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Model evaluation is one of the most important aspects of structural equation model-
ing (SEM). Many model fit indices have been developed. It is not an exaggeration to
say that nearly every publication using the SEM methodology has reported at least
one fit index. Most fit indices are defined through test statistics. Studies and interpre-
tation of fit indices commonly assume that the test statistics follow either a central
chi-square distribution or a noncentral chi-square distribution. Because few statistics
in practice follow a chi-square distribution, we study properties of the commonly
used fit indices when dropping the chi-square distribution assumptions. The study
identifies two sensible statistics for evaluating fit indices involving degrees of free-
dom. We also propose linearly approximating the distribution of a fit index/statistic
by a known distribution or the distribution of the same fit index/statistic under a set of
different conditions. The conditions include the sample size, the distribution of the
data as well as the base-statistic. Results indicate that, for commonly used fit indices
evaluated at sensible statistics, both the slope and the intercept in the linear relation-
ship change substantially when conditions change. A fit index that changes the least
might be due to an artificial factor. Thus, the value of a fit index is not just a measure
of model fit but also of other uncontrollable factors. A discussion with conclusions is
given on how to properly use fit indices.

In social and behavioral sciences, interesting attributes such as stress, social sup-
port, socio-economic status cannot be observed directly. They are measured by
multiple indicators that are subject to measurement errors. By segregating mea-
surement errors from the true scores of attributes, structural equation modeling
(SEM), especially its special case of covariance structure analysis, provides a
methodology for modeling the latent variables directly. Although there are many
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aspects to modeling, such as parameter estimation, model testing, and evaluating
the size and significance of specific parameters, overall model evaluation is the
most critical part in SEM. There is a huge body of literature on model evaluation
that can be roughly classified into two categories: (a) overall-model-test statistics
that judge whether a model fits the data exactly; (b) fit indices that evaluate the
achievement of a model relative to a base model.

Fit indices and test statistics are often closely related. Actually, most interesting
fit indices Fs are defined through the so called chi-square statistics Ts. The rationales
behind these fit indicesareoftenbasedon thepropertiesofT.Forexample,under ide-
alized conditions, T may approximately follow a central chi-square distribution un-
der the null hypothesis and a noncentral chi-square distribution under an alternative
hypothesis. In practice, data and model may not satisfy the idealized conditions and
Tmaynot follow(noncentral) chi-squaredistributions.Then, the rationalesmotivat-
ing these fit indices do not hold. There are a variety of studies on the performance of
statistics; there also exist many studies on the performance of fit-indices. However,
these two classes of studies are not well connected. For example, most of the studies
on fit indices use just simulation with the normal theory based likelihood ratio statis-
tic. There are also a few exceptions (e.g., Anderson, 1996; Hu & Bentler, 1998;
Marsh, Hau, & Wen, 2004; Wang, Fan, & Willson, 1996; Zhang, 2004) but no study
focused on the relationship between fit-indices and test statistics. This article will
formally explore the relationship of the two. We are especially interested in condi-
tions that affect the distributions of the commonly used fit indices. The purpose is to
identify statistics that are most appropriate for calculating fit indices, to use fit indi-
ces more wisely and to evaluate models more scientifically.

We will use both analytical and empirical approaches to study various proper-
ties of fit indices. Our study will try to answer the following questions.

1. As point estimators, what are the population counterparts of the commonly
used fit indices?

2. How the population counterparts related to model misspecifications?
3. Do we ever know the distribution of a fit index with real or even simulated

data?
4. Are cutoff values such as 0.05 or 0.95 related to the distributions of the fit

indices?
5. Are measures of model fit/misfit defined properly when the base-statistic

does not follow a chi-square distribution? If not, can we have more sensible
measures?

6. Whether confidence intervals for fit indices as printed in standard software
cover the model fit/misfit with the desired probability?

7. How to reliably evaluate the power or sensitivity of fit indices?
8. Can we ever get an unbiased estimator of the population model fit/misfit as

commonly defined?
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Some of the questions have positive answers, some have negatives, and some may
need further study. We will provide insightful discussions when definite answers
are not available.

Although mean structure is an important part of SEM, in this article we will fo-
cus on covariance structure models due to their wide applications. In the next sec-
tion, in order to facilitate the understanding of the development in later sections,
we will give a brief review of the existing statistics and their properties, as well as
fit indices and their rationales. We will discuss properties of fit indices under ideal-
ized conditions in the section entitled “Mean Values of Fit Indices Under Idealized
Conditions.” Of course, idealized conditions do not hold in practice. In the section
entitled “Approximating the Distribution of T Using a Linear Transformation,” we
will introduce a linear transformation on the distribution of T to understand the dif-
ference between idealization and realization. With the help of the linear transfor-
mation, we will discuss the properties of fit indices in the section entitled “Prop-
erties of Fit Indices When T Does Not Follow a Chi-Square Distribution.” In the
section entitled “Matching Fit Indices with Statistics,” we will match fit indices
and statistics based on existing literature. An ad hoc correction to some existing
statistics will also be given. The corrected statistics are definitionally more appro-
priate to define most fit indices. In the section entitled “Stability of Fit Indices
When Conditions Change,” we discuss the sensitivity of fit indices to changes in
other conditions besides model misspecification. Power issues related to fit indices
will be discussed in the section entitled “The Power of a Fit Index.” In the Discus-
sion section, we will discuss several critical issues related to measures of model fit
and test statistics. We conclude the article by providing recommendations and
pointing out remaining issues for further research.

SOME PROPERTIES OF STATISTICS AND RATIONALES
FOR COMMONLY USED FIT INDICES

Let x represent the underlying p-variate population from which a sample x1, x2, …,
xN with N = n + 1 is drawn. We will first review properties of three classes of statis-
tics. Then we discuss the rationales behind several commonly used fit-indices.
This section will provide basic background information for later sections, where
we discuss connections between fit indices and the existing statistics.

Statistics

The first class of statistics includes the normal theory likelihood ratio statistic
and its rescaled version; the second one involves asymptotically distribution free
statistics. These two classes are based on modeling the sample covariance matrix
S by a proposed model structure �(�). The third class is based on robust proce-
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dures which treat each observation xi individually instead of using the summary
statistic S.

The most widely utilized test statistic in SEM is the classical likelihood ratio
statistic TML, based on the normal distribution assumption of the data. When data
are truly normally distributed and the model structure is correctly specified, TML

approaches a chi-square distribution as the sample size N increases. Under cer-
tain conditions, this statistic asymptotically follows even when data are not
normally distributed (Amemiya & Anderson, 1990; Browne & Shapiro, 1988;
Kano, 1992; Mooijaart & Bentler, 1991; Satorra, 1992; Satorra & Bentler, 1990;
Yuan & Bentler, 1999b). Such a property is commonly called asymptotic robust-
ness. However, procedures do not exist for verifying the conditions for asymptotic
robustness. It seems foolish to blindly trust that TML will asymptotically follow
when data exhibit nonnormality. When data possess heavier tails than that of a
multivariate normal distribution, the statistic TML is typically stochastically greater
than the chi-square variate When the fourth-order moments of x are all fi-
nite, the statistic TML can be decomposed into a linear combination of independent

That is,

where the �js depend on the fourth-order moments of x as well as the model struc-
ture, and op(1) is a term that approaches zero in probability as sample size N in-
creases. When x follows elliptical or pseudo elliptical distributions with a common
kurtosis �, �1 = �2 = … = �df = �. Then (see Browne, 1984; Shapiro & Browne,
1987; Yuan & Bentler, 1999b)

When a consistent estimator of � is available, one can divide TML by so that
the resulting statistic still asymptotically approaches Satorra and Bentler
(1988) proposed = ( + … + )/df and the resulting statistic

is often referred to as the Satorra-Bentler rescaled statistic. Like TML, TR can also
follow a chi-square distribution when certain asymptotic robustness conditions are
satisfied (Kano, 1992; Yuan & Bentler, 1999b). Simulation studies indicate that TR

performs quite robustly under a variety of conditions (Chou, Bentler, & Satorra,
1991; Curran, West, & Finch, 1996; Hu, Bentler, & Kano, 1992). However, data
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generation in some of the studies is not clearly stated and may satisfy the asymp-
totic robustness condition for TR (see Yuan & Bentler, 1999b). In general, TR does
not approach a chi-square distribution. Instead, it approaches a variate � with E(�)
= df. It is likely that the distribution shape of � is far from that of a chi-square. In
such cases, TR will not behave like a chi-square. It can also lead to inappropriate
conclusions when referring TR to a chi-square distribution.

With typical nonnormal data in the social and behavioral sciences (Micceri,
1989), the ideal is to have a statistic that approximately follows a chi-square distri-
bution regardless of the underlying distribution of the data. One of the original pro-
posals in this direction was made by Browne (1984). His statistic is commonly
called the asymptotically distribution free (ADF) statistic TADF, due to its asymp-
totically following as long as x has finite fourth-order moments. The ADF
property is desirable. However, the distribution of TADF can be far from that of
for typical sample sizes encountered in practice (Hu et al., 1992). Specifically, the
mean and variance of TADF are much greater than those of Most correctly
specified models are rejected if using In an effort to find statistics that
perform better in rejection rate with smaller Ns, Yuan and Bentler (1997b) pro-
posed a corrected statistic

TCADF = TADF/(1 + TADF/n).

Like TADF, TCADF asymptotically follows as long as x has finite fourth-order
moments, thus, it is asymptotically distribution free. The mean of TCADF approx-
imately equals df for all sample sizes across various distributions (Yuan &
Bentler, 1997b). However, at small sample sizes TCADF over-corrects the behav-
ior of TADF due to its rejection rate with correct models being smaller than the
nominal level. Furthermore, TCADF also carries the drawback of the ADF estima-
tion method with nonconvergences at smaller sample sizes. In addition to TADF,
Browne (1984) also proposed a residual-based ADF statistic TRADF in which the
estimator just needs to be consistent. However, TRADF behaves almost the same
as TADF, rejecting most correct models at smaller sample sizes. Parallel to TCADF,
Yuan and Bentler (1998b) proposed TCRADF whose performance is almost the
same as TCADF, with its empirical mean approximately equal to df and under-re-
jecting the correct model for small sample sizes (Bentler & Yuan, 1999; Yuan &
Bentler, 1998b).

The third class of statistics is obtained from robust procedures. It is well-known
that the sample covariance matrix S is very sensitive to influential observations and
is biased for �0 = Cov(x) when data contain outliers (see Yuan & Bentler, 1998c).
In such a situation, removing these outliers followed by modeling S will lead to
proper analysis of the covariance structure model. However, in a given data set, de-
termining which cases are outliers may be difficult. The heavy tails, often indi-
cated by larger marginal kurtoses or Mardia’s (1970) multivariate kurtosis, might
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be due to the heavy tails in the distribution of x. When a data set possesses moder-
ate heavy tails, S will be an inefficient estimator of its population counterpart �0

(Tyler, 1983). When the heavy tails are severe, the population 4th-order moments
do not exist. Then modeling S and referring TML, TR, TADF, TRADF, TCADF or TCRADF

to is meaningless. In such cases, it is better to model a robust covariance ma-
trix Sr. Since the empirical experimentations by Huba and Harlow (1987), various
technical procedures have been developed for modeling robust covariance matri-
ces (Yuan & Bentler, 1998a, 1998c, 2000; Yuan, Chan, & Bentler, 2000). They dif-
fer in how to control the weight attached to each case (see Yuan & Bentler, 1998a,
1998c; Yuan & Hayashi, 2003). Three types of statistics are proposed related to
modeling Sr. One is to model Sr using the rescaled statistic TR (Yuan & Bentler,
1998c); another is to just use TML treating Sr as S (Yuan et al., 2000; Yuan &
Hayashi, 2003); the third is an ADF type statistic using the inverse of a robust ver-
sion of the fourth-order moment matrix as the weight matrix (Yuan & Bentler,
1998a, 2000). The most preferred is TML coupling with a proper weight-control
scheme (Yuan, Bentler, & Chan, 2004; Yuan & Hayashi, 2003). A brief outline as
well as an introduction to a SAS IML program for robustifying a sample is pro-
vided in the appendix.

Note that many studies on TML, TR, TADF and TCADF in the first two classes
only reported the rejection rates and their empirical means and standard devia-
tions. Few studies examined their overall distributions (Curran, Bollen, Paxton,
Kirby, & Chen, 2002; Yuan & Bentler, 1998b). By controlling the weights in
some robust procedures, Yuan and Hayashi (2003) found that the distribution of
TML applied to Sr can be well described by But the distributions of TR and
TADF could not be well approximated by even when data were fairly nor-
mally distributed.

In additional to the above three classes of statistics, other statistics such as the
normal theory generalized least squares statistic TGLS and the heterogeneous
kurtosis statistic THK (Kano, Berkane, & Bentler, 1990) are also available in
standard software (Bentler, 1995). These are related to the normal theory based
statistics of the first class. Yuan and Bentler (1998b, 1999a) also proposed two
F-statistics TF and TFR based on TADF and TRADF, respectively. They are asymp-
totically distribution free and thus belong to the second class. We will not specif-
ically deal with these statistics in this article although preliminary work indi-
cates that the latter especially might be very valuable in testing the significance
of a model.

Fit Indices

Fit indices can be classified into two categories, those that are defined explicitly
through the overall test statistic T versus those that are not involving the statistic
T directly. For example, the standardized root-mean-square residual (SRMR) is
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not defined through T but through residuals at the convergence of a model fitting
procedure. Actually, when a model is approximately correct, all the overall sta-
tistics can be approximately regarded as a sum of weighted squares of residuals
(Shapiro, 1985), and the weights are optimized according to the chosen estima-
tion procedure. Thus, those defined through a T better utilize the residuals than
SRMR. Fit indices that are explicitly defined through T also fall into three types
(e.g., Hu & Bentler, 1998; Marsh, Balla, & McDonald, 1988): (a) Indices that do
not need the involved statistic to follow any known distribution; (b) indices that
assume the statistic T to satisfy E(T|H0) = df, which is automatically satisfied
when and (c) indices that assume and
where H0 represents the null hypothesis, H1 represents the alternative hypothesis
and � is the noncentrality parameter (NCP). Many fit indices are available in
standard software (e.g., EQS, LISREL, SAS CALIS). The commonly reported
ones are CFI, GFI, NFI, NNFI, and RMSEA, according to the review of McDon-
ald and Ho (2002). We will mainly discuss the commonly used ones although
our analysis and discussion also equally apply to other fit indices (e.g., Bollen,
1986, 1989; Hoelter, 1983; Steiger, 1989).

Let TM and TI be the chosen statistic T evaluated at the substantive model �M =
�(�) and the independence model �I = diag(�11, �22, …, �pp), respectively. The
normed fit index (Bentler & Bonett, 1980) is defined as

As discussed by Hu and Bentler (1998), the T in NFI does not necessarily need to
follow a particular distribution. Another widely used fit index is the nonnormed fit
index (Bentler & Bonett, 1980; Tucker & Lewis, 1973)

where dfM and dfI are the degrees of freedom in model �M and �I, respectively.
The difference between NFI and NNFI is that T is replaced by T/df – 1, which is
motivated by (see Bentler, 1995). When �M is correctly specified,
E(TM) = dfM and NNFI ≈ 1. A more popular fit index is the comparative fit index
(Bentler, 1990)
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CFI is always within the range of [0,1]. Essentially equivalent to CFI but not neces-
sarily within the range of [0,1] is the relative noncentrality index

independently proposed by Bentler (1990) and McDonald and Marsh (1990). Both
CFI and RNI are motivated by so that they measure the reduc-
tion of the NCP by �M relative to that by �I (see Bentler, 1990, 1995). Another
commonly used index is the goodness of fit index, its general form was given in
Bentler (1983, Equation 3.5) as

where e s� �� �( �) with s and � being vectors containing the nonduplicated ele-
ments of S and �, respectively; the weight matrix W is subject to the estimation
method. We can rewrite

where TM = ne�We is the normal theory based iteratively reweighted least squares
(IRLS) statistic TIRLS when the normal theory based W is used (see Bentler, 1995,
p. 216) and T0 = s�Ws can also be regarded as a TIRLS for testing �0 = 0. When the
ADF weight matrix W is used, TM and T0 share similar meanings (Tanaka & Huba,
1985).

The last fit index we will discuss is the root-mean-square error of approxima-
tion (Browne & Cudeck, 1993; Steiger & Lind, 1980)

The implicit assumption in RMSEA is that and � equals n times
the “model misfit” so that it estimates the model misfit per degree of freedom. No-
tice that RMSEA only involves TM. The literature on fit indices classifies it as an
absolute fit index while those involving TI are relative fit indices. There are also
many other fit indices (see Hu & Bentler, 1998) in addition to the above six, but
they are less frequently used.
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MEAN VALUES OF FIT INDICES UNDER IDEALIZED
CONDITIONS

A fit index F may aim to estimate a quantity measuring the model fit/misfit at the
population level. F is always an unbiased estimate of E(F) when the expectation
exists. We need to consider how E(F) is related to model fit/misfit. Analytically,
this can only be studied when the involved statistics follow known distributions.
Suppose

Then

and

are the unbiased estimators of �M and �I, respectively. Most fit indices are func-
tions of and It is interesting to see how the mean of a fit index is related to
�M and �I. Suppose the fit index F is given by

Because g is typically a nonlinear function, we might use a Taylor expansion to fa-
cilitate the study. Denote as the second derivatives of g with respect to the pa-
rameters indicated in the subscripts. We have

where is a number between �M and and is a number between �I and
Most incremental fit indices can be expressed as g(t1, t2) = 1 – (t1 – c1)/(t2 –

c2), where c1 and c2 are constants. Then
can be either negative or positive, It follows from Equa-
tion 4 that can be greater than g(�M, �I) or smaller than g(�M, �I),
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depending on the last two terms in Equation 4. It is unlikely for to
equal g(�M, �I).

For indices that are only based on there exists

When g is a strictly concave function, and it follows from Equation 5
that When g is a convex function, the opposite is true. For the
index Mc proposed in McDonald (1989) for example, we have g(t) = exp[–t/(2n)],

= 0.25n–2 exp[–t/(2n)], and

E(Mc) > exp[–�M/(2n)].

The difference between E(Mc) and exp[–�M/(2n)] is proportional to the variance of
TM. The widely used RMSEA is a composite function
where g1(t) = is strictly concave with = –0.25t–3/2 < 0; and g2(t) = max[t/(n
× dfM),0] is convex but not strictly. For bad models, TM may never be below dfM so
that g2(t) becomes an identity function, then

For correct or nearly correct models, E(RMSEA) might be greater than
due to the convexity of g2(t) (see Raykov, 2000).

Note that the assumptions in Equation 2 are unlikely to be true in practice. The
above analysis implies that we do not know the mean values of the commonly used
fit indices even under idealized conditions. Cutoff values such as 0.05 or 0.95 have
little to do with the mean value of the fit indices or the NCPs of the idealized
chi-squares. Of course, the chosen overall test statistic T maybe far from following
a chi-square distribution. When a noncentral chi-square does not exist, then NCP is
irrelevant. The rest of the article will discuss different aspects of F and T.

APPROXIMATING THE DISTRIBUTION OF T USING A
LINEAR TRANSFORMATION

As reviewed in the previous section, Equations 2 and 3 are widely used in the con-
text of fit indices (Bentler, 1990; Browne & Cudeck, 1993; Kim, 2003;
MacCallum, Browne, & Sugawara, 1996; McDonald, 1989; McDonald & Marsh,
1990; Ogasawara, 2001; Steiger & Lind, 1980). Results in Equation 2 might be
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justified by the asymptotic result (see e.g., Bentler & Dijkstra, 1985; Browne,
1984; Satorra, 1989; Shapiro, 1983)

where is the parameter estimator, � = n	 and

is the “model misfit” measured by a discrepancy function D(·,·). Actually, Equation
6 is not true1 with a given �0 (see Olsson, Foss, & Breivik, 2004; Yuan & Bentler, in
press; Yuan & Chan, in press). The proof of Equation 6 needs the assumption

where � is a constant matrix. Note that S contains sampling error (S – �0) whose
magnitude is of order One might understand Equation 8 by thinking that
the systematic error approximately equals the sampling error. However, �0

is the population covariance matrix that should not depend on n while Equation 8
implies that the amount of misspecification in �(�) decreases as n increases. Such
a condition has an obvious fault but it provides the mathematical convenience to al-
low one to show that Equation 6 holds with � being a constant that does not depend
on n. With fixed �0 and n, what the asymptotic statistical theory really tells us is
that, when �0 is sufficiently close to �(� ), the distribution of T can be approxi-
mated by But it says nothing about the goodness of the approximation.

Let’s look at the TML with normally distributed data generated by the following
confirmatory factor model (CFM)

where �� = (.70,.70,.75,.80,.80) and � is a diagonal matrix chosen so that �0 is a
correlation matrix. Suppose one fits the sample covariance matrix S by the inde-
pendence model �I using the normal theory maximum likelihood (ML). Then 	 =
6.859. With 500 replications, the top panel of Figure1 plots the quantiles of the sta-
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�
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�

1Curran et al.’s (2002) conclusion that Equation 6 approximately holds in some of their simulation
conditions is based on 500 or few converged samples out of 650 replications. A different conclusion
might be reached when all samples converge.
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tistic TML against the quantiles of (QQ plot) at N = 150. It is obvious that
the upper tail of the distribution of TML is much longer than that of and the
lower tail is much shorter than that of

Motivated by Equations 1 and 3, we might describe the distribution of T by
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FIGURE 1 QQ plots of TML versus and TML versus + a with a = –368.000
and b = 1.337, N = 150 and 500 replications.

� �2
105� � � �2

105b� �
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where the intercept a and slope b can be estimated by regression of the quantiles of T
against those of The bottom panel of Figure 1 plots the quantiles of TML

against those of + a with a = –368.000 and b = 1.337 being estimated based
on the 500 replications. It is obvious that Equation 10 describes the distribution of
TML very well. Actually, judged by a visual inspection, the two sets of quantiles in the
bottom panel of Figure 1 match as close as a QQ plot (not presented here) of a sample
of simulated chi-squares against its population quantiles. When each of the samples
is fitted by the 3-factor model as that generated the sample in Equation 9, then H0

holds with df = 87. Figure 2 contains the QQ plots of TML for the correct model with
500 simulated normal samples of size N = 150. It is obvious that TML is stochastically
greater than and is described by + a very well. Our limited evidence also
implies that can also describe the distributions of the other statistics
quite well. Notice that a and b depend on the involved statistic, the sample size, the
distribution of the data, as well as the model itself.

Transformation Equation 10 can be extended to

(T2|C2) = b(T1|C1) + a, (11)

where T2 and T1 can be two different statistics or the same statistic evaluated at
two different conditions C1 and C2. The conditions include the sample size, the
distribution of x, and the model specification. Equation 11 is quite useful in de-
scribing the distributional change of T when changing conditions. Of course, we
would wish to have b = 1, a = 0 regardless of T1, C1 and T2, C2. However, a and
b change with the sample size and the distribution of x even when T1 and T2 are
the same statistic. To provide more information on a and b under different condi-
tions, we let T1 and T2 be the same statistic while C1 and C2 have different sam-
ple sizes or distributions of x. Using the same CFM as in Equation 9, the distri-
bution of x in C2 changes from elliptically distributed data to lognormal factors
and errors, as further clarified in Table 1. The parameters are estimated by the
ML. The statistics presented in Table 2 are TML, TR, TRADF, TCRADF, as reviewed
in the section entitled “Some Properties of Statistics and Rationales for Com-
monly Used Fit Indices.” The statistics TAML and TAR are ad hoc corrections re-
spectively to TML and TR, which will be discussed further in a later section. The
TIRLS here is for the study of the properties of GFI. The T0 corresponding to
TRADF is also for the properties of GFI, where W is just the ADF weight matrix
due to the model � = 0 having all its derivatives equal to zero (see Browne,
1984). With 500 replications, Table 2 contains the a and b at N = 150 while the
distribution of x changes; Table 3 contains the parallel results corresponding to
N = 500. It is obvious that a and b change for all the statistics, especially at the
misspecified independence model. A larger sample size does not help much even
for the ADF type statistics. Table 4 contains similar result when T1 and T2 are
the same statistic and C1 and C2 have the same distribution but different sample
sizes. Compared to the distributional variation condition, sample size has a rela-
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tively smaller effect on b. But there is still a substantial difference among the as,
especially when the model is misspecified.

Notice that, for all the simulation conditions in Table 1, TR asymptotically fol-
lows for the correctly specified model. Actually, Equation 1 holds with � = 3
for all the non-normal distribution conditions in Table 1. A greater � will have a
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FIGURE 2 QQ plots of TML versus and TML versus + a with a = –0.555 and b =
1.054, N = 150 and 500 replications.
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greater effect on a and b corresponding to TML in Tables 2 and 3. When Equation 1
does not hold or when � changes from sample to sample, we would have more
changes on a and b corresponding to TML, TAML, TR and TAR. Of course, the a and b
are also model dependent. When a different model other than that in Equation 9 is
used, we will observe different patterns on a and b. Furthermore, a and b can only
be estimated empirically. The estimators obtained from one sample may not be ap-
plied to a different sample for the purpose of correcting the performance of statis-
tics. But Equations 10 and 11 do provide a simple procedure for comparing two
distributions.
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TABLE 1
Distribution Conditions of x

Normal x

Elliptical x

Skew f &
normal e

Skew f & e

Note. e, f, and r are independent; f ~ Lognormal(0, 	) is obtained by f = 	1/2 
, where 
 = (�1, � 2,
�3)� and �i is to standardize exp(z) with z ~ N(0, 1); and similarly for e ~ Lognormal(0, �).

� � � �, , , ,N N� � �x f e f 0 e 0� � 	 �� �

� � � � � � 2
5/ , , , , , / 3r N N r �� � �x f e f 0 e 0� � 	 �� � �

� � � � � � 2
5/ , , , , , / 3r Lognormal N r �� � �x f e f 0 e 0� � � 	� � �

� � � � � � 2
5/ , , , , , / 3r Lognormal Lognormal r �� � �x f e f 0 e 0� � 	 �� � �

TABLE 2
Intercept a and Slope b in (T2|C2) = b(T1|C1) + a, Where T2 and T1 Are the
Same Statistic, C1 and C2 Have the Same Sample Size N = 150, C1 Has

Normally Distributed Data

C2 Elliptical x Skew f & Normal e Skew f & e

T b a b a b a

TML TM 3.166 –117.177 3.132 –113.210 3.347 –152.676
TI 1.492 –462.592 4.103 –3471.507 4.652 –3923.917

TAML TM 3.166 –111.541 3.132 –107.765 3.347 –145.332
TI 1.492 –444.481 4.103 –3335.598 4.652 –3770.297

TR TM 0.884 10.059 0.948 6.126 1.058 4.273
TI 1.472 –941.064 1.001 –725.069 1.231 –920.951

TAR TM 0.884 9.575 0.948 5.831 1.058 4.067
TI 1.472 –904.222 1.001 –696.683 1.231 –884.896

TRADF TM 0.799 38.717 0.825 31.263 0.710 54.620
TI 0.717 33.396 0.466 38.273 0.571 6.968
T0 0.317 235.940 0.312 201.524 0.239 –2.411

TCRADF TM 0.884 9.361 0.911 6.666 0.806 15.779
TI 1.141 –23.544 1.477 –76.333 1.406 –63.747

TIRLS TM 4.217 –201.608 4.107 –194.497 3.688 –186.975
T0 3.304 –2676.005 2.876 –2170.028 2.824 –2173.540
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In summary, chi-square distributions are generally not achievable even when
data are normally distributed. Distribution shapes of the commonly used statis-
tics vary substantially when conditions such as the sample size, the distribution
of x, model size and model misspecification change. The results suggest that us-
ing (noncentral) chi-square distributions of T to describe the properties of a fit
index F is inappropriate. In the following section we will discuss the properties
of fit indices when T does not follow a chi-square distribution but can be approx-
imated by Equations 10 or 11.

Note that all robust procedures are tailor-made. One has to properly choose the
weight function in order to obtain the estimator or test statistic. For a given sample,
one can find a proper weighting scheme so that (TML|H0) applied to the robustified
sample approximately follows (Yuan & Hayashi, 2003). When TML approxi-
mately follows the same distribution across two robustified samples, then we will
approximately have a = 0 and b = 1. But even if (TML|H0) approximately follows

this does not imply that (TML|H1) will approximately follow . We will
further discuss whether is achievable or necessary when interpreting
fit indices involving T.

130 YUAN

TABLE 3
Intercept a and Slope b in (T2|C2) = b(T1|C1) + a, Where T2 and T1 Are the
Same Statistic, C1 and C2 Have the Same Sample Size N = 500, C1 Has

Normally Distributed Data

C2 Elliptical x Skew f & Normal e Skew f & e

T b a b a b a

TML TM 4.580 –207.985 4.621 –214.494 3.980 –176.997
TI 1.536 –1783.119 4.855 –13638.862 5.291 –14887.005

TAML TM 4.580 –204.998 4.621 –211.413 3.980 –174.455
TI 1.586 –1762.275 4.855 –13479.424 5.291 –14712.976

TR TM 0.863 10.916 0.855 11.533 0.976 10.939
TI 2.097 –5135.660 1.438 –3916.342 1.620 –4440.145

TAR TM 0.863 10.759 0.855 11.368 0.976 10.782
TI 2.097 –5075.624 1.438 –3870.560 1.620 –4388.239

TRADF TM 0.899 11.116 0.876 13.179 0.725 28.562
TI 0.755 –120.164 0.430 –136.305 0.476 –163.075
T0 0.289 –259.937 0.285 –293.929 0.162 –254.850

TCRADF TM 0.898 9.265 0.881 10.447 0.732 23.084
TI 1.337 –165.491 1.463 –302.667 1.557 –326.911

TIRLS TM 6.124 –371.420 6.309 –395.120 4.496 –258.577
T0 2.951 –7377.125 2.432 –5408.609 2.182 –4572.810

2
df�

2 ,df� � �2
df� �

� �2
dfT � ��
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PROPERTIES OF FIT INDICES WHEN T DOES NOT
FOLLOW A CHI-SQUARE DISTRIBUTION

To facilitate the discussion we use

T = bt + a, (12)

where t might have a known distribution as in Equation 10 or might be the distribu-
tion of a given statistic under the normal sampling scheme with a fixed sample size,
as in Equation 11. We denote the a and b at the independence model as aI, bI and at
the substantive model as aM and bM, respectively. We will mainly discuss the stabil-
ity of fit indices when the underlying distribution of x changes. Due to the uncriti-
cal use of TML in the practice of SEM, we will pay special attention to the proper-
ties of fit indices associated with TML. We cannot predict aI, aM or bI, bM in general.
But in the special case when �I is approximately correct, we might approximately
have aI = aM = 0 and bI = bM = b within the class of elliptical distributions, which
will be specifically mentioned when a nice property holds.
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TABLE 4
Intercept a and Slope b in (T2|C2) = b(T1|C1) + a, Where T2 and T1 Are the
Same Statistic and C1 and C2 Have the Same Distribution, but C1 Has N =

150 and C2 Has N = 500

C1 & C2 Normal x Elliptical x Skew f & Normal e Skew f & e

T b a b a b a b a

TML TM 1.032 –5.963 1.599 –78.382 1.659 –92.813 1.299 –24.126
TI 1.830 1464.784 1.890 1333.560 2.077 1095.487 2.031 1101.599

TAML TM 1.069 –5.877 1.656 –77.256 1.717 –91.480 1.345 –23.779
TI 1.883 1447.661 1.944 1317.970 2.136 1082.681 2.089 1088.722

TR TM 1.008 –5.148 0.984 –3.406 0.910 1.476 0.932 1.712
TI 1.747 1358.086 2.514 37.271 2.502 –139.501 2.305 –124.598

TAR TM 1.044 –5.074 1.019 –3.357 0.942 1.455 0.965 1.687
TI 1.797 1342.210 2.586 36.835 2.573 –137.871 2.371 –123.141

TRADF TM 0.327 29.938 0.367 24.015 0.346 28.761 0.333 32.408
TI 0.300 526.297 0.311 270.135 0.277 79.972 0.250 85.748
T0 0.240 3827.699 0.220 793.140 0.221 750.715 0.164 363.810

TCRADF TM 1.576 –54.287 1.585 –53.106 1.515 –46.771 1.416 –37.834
TI 2.437 –3.535 2.866 –103.960 2.399 –121.866 2.693 –159.363

TIRLS TM 1.094 –1.971 1.824 –103.984 2.035 –141.218 1.402 –27.787
T0 2.589 735.523 2.342 942.115 2.328 954.490 1.913 1484.340
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The normed fit index NFI can be written as

which is invariant to bI = bM = b and aI = aM = 0. When model �I is approximately
correct and T = TML, there may approximately exist bI = bM = b and aI = aM = 0
within the class of elliptical distributions. However, when the off diagonal of �0

cannot be ignored, bI 
 bM and aI or aM will not equal zero either. The distribution
of NFI will change when x changes distributions or when �M changes. Notice that
the change happens not just in the mean value E(NFI) but also the distributional
form of NFI. When n tends towards infinity,

which measures the reduction (explanation) of all the covariances by �M relative to
�I. However, the limit in Equation 13 still depends on the measure D(·,·) of dis-
tance (see La Du & Tanaka, 1989, 1995; Sugawara & MacCallum, 1993; Tanaka,
1987) unless the model �M is correctly specified (Yuan & Chan, in press). In prac-
tice, N is always finite,

in general. Furthermore, the speed of convergence to the limit in Equation 13
might be very slow. So interpreting NFI according to its limit is not appropriate.

Very similar to NFI is GFI. Using the notation from the previous section, we can
write GFI as

When the model is correctly specified, ne�We asymptotically follows a chi-square
distribution, but ns�Ws will not approximately follow a noncentral chi-square dis-
tribution. Based on the result from the previous section, GFI changes its value as
well as its distribution when N, the distribution of x, as well as the model specifica-
tion and the magnitude of �0 change. As n tends to infinity, the limit of GFI mea-
sures the relative reduction of all the variances-covariances by model �M relative
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to a model with all elements equal to zeros. Similar to NFI, the limit of GFI de-
pends on the measure D(·,·) which further depends on the weight W. The speed of
convergence can be very slow. Interpreting GFI as a reduction of all the variances
and covariances in the population may not be appropriate.

Using Equation 12, the fit index NNFI can be rewritten as

When TM and TI are based on TML and �I is approximately correct, then
and within the class of elliptical distributions. Thus,

is a decreasing function of b. However,
the model may not be approximately correct in practice, and hence the value of
NNFI as well as its distribution will be affected by the distribution of x, the sample
size N, the estimation method, as well as model misspecifications. Of course, using
a noncentral chi-square distribution to interpret the value of NNFI is generally in-
appropriate.

For RNI, the nonnormed version of CFI, we have

In practice, CFI and RNI will be affected by sample size, the distribution of x and
the measure D(·,·) used in constructing the fit indices. When T cannot be described
by a noncentral chi-square distribution, interpreting CFI or RNI as a reduction of
NCP may not be appropriate.

Using Equation 12 we can rewrite RMSEA as

It is obvious that RMSEA is an increasing function of aM and bM, which will
change with the distribution of x, the sample size, the model misspecification as
well as the discrepancy function D(·,·). The confidence interval for RMSEA, as
printed in standard software, makes sense only when bM = 1 and aM = 0, which will
not hold in any realistic situation. Notice that the larger the n, the smaller the effect
of aM; but the effect of bM will not diminish even when n is huge.

In conclusion, when the t in Equation 12 is anchored at a chi-square distribu-
tion or at the distribution of a statistic under fixed conditions, fit indices F de-
fined through T are functions of a and b, which change across conditions. Desir-
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able properties of F are difficult to achieve even with the idealized elliptically
distributed data.

MATCHING FIT INDICES WITH STATISTICS

For fit indices involving T – df , the rationale is E(T|H0) = df so that is
an unbiased estimate of the part of E(T) due to model misspecifications while df is
the part due to random sampling that is not related to model misspecification.
When E(T|H0) 
 df, the meaning of T – df is not clear. One cannot use the “degrees
of freedom” to justify the use of For example, when E(T|H0) = 1.5df,
then does not make more sense than with c being an arbi-
trary constant. Fortunately, there do exist a few statistics that approximately satisfy
E(T|H0) = df. Based on the simulation results of Hu et al. (1992), Chou et al.
(1991), Curran et al. (1996), Yuan and Bentler (1998b), Fouladi (2000) and others,
the statistic TR approximately have a mean equal to df when n is relatively large.
This is also implied by the asymptotic theory, as reviewed in the second section of
this article. For small n, results in Bentler and Yuan (1999) indicate that E(TR) is
substantially greater than df even when x follows a multivariate normal distribu-
tion. The results in Bentler and Yuan (1999) and Yuan and Bentler (1998b) indicate
that (TCRADF|H0) approximately has a mean equal to df regardless of the distribu-
tion of x and N. For convenience, some of the empirical results in Bentler and Yuan
(1999) and Yuan and Bentler (1998b) are reproduced in Table 5, where similar data
generation schemes as in Table 1 were used.
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ˆ .T df�� �
ˆ T df�� � T c�� ��

TABLE 5
Empirical Meansa of TR, TAR, and TCRADF (df = 87)

Sample Size N

90 100 110 120 150 200 300 500 1000 5000

Normal x TR 96.33 95.70 94.95 94.16 90.89 89.75 88.24 87.72 87.91 87.29
TAR 88.57 88.77 88.71 88.49 86.52 86.52 86.12 86.46 87.28 87.16
TCRADF 87.42 88.90 89.90 89.66 90.36 90.50 90.22 89.81 88.31 87.44

Elliptical x TR 96.52 95.76 94.57 93.80 90.47 88.48 87.19 86.11 86.02 86.67
TAR 88.75 88.83 88.35 88.15 86.12 85.29 85.10 84.87 85.40 86.55
TCRADF 87.50 88.55 88.97 88.83 89.28 90.11 89.99 89.91 89.09 87.84

Normal f &
skew e

TR 98.80 98.30 96.66 95.75 92.12 90.64 88.93 88.19 88.24 87.19
TAR 90.84 91.18 90.30 89.98 87.69 87.38 86.80 86.92 87.61 87.07
TCRADF 87.39 88.21 88.76 89.07 88.57 89.04 88.39 88.06 88.81 88.08

Skew f & e TR 99.68 97.36 96.34 95.40 91.77 90.77 88.92 87.52 86.68 87.61
TAR 91.65 90.31 90.01 89.65 87.36 87.50 86.79 86.26 86.06 87.48
TCRADF 87.45 88.44 88.85 89.43 88.52 88.87 87.97 88.17 88.36 88.50

aAll the three statistics asymptotically follow

ˆ T df�� �

2
87.�
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Notice that the empirical mean of TML is greater than df even when data are nor-
mally distributed, especially when N is small (see Bentler & Yuan, 1999). The
well-known Bartlett correction is to make E(TML) more close to df . We might ap-
ply such a correction to the statistic TR when data are not normally distributed. The
Bartlett correction for exploratory factor model (EFM) with normal data already
exists (Lawley & Maxwell, 1971, pp. 35–36). Yuan, Marshall and Bentler (2002)
applied it to the rescaled statistic in exploratory factor analysis. The Bartlett cor-
rection for general covariance structures also exists for TML when data are normally
distributed (see Wakaki, Eguchi, & Fujikoshi, 1990). However, the correction is
quite complicated even for rather simple models. For nonnormal data, this correc-
tion is no longer the Bartlett correction. Here we propose an ad hoc correction to
the statistic TR. Consider the Bartlett correction with m factor in EFM,

where the total number of free parameters is p(m +1) – m(m – 1)/2. Notice that the
CFM and EFM are identical when there is a single factor, then the coefficient in
Equation 14 is N – 5/3 – (2p + 5)/6. In formulating a SEM model, unidimensional
(univocal) measurements are recommended and typically used in practice (Ander-
son & Gerbing, 1988). When all the measurements are unidimensional, the num-
ber of factor loadings in the SEM model is equal to that of the 1-factor model. The
factors can be correlated or predicted by each other. With m factors, there are m(m
– 1)/2 additional parameters when the structural model is saturated. Considering
that there may exist double or multiple loadings and the structural model may not
be saturated, we propose the following ad hoc correction to TR,

Table 5 contrasts the empirical means of TAR and TR, based on the empirical results
in Yuan and Bentler (1998b) and Bentler and Yuan (1999). Although many of the
empirical means of TAR are still greater than df = 87 when n is small, they are much
nearer to the df than the corresponding ones of TR. A parallel TAML follows when
applying the correction factor in Equation 15 to TML.

The statistic TCADF also has empirical means very close to df for various distri-
bution and sample size conditions (Yuan & Bentler, 1997b). However, it is easier to
get a converged solution with minimizing DML than with DADF. The statistic TAML

can also be used when data are normally distributed. But E(TAML) is unpredictable
when the distribution of x is unknown as with practical data. A nonsignificant
Mardia’s multivariate kurtosis does not guarantee that E(TML) ≈ df, as showed in
Example 3 of Yuan and Hayashi (2003). So it is wise to avoid TML or even TAML be-
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fore an effective way of checking normality is performed. The means of TADF and
TRADF are much greater than df unless N is huge (see Hu et al., 1992; Yuan &
Bentler, 1997b, 1998b), thus, they are not recommended to be used with fit indices
involving df. Although both TCRADF and TR are now avaliable in EQS (Bentler,
2004), TCRADF can only be applied when n > df. Similarly, TR makes sense only
when n > df (see Bentler & Yuan, 1999) although it can still be numerically calcu-
lated when n < df.

Yuan and Hayashi (2003) showed that the statistic TML applied to a proper
robustified sample can closely follow When T approximately follows
the empirical mean of T also approximately equals df. Also, applying TML with a
robust procedure does not need the specific condition n > df. Of course, one may
not be able to apply the robust procedures to any data. We will further discuss this
in the appendix.

In this section we argue that fit indices involving T – df do not make much sense
when E(T) 
 df. Because TAR and TCRADF approximately satisfy E(T) = df, they
should be used in defining fit indices involving df instead of TML or TADF. Robust
procedures with TML are preferred when data contain heavy tails or when n < df, but
one needs to check that E(TML) = df using resampling or simulation (see Yuan &
Hayashi, 2003).

STABILITY OF FIT INDICES WHEN
CONDITIONS CHANGE

Notice that the distributions of TAR and TCRADF still change substantially even
though their empirical means approximately equal df. So we still need to study
how the distributions of fit indices change when changing conditions. In this sec-
tion, we mainly study the effect of the distribution of x with different sample sizes.
This is partially because people seldom check the distribution of the data when us-
ing fit indices in practical data analysis. Previous studies on fit indices mainly fo-
cused on Ts based on with different sample sizes or estimation meth-
ods (Anderson & Gerbing, 1984; Fan, Thompson, & Wang, 1999; La Du &
Tanaka, 1989, 1995; Marsh et al., 1988, 2004), but not the statistic TAR or TCRADF.
We will resort to Equation 12 and rewrite it as F = bf + a for the current purpose,
where f represents a fit index when and F represents a fit index when
x follows a different distribution. Because it does not make sense to apply TML or
TRADF to fit indices involving df when data are nonnormally distributed or when
sample size is not huge, we only study the performance of these fit indices when
evaluated by TAR and TCRADF. Specifically, we will study the effect of distributional
change of x on NFI, NNFI, GFI, CFI, and RMSEA. Because NFI does not involve
df, we will report its distribution when evaluated using TML, TAR, TRADF, and
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TCRADF. Similarly, we will evaluate GFI when TM and T0 are TIRLS or TRADF, as pre-
viously discussed. Parallel to Tables 2 to 4 and with the same CFM as in Equation
9, we choose three distribution conditions for x. Table 6 contains the intercept a
and slope b for the above designs when N = 150 and 500. It is obvious that most of
the fit indices change distributions substantially when x changes its distribution.
Sample size also has a big effect on a and b. Among these, RMSEA changes its
overall distribution the least. Notice that both TAR and TCRADF change distributions
substantially in Tables 2 to 4. RMSEA is a function of and totally decided by T.
The greater stability of RMSEA is due to the effect of a square root, while no other
fit index studied here uses such a transformation. The same square root effect may
attenuate its sensitivity when the model �M changes. Hu and Bentler (1998) stud-
ied sensitivity of fit indices, but not when they are evaluated by TAR and TCRADF.
Further study in this direction is needed.
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TABLE 6
Intercept a and Slope b With F = bf + a, Where f Is the Distribution

of F for Normal Data

Elliptical x Skew f & Normal e Skew f & e

F T N b a b a b a

NFI TML 150 2.510 –1.443 3.902 –2.734 3.306 –2.152
500 4.220 –3.160 5.766 –4.667 4.756 –3.673

TAR 150 3.676 –2.504 9.244 –7.715 9.795 –8.207
500 5.780 –4.668 20.864 –19.394 21.538 –20.048

TRADF 150 1.257 –0.265 1.466 –0.576 1.453 –0.502
500 1.692 –0.688 3.383 –2.442 3.312 –2.355

TCRADF 150 0.949 –0.009 0.901 –0.057 0.891 –0.027
500 1.200 –0.215 1.816 –0.892 1.738 –0.815

GFI TIRLS 150 3.244 –2.137 3.246 –2.137 3.166 –2.046
500 5.354 –4.274 5.482 –4.398 4.409 –3.344

TRADF 150 2.337 –1.351 2.288 –1.307 3.342 –2.367
500 3.963 –2.968 4.012 –3.019 7.657 –6.680

CFI TAR 150 2.256 –1.251 9.524 –8.489 12.132 –11.103
500 2.571 –1.567 11.760 –10.737 14.082 –13.060

TCRADF 150 1.122 –0.111 1.616 –0.663 1.423 –0.407
500 1.346 –0.346 3.618 –2.626 3.001 –2.002

NNFI TAR 150 2.322 –1.313 280.605 –278.981 15.448 –14.396
500 2.948 –1.939 21.691 –20.635 18.770 –17.729

TCRADF 150 1.044 –0.018 61.079 –47.357 32.034 –23.782
500 1.301 –0.305 5.680 –4.590 3.439 –2.413

RMSEA TAR 150 0.932 –0.002 0.916 –0.002 1.017 0.006
500 0.914 –0.003 0.871 –0.003 1.015 –0.001

TCRADF 150 0.930 –0.001 0.937 –0.001 0.864 –0.001
500 0.964 0.000 0.937 0.000 0.861 –0.000

�̂
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The results of this section tell us that fit indices change their distributions sub-
stantially when conditions change. Commonly used cutoff values or confidence in-
tervals for fit indices do not reflect these changes and thus provide questionable
values regarding model fit/misfit.

THE POWER OF A FIT INDEX

There exist two seemingly unrelated aspects of power based on fit indices. One is
the ability for a fit index to distinguish a good model from a bad model. The other
is to first use fit indices F to specify null and alternative hypotheses and then to an-
alyze the power of T under these two hypothesis. We will discuss these two aspects
separately.

Commonly used cutoff values such as 0.05 or 0.95 for fit indices do not directly
relate the fit indices to any null hypothesis. So one cannot treat the cutoff value as
the traditional critical value and use the corresponding rejection rate as power.
Even when one specifies a null hypothesis, say the model is correctly specified or
the distance between the model �(�) and the population �0 is less than a small
number, then 0.05 or 0.95 may have nothing to do with the upper 5% quantiles of
the distribution of the fit index under the specified null hypothesis. As we have
seen from the previous sections, all fit indices change distributions when N, x and
D(·,·) change; we cannot relate the means of fit indices to the NCP even under the
idealized conditions in Equation 2. In practice, we generally do not know the dis-
tribution of fit indices even when �M is correctly specified, and ignoring their rela-
tionship to model misspecifications.

With the above mentioned difficulties, a more sensible approach to study the
sensitivity or power of fit indices is by simulation or bootstrap, as in Hu and
Bentler (1998, 1999), Gerbing and Anderson (1993), Bollen and Stine (1993),
Yung and Bentler (1996), Muthén and Muthén (2002), and Yuan and Hayashi
(2003). In such a study, the N, D(·,·), and the distribution of x are all given. We still
need to specify interesting null H0 and alternative H1 hypotheses. The null and al-
ternative hypotheses should include both �0 and �M. Then the distributions of a fit
index F under H0 and H1 can be estimated through simulations. The cutoff value
can be obtained from a proper quantile of the estimated distribution ( ). The
power of F at the given conditions will be the proportion of ( ) that fall into
the rejection region decided by the cutoff value. We need to emphasize that simula-
tion or bootstrap are tailor-made approaches and may not be generalizable when
conditions change. As we have seen, in addition to model misspecifications, the
distribution of F changes with the sample size N, the distribution of x as well as the
chosen statistic T. The most sensitive F under one set of conditions may no longer
be most sensitive under a different set of conditions.
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When studying power of T one has to specify H0 and H1 (e.g., Satorra & Saris,
1985). Traditionally, H0 represents a correct model and H1 represents an interest-
ing alternative model. Because substantive models are at most approximately cor-
rect, MacCallum et al. (1996), MacCallum and Hong (1997), and Kim (2003) pro-
posed to let H0 represent a misspecified model with misspecification measured by
RMSEA, CFI, GFI, and other fit indices. They used and

to calculate the critical value and power. Such a proposal would
allow researchers to test interesting but not necessarily perfect models when both

and are attainable. When they are not at-
tainable, then the critical value obtained using or power based on

may have little relationship with the model misspecification. As with dis-
tributions of fit indices, distributions of the statistics depend on sample size, the
distribution of x as well as the choice of statistic T, in addition to model
misspecification. Again, a more sensible approach to power might be by simula-
tion or bootstrap (see Yuan & Hayashi, 2003).

In conclusion, power or sensitivity of fit indices and test statistics might need to
be evaluated by simulation. In such a study, one has to control both type of errors2

using simulated critical values rather than referring F to 0.05 or 0.95 or referring T
to However, the findings by simulation in one set of conditions may not be
generalizable to a different set of conditions.

DISCUSSION

The analysis and empirical results in the previous sections should help to provide a
clearer overall picture of the relationship between fit indices and test statistics. We
will further discuss some issues related to their relationship, which may lead to a
better understanding of the properties of the fit indices.

As indicators for model fit, fit indices should relate to model misspecification.
The commonly used measure of model misspecification is given by the 	 in Equa-
tion 7. However, the definition there only makes a clear sense when D = DML corre-
sponding to TML at the population level. At the sample level, can
still be calculated but it depends on N and the distribution of x. Unfortunately, cur-
rent literature does not provide us an analytical formula relating to 	
and other conditions such as N and the underlying distribution of x. For example, at
a given N we do not know how good the approximation in Equation 1 is even when
x follows an elliptical distribution and the model is correctly specified. What we
know is that is consistent for 	, as well as that is
generally increasing with 	 and the population kurtosis � when x follows an ellipti-
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cal distribution. But such knowledge is not enough to accurately estimate 	, estab-
lish reliable cutoff values, or compute meaningful confidence intervals for 	.

When using TR, TAR, TADF, TCADF, TRADF, TCRADF for model evaluation, the mea-
sure corresponding to 	 should be

where � is the fourth-order population covariance matrix approximately equal to
NCov(s), D(�) is the population counterpart of the discrepancy function corre-
sponding to each T. In Monte Carlo studies, � can be obtained if one generates ran-
dom numbers following the procedure of Yuan and Bentler (1997a). One generally
does not know � with real data. The problem is that all fit indices and test statistics
are related to � at the population level, including But � itself is
difficult to estimate due to its large dimension. The idea in robust procedures is to
transform the sample so that the corresponding � is comparable to that in a normal
population with the same �0. The sensitivity or power of a fit index is closely re-
lated to �. It is well-known that, with given �0 and �(�), the greater the � (in the
sense of positive definiteness) the smaller the power of a test statistic (e.g., Shapiro
& Browne, 1987; Tyler, 1983; Yuan & Hayashi, 2003; Yuan et al., 2004). Fit indi-
ces that only involve TM will inherit such a property. It is unclear whether the sensi-
tivity of a fit index involving TI will also be inversely affected by a large � matrix.

In practice, we deal with 	 or through T. When holds,
contains valuable information for model misspecification. The confidence inter-
vals for � and monotonic functions of � also make probabilistic sense, although we
may not be able to relate � to 	 or to the expectation of a fit index E(F) explicitly.
We want to reemphasize that the result in Equations 6 and 7 is not correct when the
population covariance matrix �0 is fixed.

When E(T|H0) = df is true but does not hold, also con-
tains valuable information for model misspecification under the condition that
E(T|H1) increases as the model deteriorates. We can interpret as the systematic
part of T that is beyond the effect of sampling errors corresponding to the correct
model. But a confidence interval for � based on does not make sense.

When E(T|H0) 
 df, we might modify to

where the subscript D is used to denote the involved discrepancy measure in for-
mulating T. The population counterpart of is
which is the systematic part of T that is beyond the effect of sampling errors cor-

140 YUAN

� �2
dfT � �� ˆ T df�� �

� �� �ˆ, .MLE D � �
	 
S � �

� � � �� �0min , ,D	 � � � ��
�

�

� �2
dfT � �� ˆ T df�� �

�̂

� �2
dfT � ��

ˆ T df�� �

	�

ˆ
D� � � � �1 0| | ,D E T H E T H� � �

kyuan
Highlight

kyuan
Highlight

kyuan
Highlight



responding to the correct model. It is obvious that �D = 0 when �(�) is correctly
specified, regardless of N, D or x. The drawback of is that is not
as easy to obtain as df. Instead, one has to use a resampling based procedure or
other alternatives to obtain a . See Yuan and Marshall (2004) for fur-
ther comparison of �D with � and ways to obtain confidence intervals for �D.

With the distribution of x generally unknown and N uncontrollable, E(T|H0) ≈
df is not difficult to achieve. When N is not too small, (T|H0) approximately fol-
lowing is also achievable by choosing a proper T. But (T|H1) approximately
following is generally not achievable. Actually, we cannot analytically
relate E(F) to � even when For fit indices that are monotonic
functions of T without referring to a base model, a confidence interval for � can
be obtained by assuming but not a confidence interval for 	
or because the key equation

	 = �/n,

still depends on unrealistic conditions (Yuan & Bentler, in press; Yuan & Marshall,
2004). For fit indices that involve both TM and TI, assumptions in Equa-
tion 2 do not allow one to obtain even a confidence interval for g(�M, �I). So, the
noncentral chi-square assumption is neither realistic nor necessary in making infer-
ence for 	 or For NFI, the sample size N is cancelled by the ratio. We will have a
consistent estimator for Simi-
lar conclusion can be reached for other fit indices when N is cancelled. Of course,
consistency is a very minimal requirement, which does not tell us how far it is from
the population quantity for a finite N.

We might need to distinguish the role of a T as a statistic to evaluate whether a
model is correctly specified from its role in formulating a fit index. As a test statis-
tic, T is well behaved when (T|H0) approximately overlaps with at the 95%
quantile and the greater the (T|H1) the better the T. We do not really need for T to
follow chi-square distributions.

CONCLUSION AND RECOMMENDATION

We wanted to identify some statistics or estimation methods coupled with fit indi-
ces that are relatively stable when sample sizes and sampling distributions change.
We may also want a fit index F to perform stably when changing the base-statistic
T. Since the choice of T is controllable, it is not too bad when F varies across differ-
ent Ts. The problem is that most fit indices are not stable across the uncontrollable
conditions N and the distribution of x. RMSEA is relatively most stable among the
commonly used fit indices. But it is totally decided by T and none of the Ts are sta-
ble when changing N or x. Thus, the stability of RMSEA may be just due to the ar-
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tificial effect of the square root, which will attenuate its sensitivity across model
misspecifications.

Although our analysis of fit indices still leaves many uncertainties, some con-
clusions can nonetheless be reached.

1. Given the population covariance matrix and the model structure, the mean
value as well as the distribution of fit indices change with the sample size, the dis-
tribution of the data as well as the chosen statistic. Fit indices also reflect these
variables in addition to reflecting model fit. Thus, cutoff values for fit indices, con-
fidence intervals for model fit/misfit, and power analysis based on fit indices are
open to question.

2. Statistics TAR and TCRADF have means approximately equal to df and are rec-
ommend for calculating fit indices involving df . Other statistics should not be used
unless certain conditions such as normally distributed data and a large enough
sample size are realized.

3. The asymptotic distribution of TAR is generally unknown. The distribution of
TCRADF may be far from when the sample size is not large enough. Assuming
they follow noncentral chi-square distributions is even more farfetched. Confi-
dence intervals for model fit/misfit are not justified even when TAR or TCRADF are
used in the evaluation.

4. The statistic TML applied to a robustified sample is recommended when the
majority of the data are symmetrically distributed. This procedure is better coupled
with the bootstrap procedure so that one can check that (TML|H0) approximately
follows The noncentral chi-square distribution is neither realistic nor neces-
sary for evaluating model fit in the bootstrap procedure.

5. Our conclusions are temporary, as further study is needed to understand how
each fit index is related to model misfit when evaluated by the more reasonable sta-
tistics TAR, TCRADF, or TML based on a robust procedure.

We believe our analysis and discussion have effectively addressed the questions
raised at the beginning of the article. Although most of our results are on the nega-
tive side of current practice, fit indices are still meaningful as relative measures of
model fit/misfit. Specifically, for NFI, NNFI, CFI, and GFI there exists

when C1 contains the model corresponding to a smaller 	 or
	� than C2 while all the other conditions such as N, the distribution of x, and D(·,·)
in C1 and C2 are the same; the opposite inequality sign holds for RMSEA. But such
a relative value of fit indices should be distinguished from relative fit indices that
utilize a base model. The relative value should not be interpreted as cutoff values
being relative, for example, some use 0.95 while others use 0.90 to decide the ade-
quacy of a model. We want to emphasize that the purpose of the article is not to
abandon cutoff values but to point out the misunderstanding of fit indices and their

142 YUAN

2 .df�

� � � �1 2| |E F C E F C�

2
df�

kyuan
Highlight



cutoff values. We hope the result of the article can lead to better efforts to establish
a scientific norm on the application of fit indices.
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APPENDIX

EQS 6.0 (Bentler, 2004) has the case-robust procedure based on Yuan and Bentler
(1998c), which contains two tuning parameters in controlling the case weights.
Here we give a brief introduction to the robust transformation proposed by Yuan et
al. (2000), where Huber-type weights (see Tyler, 1983) that only contain one tun-
ing parameter are used.

Let � be the percentage of influential cases one wants to control, and r be a con-
stant decided by � through Denote the Mahalanobis distance as
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The Huber-type weights are given by

and u2(d2) = [u1(d)]2/�, where � is a constant decided by � through
The purpose of � is to make the resulting covariance matrix es-

timator unbiased when Robust mean vector and covariance matrix
can be obtained by iteratively solving

where di is the M-distance based on the ith case. Notice that the only tuning parame-
ter in solving Equations 16 and 17 is �. It is obvious that the greater the di the
smaller the weights and Denote the solution to Equa-
tions 16 and 17 as and Yuan et al. (2000) proposed the transformation

Yuan and Hayashi (2003) suggested applying the bootstrap procedure to
and verifying the distribution of (T|H0) across the bootstrap samples against the
distribution of When data contain heavy tails, by adjusting �, they showed
that the empirical distribution of (TML|H0) can match very well for different
real data sets.

It is obvious that Sr = is the sample covariance matrix of In this setup,
the population covariance matrix �r corresponding to Sr may not equal �0. When
the data are elliptically distributed, analyzing Sr and S leads to the same substan-
tive conclusion. In practice, data might contain outliers which will make a true
symmetric distribution skewed at the sample level. In such a situation, analyzing Sr

is preferred. If one believes that the true distribution of x is skewed, then the results
corresponding to �r may not be substantively equivalent to those corresponding to
�0. Hampel, Ronchetti, Rousseeuw, and Stehel’s (1986, p. 401) discussion implies
that analyzing Sr might still be preferred even when x has a skew distribution.
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The SAS IML program at www.nd.edu/-kyuan/courses/sem/RTRANS.SAS
performs the iterative procedure in Equations 16 and 17. The transformed sam-
ple in Equation 18 is printed out at the end of the program. When applying
this program, one needs to modify the program lines 2 and 3 so that a proper
ASCII file is correctly read. The only other thing one needs to change is the tun-
ing parameter � (rho) in the main subroutine. The program also includes
Mardia’s multivariate skewness and kurtosis for xi and Yuan et al. (2000)
suggested using the standardized Mardia’s kurtosis < 1.96 to select �. Examples
in Yuan and Hayashi (2003) implies that even when Mardia’s kurtosis is not sig-
nificantly different from that of a multivariate normal distribution, (TML|H0) may
not approximately follow
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