
Psychological Bulletin
1993, Vol. 114 , No. 3, 552-566

Copyright 1993 by the American Psychological Association, Inc
0033-2909/93/S3.00

Confirmatory Factor Analysis and Item Response Theory:
Two Approaches for Exploring Measurement Invariance

Steven P. Reise, Keith F. Widaman, and Robin H. Pugh

This study investigated the utility of confirmatory factor analysis (CFA) and item response theory
(IRT) models for testing the comparability of psychological measurements. Both procedures were
used to investigate whether mood ratings collected in Minnesota and China were comparable. Sev-
eral issues were addressed. The first issue was that of establishing a common measurement scale
across groups, which involves full or partial measurement invariance of trait indicators. It is shown
that using CFA or IRT models, test items that function differentially as trait indicators across groups
need not interfere with comparing examinees on the same trait dimension. Second, the issue of
model fit was addressed. It is proposed that person-fit statistics be used to judge the practical fit of
IRT models. Finally, topics for future research are suggested.

Much research and debate has been motivated by the ques-
tion of how to establish that a test measures the same trait di-
mension, in the same way, when administered to two or more
qualitatively distinct groups (e.g., men and women). The ques-
tion can also be posed as follows: Are test scores for individuals
who belong to different examinee populations comparable on
the same measurement scale? The objectives of this study were
to review linear confirmatory factor analysis' (CFA; Long,
1983) and item response theory (IRT; Lord, 1980) approaches
to addressing this important question and to suggest, by way
of real-data application, advantages and disadvantages of each
approach.

Measurement Invariance

To compare groups of individuals with regard to their level
on a trait, or to investigate whether trait-level scores have
differential correlates across groups, one must assume that the
numerical values under consideration are on the same measure-
ment scale (Drasgow, 1984, 1987). That is, one must assume

Steven P. Reise, Keith F. Widaman, and Robin H. Pugh, Department
of Psychology, University of California at Riverside.

Steven P. Reise and Keith F. Widaman contributed equally to the
article and were simply listed in alphabetical order. The present work
was supported in part by intramural grants from the Academic Senate,
University of California at Riverside, to Steven P. Reise and Keith F.
Widaman; by Grants HD-21056 and HD-22953 from the National In-
stitute of Child Health and Human Development to Keith F. Widaman;
and by Grants G0085300208 and H023C80072 from the U.S. Office of
Education (Donald MacMillan, principal investigator).

We would like to acknowledge the assistance of Jiayuan Yu, who de-
veloped the translated version of the items and collected data on the
Chinese subjects. The most helpful comments of Roderick McDonald,
Robert MacCallum, Bengt Muthen, Richard Wagner, and the three
anonymous reviewers of a previous version of this article are gratefully
acknowledged.

Correspondence concerning this article should be addressed to Steven
P. Reise, Department of Psychology, University of California, Riverside,
California 92521.

that the test has "measurement invariance" across groups. If
trait scores are not comparable (i.e., on the same measurement
scale) across groups, then differences between groups in mean
levels or in the pattern of correlations of the test with external
variables are potentially artifactual and may be substantively
misleading.

Because establishing measurement invariance of a test across
distinct groups is critical to progress in many domains of psy-
chology, much discussion has been devoted to this topic (e.g.,
Byrne & Shavelson, 1987; Drasgow & Kanfer, 1985; Frederik-
sen, 1987; Hui & Triandis, 1985; Linn & Harnisch, 1981; van
der Flier & Drenth, 1980). One central principle, evident
throughout this literature, is that psychological measurements
are on the same scale (i.e., comparable) when the empirical re-
lations between the trait indicators (e.g., test items) and the trait
of interest are invariant across groups.

As Windle, Iwawaki, and Lerner (1988, p. 551) explained,
the primary approach to addressing measurement invariance
"involves the study of similarities and differences in the covari-
ation patterns of item-factor relations." Prior to the 1970s, var-
ious heuristic strategies for checking the invariance between
two or more factor structures were proposed (Reynolds & Har-

1 We limit our attention to traditional linear factor analysis. Because
of this restriction in focus, we do not consider in detail certain work on
relations between factor analysis and IRT models. For example, for 30
years McDonald (e.g., 1962, 1967, 1982, in press; Etezadi-Amoli & Mc-
Donald, 1983) has discussed the relations between IRT (or latent trait
approaches) and nonlinear factor analysis, specifically as alternate pa-
rameterizations of each another. Also, Muthen (1984, 1988) introduced
IRT-like threshold estimates into confirmatory structural models and
Takane and de Leeuw (1987) recently proved the equivalence of IRT
and factor analysis of discretized (e.g., dichotomous) variables. How-
ever, we chose to compare linear factor analysis and IRT because they
are the most commonly encountered techniques in substantive applica-
tions and are most widely available as distributed programs. Extending
the comparisons among methods to more recent developments, such as
those discussed by McDonald, Muthen, and Takane and de Leeuw, is
beyond the scope of this article but would be a worthwhile topic for
future investigations.
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Table 1
Item Means, Standard Deviations, and Intercorrelations
for the Minnesota and Nanjing Samples

Minnesota Nanjing

Item M SD M SD

1. Nervous
2. Worried
3. Jittery
4. Tense
5. Distressed

2.17
2.52
2.01
2.35
2.29

1.12
1.22
1.09
1.19
1.25

1.89
2.09
1.60
2.15
1.93

0.93
1.11
1.01
1.04
1.12

_
.29
.30
.39
.40

.79

—.25
.31
.51

.66

.55

—.20
.42

.73

.74

.63
—
.52

.66

.84

.57

.92
—

Note. Correlations among items for the Minnesota sample are listed above the diagonal; correlations
among items for the Nanjing sample are listed below the diagonal.

ding, 1983). Although discussions of these techniques still ap-
pear in the psychometric literature, interest in them has de-
clined substantially with the advent of CFA (Joreskog, 1971)
and IRT (Lord, 1980) modeling. The theory underlying, and
applications of, CFA and IRT have been discussed in the psy-
chometric literature, and these techniques are widely used in
large-scale achievement testing programs. Nevertheless, these
newer models, especially IRT, have failed to find frequent appli-
cation in the context of more typical, substantive research prob-
lems for which their use might be quite illuminating.

To remedy this situation, at least in part, we demonstrate the
application of CFA and IRT models to real data. Our nominal
objective was to investigate the measurement invariance of
mood adjective ratings gathered from American and Chinese
subjects. Our practical goals were (a) to focus attention on sim-
ilarities and differences between CFA and IRT modeling, (b) to
provide conceptual clarity regarding key aspects of the investi-
gation of measurement invariance, and (c) to identify topics re-
quiring further research.

General Method

Subjects

Item response data were collected from two distinct groups. The first
sample consisted of 540 undergraduates attending the University of
Minnesota. The second sample contained 598 undergraduates attend-
ing the University of Nanjing Normal in China.

Measure

As part of a larger project, each subject rated his or her current mood
on a five-item measure of negative affect. This measure, called NA5, is
the basis of all analyses reported in this article. NA5 consists of the
adjectives nervous, worried, jittery, tense, and distressed, to which re-
sponses are obtained on a Likert-format rating scale ranging from not
at all (I) to extremely (5).

Chinese equivalents of the English terms were created by a back-
translation method (Brislin, 1970). The NA5 item means, standard de-
viations, and item intercorrelations for both samples are provided in
Table 1. For the raw scale scores, coefficient alphas were .84 and .71 in
the Minnesota and Nanjing samples, respectively. The mean raw scores
on the NA5 scale were 11.3 (SD = 4.6) and 9.6 (SD = 3.5) for the Min-
nesota and Nanjing samples, respectively.

From the raw score statistics, it appears that the Minnesota sample is

higher and more variable on the negative affect trait dimension relative
to the Nanjing sample; such speculations are, however, premature. To
compare groups on this psychological dimension, one must be assured
that the trait scores are on a common measurement scale. As a result,
one must work at the level of the latent variable presumed to underlie
and cause variation in the observed item responses. We now turn to this
task.

The Linear Confirmatory Factor Analysis Approach

The Linear Confirmatory Factor Model

Application of CFA for testing measurement invariance orig-
inated in the early 1970s (Joreskog, 1971; McGaw & Joreskog,
1971). In the typical CFA model, each measured variable Xm,
where m = 1 , . . . , « , is represented as a linear function of one
particular latent variable, £„, where p= 1 , . . . , r, and a stochas-
tic error term, 5m. This relationship may be represented as

Xm = Xm»& + «m, (i)
where \mp is the regression coefficient representing the regres-
sion of Xm on £,, and other terms are as just denned. Assuming
the presence of n measured variables and r latent variables and
concatenating the parameters in Equation 1 into matrices leads
to the following:

X = A? + 6, (2)

where X is a (n X 1) column vector of scores of person ;' on n
measured variables, A is a (n X r) matrix of loadings of the n
measured variables on the r latent variables, £ is a (r X 1) matrix
of factor scores of person ; on the r latent £ variables, and 5 is a
(n X 1) matrix of measurement residuals. It is possible to show
that Equation 2 implies the following equation:

= A*A' (3)

where ~L is the (n X n) population covariance matrix among the
measured variables in Equation 2, $ is a (r X r) matrix of co-
variances among the latent variables, * is a (n X n) matrix of
covariances among the measurement residuals or unique fac-
tors, and A is as just denned.

The model in Equation 3 can be fit to a sample covariance
matrix S from a sample of size N, leading to

= 2, (4)
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where 5" is the (n X n) observed sample covariance matrix
among measured variables and the A, <§>, ̂ , and 2 matrices con-
tain sample estimates of the population parameters in the cor-
responding matrices in Equation 3. As shown in Equation 4, the
observed covariances among the n measured variables in S are
approximated by the linear CFA solution A $ A' + 'I'; this solu-
tion, in turn, produces 2, which contains estimates of the pop-
ulation covariances among the measured variables, I,, under the
assumption that the stated model is a proper representation of
the data and therefore holds in the population.

For multiple-group linear CFA modeling, Equation 4 may be
modified to denote group membership as

•S'.= A^A'+*,= 2,, (5)

where all matrices are as denned earlier, except for the addition
of the g subscript to denote that the matrices were derived from
the gth sample.

The models in Equations 1-5 are covariance structure
models meant to apply only to analyses of covariance matrices.
Among others, Cudeck (1989) discussed the ways in which ap-
plication of covariance structure models to correlation matri-
ces, even in one-sample analyses, may lead to inaccurate results.
In multiple-group modeling, additional important issues arise;
as a result, analyses must be performed on within-group covar-
iance matrices rather than within-group correlation matrices.
The reason that within-group correlation matrices are inappro-
priate for multiple-group analyses is that, to investigate the in-
variance across groups in various model parameters, such as the
regression weights (i.e., the \mp estimates) relating latent vari-
ables to measured variables, the scores on the measured vari-
ables must be on the same scale across groups. Standardizing
the data separately for each of the g groups (e.g., to a z-score
metric, with unit variance for each variable within each group)
would lead to different rescalings of measured variables within
each group, destroying the comparability across groups of the
common scale for the measured variables and leading to an in-
ability to compare parameter estimates across groups. Further
details on these and other more technical matters are discussed
in many standard references, such as Joreskog (1971) and Jore-
skog and S6rbom( 1989).

In this study, the number of measured variables (i.e., items)
in each group was five, and we assumed that a single common
factor was being measured in each group. Hence, for both the
Minnesota and Nanjing samples, S was a (5 X 5) covariance
matrix among the items, A was a (5 X 1) matrix of loadings of
the five items on a single negative affect factor, $ was a (1 X 1)
covariance matrix for the common factors (i.e., the variance of
£), and ¥ was a (5 X 5) matrix of unique factor covariances.
Unique factors were assumed to be uncorrelated; thus, all off-
diagonal elements in * were fixed at zero.

Equation 4 suggests the principle by which estimated CFA
models can be evaluated: Latent factor models imply particular
covariance matrices. The statistical acceptability of an esti-
mated CFA model depends on how close the estimated covari-
ance matrix t is to the observed covariance matrix S.

Assessing the Fit of a CFA Model
There are two typical ways of judging the adequacy of an es-

timated CFA model. First, using certain methods of estimation

(e.g., maximum likelihood), CFA programs, such as LISREL,
provide a likelihood ratio chi-square statistic to test whether the
covariance matrix reproduced from the estimated parameters,
2, differs significantly from the observed sample covariance ma-
trix 5. In the multiple-groups CFA context, a single chi-square
value assessing aggregate fit across the 2^ and Sg matrices for
the multiple groups is obtained.

The likelihood ratio chi-square statistic appears to be overly
sensitive to trivial discrepancies between S^and S^ if the sample
size is large (Bentler & Bonett, 1980). Hence, so-called "practi-
cal" indices of fit (Bentler & Bonett, 1980; Marsh, Balla, & Mc-
Donald, 1988) are often used to evaluate CFA models. Al-
though the relative merits of practical fit indices are much de-
bated, it is safe to follow two principles. First, it is useful to
calculate two or more indices of practical fit when evaluating a
model. Second, no CFA model should be accepted or rejected
on statistical grounds alone; theory, judgment, and persuasive
argument should play a key role in defending the adequacy of
any estimated CFA model.

To assess fit, we used the likelihood ratio chi-square statistical
index and three practical fit indices: (a) the Tucker-Lewis Index
(TLI; Tucker & Lewis, 1973), which was also termed the non-
normed fit index (NNFI) by Bentler and Bonett (1980); (b) a
noncentrality index (NI) derived independently by Bentler
(1990) and by McDonald and Marsh (1990); and (c) the root
mean square error of approximation (RMSEA), proposed by
Steiger and Lind (1980). The TLI was found by Marsh et al.
(1988) to be among the best of the then-available indices of
practical fit, and the NI has performed somewhat better than
the TLI in recent simulations (Bentler, 1990), especially in small
samples. These two practical fit statistics are relative fit indices
(cf. Bentler, 1990; McDonald & Marsh, 1990) indicating
roughly the proportion of covariation among indicators ex-
plained by the model relative to a null model of independence
in the indicators. Values near 0.0 indicate poor fit, whereas val-
ues near 1.0 indicate good fit; practical fit index values greater
than .90 are usually considered satisfactory. In contrast, the
RMSEA is an absolute fit measure assessing badness of fit of a
model per degree of freedom in the model. The lower bound of
the RMSEA is zero, a value obtained only if a model fits a set of
data perfectly. Browne (1990) stated that RMSEA values of
about .05 indicate close fit of a model to data and that values of
about .08 reflect reasonable fit of a model.

Specifying Measurement Invariance

The test of measurement invariance across groups in CFA
models is equivalent to the test of whether the factor loading
matrix, A,, in Equation 5 is invariant across groups (Alwin &
Jackson, 1981; Sorbom, 1974). That is, within the context of
this study, the mood adjectives must relate to the single latent
trait in the same way for the Minnesota and the Nanjing sam-
ples. The hypothesis of full measurement invariance for two
groups can be expressed formally as H0: A, = A2 , assuming that
this model holds exactly in the population. No between-group
equality restrictions are placed on the diagonal elements of the
$g or Vg matrix, because groups are likely to differ with respect
to their variances on the latent factor and on the unique factors.
Among others, MacCallum and Tucker (1991) argued that fac-
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tor loadings should, in theory, be invariant over samples from a
given population, whereas factor variances and covariances are
sample specific. The hypothesis of full measurement invariance
can be tested with the multiple-group CFA estimation routines
provided in LISREL (Joreskog & Sorbom, 1989).

The Baseline Model in CFA

The first step in a multiple-group CFA analysis is to compute
the covariances among the observed variables, Sg, for each
group. Then, because we assumed that a single latent trait may
have accounted for the observed item covariances, we freely es-
timated a one-factor model for each Sg matrix. That is, we freely
estimated values in the Ag, $g, and"*x matrices for each Sg ma-
trix simultaneously. This freely estimated model, which may be
called the "baseline model," serves as a benchmark against
which the fit of more restricted models is compared.

In any CFA model, an indeterminacy exists between the scale
of the item parameters (the \mps relating the latent variable to
the measured variables) and the scale, or variance, of the latent
factor, £. That is, the values of the factor loadings depend on the
scale of the latent factor. If the scale for the item parameters is
to be identified, the scale for the latent variable must be speci-
fied, or vice versa. This metric identification problem is typi-
cally resolved by fixing the value of one factor loading \mp to
a constant (usually 1.0; cf. Joreskog & Sorbom, 1989) or, less
common, by fixing the variance of the latent variable (the diag-
onal of $) to a constant (usually 1.0).

For illustrative purposes, we estimated the baseline model in
three distinct ways in this study. In the first version (a model
termed Baseline 1), \s t, the factor loading for the item nervous
was fixed equal to 1.0 in both groups. This specification was
used to freely estimate $, [, the variance of £, in each group. In
the second version of the baseline model, termed Baseline 2,
the factor variance ($11) was fixed to 1.0 in both groups. In the
Baseline 3 model, the factor variance (*,,) was fixed at 1.0 in the
first group, the corresponding parameter ($n) was estimated in
the second group, and the first factor loading (Xn) was con-
strained to equality across groups. In the Baseline 3 model, the
constraint on the first factor loading was sufficient to identify all
remaining parameter estimates in the second group, given the
fixing of the factor variance, $1 ], in the first group.

All three of the baseline models have identical levels of statis-
tical and practical fit because they are simple respecifications of
one another. However, the interpretations of model parameters
differ across the models. In Baseline 1, the scale of £ (the latent
factor) within each group is defined by the item nervous. If this
item had previously been shown to provide equivalent measure-
ment across groups, then the remaining Xmp estimates in the
Baseline 1 model could be meaningfully compared across
groups. In Baseline 2, the scale of £ is defined within each group
by specifying its variance. This does not imply, however, that the
scale for £ is comparable across groups or that the factor load-
ings, \mp, are easily or directly comparable across groups. In
fact, the factor loading estimates, \mp, may be invariant across
groups in the population; however, if the groups differ markedly
in variance on the latent variable, then the factor loading esti-
mates may appear (incorrectly) to vary markedly across groups
as a result of the different rescalings of the latent variable within

each group. In the Baseline 3 model, the variance of the latent
variable is fixed at unity in one sample. The constraint on the
first factor loading will then lead to comparability of factor load-
ings across groups if the item whose factor loading is con-
strained to invariance across groups has been shown previously
to provide equivalent measurement across groups; the factor
variance in the second group is estimated relative to the unit
variance in the first group.

Parameter estimates and fit statistics for all three versions of
the baseline model are shown in Table 2. Because the chi-square
value for each model is more than seven times larger than the
degrees of freedom, none of the baseline models adequately ex-
plains the observed data on statistical grounds (p < .0001). In
terms of practical fit, however, the freely estimated one-factor
baseline models are adequate for the current data (TLI = .915,
NI = .958, and RMSEA = .076). The TLI and the NI reflect fit
relative to the null model, which had x2(20, N = 1,138) =
1,551.74, p < .0001. These fit indices represent an encouraging
result because a well-fitting and theoretically viable baseline
model should be established before further invariance analyses
are conducted.

Confirming our earlier observations, the estimated factor
loadings from the Baseline 1 model, shown in the second and
third columns of Table 2, appear quite similar across the two
groups; the possible exception is X5i, which had values of 1.10
and 1.57 for the Minnesota and Nanjing samples, respectively.
The relative comparability of factor loadings occurred in the
context of rather large differences in variance on the latent vari-
able (i.e., the $1 \ estimates), with latent variable variances of .68
and .29 for the Minnesota and Nanjing samples, respectively. In
contrast, when the latent variable variance is fixed at unity in
each group in the Baseline 2 model (see columns 4 and 5 of
Table 2), all estimated factor loadings appear to differ consider-
ably across the two samples. Finally, in the Baseline 3 model,
the first factor loading was constrained to equality across
groups. This restored the across-group comparability of the re-
maining factor loadings, which appear rather similar across
groups; the exception is X 5 , , which differed considerably across
groups, as in the Baseline 1 model. The freely estimated vari-
ance in the Nanjing sample was .42, which indicates that the
variability on the latent variable in this sample was considerably
less than that for the Minnesota sample, the variance for which
had been fixed at unity to identify the model.

Testing for Full Measurement Invariance in CFA Models

With fit values from the freely estimated one-factor model
established, the hypothesis of full measurement invariance, em-
bodied in the test that A, = A2, could then be evaluated. We
tested this hypothesis using a variant of Baseline 3; here, we
ran LISREL exactly as in the Baseline 3 model but with the
constraint that all five \mp parameters were invariant across
groups. The resultant chi-square value from this restricted
model may be compared with the respective value for the Base-
line 3 model because the full measurement invariance model is
nested within the Baseline 3 model (cf. Bentler & Bonett, 1980,
on nested models). The full measurement invariance model is
nested within the Baseline 3 model because one may arrive at
the full measurement invariance model simply by applying con-
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Table 2
Estimated Parameter Matrices and Fit Statistics for the Baseline, Full Measurement In variance,
and Partial Measurement Invariance Confirmatory Factor Analysis Models

Parameter

Baseline 1 Baseline 2 Baseline 3 Full invariance Partial invariance

Minnesota Nanjing Minnesota Nanjing Minnesota Nanjing Minnesota Nanjing Minnesota Nanjing

A] j
A2l

C
X51

0ii
^n
fe

^33

^44

^55

x2

rf/
X2 change
^f change
Tucker-Lewis index
Noncentrality index
Root mean square error

of approximation

1.00
1.07
0.83
1.12
1.10
0.68
0.58
0.70
0.73
0.57
0.73

74.84
10

—
—

.915

.958

.076

1.00a

1.06
0.88
1.14
1.57
0.29
0.58
0.91
0.81
0.72
0.54

0.83a

0.89
0.68
0.92
0.91
1.00a

0.58
0.70
0.73
0.57
0.73

74.84
10

——
.915
.958

.076

0.54
0.57
0.47
0.61
0.84
1.00"
0.58
0.91
0.81
0.72
0.54

0.83
0.89
0.69
0.92
0.91
1.00a

0.58
0.70
0.73
0.57
0.73

74.84
10

—
—

.915

.958

.076

0.88
0.73
0.94
1.30
0.42
0.58
0.91
0.81
0.72
0.54

1.00
0.60
0.71
0.74
0.57
0.70

0.81
0.86
0.67
0.91
0.98

a

90.03
14
15.19
4
.929
.950

.069

0.52
0.55
0.90
0.81
0.69
0.65

0.82
0.88
0.69
0.93

0.91
1.00a

0.58
0.70
0.73
0.57
0.73

75.15
13
0.31
3
.938
.959

.065

1.28
0.43
0.58
0.91
0.81
0.72
0.54

Note. Parameter estimates that are centered between the Minnesota and Nanjing columns (e.g., the 0.83 loading for X , , in the Baseline 3 model)
represent parameters constrained to equality across samples.
a Parameters fixed at tabled values to identify each model.

straints on parameters in the Baseline 3 model; no new param-
eter estimates are introduced in the full measurement invari-
ance model that were not present in the Baseline 3 model. The
difference in chi-square values for two nested models is itself
distributed as a chi-square value with degrees of freedom equal
to the difference in degrees of freedom for the two models. If the
restricted, nested model results in a nonsignificant increase in
chi-square over that for the less restricted model, then the hy-
pothesis of full measurement invariance is tenable.

We chose to modify the Baseline 3 model to form the full
measurement invariance model because the resulting estimates
would be in an easily interpreted metric. It is clear from Table 2
that one may arrive at the full measurement invariance model
by constraining the remaining four factor loadings in the Base-
line 3 model, X2i through X5 i , to equality across groups. These
four additional constraints account for the difference of four
degrees of freedom between the baseline and full measurement
invariance models. Similar additional across-group constraints
on factor loadings X21 through X5, in the Baseline 1 model would
also have achieved a version of the full invariance model but
would have resulted in latent variable variances in both groups
that differed markedly from unity, leading to estimated vari-
ances that would be more difficult to interpret. Finally, it is
more difficult to demonstrate that the full invariance model is
nested within the Baseline 2 model. However, because all three
baseline models are respecifications of one another, the full
measurement invariance model is nested within the Baseline 2
model as well.

As shown in Table 2, constraining the A matrix to invariance
across groups led to a statistically significant decrease in model
fit. Moving from the Baseline 3 model to the full invariance

model resulted in a significant change in the statistical index of
fit, x2(4, N = 1,138) = 15.19, p < .001. The practical indices of
fit provided a more mixed message, with the TLI and RMSEA
attaining somewhat improved values and the NI a marginally
worse value. Given the statistical test results, we rejected the full
invariance hypothesis; all items are not related to the trait in
the same way across the two groups. If a common set of \mp

parameters were used to estimate factor scores within each
group, these estimates might be biased and potentially mislead-
ing indicators of individual and group differences.

Partial Measurement Invariance in CFA Models

Many researchers assume that if the full measurement invari-
ance hypothesis of A, = A2 is rejected, comparison of groups on
£ is not possible with these particular items. This assumption is
incorrect, however, because the only requirement to compare
groups on a latent variable is that partial measurement invari-
ance be established (see Byrne, Shavelson, & Muthen, 1989).
Partial measurement invariance occurs if some, but not all, of
the nonfixed values in A are invariant across groups and if these
invariant loadings define the latent metric. To ensure the non-
arbitrariness of the across-group comparisons, a majority of the
items on a given latent variable should have loadings that are
invariant across groups.

If the full invariance hypothesis is rejected, as it was here,
then further analyses are required to identify whether a subset
of items is invariant across groups. The search for a subset of
invariant items is facilitated by LISREL modification indices
(Mis). One MI value is computed for each fixed or constrained
parameter in a given LISREL model. MI values indicate how
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much the overall chi-square value would change if the con-
straint were lifted from the parameter, and each MI value is
associated with one degree of freedom.

After fitting and rejecting the full invariance model, MI val-
ues for the A matrix may be examined. If less than half of the
items have significant MI values in the A matrix, then partial
measurement invariance may hold. In this study, the only sta-
tistically significant MI values occurred for parameter X5 i ,
which had an MI of 13.97 in each sample. These MI values
suggest that the factor loading for the item distressed cannot be
equated across samples, as it was under the assumption of full
measurement invariance.

Testing for partial invariance required performing another
LISREL analysis. The specifications were the same as in the
full invariance model, except that the factor loading parameters
associated with statistically significant MI values were freely es-
timated for each group. Fit values from this model were then
compared, in the usual way, with the baseline model because
the partial invariance model is nested within the baseline
model. The parameter estimates and fit values for the model
with X51 freely estimated within each group are shown in the
last two columns of Table 2. Clearly, this model did not differ
significantly from the Baseline 3 model, either statistically, x2(3,
N = 1,138) = 0.31, ns, or practically, because all three indices
of practical fit were improved over comparable values for the
Baseline 3 model. All estimated parameters in the partial mea-
surement invariance model were statistically significant (p <
.0001); standard errors ranged from 0.041 to 0.100, and all as-
sociated z values were greater than 9.3. The estimated variance
on the latent variable for the Nanjing sample was 0.43 (SE =
0.053), more than 10 standard errors from unity (the value for
the Minnesota sample), indicating that the Nanjing sample ex-
hibited considerably less variability on the latent variable.

We concluded, therefore, that the items nervous, worried, jit-
tery, and tense provide equivalent measurement across groups,
whereas the item distressed does not. Individual differences can
then be scaled (i.e., factor scores could be estimated) with com-
mon weights for the invariant items but different weights, de-
pending on group membership, for the item distressed. The re-
sulting factor scores will be on a common scale and will be com-
parable. This illustrates that even if an item has a different
relationship to the latent variable across populations, individu-
als can be assessed on a common measurement scale.

Estimating Mean Differences on Latent Variables
Within CFA Models

The partially invariant model established earlier can be used
to estimate population group mean differences on | by perform-
ing a mean structures analysis with LISREL, as explained in
Byrne et al. (1989), Everitt (1984), and Muthen and Christ-
offersson (1981). Although we do not elaborate the technical
details of this procedure here, we report one finding. Following
the Baseline 3 and partial invariance models, we fixed the latent
variable variance at unity in the Minnesota sample and fixed
the mean for this group at zero; this scaling led to factor scores
for the Minnesota sample that were in a z-score metric. Forcing
factor loadings for the first four items to be invariant across
groups and allowing parameters associated with the fifth item

(distressed) to vary across groups (as in the partial invariance
model), the Nanjing sample mean was estimated as -0.38, and
the variance for the Nanjing sample was 0.43. Thus, the Nanj-
ing sample had a mean on the latent variable that was slightly
more than one third of a standard deviation lower than that of
the Minnesota sample (with the Minnesota sample used to de-
fine the a units), and the Nanjing sample exhibited rather re-
stricted variance on the latent variable (SD = 0.65) relative to
the Minnesota sample (SD = 1.00). As in the two-group covar-
iance structure analysis reported earlier, all parameters in the
final partial invariance mean structure analysis were highly sig-
nificant (p < .0001), with z values ranging upward from 6.2.

The magnitude of the differences between the two groups in
mean and variance on the latent variable may be evaluated in at
least two ways. First, parameter estimates may be contrasted
across groups relative to their standard errors. The Minnesota
distribution on £ was fixed at a mean of zero and variance of
unity. The Nanjing sample mean was —0.378 (SE = 0.060), so
the hypothesis that the means for the Minnesota and Nanjing
samples were equal may be rejected, z = —0.378/0.060 =
-6.27, p < .0001. In turn, the Nanjing sample variance was
0.431 (SE = 0.053); the hypothesis of equal variances across
groups on the latent variable may also be rejected, z = 8.20, p <
.0001.

The second, complementary way of evaluating the group
differences on the latent variable is to specify restricted forms
of the final partial measurement invariance model in which the
mean or variance (or both) on £ for the Nanjing sample is con-
strained to be equal to that for the Minnesota sample. The null
model for the mean structures analysis had x2(26, N = 1,138)
= 1,661.46, p < .0001; the comparable partial measurement
invariance model had a relatively much improved index of sta-
tistical fit, x2(18, N = 1,138) = 96.44, p < .0001, and quite
acceptable indices of practical fit (TLI = .931, NI = .952, and
RMSEA = .062). Constraining the Nanjing mean on £ to equal
that for the Minnesota sample led to a large change in the sta-
tistical index of fit, x2(l, N = 1,138) = 40.45, p < .0001, and
rather worse levels of practical fit (TLI = .901, NI = .928, and
RMSEA = .074). In addition, constraining the Nanjing sample
variance on £ to equal that for the Minnesota sample led to
another large change in the statistical index of fit, x20, N =
1,138) = 51.34, p< .0001, and even worse levels of practical fit
(TLI = .866, NI = .897, and RMSEA = .086). Each of these
model comparisons demonstrates that the differences between
the Minnesota and Nanjing samples in mean and variance on
the latent variable £ were rather large and significant.

The Item Response Theory Approach

The Item Response Theory Model

Whereas CFA models account for the covariance between test
items, IRT models account for examinee item responses. To ac-
complish this, IRT models stipulate a nonlinear monotonic
function (called an item response function, or IRF) to account
for the relation between examinee level on a latent variable (de-
noted by 0) and the probability of a particular item response
(Lord, 1980). The basic assumptions in IRT modeling are that
the item responses are unidimensional and locally independent.
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Unidimensionality implies that the set of items assesses a single
underlying trait dimension; local independence means that if
0 level is held constant statistically, the test items are pairwise
uncorrelated.

For any test item, many IRFs could yield a plausible account
of the relation between G level and item response probability.
Standard texts on IRT (e.g., Hambleton, Swaminathan, & Rog-
ers, 1991; Lord, 1980) describe commonly used functions. Ap-
plications can be found in Embretson (1985); Hulin, Drasgow,
and Komocar (1982); Jensema (1974); Lord (1977); Thissen
and Steinberg (1988); and Waller and Reise (1990). Because we
have graded items with five response categories in this study, an
appropriate model for our data is the graded response model
(GRM) described by Samejima (1969). The fundamental equa-
tion for the GRM is

1
1 + exp[-a(0 - bj-

= P*(j- 0-/"*(/).

1 + exp[-a(0 -

(6)

Equation 6 specifies the conditional probability of a person
responding in a particular category (k, where k = 1 , . . . , 5). The
boundaries between the response categories are represented by
j = 1 , . . . , 4, and j = k. The terms on the right-hand side of
Equation 6 are the IRFs (the P*s) that give the probability of an
examinee responding above a particular threshold (J), condi-
tional on his or her G level. With five categories, there are four
between-category thresholds. By definition, the probability of
responding above threshold j = 0 is 1 .0 [P*(0) = 1 .0], and
the probability of responding above threshold j ' = 5 is 0.0
(P*(S) = 0].

The GRM model in Equation 6 requires that, for each test
item, one a and four bt parameters be estimated. That is, be-
cause there are four thresholds between the five ordered re-
sponse categories, four IRFs are necessary to describe responses
to an item with five categories. The a parameter is called the
item discrimination parameter, and its value is proportional to
the slope of the IRFs. Item discrimination parameters are con-
stant for each of the IRFs within an item, so the multiple IRFs
for a given item do not cross; a parameters can vary, however,
between items. The a parameters are analogous to the \mp pa-
rameters in CFA models because they represent the relationship
between the latent variable 6 and item responses. That is, the
more strongly responses on an item are related to the latent vari-
able 0, the larger the corresponding a parameters for the IRFs.
The bj parameters are called category difficulties or thresholds,
and each is defined as the point on the 0 scale (i.e., the trait
level) at which the probability is 50% that the item response
is greater than threshold / Item threshold parameters are not
incorporated in the standard linear CFA measurement model
(but, see Muthen, 1984, 1988).

Just as estimated CFA models imply particular covariance
matrices, estimated IRT models imply particular distributions
of item responses conditional on 0 level. For illustration, the
IRFs for an item with a = 1.5, 6, = -2.0, b2 = -1.0, b} = 1.0,
and bo, = 2.0 are shown in Figure 1 ; these IRFs are the P* values
from Equation 6. For example, IRP! indicates that there is only
a 20% probability that a person with a 0 score of —3.0 will score
above Category 1 (k - 1 ) on the item, that this increases to a

50% probability of scoring above Category 1 for a person with a
0 score of-2.0, and that the probability of scoring above Cate-
gory 1 increases rapidly to more than 80% for a person with a 0
score of -1.0 or higher. In contrast, IRF3 shows that the proba-
bility of scoring above Category 3 is approximately 20% for a
person with a 0 score of 0.0, rises to 50% for a person with a 0
score of 1.0, and then increases to 80% or more for a person
with a 0 score of 2.0 or higher.

Given the parameters for the IRFs in Figure 1 and any value
of 0, Equation 6 can be used to compute the expected response
proportions, or probabilities, in each of the five categories for
the hypothetical item. For example, the probability of respond-
ing in Category 2isPf- P% (cf. Figure 1, specifically IRF, and
IRF2), which is the probability of responding above threshold j
= 1 minus the probability of responding above threshold j = 2
for each value of 0. That is, the probability of responding in
Category 2 is the difference in expected response represented
by IRF[ and IRF2 at each value of 0. These expected propor-
tions are shown in Figure 2. For example, the probability of
scoring in Category 1 is relatively high for individuals with low
values of 0 (i.e., about 80% for those with 0 values of-3.0) but
drops off rapidly as 0 increases. In contrast, the probability of
scoring in Category 3 is maximal for people with 0 values of
0.0, and the probability of scoring in Category 3 falls off sym-
metrically as 0 values deviate from 0.0.

Figure 2 can also be used to estimate the likelihood that a
person will obtain a score in each category conditional on his or
her value of 0. That is, consider a person with an estimated 0
value of 0.0. This person would have the following approximate
response probabilities: 5% probability of scoring in Category 1,
13% in Category 2, 64% in Category 3, 13% in Category 4, and
5% in Category 5. These response probabilities sum to 100%
across all five categories of response at each value of 0.

Assessing the Fit of IKT Models

Many statistics have been proposed to test the fit of IRT
models (see McKinley & Mills, 1985). Typically, fit is assessed
at the item level by a statistic that tests the congruence between
the proportion of item responses in a particular category pre-
dicted from an IRF and the proportion of responses in a partic-
ular category observed in the data. We did not use any of these
item-fit statistics. Rather, we adopted a model-testing approach
(see Thissen, Steinberg, & Gerrard, 1986) to maintain consis-
tency between the IRT and CFA sections of this research.

In a fashion analogous to CFA, the statistical acceptability of
an estimated IRT model is contingent on how close the response
proportions predicted from the IRFs are to the response pro-
portions observed in the data. To conduct model-fit tests for
the estimated IRFs, we used the value "-2 times the log of the
likelihood function"; this value leads to the statistic G2, which
is part of the standard output from MULTILOG. Under certain
conditions, G2 is distributed as a chi-square value with degrees
of freedom equal to the number of response patterns minus the
number of estimates made in the model (see Thissen, 1991). G2

values reflect the lack of congruence between the frequency of
observed response patterns and the frequency of these patterns
predicted by the estimated IRFs; the lower the congruence, the
higher the value of G2.



MEASUREMENT INVARIANCE 559

-3 -2 -1 0 1
Trait Level

Figure 1. The item response functions (IRFs) for an item with a = 1.5, b, = -2.0, b2 = -1.0, b} = 1.0,
and fe, = 2.0.

With large item sets (e.g., more than five items) or polychoto-
mous item responses, G2 is not appropriate for judging the fit of
baseline models (i.e., models in which all parameters are freely
estimated). The reason is that there will be too many unob-
served response patterns and the statistic will have no known
reference distribution. Nevertheless, G2 values can be used to
compare nested models; the difference between G2 in Model 1
and G2 in Model 2 is distributed as a chi-square value with de-
grees of freedom equal to the difference in degrees of freedom
for Models 1 and 2 if the models are nested. The nesting of IRT
models is similar to the nesting of CFA models; one IRT model
is nested within a second IRT model if one may arrive at the first
model only by placing constraints on parameters in the second
IRT model and by making no new parameter estimates.

Unlike CFA modeling, in IRT there are few, if any, standard
procedures for assessing the "practical" importance of devia-

-2 -1 o 1
Trait Level

tions in the overall fit of a model to data.2 We propose that test
score appropriateness (Drasgow, Levine, & Williams, 1985) or,
as termed here, person-fit (Reise, 1991) statistics be used to
judge practical fit in IRT modeling. Person-fit statistics test the
estimated IRFs at the level of the individual (Drasgow, Levine,
& McLaughlin, 1991; Drasgow et al., 1985; Levine & Rubin,
1979; Tatsuoka, 1984; Wright, 1977). Lack of person fit indi-
cates that a person's item responses are not congruent with, or
predictable from, the estimated IRFs. As a result, the person's
6 estimate, which is derived from the IRFs, is not comparable
to other people's G estimates.

In this study, we applied a measure of person fit called Z/
(Drasgow et al., 1985) to assist in interpreting the practical im-
portance of lack of model fit. The Z/ statistic is the standardized
value of the likelihood of an individual's item response pattern
given the IRFs. By assumption, Z/ scores are distributed as stan-
dard normal values (i.e., M = 0.0, SD = 1.0) under the null
hypothesis of person fit. Consequently, the reference distribu-
tion for evaluating Z/ is the z distribution. Significantly large,
negative Z/ values indicate a lack of person fit associated with
response patterns that are unlikely given the estimated model.

Specifying Measurement Invar iance in IRT Models

One way to place individuals' 9 estimates onto a common
scale, even across groups of examinees, is to score all examinees

Figure 2. Probability of observing a response in a particular category
conditional on 0 level for the hypothetical item in Figure 1.

2 Some indices of practical fit of IRT models to data have been sug-
gested (e.g., Kingston & Dorans, 1985). However, these indices are not
directly analogous to indices of practical fit in CFA. That is, these IRT
indices tend to reflect the relative fit of items to the IRT model rather
than representing an overall proportional fit of a model to data. Of
course, if IRT models are reparameterized as nonlinear factor analysis
models (cf. McDonald, in press) or as factor models for discretized vari-
ables (Takane & de Leeuw, 1987), then the indices of practical fit devel-
oped for CFA models could be extended directly to the reparameterized
IRT models.
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using the same IRFs. However, the resulting 0 estimates could
be biased and substantively meaningless unless measurement
invariance has first been established. In IRT terms, test items
provide equivalent measurement when the IRFs are the same
across groups (Thissen et al., 1986). In CFA, one tests for mea-
surement invariance by establishing the equivalence of factor
loadings; in contrast, in IRT analysis, one considers both the
item discrimination (a) and item difficulty (bj) parameters.

In this study, items provided equivalent measurement if the
a,bi,b2,b], and 64 parameters were the same for the Minnesota
and Nanjing samples. Hui and Triandis (1985, p. 138) stated
that "an instrument that has similar ICCs [i.e., IRFs] across
cultures has, at least in part, demonstrated its item equivalence
and scalar equivalence." Stated differently, an item is not biased
when examinees at the same 0 level have the same expected
probability of response regardless of their group membership.
If response probabilities for people at the same 0 level depend
on group membership, then an item is said to show differential
item functioning, or DIF. Although many researchers suggest
discarding items with DIF, the presence of items with DIF need
not eventuate in biased measurement, as we show later.

The hypothesis of between-groups equality of IRFs can be
tested with the multiple-groups option in MULTILOG VI
(Thissen, 1991). This program uses marginal maximum likeli-
hood (Bock & Aitkin, 1981; Thissen, 1982) to estimate IRFs
simultaneously in two or more groups. MULTILOG also pro-
vides mechanisms to estimate population group mean differ-
ences on the latent variable. Interested readers are referred to
Thissen (1991) for further details on technical aspects of the
program, Koch (1986) for an application of the GRM, and Re-
ise and Yu (1990) for parameter recovery information under the
GRM using MULTILOG.

The Baseline Model in IRT

In the CFA section, we noted the identification problem that
exists between the scale of the latent variable £ and the scale of
the factor loadings, the Xmps. In IRT, a similar indeterminacy
holds between the scale for the latent variable (0) and the scale
for the item parameters (a, bj). In particular, the location of
the 0 scale affects the location of the bj parameters, and the
dispersion on the 0 scale influences the size of the a parameters.
When data from a single group are calibrated (i.e., the parame-
ters of the model are estimated) with a marginal maximum like-
lihood algorithm (as used in MULTILOG), the 0 scale is iden-
tified by stipulating a population distribution for 0 (Baker,
1990). For example, one can specify that examinees are sam-
pled from a normal population distribution with mean 0 equal
to 0.0 and standard deviation equal to 1.0. This specification
identifies the scale for 0, which in turn identifies the scale for
the item parameters.

In a multiple-group situation, the ultimate goal is to identify
the latent variable between groups. That is, one must make the
scale of the latent variable common across groups so that the
item parameters can be estimated with respect to this scale and
then tested for equivalence. Because the technical details of IRT
modeling are infrequently discussed outside the psychometric
literature, we devote this section to discussion of identification
in the multiple-group situation.

Recall that in the CFA Baseline 2 model (see Table 2), the
metric for the latent variable was identified by fixing its variance
to 1.0 within each group. Analogously, with IRT, the 0 scale
could be identified within each group by conducting indepen-
dent calibrations, each time stipulating a population distribu-
tion for 0. If this were done, however, the scale for 0 would be
identified within each group but would not be common across
groups.3 Consequently, comparison of values of the item pa-
rameters across groups would not be legitimate. This exempli-
fies a fundamental, but not well understood, principle of IRT
and CFA; namely, item parameters from independent cal-
ibrations are not comparable.

In the CFA Baseline 1 model, we identified the latent variable
within each group by stipulating that X, i = 1.0 for each group.
We noted that if Item 1 were invariant, then the X parameter
estimates for the freely estimated items would be comparable
across groups. In a similar way, in IRT one can make the 0 scale
common across groups by using an anchor test. An anchor test
is a set of test items that are constrained to have the same pa-
rameters between groups. Calibrating items concurrently with
the anchor items results in the 0 scale being identified and on a
common metric across the groups.

Here, the goal is to establish a well-fitting baseline IRT model
in each group before testing whether item parameters are in-
variant across groups. An ideal baseline is a model in which all
parameters are freely estimated, except for minimal identifying
constraints. In CFA, this means that the factor loadings and fac-
tor variances are freely estimated in each group, subject to min-
imal constraints to identify the model. In IRT, this means that
the item parameters and the means and variances of the latent
variable are freely estimated for each group. Two concerns in-
terfere with this ideal in IRT. First, two parameters must be fixed
(e.g., a group mean and standard deviation on 0) to identify the
IRT model. Second, as far as we could determine, the
MULTILOG program allows the standard deviations on 0 for
each group to be fixed to some value but not to be estimated
freely.

With these considerations in mind, the baseline model was
established as follows. The input data for MULTILOG con-
sisted of 540 and 598 item response patterns from the Minne-
sota and Nanjing samples, respectively. We used a form of con-
current item calibration (see Hambleton et al., 1991, p. 135) by
setting up the data as follows: First, the data were treated as if
1,138 (540 Minnesota and 598 Nanjing) people had taken a 10-
item test. Second, responses to Items 1-5 were coded as missing
for the 598 Nanjing response vectors, and item responses to
Items 6-10 were coded as missing for the 540 Minnesota re-
sponse vectors.

This model has 10 items, and the data to be analyzed are

3 In the case provided earlier, some researchers would suggest placing
IRT item parameters from independent calibrations onto a common
scale by using a metric linking procedure (Divgi, 1985; Stocking &
Lord, 1983; Vale, 1986). However, as pointed out by Lautenschlager and
Park (1988), linking is inappropriate when the groups are heteroge-
neous (i.e., not drawn from the same population) and items potentially
contain DIF. More recently, iterative linking and item bias (i.e., DIF)
detection procedures have been proposed that may diminish these con-
cerns (Candell & Drasgow, 1988; Park & Lautenschlager, 1990).
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1,138 response patterns. As a result, 50 item parameters were
estimated in the baseline model (10 a parameters and 40 bj pa-
rameters). The mean and standard deviation on G for the Min-
nesota data were fixed at 0.0 and 1.0 for identification. The
mean on 0 was freely estimated for the Nanjing data, and the
standard deviation was fixed at 0.65.4 In this baseline model,
the 0 metric is not identified between groups because there are
no anchor items. However, the fit of this model serves as a base-
line for judging subsequent models in which invariance is inves-
tigated across groups of item parameters.

The resulting item parameter estimates for the baseline
model are shown in Table 3. Table 3 also lists the means and
standard deviations of the observed Z/ (person-fit) values within
each group. These values were computed by scoring individuals
(i.e., estimating 0 level) in the Minnesota sample with the Min-
nesota IRFs and then scoring individuals from the Nanjing
sample with the Nanjing IRFs. Significance tests for Z, were
conducted at the .05 level (one-tailed).

As mentioned, the G2 value for the baseline model is not in-
terpretable directly, so this value is not reported. Judgments of
fit rely mostly on the distribution of Z/ scores and the number
of significant Z/ scores. When response patterns are congruent
with the estimated IRFs, Z/ scores are expected to have a mean
of 0.0 and a variance of 1.0. In both samples, this appears to be
reasonably true. Also, the percentage of significant Z/ scores in
each group is close to the nominal Type I error rate. We con-
cluded that, at the person level, a satisfactory baseline model
had been established within each group. We would be confident
using the Minnesota IRFs to scale Americans and the Nanjing
IRFs to scale the Chinese. We emphasize, however, that such
scores would not be comparable between groups.

Inspection of the item parameters for the baseline model re-
veals that the IRFs appear to differ across groups. In particular,
the item distressed appears to be more discriminating for the
Nanjing sample (i.e., the a parameter estimate for the Nanjing
sample is much larger than that for the Minnesota sample). Be-
fore claiming DIP, however, we must examine whether the ap-
parent DIP is due only to sampling error or chance fluctuation.

Testing for Full Measurement Invariance in IKT Models

To explore whether the NA items exhibited significant levels
of DIP, we next tested for full measurement invariance by cali-
brating the items concurrently with the following stipulations.
First, all item parameters were constrained to equality across
groups; in effect, this creates a five-item anchor test. We fixed
the mean and standard deviation of 0 to 0.0 and 1.0, respec-
tively, for the Minnesota sample. The population mean for the
Nanjing sample was an estimated parameter, and the standard
deviation for this sample was fixed at 0.65. The G2 from this full
invariance model could then be compared with the G2 from
the baseline model. If G2 for the full invariance model were
significantly greater than that for the baseline, we could reject
the hypothesis of full measurement invariance and conclude
that at least one item must contain DIF.

As evidenced in Table 3, the change in G2 between the base-
line and full invariance models was statistically significant,
G2(25, N = 1,138) = 118.3, p < .0001. Although the full mea-
surement invariance hypothesis must be rejected statistically, it

is important to ask, What are the practical consequences of
scoring individuals from both groups with these common item
parameters? The means and standard deviations of Z/ scores
within groups reported in Table 3 address this question. As far
as person fit is concerned, the common IRFs appear to do an
adequate job of scaling individuals onto a common scale; 96%
of examinees within each group are scalable on the common
trait dimension. However, the distributions, especially the stan-
dard deviations, of Z/ scores within groups for the full invari-
ance model were rather different from those under the baseline
model, suggesting that the assumption of full measurement in-
variance may have placed overly stringent constraints on the
IRT model.

Partial Measurement Invariance in IRT Models

As in CFA, comparing examinees on a common metric does
not require that all items be invariant in their measurement.
That is, the presence of one or more items exhibiting DIF
should not prevent the scaling of individuals onto a common
metric. Our basic requirement in IRT is that at least one item
be invariant across groups. The invariant item can then be used
as an anchor to estimate 0 values for individuals within both
groups concurrently on a common scale. Stated differently, cer-
tain items can be allowed to have different IRFs across groups
(i.e., to exhibit DIF), as long as these IRFs are related to a com-
mon scale for 0 across groups. To accomplish this, we used the
following method.

Using the fit values from the baseline model, we proceeded to
test for measurement invariance on an item-by-item basis. This
involved specifying, one item at a time, that the a and four bj
parameters were invariant across groups. For each of these anal-
yses, a (0,1) population 0 distribution was specified for the Min-
nesota sample, the mean for the Nanjing sample was freely esti-
mated, and the standard deviation was fixed at 0.65. As shown
in Table 4, constraining the IRFs for the items nervous and tense
to invariance did not result in a significant (critical a = .05)
increase in G2; however, constraining the IRFs for any of the
remaining items to invariance across groups led to significant
changes in the fit of the model to the data. Hence, we concluded
that the items nervous and tense were invariant across groups.

Although a two-item anchor test might be less than ideal for
many practical purposes, the most viable option statistically at
this point is to use nervous and tense as anchors to establish a
common metric. Using these items as anchors, we then tested
a partial measurement invariance model by constraining item
parameters for the anchors to equivalence across groups and
allowing all other item parameters to be freely estimated. The
item parameters and relevant fit statistics for this partially in-
variant model are shown in Table 3. The fit of this model is not
significantly different from the baseline, G2(10, N = 1,138) =
15.1, ns. The best estimate of group mean difference on the lat-
ent variable is -0.36 0 units, with the Nanjing sample scoring

4 The value 0.65 was selected for the Nanjing standard deviation on
6 on the basis of the finding in the CFA analysis section of this research.
However, in most multiple-group situations, the optimal standard devi-
ation parameter (i.e., optimal in the sense of leading to the best fit of the
IRT model to the data) would have to be estimated by trial and error.
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Table 3
Graded Response Model Item Parameter Estimates and Fit Values
for the Minnesota and Nanjing Samples

Item

Baseline Full invariance Partial invariance

Parameter Minnesota Nanjing Minnesota Nanjing Minnesota Nanjing

Nervous

Worried

Jittery

Tense

Distressed

Mu
Sigma
G2 change
t/fchange
MZ,
SDZ,
No. rejected
% rejected

a
b,
b2
b,
b.
a
b,
b2
b,
b<
a
b,
b2
b}
b4
a
b,
b2

b.
b<
a
b,
b2
b,
kt

2.25
-0.58

0.50
1.26
2.39
2.10

-0.99
0.08
0.87
1.91
1.56

-0.38
0.73
1.81
2.81
2.37

-0.72
0.27
1.07
2.02
2.02

-0.55
0.36
1.08
2.05
0.00"
1.00"

——
0.35
0.98

27
0.05

2.32
-0.64

0.36
1.14
1.92
1.83

-0.77
0.21
0.83
1.76
1.96
0.05
0.70
1.17
1.86
2.11

-0.91
0.05
0.81
1.77
3.34

-0.48
0.17
0.63
1.12

-0.41
0.65a

—
—
0.28
0.80

14
0.02

2.28
-0.64

0.41
1.18
2.18
2.01

-0.86
0.12
0.80
1.78
1.70

-0.13
0.74
1.52
2.39
2.16

-0.85
0.13
0.93
1.91
2.33

-0.52
0.28
0.89
1.69

0.00" -0.42
1.00a 0.65a

118.3
25

0.40 0.24
0.87 0.89

22 22
0.04 0.04

2.27
-0.62

0.43
1.21
2.22

2.16
-1.03

0.02
0.80
1.82
1.59

-0.44
0.66
1.73
2.72

2.14
-0.83

0.15
0.96
1.95

2.02
-0.60

0.30
1.01
1.98
0.00a

1.00"
15.1
10

0.39
0.95

27
0.05

1.80
-0.73

0.27
0.89
1.85
1.96
0.10
0.75
1.21
1.91

3.41
-0.44

0.22
0.67
1.15

-0.36
0.65a

0.25
0.82

19
0.03

Note. Parameter estimates that are centered between the Minnesota and Nanjing columns (e.g., the 2.28
estimate of a in the full invariance model) represent parameters constrained to equality across samples.
Also, because the G2 values for each model are not interpretable directly, these values are not listed. Instead,
the G2 values reported are the change in G2 and the accompanying change in degrees of freedom when
comparing a model with the baseline model.
a Parameters fixed at tabled values to identify each model.

lower than the Minnesota sample. This final IRT model, with
different IRFs across groups for three of the five items, could
then be used in applied situations to score examinees in differ-
ent groups so that the resulting trait level estimates are on a
common scale.

Discussion

The primary goals of this article have been to compare CFA
and IRT procedures for establishing measurement invariance
across populations, to clarify aspects of model fitting with CFA
and IRT through the application of both types of procedure to
an empirical data set, and to identify topics in CFA and IRT
that should be the focus of additional research. Our concern
with measurement invariance is an important one, because
measurement invariance is a basic requirement or prerequisite
for studying group differences with statistical models. Once
measurement invariance is established, additional theoretically

important questions may be addressed, including questions re-
garding group differences in means or variances on the latent
variables identified.

Comparison of CFA and IRT Modeling Procedures

CFA and IRT procedures may be compared at both theoreti-
cal levels and more practical levels. As might be expected, cer-
tain differences between the two approaches appear to favor
CFA, whereas other differences seem to favor IRT. Consider first
more theoretical comparisons between CFA and IRT. Assuming
the presence of a single latent variable, the CFA model holds
that the latent variable is linearly related to each of its indicators
(cf. Equation 1). That is, individual differences on the latent
variable (£p) are linearly related to individual differences on a
given indicator^, and the factor pattern coefficient (\mp) is the
raw score regression coefficient representing this linear relation-
ship. Errors in variables, or variance in indicators linearly un-
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Table 4
Fit Values for Partially Invariant IKT Models

Items with
invariant

parameters

None
Nervous
Worried
Jittery
Tense
Distressed
Nervous and tense

Change
inG2

_
4.4

18.5
47.3
11.8
25.3
15.1

Change
mdf

_
5
5
5
5
5

10

Minnesota

P

_
>.50
<.025
<.001
>.05
<.01
>.05

M

0.00
0.00
0.00
0.00
0.00
0.00
0.00

SD

1.00
1.00
1.00
1.00
1.00
1.00
1.00

Nanjing

M

-0.39
-0.45
-0.42
-0.43
-0.36
-0.48
-0.36

SD

0.65
0.65
0.65
0.65
0.65
0.65
0.65

Note. The model with no item parameters constrained to invariance across groups is the baseline model.

related to the latent variable, are represented explicitly in the
CFA model by the indicator residuals (the 5ms). A model of this
form is analogous to a standard linear regression model, a type
of model used throughout areas of psychological research.

Similarly, the latent variable (6) in IRT models represents
individual differences in response tendency, but individual
differences on 0 are presumed to be related only monotonically
to responses on each item. In IRT models, the a coefficients
relate the latent trait (0) to item responses, fulfilling the func-
tion of the \mp estimates in CFA models. As with \mp estimates,
the larger the a coefficient for an item, the more strongly the
item is related to the latent variable. However, the relationship
between 0 and the probability of a subject's response is not a
simple linear one. Moreover, linear CFA models disregard the
category threshold, or difficulty, parameters in IRT (the i>7s) that
could be important psychologically. At present, work on non-
linear factor analysis models (e.g., McDonald, 1982, in press;
Muthen, 1984, 1988;Takane&deLeeuw, 1987), which contain
threshold parameters, is still in relatively early stages of devel-
opment; few applications of these methods appear outside the
technical psychometric literature. However, future research on
nonlinear factor analysis approaches should be pursued to allow
a more complete comparison of IRT and factor-analytic models
for representing psychological data.

One clear and important similarity across CFA and IRT ap-
proaches emerged in the partial measurement invariance anal-
yses with regard to the function of invariant and noninvariant
items. Specifically, all items, whether invariant across groups or
not, were useful in representing individual differences on the
latent variable within each group. The invariant items then al-
lowed individual differences on the latent variable within
groups to be linked to a common metric for the latent variable
across groups. To make this claim more concrete, consider the
following: For the IRT analyses, there were five items in each
group, each answered on a 1-5 scale. This leads to the possibil-
ity of 5s, or 3,125, potential response patterns that could be
exhibited by subjects within each group; across the two groups,
this would result in 6,250 potential response patterns. In our
sample, we observed 525 response patterns across the 1,138
persons in the two samples. If we had restricted our evaluation
of IRT models to only the two items that had invariant param-
eters across groups, we would have been restricted to consider-
ation of only 52, or 25, potential response patterns within each

group. Clearly, retaining all five items and basing our analyses
on the 525 response patterns obtained allowed a richer repre-
sentation of individual differences in responding and individual
differences on the latent variable, 0, within each group. Then,
with two items exhibiting invariance across groups, we were
able to establish a common metric for the latent variable across
groups to frame and test questions regarding group differences
in mean and variance on the latent variable.

Turning to more practical comparisons, we can identify at
least two contrasts between CFA and IRT procedures with re-
gard to the fitting of models to data. These contrasts concern
the ease of (a) specifying models for data and (b) evaluating the
outcomes of model comparisons.

With regard to specifying a model for a set of data, proce-
dures for CFA seem rather more advanced, simpler, and more
user friendly than those developed for IRT. In the present article,
we used the LISREL program for our CFA analyses, but other
programs (e.g., EQS, Rentier, 1989; CALIS, SAS Institute,
1989) are available, and all are fairly easy to use. Each program
for CFA requires the specification of each set of data (e.g., the
number of measured variables and the number of subjects), and
data from multiple groups are placed one after the other. The
user must then perform model comparisons of interest by in-
voking constraints across groups in the estimation of particular
parameters. Once the number of subjects in each group, the
number of measured variables per group, and the parameters of
the structural model have been specified, CFA programs calcu-
late accurate estimates of the chi-square measure of model fit
and its associated degrees of freedom. This statement glosses
over many potential difficulties in the fitting of CFA models to
data; difficulties involving model misspecification, acceptable
parameter estimation, and so forth. However, given successful
fitting of a model to a set of data, the chi-square statistical mea-
sure of fit and its degrees of freedom are routinely presented in
an accurate fashion.

The preceding way of specifying multiple-group CFA differs
from the multiple-group model specification in IRT using the
MULTILOG program (Thissen, 1991). Although other pro-
grams are available for fitting IRT models to data (e.g., BILOG,
Mislevy & Bock, 1986), only MULTILOG easily enables fitting
the graded-response IRT model (but see the LISCOMP pro-
gram, Muthen, 1988). In MULTILOG, the specification of the
graded-response IRT model with multiple groups must be un-
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dertaken as if the two groups are subgroups within a larger
group. Then, given n observed items in each group, one must
specify that the data consist of n X G items, where g is an index
for group (g= I , . . . ,G), with observed responses by individu-
als in group g represented on the gth set of items. For example,
in the present study, we obtained the responses of all subjects to
5 items. To fit the graded-response IRT model to the two-group
data using MULTILOG, we had to specify that there were 10
items (i.e., 5 items X 2 groups); the data set consisted, then, of
10 items. We recorded the observed responses (i.e., on a 1-5
scale) of each Minnesota subject for the first 5 items and listed
a missing value code for each of the second set of 5 items; con-
versely, each Nanjing subject had a missing value on each of the
first 5 items and his or her observed responses on the second 5
items.

More important, the chi-square measure of model fit and its
associated degrees of freedom for IRT models using the
MULTILOG program are not a simple function of the fit of the
model to the data, the number of items, the number of parame-
ters estimated, or the number of subjects. Rather, the chi-square
value is a function of observed and expected response propor-
tions, and the degrees of freedom are a function of the number
of different response patterns minus the number of parameters
estimated. Basically, the MULTILOG program presumes that
the program user has a fairly sophisticated understanding of
IRT theory and methods. If not, the user may err seriously in
the specification of the model and the subsequent evaluation of
model fit.

The second practical issue, evaluating the outcomes of model
comparisons, also leads to interesting contrasts between CFA
and IRT procedures. In CFA modeling, researchers may rely on
both statistical and practical indices of fit. The primary statisti-
cal measure of fit is the likelihood ratio chi-square test, which
provides an overall test of model fit to the data. If nested CFA
models are formulated, the chi-square difference test provides a
statistical test of the difference in fit of the two models (cf. Bent-
ler & Bonett, 1980). In addition to the statistical measure of fit,
a large number of practical indices of fit have been proposed,
three of which were used in this study. Given the presence of
Monte Carlo evaluations of these indices of fit (e.g., Bentler,
1990; Marsh et al., 1988), evidence is accumulating with regard
to the evaluation of these types of indices.

With IRT models, the only standard measure of fit is a likeli-
hood ratio chi-square variate that is evaluated in a fashion sim-
ilar to that of the statistical measure of fit with CFA. That is, a
significant chi-square value provides a statistical basis for reject-
ing a model, statistical tests of the difference in fit of nested IRT
models may be obtained, and the optimal model is one that has
a minimal number of parameter estimates but has as small a
chi-square value as possible. Unfortunately, practical fit indices
analogous to those for CFA models have not yet been widely
developed for IRT models. In current applications of CFA, prac-
tical fit indices are at least as important as, if not more impor-
tant than, the statistical index of fit. The same could become
true for IRT. If more well-researched practical indices of fit were
available for IRT models, researchers could rely on several sorts
of information regarding model fit to data, as is now standard
in CFA modeling.

Comparisons in Model Fit to Negative Affect Data

A review of the fitting of the CFA and IRT models to the neg-
ative affect data revealed notable similarities, as well as certain
fairly minor differences, in outcome. Under both models, full
measurement invariance was rejected as an adequate descrip-
tion, but partial measurement invariance was accepted. Sim-
ilarly, under both models, Items 1 and 4 revealed measurement
invariance across groups, and Item 5 was not invariant. How-
ever, one notable difference between the models involved Items
2 and 3 (worried and jittery): Under the CFA model, there was
no evidence that these two items displayed different character-
istics across the two groups, under the IRT model, Items 2 and
3 displayed statistically significant differences in parameter es-
timates across groups. The primary reason for this difference
between the CFA and IRT partial measurement invariance
models is that the CFA model ignores certain parameters,
namely the difficulty parameters represented by the bj parame-
ters in the IRT model. As a result, IRT models posit more strin-
gent sets of measurement invariance constraints.

With regard to characterizing the differences between groups
on the latent variables defined by the two procedures, quite sim-
ilar results were found. After the mean of the Minnesota sample
was fixed to zero to identify each model, the Nanjing sample
mean was approximately one-third a units below the Minne-
sota mean; the estimates were —0.38 a units and —0.36 a units
on the basis of the CFA and IRT models, respectively. Of course,
this similarity in estimated mean levels may have resulted from
the fixing of the Nanjing sample standard deviation at 65% of
the Minnesota sample standard deviation in the IRT analyses.
In the IRT analyses with MULTILOG, it appears that standard
deviations must be fixed, rather than estimated, for each group.
We attempted to use the results of the CFA analyses to inform
our IRT modeling; fixing the values of the standard deviations
for each group in the IRT analyses on the basis of values from
the CFA almost certainly led to rather more similar estimates of
mean levels from the CFA and IRT analyses than would have
occurred otherwise.

Issues for Future Research

The preceding comparisons between CFA and IRT models
point to several issues for future research. The development of
practical fit indices for IRT models is one rather pressing topic
for future research. This topic was discussed in a preceding sec-
tion; thus, extended discussion is unnecessary here. In brief,
researchers applying CFA procedures to data typically stress
practical indices of fit at least as strongly as the likelihood ratio
chi-square statistical index of fit. If practical fit indices were
available for IRT models, researchers would have a richer and
more varied set of indices for evaluating the fit of IRT models to
data. Given (a) the rather large sample sizes required to obtain
accurate estimates of IRT parameters, (b) the influence of sam-
ple size on likelihood ratio chi-square statistics, and (c) the rel-
ative independence from sample size of good practical indices of
fit, such practical indices would seem most welcome in analyses
with IRT models. The most fruitful approach to development
of such indices will probably rely on the work of McDonald (in
press) and Takane and de Leeuw (1987) on the equivalence of
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IRT and nonlinear factor analysis models; if IRT models may
be reparameterized as nonlinear factor models, the indices of
practical fit developed for CFA models could be extended di-
rectly to the evaluation of IRT models.

A second issue that would lead to more direct and informa-
tive analyses is the development of modification indices for IRT
models. In CFA analyses, modification indices from a full in-
variance model indicate the likely change in chi-square values
that would accompany the freeing of each constrained parame-
ter, thereby moving to a model with partial measurement in-
variance. Similar modification indices would be a very useful
addition to IRT programs. Researchers may currently obtain
information similar to that provided by modification indices by
brute force specification and testing of all IRT models that differ
from a given model by the addition of a single parameter esti-
mate or by the relaxing of a single constraint. In large models,
this would be a very inefficient and time-consuming process.
Modification indices, even if only moderately accurate, would
provide a useful addition to IRT modeling software. Many ex-
perts on CFA modeling consider modification indices danger-
ous, enabling mere "data fitting" or the post hoc modification
of models without a priori, theoretical justification. However,
given the stipulation that model modifications be replicated
across samples to be supported strongly, modification indices
provide efficient means for respecifying models and, ultimately,
remolding theories.

A third and final topic for future research is the further ex-
ploration of the relations between CFA and IRT models and
their differential utility for representing data and testing theo-
retical hypotheses. We have presented an initial exploration into
this topic, perhaps the most important of the issues for future
research. Both CFA and IRT models provide interesting ways of
representing data in the social and behavioral sciences; future
investigators should search for ways of deciding which model is
best for which purpose. The outcome of such work would be a
more coherent framework for the use of current, state-of-the-
art methods of psychometric analysis.
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