descriptive statistic
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• For the 2nd confirmatory factor model, Tml = 28.098, corresponding to a

p-value=.212 when referred to χ2

23
; RMSEA = .039, and the 95% CI for the

population RMSEA is [0, .090]

• With equivalence testing, letting α = .05 and solving equation (4) with

Tml = 28.098 yields T -size εt = .158 and RMSEAt = .083

• The sample CFI is given by CFIc = .989, and at α = .05, the T -size CFI is

CFIt = .931.

• We are 95% confident that the population CFI is above .931.

• If using the cutoff values established for CFIc (e.g., Hu & Bentler, 1999) to

judge the size of CFIt, then the 2nd factor model may not be deemed as

achieving an acceptable level of fit

• We need to have new rules for evaluating the goodness of models according

to T -size
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Adjusted Cutoff Values of RMSEA with Equivalence Testing

• We denote the conventional cutoff values of RMSEA as RMSEAc and those
in equivalence testing as RMSEAe, which are intended norms when judging

the size of RMSEAt

• Of course, any norms or cutoff values cannot avoid arbitrariness. They

simply facilitate researchers to communicate their findings.

• Since .01, .05, .08 and .10. are widely accepted cutoff values for RMSEAc to

distinguish between excellent, close, fair, mediocre, or poor fit, we will

examine the values of RMSEAt at each of these values of RMSEAc to obtain
the corresponding RMSEAe.

• Notice that at the sample level, the RMSEAt corresponding to equation (4)
is determined by Tml, which is further determined by RMSEAc according to

Tml = (N − 1)df(RMSEAc)
2 + df. (11)

In our study, at each value of RMSEAc = .01, .05, .08 and .10 we generated

Tml according to equation (11) for df = 1, 2, . . ., 100; and for 24 conditions

on sample size N : 30, 40, 50, 60, 80, 100, 120, 150, 200, 250, 300, 350, 400,

450, 500, 600, 700, 800, 900, 1000, 1500, 2000, 2500, 3000. So, for each value
of RMSEAc, there are 2400 values of RMSEAt, and we use these 2400 values

as the dependent variable to explore the functional relationship between

RMSEAt and RMSEAc. The RMSEAe is simply the predicted value of
RMSEAt by this functional relationship.

• Since RMSEA = [δ/(n × df)]1/2, we choose to linearly predict ln(RMSEAt)
by at each value of RMSEAc = .01, .05, .08 and .10, with 11 predictors

ln(df), [ln(df)]2, df1/5, df1/2, df , ln(n), [ln(n)]2, n1/5, n1/2, n, and ln(df) ln(n).

• When all the 11 predictors are included, the R-squares of linearly predicting

ln(RMSEAt) are R2 = .9997, .9996, .9978, and .9958 at RMSEAc = .01, .05,

.08, and .10, respectively.

• Because the 11 predictors are correlated and they may not all be needed, we

next used the best subset regression to select the most relevant predictors.
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Table 1. The estimated regression coefficients for best subset of predictors of

ln(RMSEAt), with RMSEAe = exp(ye).
predictors ye01 ye05 ye08 ye10

intercept 1.34863 2.06034 2.84129 2.36352
ln(df) -.51999 -.62974 -.54809 -.49440

[ln(df)]2 .01925 .02512 .02296 .02131

ln(n) -.59811 -.98388 -.76005 -.64445
[ln(n)]2 .05442 .10229 .09043

n1/5 -1.11167 -1.01634

n1/2 .00902

n -.00005188
ln(df) ln(n) .01796 .05260 .04845 .04422

R2 .9997 .9996 .9977 .9955
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Adjusted Cutoff Values of RMSEA with Equivalence Testing

• Let ye be the predicted value by the linear combination of predictors
according to Table 1, we can obtain the value of RMSEAe = exp(ye)

corresponding to RMSEAc = .01, .05, .08, and .10, respectively.

• We will refer to these values as adjusted cutoff values.

• To facilitate applications, the formulas for evaluating the adjusted cutoff

values are implemented in R code, which can be downloaded at

http://www3.nd.edu/~kyuan/EquivalenceTesting/RMSEA_e.R, where the

needed inputs are the degrees of freedom df and sample size N .

• Continuation of the example: For the 2nd factor model, we have

RMSEAc = .039, and RMSEAt = .083 at α = .05. At n = 144 and df = 23,
the values of RMSEAe = exp(ye) are .069, .091, .116, and .135, respectively.

Thus, according to the adjusted cutoff values, RMSEAt = .083 also indicates

that the modified model achieves close fit.
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Adjusted Cutoff Values of CFI with Equivalence Testing

• Cutoff values for CFI are not as finely defined as RMSEA, and most
researchers only use .95 as the cutoff values

• We propose to use CFIc = 1 − RMSEAc = .99, .95, .92 and .90, and call the
corresponding models as achieving excellent, close, fair, mediocre, and poor

fit.

• With similar design, we obtained the cutoff values for the T -size CFI

corresponding to CFIc = .99, .95, .92 and .90.
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Table 2. The estimated regression coefficients for best subset of predictors of

ln(1 − CFIt), with CFIe = 1 − exp(ye).
predictors ye99 ye95 ye92 ye90

intercept 4.67603 4.12132 6.31234 5.96633
ln(df) -.50827 -.46285 -.41762 -.40425

[ln(df)]2 .01554 .01384

df1/5 .87087 .52478

[ln(dfi)]
2 -.00563 -.00411

df
1/5

i -.59613 -.31832

ln(n) -1.89602 -1.74422 -1.30229 -1.20242

[ln(n)]2 .10190 .13042 .19999 .18763

n1/5 -2.17429 -2.06704

n1/2 -.02360

ln(df) ln(n) .03729 .04215 .05342 .05245

ln(dfi) ln(n) -.01520 -.01533

R2 .9836 .9748 .9724 .9713
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Adjusted Cutoff Values of CFI with Equivalence Testing

• Let ye be the predicted value by the linear combination of predictors
according to Table 2, we can obtain the value of CFIe = 1 − exp(ye)

corresponding to CFIc = .99, .95, .92, and .90, respectively.

• We will refer to these values as adjusted cutoff values, and they allow us to

nominally judge the tolerance level of CFIt using established norms for

judging the value of CFIc.

• To facilitate applications, the formulas for evaluating the adjusted cutoff

values are implemented in R code, which can be downloaded at
http://www3.nd.edu/~kyuan/EquivalenceTesting/CFI_e.R, where the

needed inputs are the degrees of freedom df , sample size N and the number

of variables.

• Continuation of the example: For the 2nd factor model, we have CFIc = .989

and CFIt = .931 at α = .05.

• At N = 144 and df = 23, the adjusted cutoff values of CFIe are .941, .874,

.828, and .798, respectively.

• Thus, CFIt = .931 also indicates that the modified model achieves close fit.

• It is important to emphasize once again that the correspondence between

CFIc and CFIe or between RMSEAc and RMSEAe is simply to facilitate the

communication of the goodness of the model as measured by T -size
(RMSEAt or CFIt).

• Even when the model is excellent, the tolerable size of misspecification is
much greater in the case of RMSEA and smaller in the case of CFI
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Conclusion

• When researchers choose SEM for data analysis, they aim to use the model

to account for the relationship among the observed variables, and to further
elaborate on values of the parameter estimates.

• However, conventional null hypothesis test is developed to reject the model
under the null hypothesis rather than accept it.

• Equivalence testing allows a researcher to accept a model for data analysis

• The most important feature of equivalence testing is that it gives us the

desired confidence for the current model with a misspecification being
smaller or greater than the observed T -size (RMSEAt or CFIt).

• In summary, equivalence testing gives SEM the needed property to be a

scientific methodology, and we thus propose that conventional null

hypothesis testing be replaced by equivalence testing and recommend that

researchers start routinely reporting the T -size in order to convey the
goodness of the model.

• We have focused mainly on using equivalence testing to endorse SEM models,
equivalence testing can replace conventional null hypothesis testing when

evaluating all types of models that are further used for data analysis (e.g.,

times series models, generalized linear models, item response models, etc.).
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