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STRUCTURAL EQUATION
MODELING WITH ROBUST
COVARIANCES

Ke-Hai Yuan*
Peter M. Bentler*

Existing methods for structural equation modeling involve fitting
the ordinary sample covariance matrix by a proposed structural
model. Since a sample covariance is easily influenced by a few
outlying cases, the standard practice of modeling sample covari-
ances can lead to inefficient estimates as well as inflated fit indi-
ces. By giving a proper weight to each individual case, a robust
covariance will have a bounded influence function as well as a
nonzero breakdown point. These robust properties of the covari-
ance estimators will be carried over to the parameter estimators in
the structural model if a technically appropriate procedure is used.
We study such a procedure in which robust covariances replace
ordinary sample covariances in the context of the Wishart likeli-
hood function. This procedure is easy to implement in practice.
Statistical properties of this procedure are investigated. A fit index
is given based on sampling from an elliptical distribution. An es-
timating equation approach is used to develop a variety of robust
covariances, and consistent covariances of these robust estima-
tors, needed for standard errors and test statistics, follow from this
approach. Examples illustrate the inflated statistics and distorted
parameter estimates obtained by using sample covariances when
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compared with those obtained by using robust covariances. The
merits of each method and its relevance to specific types of data are
discussed.

1. INTRODUCTION

Measurements in behavioral and social sciences generally contain random
errors. Regression models and other models with independent or predictor
variables that contain errors of measurements are problematic because they
lead to inconsistent estimators such as estimated regression coefficients.
Incorrect inference in these situations can be avoided by modeling the
unobserved latent variables and the error process. Since data collections in
many areas contain measurement errors, modeling with latent variables is
emerging as a useful tool in diversified fields (e.g., Catalano and Ryan
1992; Kendler et al. 1992; Muthén 1992; Tosteson et al. 1989). In this
paper we restrict ourselves to latent variable models of the covariance
structure type since these are among the most commonly used multivariate
procedures, as was shown by Gnanadesikan and Kettenring (1984) in their
comprehensive survey of multivariate techniques in applications. They
reported that factor analysis was the most widely used multivariate method,
and that in education, psychology, and sociology, factor analysis was much
more extensively used than any other multivariate method. With the ad-
vance of factor analytic models to more flexible and confirmatory models,
and with the help of popular software like LISREL (Jöreskog and Sörbom
1993) and EQS (Bentler 1995), the literature on structural equation mod-
eling has increased dramatically in the past decade (e.g., see Austin &
Calderón 1996). A new journalStructural Equation Modelinghas even
been created for the development and application of this class of models.

Classical structural equation models assume normality of latent vari-
ables as well as measurement errors (Bollen 1989). In the context of co-
variance structure analysis, parameters in a structural model can be estimated
by minimizing the Wishart likelihood function

F~S,S~u!! 5 tr$S21~u!S% 2 log6S21~u!S62 p (1)

for Zun, wherep is the number of observed variables,S is the sample co-
variance matrix, andS~u! is the population covariance matrix that is pre-
sumed to be generated by a hypothetical latent structure model such as a
confirmatory factor model. Under these conditions,TML 5 nF~S,S~ Zun!!
can be used as a test statistic for evaluating the quality of the structural
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model. Unfortunately, observed data rarely are normally distributed, im-
plying that the assumption of normal latent variables and errors is also
unlikely to be true. Conditions exist for normal theory inference to be valid
for nonnormal data with some specific models (e.g.,Anderson andAmemiya
1988; Amemiya and Anderson 1990; Satorra and Bentler 1990), but it is
not known how to verify these conditions in practice, andTML is not reli-
able at all with violated conditions (Hu et al. 1992).As reviewed by Bentler
and Dudgeon (1996), one solution to this problem has been the develop-
ment of the asymptotically distribution free procedure of Browne (1982)
and Chamberlain (1982), and, more recently, a finite sample variant thereof
(Yuan and Bentler 1997). While this methodology requires no distribu-
tional assumptions, it was not developed to deal with gross pathologies in
the data such as miscoded scores or outlier cases. For example, Yuan and
Bentler (1996) recently showed that a small proportion of outliers leads to
inflated fit indices and biases in the estimates of parameters even if the
model is correct for the majority of the data. This is because the sample
covariance matrixSis unduly influenced by a small proportion of outliers
and can be very inefficient when the sample comes from a distribution
with heavy tails (Tyler 1983). To deal with such problems, Jöreskog (1977)
and Browne (1982) suggested the possibility of using a robust covariance
estimatorSn in (1) instead of the sample covariance matrixS. Huba and
Harlow (1987) followed up these suggestions, and reported having exper-
imented extensively with the use of resistant covariance matrices in place
of ordinary sample covariance matrices in standard structural modeling
programs. In spite of these early observations, made one to two decades
ago, no technical development has emerged to clarify the precise effects of
substituting a robust estimator forS in (1) in the structural equation liter-
ature. For example, the recent comprehensive review of mean and covari-
ance structure methodology by Browne andArminger (1995) and the newly
published book by Gnanadesikan (1997) on multivariate methods did not
discuss this topic, which is the main focus of this paper.

There has been a limited development of robust methodology for
latent variable modeling. Yamaguchi and Watanabe (1993) used a covari-
anceSn of MLE from a multivariatet-distribution along with (1). Their
empirical results indicate thatZun based on this covariance matrix is more
efficient than the corresponding estimator based on the sample covariance
matrix S. Yuan and Bentler (forthcoming) studied methods of minimum
chi-square and maximum likelihood based on an elliptical density. How-
ever, using a robust covarianceSn in (1) is another approach to robustness
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and can be expected to give more stable solutions than the minimum chi-
square method. Another advantage of usingSn in (1) is that such an ap-
proach could be easily adapted into existing software such as EQS and
LISREL, and hence can be made readily available to practitioners. This
provides another reason for studying this method.

Two important concepts in describing the robustness of a statistic
are the influence function and breakdown point. For an estimatorT based
on data from a populationF, the associated influence functionIF ~x! is a
measure of the relative change inT with respect to the proportion of ob-
servations that are not fromF but from a “contamination” point at thex.
The IF ~x! gives an idea of how the estimatorT responds when an extra
observation atx is added to a sample. For example, when an observationx
is added to a sample with sizen, the proportion ofx is 10~n 1 1!, the
relative change in the sample mean is$~n PX1 x!0~n1 1! 2 PX%0$10~n1 1!%,
which is unbounded inx for anyn. This is because the influence function
associated with PX is IF ~x! 5 x 2 m, the limit of the relative change asn
goes to infinity, wherem is the population mean ofF. The influence func-
tion associated with the sample covarianceSis a quadratic function. For a
sample with sizen and an estimatorT, the finite sample breakdown point
en
* is the smallest proportion of then observations which can render the

estimatorTmeaningless (e.g., becoming infinity). The (asymptotic) break-
down point ofT is the limiting valuee * of en

* asn goes to infinity. For
example, for both PX andS, en

*5 10n ande *5 0. Generally, a good robust
estimator will have a bounded influence function as well as a nonzero
breakdown point—that is, for some constantc, 6 IF ~x!6, c for anyx and
e *. 0. We refer readers to Staudte and Sheather (1990) and Hoaglin et al.
(1983) for a discussion of the theory and application of robust methods.

The unbounded influence function and zero breakdown point of the
sample covariance indicate thatSis very sensitive to outliers. On the other
hand, most robust covariancesSn have bounded influence functions as
well as nonzero breakdown points, and they are generally more efficient
thanS when the underlying distribution has heavy tails. SinceZun is ob-
tained through minimizing (1), these nice properties ofSn will be inherited
by Zun when Sn is used in (1). However, using a robustSn in (1) means
dropping the normality assumption, so that standard errors based on the
information matrix and the likelihood ratio testTML for testingS 5 S~u!
cannot be used any more. In fact, even if the sample is fromNp~m,S!, Sn

will be different from the sample covariance matrixS, so that inference on
model structure and parameters based on normal theory cannot be used
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without modification. In this paper, we will study inference problems as-
sociated with using a robustSn in equation (1).

Outside the field of structural equation modeling, robust estima-
tion of population means and covariances has attracted much attention.
In particular, the influence functions and breakdown points of a variety
of estimators, including M-estimators, S-estimators, and other estima-
tors, have been well studied (e.g., Maronna 1976; Lopuhaä 1989). Both
M-estimators and S-estimators have bounded influence functions, the dif-
ference between them being that the breakdown point of an M-estimator
is at most 10~ p 1 1!, which is restrictive in practice when the dimension
p is high. On the other hand, the breakdown point of an S-estimator is
not limited by the dimension of the data and can be as high as approxi-
mately 102. Generally, the asymptotic efficiency of an S-estimator is re-
lated to its breakdown point and it is impossible to obtain a highly efficient
estimator with a breakdown point near 102. Among all the classes of
robust estimators, M-estimators represent the primary class that has been
used in practical data analysis. Within the family of elliptical distribu-
tions, Campbell (1980) and Devlin et al. (1981) empirically studied prin-
cipal component analysis based on robust covariances. Being primarily
illustrations of exploratory data analysis, these references are only indi-
rectly related to structural equation modeling. However, Tyler (1983)
studied how to test explicit constraints on the elements ofS. Our work is
related to his prior work as we shall show.

In order to make the following material self-contained, we would like
to give some details of notations that will be used later. IfA is ap3 p ma-
trix, vec~A! is thep2-dimensional vector formed by stacking the columns
of A while vech~A! is thep*5 p~ p1 1!02-dimensional vector formed by
the nonduplicated elements ofA whenA is symmetric. For example, when
A5 ~aij ! is a 333 matrix, vec~A!5 ~a11a21a31a12a22a32a13a23a33!' and
vech~A! 5 ~a11a21a31a22a32a33! ' . There exists a uniquep2 3 p* matrix
Dp such that vec~A!5Dp vech~A! and vech~A!5Dp

1 vec~A!,whereDp
1 5

~Dp
' Dp!21Dp

' is the generalized inverse ofDp. If A is am3 n matrix and
B is ap3 q matrix, then themp3 nqmatrix ~aij B! is called the Kronecker
product ofA andB and is denoted byA J B. A good reference to these no-
tations is Magnus and Neudecker (1988). We will uses~u! 5 vech~S~u!!
and Ts~u! 5 vec~S~u!!. A function with dot on top means derivative—
for example, ^ Ts~u! 5 ] Ts~u!0]u ' , Ĝ~x,m,s! 5 ]G~x,m,s!0]~ m ',s '!,
\F~Sn,S~u!! 5 ]2F~Sn,S~u!!0]u]u ' , andŜj ~u! 5 ]S~u!0]uj , the latter being

the derivative of the matrix function with respect to thejth element ofu.
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When a function is evaluated at the true value of the parameter, we often
replace the argument with a subscript index such ass0 5 s~u0! or ^ Ts0 5
^ Ts~u0!. There are three probabilistic notations:tn 5 op~an! meansantn ap-

proaches zero in probability asnapproaches infinity;tn5Op~an! meansantn
is bounded in probability; andL && denotes convergence in distribu-
tion. A classically good reference to these notations is Bishop et al. (1975,
chap. 14).

In Section 2, we will study inference problems associated with using
Sn. Specific types of robust covariances will be given in Section 3. Appli-
cations of these results to covariance structures for some real data sets will
be presented in Section 4. In the development, we will emphasize results
that are relevant to applications. For regularity conditions, we will assume
that the population covariance matrixS0 exists and is nonsingular, and that
the modelS~u! is identified. In order to minimize technical details, we also
implicitly assume some other standard regularity conditions that are hard
to verify but are generally satisfied in applications. Readers can refer to
Maronna (1976) and Lopuhaä (1989) for conditions on robust covariances
and Yuan and Bentler (1997) for conditions on structural models.

2. INFERENCE ON STRUCTURAL MODELS

Avariety of robust procedures have been proposed for estimating the mean
vector and covariance matrix in a multivariate distribution. In the devel-
opment of most of these procedures, an elliptically symmetric population
has been a basic assumption (e.g., Maronna 1976), though this assumption
is seldom checked in applications (e.g., Campbell 1980; Devlin et al. 1981).
The density of an elliptical distribution has a form

f ~x! 5 6S062102h$~x 2 m0!'S0
21~x 2 m0!%+ (2)

By adjusting the functionh~t!, we can assume cov~X!5S0 in (2).A robust
estimator ZSn generally does not converge to the population covariance; it
converges instead to a constant times the population covariance matrix—
aS0, wherea is a positive scalar. So the term “robust covariance” is vague,
and sometimes another term, “robust dispersion,” is used instead. How-
ever, the term—structural equation modeling with robust covariances—is
still well defined as long as the structural modelS~u! is invariant under a
constant scaling factor (ICSF). That is, for any parameter vectoru and
positive constanta, there exists a parameter vectoru* such thatS~u*! 5
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aS~u!. So if a structural modelS~u! is ICSF, the model that holds for a
covariance matrixS also holds for a rescaled version of the covariance
matrixaS. As noted by Browne (1984:73), “Nearly all models for covari-
ances matrices in current use are ICSF. Amongst the few exceptions are
models which require certain elements ofS to have fixed nonzero values
and restricted factor analysis models forS with some fixed nonzero factor
loadings and fixed factor variances. These are seldom employed in prac-
tice because of the difficulty of prespecifying nonzero parameter values.”

Even though an ICSF model that holds forS also holds foraS, u*

generally depends ona. So the ambiguity of robust covariance leaves its
heritage onto the parameteru* . In order to fully appreciate the effect of this
heritage, let us take the factor analysis model

X 5 m 1 Lf 1 e, (3)

as an example. With the typical hypothesis thatf andeare uncorrelated, we
have the following covariance structure

S~u! 5 LFL' 1 C, (4)

whereL is a factor loading matrix,F 5 cov~ f !, C 5 cov~e!, andu 5
~ul
' ,uf
' ,uc

' !' consists of the unknown elements inL, F, andC, respec-
tively. Two kinds of parameterizations in (4) are generally used in order
for the model to be identified. The first is to fix all the factor variances
at 1 so thatF is a correlation matrix; the second is to fix one factor
loading at 1 corresponding to each factor. Assuming that (4) is ICSF—
that is, there is no prefixed nonzero element inL, F or C besides those
required for identification purposes—we will look at the relationship of
u* andu. WhenF is a correlation matrix, then

aS~u! 5 ~!aL!F~!aL!' 1 aC,

soul
*5 !aul , uf

* 5 uf , anduc
*5 auc in this case. When fixing one factor

loading at 1 for each factor, then

aS~u! 5 L~aF!L' 1 aC

and ul
* 5 ul , uf

* 5 auf , anduc
* 5 auc in this case. In either case, the

correlations among the variables (fromS or aS) remain invariant; the
correlations among factors (fromF or aF) and residuals (fromC or aC)
remain identical; and especially relevant, the standardized factor loadings,
useful for interpretive reasons, remain invariant. The latter can be seen
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from the rescaling ofR~u! 5 D~aS~u!!D, with R~u! being a correlation
matrix and

R~u! 5 ~D!aL!F~L'!aD! 1 aDCD 5 DLF DL' 1 aDCD,

where DL is the standardized factor pattern matrix. In addition, for either of
these parameterizations, there will be no effect ofa on the following inter-
esting relationships among parameters: (i) some factor loadings being zero,
say,l ij 5 0; (ii) comparison among factor loadings, say,l i1 j1 5 l i2 j2; and
(iii) magnitude of the coefficients of reliabilityri 5 ~var~xi ! 2 var~ei !!0
var~xi !. It is also easy to see that the test statisticTML as well as a rescaled
version of it that will be introduced in the next section will not be influ-
enced by the fact thatu* depends ona. Some functions of the param-
eters will change witha—e.g., the ratio of a factor loading over the factor
variance—but it can be argued that this kind of function will never have any
practical interest.

We have used a factor model as an example to demonstrate the
effect of using a robust covariance. The effect on other types of models,
such as LISREL types of models and linear covariance structure models, is
similar: That is, the ambiguity of a robust covariance may change param-
eter estimates in a systematic way, but it does not change inference that
typically has substantive interest. Actually, the effect of using a robust
covariance for structural equation modeling is very similar to those of
using robust covariances with other multivariate methods (e.g., Campbell
1980; Devlin et al. 1981; Tyler 1983). For example, even though the vari-
ances of principal components change witha, there will be no effect ofa
on discovering a lower-dimensional space or on rules used for reduction of
dimensionality.

Let sn 5 vech~Sn! be a robust covariance estimator and satisfy

!n~sn 2 j0!
L

&& N~0,G! (5)

with j05 as0 for a positivea. We can then useSn in equation (1) based on
our above discussion. We do not need to know the value ofa if the model
S~u! is ICSF. Since usingkSn andk2G for any positivek will lead to the
same evaluation of the structural model and relationships among param-
eters of interest, we may assumea 5 1 in the rest of this paper without loss
of generality. For simplicity, we will keep the notations05 s~u0! in place
of j0 5 j~u0

* !+ So parameteru0 possesses some kind of generic meaning,
but it is specific with a specific robust covariance matrix estimate.

370 YUAN AND BENTLER



Besides the ICSF condition, condition (5) is also essential for our
development. As we shall see in the next section, many robust estimators
satisfy (5). It is obvious that sample covariances based on normal samples
as well as those based on nonnormal samples also satisfy (5), assuming
finite fourth-order moments with the latter. When condition (5) is satisfied
and we minimizeF~Sn,S~u!! for Zun, then Zun is consistent as long asS~u! is
identified (Kano 1986). Such anZun will also have the same breakdown
point as that ofSn and a bounded influence function as long as the influ-
ence function ofSn is bounded. We will mainly deal with the asymptotic
distribution of Zun and the test statistics associated withF~Sn,S~ Zun!! for
evaluating the structureS0 5 S~u0!. Let

gnj ~u! 5 vec'~Ŝ j ~u!!$S21~u! J S21~u!%vec~Sn 2 S~u!! (6)

andgn~u! 5 ~gn1~u!,{{{,gnq~u!!' , whereq is the number of unknown pa-
rameters inu. Then in practice Zun is obtained through solvinggn~ Zun! 5 0,
which is the normal equation associated with minimizing (1). Using a Tay-
lor expansion ongn~ Zun! 5 0, we obtain

!n~ Zun 2 u0! 5 A21~u0!!ngn~u0! 1 op~1!, (7)

whereA~u! 5 ~ajk~u!! with

ajk~u! 5 vec'~Ŝ j ~u!!$S21~u! J S21~u!%vec~Ŝk~u!!+

So matrixA corresponds to the information matrix associated with MLE
based on the normality assumption. Equations (5), (6), and (7) lead to

!n~ Zun 2 u0!
L

&& N~0,V!, (8)

whereV 5 A21PA21 with

P 5 ^ Ts0
' ~S0

21 J S0
21!DpGDp

' ~S0
21 J S0

21! ^ Ts0+

WhenSn 5 S is the sample covariance based on a sample fromN~m,S0!,
thenP 5 2A, and (8) characterizes the asymptotic distribution of the nor-
mal theory MLE. WhenSn5Sbut the data are nonnormal,V in (8) is of the
form of the well-known sandwich type covariance matrix (e.g., Browne
1984; Bentler and Dijkstra 1985; Arminger and Schoenberg 1989; Arm-
inger and Sobel 1990). Generally,P Þ 2A for a robustSn even if the
sample is from a normal distribution. Inference on parameters can be done
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with (8) using a consistent estimatorZV, which is obtained in practice by
replacingA andP by their consistent estimates.

Because latent variable models usually involve many structural as-
sumptions and hypothetical latent variables that cannot be observed, it is
critical, especially in applications, to have a goodness-of-fit index that
permits an evaluation of the hypothesized modelS 5 S~u!. This can be
obtained from knowledge of the distribution ofnF~Sn,S~ Zun!!, as will be
developed next. Using a Taylor expansion onF~Sn,S~ Zun!! at u0 and with
S0 5 S~u0!, we obtain

F~Sn,S~ Zun!! 5 F~Sn,S0! 1 F̂ '~Sn,S0!~ Zun 2 u0!

1
1

2
~ Zun 2 u0!' \F~Sn,S~ Nun!!~ Zun 2 u0!, (9)

where Nun is a vector lying betweenu0 and Zun. Notice that

2 log6S0
21Sn65 2 log6 Ip 2 ~Ip 2 S0

21Sn!6,

using (5) and a matrix version of Taylor expansion (e.g., Muirhead 1982:
363, eq. 15),

2 log6S0
21Sn65 tr~Ip 2 S0

21Sn! 1
1

2
tr~Ip 2 S0

21Sn!2 1 OpS 1

n302D+
(10)

It follows from (10) that

F~Sn,S0! 5
1

2
tr~Ip 2 S0

21Sn!2 1 OpS 1

n302D+ (11)

Similarly,

F̂ '~Sn,S0!~ Zun 2 u0! 5 2 vec'~Sn 2 S0!P vec~Sn 2 S0! 1 opS1

nD
(12)
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and

1

2
~ Zun 2 u0!' \F~Sn,S~ Nun!!~ Zun 2 u0!

5
1

2
vec'~Sn 2 S0!P vec~Sn 2 S0! 1 opS1

nD, (13)

where

P 5 ~S0
21 J S0

21! ^ Ts0$ ^ Ts0
' ~S0

21 J S0
21! ^ Ts0%21 ^ Ts0

' ~S0
21 J S0

21!+

By putting (11), (12), and (13) into (9), we obtain

nF~Sn,S~ Zun!! 5 Zn
' QZn 1 op~1!,

whereZn 5 G2102!n vech~Sn 2 S0! and

Q 5
1

2
G102Dp

' $~S0
21 J S0

21! 2 P%DpG102+ (14)

It follows from (5) that Zn
L

&& Np* ~0, I !+ When Sn 5 S is the sample
covariance based on a sample fromNp~m,S!, G 5 2Dp

1~S0 J S0! Dp
1' ,Q

is a projection matrix of rankp* 2 q and consequently,nF~S,S~ Zun!!
L

&&

xp*2q
2 + Generally,Q is only a nonnegative definite matrix of rankp*2 q.

Let l1 $ {{{ $ lp*2q . 0 be the nonzero eigenvalues ofQ, then

nF~Sn,S~ Zun!!
L

&& (
j51

p*2q

l j x1j
2 , (15)

wherex1j
2 are independent chi-square variates with degree of freedom 1.

Unlessl1 5 {{{ 5 lp*2q, no commonly used distribution is available to
describe the behavior of the right-hand side of (15), which is a mixture of
chi-square distributions. Several approximations to a mixture of chi-square
distributions were developed by Box (1954) and Satterthwaite (1941). An-
other was studied by Bentler (1994) for approximating (15) withSn 5 S
based on a sample from a nonnormal distribution. WhenS is based on a
sample from an elliptical distribution, Browne (1984) proposed a rescaling
factor tonF~S,S~ Zun!! using Mardia’s coefficient of kurtosis (Mardia et al.
1979:31). Satorra and Bentler (1994) proposed a more general rescaling
factor to the likelihood ratio statistic. With a rescaling factor, Tyler (1983)
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studied the likelihood ratio test for a specific function of elements of the
population covariance matrix. As we shall see in the next section, within
the family of elliptical distributions, a similar correction applies to
nF~Sn,S~ Zun!!.

3. ROBUST MEANS AND COVARIANCE MATRICES

We will emphasize two classes of robust estimators of mean and covari-
ance in this section. One is the class of M-estimators, the other is the class
of S-estimators. This is because robust properties of these estimators are
well studied and they satisfy condition (5), which is necessary for their
applications in covariance structure analysis. We will use an estimating
equation approach in presenting these estimators. An advantage of this
approach is that a consistent estimator for the matrixG can be obtained by
identifying the corresponding estimating equation for each estimator. In
addition, we will state a common property of these estimators within the
family of elliptical distributions. This will motivate us to find a way to
make use ofnF~Sn,S~ Zun!! in testing the quality of the model. Some of
these estimators will be used in our examples in the next section.

Let X1, {{{, Xn be a given sample; many robust estimators~ [mn, ZSn!
can then be obtained by simultaneously solving

1

n (
i51

n

G1~Xi , [mn, ZSn! 5 0 (16)

and

1

n (
i51

n

G2~Xi , [mn, ZSn! 5 0, (17)

whereG1~x,m,S! is a p 3 1 vector function andG2~x,m,S! is a p 3 p
matrix function. For example, if we let

d~x,m,S! 5 $~x 2 m!'S21~x 2 m!%102,

an M-estimator will then correspond to

G1~x,m,S! 5 u1$d~x,m,S!%~x 2 m! (18)
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and

G2~x,m,S! 5 u2$d2~x,m,S!%~x 2 m!~x 2 m!' 2 S, (19)

whereu1~t! andu2~t! are univariate weight functions that will be given
when discussing different estimators below. Equations such as (16) and
(17) are often called estimating equations because they are used to define
parameter estimators. A nice property of using these estimating equations
is that the asymptotic distribution of~ [mn, ZSn! can be presented in a unified
way. If

G~x,m,s! 5 ~G1
' ~x,m,S!,vech'$G2~x,m,S!%!',

then

!nS [mn 2 m0

[sn 2 s0
D L

&& N~0,V !, (20)

whereV 5 H 21BH '21 with

H 5 E$Ĝ~X,m0,s0!% and B 5 E$G~X,m0,s0!G'~X,m0,s0!%+

Note that (20) holds as long asm0 andS0 satisfy E$G~X,m0,s0!% 5 0 and
the expectations withH andBexist.Also, since a proper weight is attached
to each individual case, we generally need to assume only that the second
moment of the sampling population exists in order forB to exist for most
of the robust estimators. On the other hand, we need to assume that the
fourth-order moment will be finite for the sampling distribution when using
the sample covariance. A consistent estimate ofV can be obtained by using
consistent estimates forH andB; these are given by

ZHn 5
1

n (
i51

n

Ĝ~Xi , [mn, [sn! and

ZBn 5
1

n (
i51

n

G~Xi , [mn, [sn!G'~Xi , [mn, [sn!+

Let V22 be the submatrix ofV corresponding to the asymptotic covari-
ance of!n~ [sn 2 s0!; thenG 5 V22 and ZG 5 ZV22, which will be used in
our applications.

Different G1 andG2 correspond to different estimators. Within the
class of M-estimators withG1 and G2 being given by (18) and (19), a
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variety of weight functionsu1~t! and u2~t! lead to different types of
M-estimators (e.g., Hoaglin et al. 1983). The well-known Huber-type
M-estimator corresponds to

u1~d! 5 H 1, if d # r

r0d, if d . r

and u2~d2! 5 $u1~d !%20b (e.g., Tyler 1983), wherer 2 is given by
P~xp

2 . r 2! 5 a, a is the percentage of outliers one wants to control in
the data, andb is a constant such that Exp

2u2~xp
2! 5 p, which makes the

estimator ZSn unbiased if sampling from ap-variate normal distribution.
If using u1~t! 5 u2~t 2! 5 2 2ĥ~t 2!0h~t 2! in (18) and (19), we obtain the
maximum likelihood estimator of~m,S! based on the elliptical density
in (2). When ap-variatet-distribution with degrees of freedomm is used,
u1~d! 5 u2~d2! 5 ~ p 1 m!0~m1 d2!. The ZSn based on such a weight can
be rescaled bySn 5 k ZSn so thatSn is consistent for the population co-
variance when sampling from a multivariate normal distribution. The
constantk is a solution to E$~kxp

2!0~m1 kxp
2!% 5 p0~m1 p!. However,

the constantsb andk are unnecessary if only considering inference on
models and parameters as long asS~u! is ICSF. We shall use these scal-
ings in our examples in the next section just for obtaining comparable
parameter estimates.

For the functions given in (18) and (19),~ [mn, ZSn! defined in (16)
and (17) satisfy

m 5 (
i51

n

u1$d~Xi ,m,S!%XiY(
i51

n

u1$d~Xi ,m,S!%,

and

S 5 (
i51

n

u2$d2~Xi ,m,S!%~Xi 2 m!~Xi 2 m!'0n+

The above two equations are the usual way to define an M-estimator and
give an iterative algorithm for obtaining~ [mn, ZSn!. Motivated by the un-
biasedness of the sample covariance, Campbell (1980) defined another
form of M-estimator:

m 5 (
i51

n

wi XiY(
i51

n

wi (21)
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and

S 5 (
i51

n

wi
2~Xi 2 m!~Xi 2 m!'YS(

i51

n

wi
2 2 1D, (22)

wherewi 5 w$d~Xi ,m,S!% for a weight functionw~t!. The estimators de-
fined in (21) and (22) correspond to the estimating equations (16) and (17)
with

G1~x,m,S! 5 w~x,m,s!~x 2 m!

and

G2~x,m,S! 5 w2~x,m,s!~x 2 m!$~x 2 m!~x 2 m!' 2 S% 1
1

n
S+

Campbell usedw~d! 5 v~d!0d and

v~d! 5 H d, if d # d0

d0 exp$22
12~d 2 d0!20b2

2%, if d . d0
, (23)

whered0 5 !p 1 b10#2, b1 andb2 are constants. Based on extensive em-
pirical experience, proposed choices forb1 andb2 were given by Campbell
(1980): (a)b15` corresponding to the usual sample covariance; (b)b15
2,b25` corresponding to a Huber-type M-estimator; (c)b152,b251+25
corresponding to a Hampel-type redescending M-estimator (Hampel 1974).

Since the breakdown point of an M-estimator is limited by the di-
mension of the data, other types of estimators with high breakdown points
have been proposed. One such estimator is the well-studied S-estimator.
Let r~t! be a continuously differentiable symmetric function that is also
strictly increasing on@0,c0# and constant on@c0,`#. For a constantb0 (0,
b0 , a0 5 r~c0!), an S-estimator of~m,S! is defined by minimizing6S6
subject to the constraint

1

n (
i51

n

r$d~Xi ,m,S!% 5 b0+

The breakdown point of the S-estimator is approximately given byb00
r~c0! and can be as large as 102. Using Lagrange multipliers, Lopuhaä
(1989) showed that an S-estimator~ [mn, ZSn! satisfies the estimating equa-
tions (16) and (17) with
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G1~x,m,S! 5 u$d~x,m,S!%~x 2 m!

and

G2~x,m,S! 5 pu$d~x,m,S!%~x 2 m!~x 2 m!' 2 v~d!S,

whereu~t! 5 _r~t!0t andv~t! 5 t _r~t! 2 r~t! 1 b0. A recommendedr~t! is
Tukey’s biweight function (e.g., Ruppert 1992)

rc0
~t! 5 Ht 202 2 t 40~2c0

2! 1 t 60~6c0
4!, if t # c0

c0
206, if t . c0

+

Note that equations (16) and (17) corresponding to an S-estimator will have
multiple solutions. A practical algorithm is needed for solving these equa-
tions in order to obtain the S-estimator. We will use the SURREAL algo-
rithm developed by Ruppert (1992) for our examples in the next section.

The family of elliptical distributions has been well explored in
robustness studies. This is because the distributions represented by (2)
include multivariate normal as well as many multivariate nonnormal dis-
tributions with heavy or light tails. Assuming that the sample is from
(2), then for both M- and S-estimators the asymptotic distribution of
~ [mn, ZSn! has a nice property. In particular,[mn and ZSn are asymptotically
independent with

!n~ [mn 2 m0!
L

&& N~0,cS! and !n~ [sn 2 s0!
L

&& N~0,G!,

where

G 5 2aDp
1~S0 J S0!Dp

1'1 bDp
1 vec~S0!vec'~S0!Dp

1' ,

anda, b, andc are constants depending on the specificG1 andG2 used in
the estimating equations (16) and (17). Specific forms ofa, b, andc can be
found in Maronna (1976) and Tyler (1982) for M-estimators and in Lopu-
haä (1989) for S-estimators; these are not required in our applications.
Within the elliptical family, the statisticnF~Sn,S~ Zun!! also converges to a
nice form if the structureS~u! satisfies

S~u0! 5 c1Ŝ1~u0! 1 {{{ 1 cqŜq~u0! (24)

for some constantsc1, {{{, cq. Condition (24) is implied by the ICSF con-
dition and is consequently satisfied by almost all structural models in cur-
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rent use. Under condition (24), it can be easily shown that all the nonzero
eigenvalues of the matrixQ in (14) are equal toa. In such a case,

nF~Sn,S~ Zun!!0a L
&& xp*2q

2 .

A consistent estimate ofa is given by [a 5 tr~ ZQ!0~ p* 2 q!. So

T1 5 nF~Sn,S~ Zun!!0 [a (25)

can be used as a statistic for testing the hypothetical structureS~u!. When
the sample is not from an elliptically symmetric distribution,T1 generally
will not approachxp*2q

2 but will approach a distribution with meanp*2 q
instead. WhenSn 5 S is the sample covariance andZG 5 SY is the sample
covariance ofYi 5vech$~Xi 2 PX!~Xi 2 PX!'%, T1 is equivalent to the statistic
TSB proposed by Satorra and Bentler (1994). Existing simulation studies
indicate thatTSB is very insensitive to various violations of elliptical sym-
metry of the underlying distributions (Hu et al. 1992; Curran et al. 1996).
We suspect a similar behavior forT1 using a robust covariance matrixSn.
More research in this direction is needed.

4. EMPIRICAL EXAMPLES

We shall use some real data sets to demonstrate applications of the pro-
cedures developed in the last two sections. In particular, we shall com-
pare estimates and test statistics by using different robust estimators of
covariances.

The first is a classical data set from Holzinger and Swineford (1939).
The data set consists of mental ability tests scores of seventh- and eighth-
grade children from two different schools. There are 26 variables and 145
subjects from the Grant-White school. Jöreskog (1969) used 9 of the 26
variables in studying the correlation structure with normal theory maximum-
likelihood method. We shall also use these 9 variables in our application.
The 9 variables are 1. Visual Perception, 2. Cubes, 3. Lozenges, 4. Para-
graph Comprehension, 5. Sentence Completion, 6. Word Meaning, 7. Ad-
dition, 8. Counting Dots, and 9. Straight-Curved Capitals. In Holzinger
and Swineford’s original report, variables 1, 2, and 3 were designed to
measure the spatial ability of the subjects; variables 4, 5, and 6 were de-
signed to measure the verbal ability of the subjects; and variables 7, 8, and
9 were designed to measure the speed factor of the subjects in performing
the tasks. LetX represent the 9 observed variables; the confirmatory factor
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model, presented in (3), then represents the hypothesis of the original de-
sign with

L 5 1
l11 l21 l31 0 0 0 0 0 0

0 0 0 l42 l52 l62 0 0 0

0 0 0 0 0 0 l73 l83 l93
2
'

+ (26)

We assume that the measurement errors are uncorrelated, withC 5 cov~e!
being a diagonal matrix; for identification purposes, we also setF in (4) to
be a 33 3 correlation matrix. So there areq5 21 unknown parameters in
u, nine of which are factor loadings.

Previous analyses of this classical data set have always assumed nor-
mality, and hence we may wonder if a robust method is necessary.As is well
known, a robust method generally gives smaller weights to observations that
deviate from the majority of the data.After working on a number of real and
simulated data sets, Campbell (1980) concluded that theith case is an atyp-
ical observation if the associated weightwi

2 in (22) is less than .30 withb15
2+0 andb25 1+25. The two smallest weights for this data set arew24

2 5 +072
andw106

2 5 +121. So cases 24 and 106 may indicate the long tails of the un-
derlying distribution of this data set, and a robust covariance estimator may
provide a better estimate of the population covariance.

Several M-estimates and an S-estimate of covariances are used in
(1) for fitting the factor model to this data set. The three M-estimates are
based on the multivariate t-distribution with degree of freedom 1 [Mt(1)],
the Huber-type weight withq 5 +2 [Huber(.2)], and Campbell’s weight
with b1 5 2+0 andb2 5 ` [Campbell~2,`!]. For the S-estimate, the bi-
weight function withc05 11+105 is used; this corresponds to a breakdown
point of .2. For comparison purposes, we also include the normal theory
method with the sample covariance matrixS. The estimated factor load-
ings with their standard errors as well as the fit indices based on (25) are
given in Table 1. As can be seen in the top part of the table, all the covari-
ances give a similar pattern in estimates of factor loadings. With respect to
fit indices, given in the last row of the table, the normal theory method
gives the largest test statistic for the structural model withTML 5 51+19.
Referring to the chi-square distribution with 24 degrees of freedom, this
corresponds to a p-value of .001. So we may reject the model structure in
(4) and (26) if based on the normal theory method. However, using theSn

based on the multivariate Cauchy density, [Mt(1)] yields a fit statisticT1

that corresponds to a p-value of .03, indicating that the factor model is a
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TABLE 1
Fit Indices and Estimated Factor Loadings

l ij Mt(1) Huber(.2) Campbell~2,`! S(.2) ML

l11 4.606 (.693) 4.709 (.649) 4.678 (.795) 4.702 (.691) 4.678 (.624)
l21 1.966 (.421) 2.160 (.392) 2.258 (.395) 2.244 (.387) 2.296 (.408)
l31 5.679 (.864) 5.494 (.749) 5.681 (.761) 5.730 (.754) 5.769 (.751)
l42 2.703 (.301) 2.789 (.256) 2.893 (.266) 2.880 (.258) 2.922 (.237)
l52 3.876 (.396) 3.857 (.350) 3.876 (.336) 3.888 (.340) 3.856 (.333)
l62 6.314 (.697) 6.262 (.568) 6.457 (.604) 6.482 (.588) 6.567 (.569)
l73 15.37 (2.197) 15.67 (1.972) 15.71 (1.904) 15.79 (1.905) 15.68 (2.012)
l83 17.15 (1.824) 15.77 (1.668) 16.33 (1.761) 16.57 (1.743) 16.71 (1.752)
l93 22.30 (3.427) 24.15 (2.996) 25.01 (3.082) 25.05 (3.082) 25.97 (3.117)

Test 38.85 43.10 44.40 46.50 51.19

Source:Based on Psychological Data from Holzinger and Swineford (1939).
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reasonable model. This supports the design of the original measurements.
The statistics corresponding to the other three types of robust covariances
correspond to p-values of .01, .007, and .004, respectively, which suggests
that the model in (4) and (26) ranges from acceptable to barely acceptable.
This reflects differences among the various robust covariances.

For this example, we used the model (4) withL in (26), which
represents the original design by Holzinger and Swineford (1939). Other
models may also provide a good explanation of the measured variables, as
described in Jöreskog (1969). Our purpose here is to show that when ab-
normal observations exist in a data set, using robust covariances with cor-
rected inference procedures may lead to a better evaluation of model
structure. On the other hand, the normal theory method is easily influenced
by outliers so that a reasonable model that would fit the majority of the
data may be discredited by a few influential observations.

The data for our second example comes from Dukes et al. (1995),
who studied the effect of the DrugAbuse Resistance Education (D.A.R.E.)
program based on data obtained across four years from 440 classrooms
and 10,000 students. Outcomes were evaluated by Dukes et al. on the
classroom level, using a Solomon four-group design with latent variables.
For each cohort, the design had an experimental group and a control group
that were pretested and posttested, as well as an experimental group and a
control group that were not pretested (posttest only), permitting an isola-
tion of pretest on posttest as well as maturation effects. Here we study only
the posttest experimental group (group C) with sample sizen5 122, using
a standard confirmatory factor analysis model based on 12 variables and 4
correlated common factors. The factors in this model represent self-esteem;
resistance to peer pressure; family, police, and teacher bonds; and accep-
tance of risky behavior, and have 2, 2, 3, and 5 univocal indicators. The
model was justified by theoretical considerations, and it gives a reasonable
explanation of their data. As in the analysis of the first example, we want
to see whether the use of a robust method yields different conclusions from
that found with the normal theory method. Using Campbell’s weight scheme
with b1 5 2+0 andb2 5 1+25 (Campbell[2,1.5] ), the three smallest weights
wi

2 as in (22) arew99
2 5 6+343 1027, w79

2 5 +041, andw43
2 5 +14. So cases

99, 79, and 43 are definitely atypical observations based on the criterion of
Campbell (1980). This may indicate that a robust covariance approach
would be useful for analyzing this data set.

As in the first example, four robust covariances as well as the sam-
ple covariance are used to analyze this data set. The four robust covari-
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ances are based on Huber(.2), Campbell~2,`!, Mt(1), and S(.2) with
Tukey’s biweight functionr~t!. The estimates of fit indices and factor
loadings are given in Table 2. The estimates of factor loadings by different
methods are comparable. Basically, all the methods give similar solutions
to the estimates. As in our first example, there exist large and meaningful
differences among the fit indices. The statistic corresponding to the normal
theory method isTML 5 102+10 with a p-value5 8+93 1026 when referred
to the chi-square distribution with 48 degrees of freedom. This implies that
the model hardly fits the data. On the other hand, the robust covariances
obtained by Mt(1) and Campbell~2,`! lead to test statistics 79.28 and
78.62 respectively, much smaller though still technically significant. How-
ever, all the fit statistics based on robust covariances are below two times
the degrees of freedom, while the normal theory test statistic is much larger
than 23 44.

The third data set is from Bollen (1989:30–31). It consists of three
estimates of percent cloud cover for 60 slides. This data set was introduced
for outlier identification purposes. Bollen and Arminger (1991) further
used a one-factor model to fit this data to study observational residuals in
factor analysis. An interesting feature of this data set is that using the

TABLE 2
Fit Indices and Estimates of Factor Loadings

l ij Mt(1) Huber(.2) Campbell~2,`! S(.2) ML

l11 .689 (.165) .673 (.122) .698 (.125) .698 (.120) .690 (.118)
l21 .239 (.079) .280 (.064) .324 (.086) .316 (.069) .330 (.060)
l32 .155 (.028) .142 (.027) .153 (.038) .152 (.030) .153 (.029)
l42 .269 (.037) .279 (.037) .289 (.038) .289 (.035) .287 (.034)
l53 .199 (.029) .192 (.026) .189 (.027) .192 (.026) .186 (.026)
l63 .271 (.034) .251 (.029) .250 (.033) .254 (.030) .247 (.030)
l73 .206 (.026) .182 (.023) .183 (.023) .188 (.023) .183 (.022)
l84 .090 (.012) .091 (.011) .096 (.012) .096 (.012) .096 (.010)
l94 .076 (.009) .073 (.008) .075 (.008) .076 (.008) .075 (.010)
l10, 4 .087 (.011) .082 (.009) .081 (.009) .083 (.009) .080 (.012)
l12, 4 .118 (.013) .115 (.013) .117 (.013) .119 (.014) .118 (.013)
l11, 4 .093 (.013) .090 (.012) .093 (.012) .094 (.012) .094 (.009)

Test 79.28 81.82 78.62 87.92 102.10

Source:Based on Drug Abuse Resistance Education Data D.A.R.E., from Dukes et al.
(1995).
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typical sample covariance matrix based on all the 60 cases leads to an
improper solution (a negative error variance) with

L 5 ~1+0, +97,1+18!', F 5 1052, and

C 5 diag~249,474,251+4!+

After removing the three cases (52, 40, and 51) corresponding to the three
largest residuals in Bollen and Arminger’s (1991) analysis, the solution to
the factor model is

L 5 ~1+0,1+14,1+12!', F 5 1023, and

C 5 diag~106,157,58+2!+

Notice that the outliers have a big effect on the estimates of error variances
but little effect on the factor loadings. This phenomenon is also reflected in
using robust covariances for this data set.

Using Campbell(2,1.25), the three smallest weights arew52
2 54+23

1027, w40
2 5 2+13 1025, andw51

2 5 2+13 1023. So cases 52, 40, and 51 are
also atypical by Campbell’s criterion. All other weight functions also give
these three cases the smallest weights. In order to fully understand the mech-
anism of the different robust procedures, we list the five smallest weights
corresponding to several commonly used robust covariances:u2~di

2! in
the Huber(.2);u2~di

2! in Mt(1) and Mt(5);u~di ! in S(.2); andwi
2 in Camp-

bell(2,1.5) and Campbell~2,`!. Since using the sample covariance corre-
sponds to giving each individual a weight of 1, and each removed outlier
corresponds to a weight of 0, we also add these in Table 3 for better com-
parison. There ML corresponds to the maximum likelihood weights based
on the sample covariance, and ORML corresponds to outlier removal fol-
lowed by maximum likelihood. Even though all the methods give the same
order of weights for these five most outlying cases, the weights change in
different ways according to different methods. Among the six robust pro-
cedures, only S(.2) gives a 0 weight to the most outlying case 52, which is
equivalent to removing this case as an outlier. This may reflect the fact that
an S-estimator has a higher breakdown point than a general M-estimator.The
weights associated with multivariatet-density changes in the smoothest way,
reflecting that thet-distribution admits a long tail in the underlying distri-
bution of the sample. Sitting between these two extremes are the Huber-
type weights and Campbell’s weights. The Campbell(2,1.5) gives the three
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most outlying cases minuscule, though not zero weights, while Huber(.2)
and Campbell~2,`! change the weights in a relatively smooth way.

The estimated parameters based on the robust covariances are given
in Table 4. As was done by Bollen and Arminger (1991), we fix the first
factor loading at 1.0 for identification purposes. From these estimates, we
can see that all methods give very similar estimates of factor loadings but
that significant differences exist among the various estimates of error vari-
ances and factor variance. These can be compared with the difference ob-
served when using the sample covariances with and without outliers, as is
again added in the last two rows. The smallest estimates of factor variance
and error variances are given by Mt(1), while the largest of these estimates
are given by S(.2) and Campbell~2,`!. These reflect the different weights
used by the various robust methods. Rescaling the substantially smaller

TABLE 3
Five Smallest Weights in Various Covariances

Case Number

Method 52 40 51

Huber(.2) .089 .095 .154
Mt(1) 6.553 1024 7.223 1024 1.093 1023

Mt(5) .107 .118 .173
Campbell(2,1.5) 4.223 1027 2.143 1025 2.103 1023

Campbell~2,`! .337 .371 .575
S(.2) 0 5.703 1023 .119
ML 1 1 1
ORML 0 0 0

Case Number

Method 31 43

Huber(.2) .272 .353
Mt(1) 1.923 1023 2.693 1023

Mt(5) .293 .346
Campbell(2,1.5) .696 .742
Campbell~2,`! 1 1
S(.2) .540 .565
ML 1 1
ORML 1 1

Source:Based on cloud cover data from Bollen (1989).
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estimates of factor and error variances by Mt(1), as is permissible, would
make the values more similar to those by the other methods; however, the
model-implied correlations among the variables would not change so there
is not much reason to do this. Also notice that proportions of factor vari-
ance to error variances do not differ strikingly among methods, so there is
not much difference among methods regarding model inference. There is
zero degree of freedom associated with the model, so the statisticT1 is not
relevant here.

Our fourth example is the industrialization and political democracy
panel data set introduced by Bollen (1989), who studied various models
for this data set. Bollen and Arminger (1991) further used this data set to
study observational residuals in structural equation models. This data set
consists of eight political democracy variablesY5 ~ y1,{{{, y8!' and three
industrialization variablesX5 ~x1, x2, x3!' in 75 developing countries up
to the 1960s. The variablesy1 to y4 are indicators of political democracy in
1960, andy5 to y8 are the same variables measured in 1965. Assuming that
political democracy in 1965 is a function of 1960 political democracy and
industrialization, and that the 1960 industrialization level also affects the
1960 political democracy level, the model proposed by Bollen (1989) is

Y 5 LYh 1 «, X 5 LXj 1 d,

and

h 5 Bh 1 Gj 1 z,

TABLE 4
Estimates of Model Parameters

Method l2 l3 F c1 c2 c3

Huber(.2) 1.067 1.068 1148 69.67 136.7 38.44
Mt(1) 1.118 1.051 31.31 1.198 2.388 1.063
Mt(5) 1.101 1.094 1137 84.85 161.3 31.90
Campbell(2,1.5) 1.136 1.113 1040 99.90 147.9 57.74
Campbell~2,`! 1.059 1.142 1045 163.8 305.6 13.88
S(.2) 1.128 1.110 1417 125.6 198.8 65.32
ML .970 1.176 1052 248.8 473.8 251.44
ORML 1.143 1.123 1023 105.8 157.3 58.15

Source:Based on cloud cover data from Bollen (1989).
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where

LY 5 S1 l1 l2 l3 0 0 0 0

0 0 0 0 1 l1 l2 l3
D', LX 5 ~1 l4 l5!',

B 5 S 0 0

b21 0
D, G 5 ~g11 g21!

',

«, d, andz are vectors of errors. It is allowed that some error terms in« are
correlated based on theoretical considerations; see Bollen (1989) for de-
tails about the data and the model. Our interest here is to see the estimates
and fit indices associated with different methods.

Using Campbell(2,1.25) on this data set findswi
2 5 1 for all the

cases, which suggests no particular atypical cases. This is in accord with
the findings by Bollen and Arminger (1991). Similarly, no case is heavily
downweighted by any of the other weight functions—for example, the
smallest weight with Huber(.2) and S(.2) are .76 and .71, respectively. The
test statistics and estimates of factor loadings and regression coefficients
are given in Table 5. Among the fit indices, the one given by Mt(1) is the
smallest and the one given by Campbell~2,`! is the largest. Withp 5 11
andq5 28 in this model, the degrees of freedom are 38. So the model fits
the data pretty well judged by any of the fit indices. The differences among
the fit indices reflect the differences of the weight functions. The fit index

TABLE 5
Fit indices, estimates of factor loadings and regression coefficients

u Mt(1) Huber(.2) Campbell~2,`! S(.2) ML

l1 1.219 (.160) 1.175 (.134) 1.191 (.133) 1.186 (.135) 1.191 (.139)
l2 1.066 (.123) 1.140 (.120) 1.175 (.118) 1.156 (.118) 1.175 (.120)
l3 1.192 (.113) 1.214 (.122) 1.251 (.121) 1.233 (.120) 1.251 (.117)
l4 1.989 (.176) 2.140 (.154) 2.180 (.143) 2.157 (.147) 2.180 (.138)
l5 1.748 (.190) 1.794 (.147) 1.818 (.139) 1.807 (.145) 1.818 (.152)
b21 .855 (.059) .867 (.055) .865 (.053) .865 (.054) .865 (.064)
g11 2.005 (.521) 1.493 (.379) 1.471 (.351) 1.516 (.375) 1.471 (.392)
g21 .672 (.228) .643 (.226) .600 (.205) .619 (.213) .600 (.218)

Test 26.57 34.72 42.50 38.10 39.64

Source:Based on industrialization and political democracy data from Bollen (1989).
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with the ML method is not the largest for this data set, which is related to
the fact that no particular observation is atypical. Regarding the estimates
of parameters, the regression coefficientsg11 and g21 by Mt(1) are the
largest whileb21 by Mt(1) is the smallest. Since each case in Camp-
bell~2,`! gets a unit weight, the associated parameter estimates are iden-
tical to those by ML. The fit index by Campbell~2,`! is a little larger than
that by ML. This reflects the fact that the estimated[a in (25) associated
with Campbell~2,`! is less than one. In general, the importance of this
example is that it shows that our robust methods perform acceptably even
when they are technically not needed.

From the above four examples, we can see some differences between
the classical method and the robust methods on fit indices. There also exist
differences on parameter estimates among the various methods, though these
are not as impressive as those on the fit indices. In order to illustrate a more
dramatic variation in parameter estimates by different methods, we present
another example based on a real data set but with some added artificial out-
liers. Mardia et al. (1979, table 1.2.1) give test scores ofn588 students on
five topics (Mechanics,Vectors,Algebra,Analysis, and Statistics). Because
the first two topics were tested with closed book exams and the last three
topics with open book exams, this data set is sometimes referred to as the
open-closed book data. Since these two examination methods may tap dif-
ferent abilities, a two-factor model was proposed and confirmed by Tanaka
et al. (1991). The first two variables are indicators of the closed book factor,
and the last three variables are indicators of the open book factor.The eighty-
first case has previously been identified as the most influential point by
various authors (Tanaka et al. 1991; Cadigan 1995; Lee and Wang 1996).
Our analysis of the 88 cases shows that the weight associated with this case
using Campbell(2,1.25) isw81

2 5 +415, indicating that even the most influ-
ential point may not be really atypical. Actually, the two-factor model fits
the data well judged by either the ML method or any of the robust methods.

In order to see the effect of different methods, we added a vector

X89 5 k~0, 0, 0, 11+49, 12+52!

to the original data set to make it a sample with sizen5 89. An illuminat-
ing approach is to compare the different methods whenk changes. Fixing
f115 f225 1 for identification purposes, we use the ML method as well
as different robust methods to evaluate the model. Since the results by
different robust methods gives similar information, we report only those
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by Huber(.2) to save space. The results are presented in Table 6 in which
we usek 5 0 to denote the original data set without the artificial outlier.
The ML results are in the left part of the table. The effect of the one outlier
on the ML method is obvious. Ask increases,c44 andc55 dramatically
increase at first, thenf12decreases andc11becomes negative (a Heywood
case), finallyl32, f12, c22 become negative (another Heywood case). In
the right part of the table are the estimates by Huber(.2). Ask increases,
there is a minor effect on parameter estimates at the beginning and almost
no difference whenk moves from 5 to 25. The effect on fit statistics is
similar to that on parameter estimates. With 4 degrees of freedom in this
model, one outlier totally discredits an apparently good model when eval-
uated by the ML method, and the more extreme the outlier, the worse the
ML test statistic is at describing the majority of the data. If evaluated by
one of the robust methods, the effect of the outlier is basically eliminated.
The unbounded influence function and zero breakdown point of the sam-
ple covarianceS is also well illustrated through this example.

In summary, using robust covariances leads to smaller fit indices
for the first two data sets. Even though the statistic corresponding to a
robust method is still significant, a decrease in the fit index (from 102.10
to 78.62 in the second example) gives us more statistical support for using
a theoretically justified model. For the third data set, using robust proce-
dures automatically leads to a proper solution of estimates. These effects
reflect that a robust covariance can effectively downweight individual ob-
servations that deviate from a proposed structure. In the fourth data set, the
normal theory method works well and no case was heavily downweighted
by any of the robust methods, indicating that no particular observation is
atypical. The last example demonstrates that there can be a dramatic dif-
ference between the ML method and one of the robust methods, depending
on how outlying the atypical observation is. It also illustrates that a single
outlier can totally ruin the performance of the classical method.

After seeing the effect of different estimators in these examples,
it would be helpful to give some guidance on choice of estimators in
practice. In Huber-type estimators, the effect of abnormal cases is down-
weighted but not eliminated. If data are near normal, the estimators based
on Huber-type weights are still highly efficient. So Huber-type weight
functions—for example, Huber(.2) and Campbell~2,`!—are better used
for data sets whose distributions are not too far away from normal. In
redescending weight functions, the effect of outlying cases is much smaller
than that in Huber-type weights (see the numerical weights in Table 3).
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TABLE 6
Fit Indices and Estimates of Model Parameters

ML Huber(.2)

k 0 5 10 15 25 0 5 10 15 25

l11 12.25 12.78 12.79 18.35 2.719 11.79 11.87 11.81 11.78 11.76
l21 10.38 11.57 11.56 8.059 54.40 10.01 10.14 10.03 9.996 9.980
l32 9.834 10.80 10.73 2.209 21.022 9.479 9.577 9.429 9.384 9.356
l42 11.49 9.978 7.126 18.34 26.79 11.18 10.99 11.04 11.10 11.17
l52 12.52 10.54 7.432 19.56 33.06 12.74 12.45 12.55 12.64 12.72
f12 .818 .866 .888 .160 2.031 .861 .868 .864 .862 .861
c11 155.6 156.0 155.7 217.56 312.0 156.3 154.3 154.4 154.5 154.8
c22 65.04 65.68 65.95 134.7 22760 65.90 65.79 65.72 65.62 65.50
c33 16.19 23.77 25.19 135.5 139.3 17.74 19.31 19.59 19.63 19.62
c44 88.35 119.6 219.4 58.79 150.7 84.56 86.78 87.63 87.82 87.91
c55 141.1 187.9 316.3 149.7 24.95 139.3 144.5 144.6 144.3 143.9

Test 2.073 14.45 46.22 61.07 61.63 1.658 2.750 2.783 2.814 2.823

Source:Based on open-closed book data from Mardia et al. (1979).
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So Hampel-type weight functions—for example, Campbell(2,1.5)—can
be used for data sets with far outlying cases, but the estimators will lose
more efficiency than those based on Huber-type weight functions when
data are approximately normal. The weight function based on a multi-
variatet-distribution is best used for data sets whose discrepancy can be
approximately described by thet-distribution, or for data sets with long-
tailed distribution but no obvious outliers (few cases sit far away from
the cloud formed by the majority of the cases). S-estimators are de-
signed for high-dimensional data with many outliers—that is, data that
are collected with many mishandlings. Of course, the best method to use
would be the normal theory method if we know that a data set is fairly
normal. The above discussion and recommendation are based on our lim-
ited experience with these different weight functions. In practice, if not
much is known about the quality or distribution of a data set, we suggest
experimenting with several of these methods, including the sample co-
variance as well as the S-estimators, before finding the one that suits the
data set and theoretical models. If no case is particularly downweighted
with a robust approach (e.g., Campbell[2,1.25]), using the sample co-
variance is probably enough. When many cases are heavily downweighted,
it is necessary to use highly robust estimators, such as the S-estimators,
in getting a reliable inference.

We have used Campbell’s weight to define atypical observations,
primarily because he explicitly connected the magnitude ofwi

2 to abnor-
mal observations. Any other robust procedure may work equally well for a
given data set.

5. DISCUSSION

Data in social and behavioral sciences are seldom normal, yet appropriate
procedures for dealing with such nonnormal data in the context of latent
variable structural modeling are only rarely used. When the data-generating
mechanism is smooth and there are no atypical observations, various meth-
ods exist (reviewed by Bentler and Dudgeon 1996) that would give appro-
priate inference in this situation. However, outlying and grossly distorting
observations seem to be typical in the social sciences. As noted by Wilcox
(1996:xv) “recent investigations (cited in the text) indicate that outliers are
very common in the social sciences, and outliers can substantially reduce
power and give a distorted view of data based on conventional measures of
location and scale.” Thus motivated, we studied the technical and practical

STRUCTURAL EQUATION MODELING WITH ROBUST COVARIANCES 391



aspects of a procedure that uses robust covariances in structural equation
modeling. Our examples show important differences between the classical
method and the various robust methods.

When facing a data set that comes from a distribution with long tails
or with outliers, the procedure of removing outliers followed by a classical
method is often used (e.g., Berkane and Bentler 1988). As discussed in
Huber (1981:4–5), outlier rejection followed by a classical method may
not be a good statistical procedure, since the most influential points may
not be real outliers; these may only indicate the long tails of the underlying
distribution. Actually, it is hard to make a clear distinction between outli-
ers and typical observations. For example, Campbell (1980) suggested that
a weightwi

2 below .30 is associated with an atypical observation, but he
did not give a suggestion about what to do with a weight of .31. On the
other hand, using a robust covariance approach automatically generates a
proper weight to each of the cases. The outlying cases are automatically
downweighted. Also, the statistical theory for our robust procedures is
well developed, as given in Sections 2 and 3, while the theory that would
hold for a two-step estimator involving outlier removal is not so clear.

A situation in which outlier detection may be useful is when one is
familiar with the data collection process behind each individual case. In
such a situation, identifying the most influential points may help the re-
searcher to find extra information to explain these abnormal points. Even
though using both the sample covariance and the robust covariances iden-
tified the same set of most influential points in Table 3, this result will not
always be observed. Sometimes there may exist masking effects of mul-
tiple outliers, as demonstrated by Rousseeuw and van Zomeren (1990) in
several interesting examples. So a robust procedure is still preferable in
practice, if only to identify the “real outliers.”

Since most applications of structural equation modeling involve
covariance structures, we only studied the procedure of using a robust
covariance in the Wishart likelihood function. It will be apparent from
equation (11) that our development is equally applicable to the situation
in which robust covariances are used in the normal theory generalized
least squares (GLS) function12

_tr$W~Sn 2 S~u!!%2, whereW is a consis-
tent estimator ofS0

21 + For exampleW5 Sn
21 and the iteratively updated

W5 ZS0
21 define classical GLS and iteratively reweighted GLS functions

(Bentler 1995). The functions then can be corrected by[a as in (25) to
yield an asymptotically equivalent test statistic.
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Sometimes, a mean structure is also of substantive interest. Since
the influence function associated with the sample mean is unbounded, it
would be preferable to develop a procedure that uses robust means and
covariances simultaneously in the normal theory likelihood function. How-
ever, the fit statisticT1 cannot be generalized directly to mean and covari-
ance structures. This aspect is still under further study.

As far as we know, no existing structural equation modeling soft-
ware can compute the robust procedures described above. In order to make
these methods readily available, they are being incorporated into the new
release 6.0 of EQS. Furthermore, to ensure that researchers can utilize
these statistics as they desire, all the key components (e.g., case weights,
robust means and covariances, parameter estimates, asymptotic covari-
ance matrices) will be writable to an external file. The methods will also be
integrated into EQS’s simulation module to permit Monte Carlo and re-
sampling research on the performance of these methods under varying
conditions.
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