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Abstract

In mean and covariance structure analysis the chi-square difference test is often applied to

evaluate the number of factors, cross-group constraints and other nested model comparisons.

Let model Ma be the base model within which model Mb is nested. In practice, this test

is commonly used to justify Mb even when Ma is misspecified. We study the behavior of

the chi-square difference test in such a circumstance. Monte-Carlo results indicate that a

nonsignificant chi-square difference cannot be used to justify the constraints in Mb. We also

show that, when the base model is misspecified, the z test for the statistical significance

of a parameter estimate can also be misleading. For specific models, our analysis further

shows that the intercept and slope parameters in growth curve models can be estimated

consistently even when the covariance structure is misspecified, but only in linear growth

models. Similarly, with misspecified covariance structures, the mean parameters in multiple

group models can be estimated consistently under null conditions.

Keywords: Chi-square difference, nested models, model misspecification, parameter bias,

mean comparison, growth curves.



1. Introduction

Measurements in the social and behavioral sciences are typically subject to errors. By

separating measurement errors from latent constructs, structural equation modeling (SEM)

provides means of modeling the latent variables directly (e.g., Bollen, 2002; MacCallum &

Austin, 2000). Compared to models that do not take measurement errors into account,

SEM can provide more accurate conclusions regarding the relationship among interesting

attributes. In order to achieve such an objective, the methodology of SEM has to be appro-

priately used. In practice, researchers often elaborate on the substantive side of a structural

model even when it barely fits the data. We will show that such a practice most likely leads

to biased or misleading conclusions. Specifically, we will discuss the misuse of the chi-square

difference test and the z test. For the discussion of the misuse of the chi-square difference

test, we will focus on using this test in deciding the number of factors and for adding cross-

group constraints. For the discussion of the misuse of the z test, we will focus on its use

in evaluating the statistical significance of mean parameter estimates in the growth curve

models and latent mean comparisons.

There are many indices for evaluating the adequacy of a model. Among these only a

chi-square statistic judges the model using probability as characterized by type I and type

II errors. Although the chi-square test is limited due to its reliance on sample sizes, it is

still commonly reported in applications. In practice many reported chi-square statistics are

significant even when sample sizes are not large, and, in the context of nested models, the

chi-square difference test is often not significant; this is used to justify model modifications

or constraints across groups (e.g., Larose, Guay, & Boivin, 2002). The practice for relying

on difference tests has a long history in psychometrics. For example, in the context of

exploratory studies, Jöreskog (1978, p. 448) stated ‘If the drop in χ2 is large compared to

the difference in degrees of freedom, this is an indication that the change made in the model

is a real improvement. If, on the other hand, the drop in χ2 is close to the difference in

number of degrees of freedom, this is an indication that the improvement in fit is obtained

by “capitalization on chance” and the added parameters may not have any real significance

or meaning’. This statement may give encouragement for using the chi-square difference test

1



to guide model modifications or adding constraints even when the less constrained model

is highly significant. We will show that the difference test cannot be used reliably in this

manner.

We will mainly study the misuse of statistical significance tests in two contexts. In the

context of multiple groups, even when a model may barely fit an individual sample, further

constraints may be added across the groups. Let Ta be the statistic corresponding to the

models without the constraints and Tb be the statistic corresponding to the models with

constraints. Even when both Ta and Tb are statistically significant, implying rejection of

both models, the difference ∆T = Tb − Ta can still be nonsignificant. This is often used to

justify the cross-group constraints in practice. See Drasgow and Kanfer (1985), Brouwers

and Tomic (2001) and Vispoel, Boo and Bleiler (2001) for such applications. Similarly,

a model with 2 factors may correspond to a significant statistic Ta while the substantive

theory may only support a 1-factor model. The 1-factor model may have a significant

statistic Tb. In such a context many researchers regard the 1-factor model as “attainable” if

∆T = Tb − Ta is not statistically significant at the .05 level. In the context of latent growth

curves and latent mean comparisons, there are mean structures in addition to covariance

structures. These models are nested within the covariance structure models with saturated

means. The statistic Ta corresponding to only the covariance structure may be already highly

statistically significant. Adding a mean structure generally makes the overall model even

more statistically significant, i.e., less fitting. Nonetheless, researchers still elaborate on the

significance of the intercept or slope estimates or significant mean differences as evaluated

by z tests.

Let the model Ma be the base model within which model Mb is nested. When Ma is an

adequate model as reflected by a nonsignificant Ta and supported by other model fit indices,

one may want to test the further restricted model Mb. If ∆T = Tb − Ta is not statistically

significant, Mb is generally preferred due to its being more parsimonious. When Ma is not

adequate as indicated by a significant Ta can we still justify Mb by a nonsignificant ∆T ?

Although there exist statistical theory (Steiger, Shapiro, & Browne, 1985) in this context

and wide applications (e.g., Brouwers & Tomic, 2001; Drasgow & Kanfer, 1985; Vispoel et
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al., 2001) of justifying Mb using nonsignificant ∆T ’s, in our view the effect of such a practice

on the substantive aspect of SEM is not clear. A related question is, when the overall model

is misspecified, can a z test be used to indicate the statistical significance of a parameter

estimate? Examples in this direction include whether the intercept and slope parameters

in a latent growth curve model are zeros; whether the means are different in latent mean

comparisons; and whether a parameter should be freed or fixed as in model modifications.

The interest here is to study the effect of misspecified models on ∆T and the z tests. By

simulation, section 2 studies the behavior of ∆T when Ma is misspecified. Section 3 explores

the reason why ∆T does not perform properly whenMa is misspecified. Detailed results show

that a misspecified model leads to biased parameters, which explains why model inferences

based on ∆T and parameter inference based on the z test actually can be quite misleading.

2. Chi-square Difference Test When the Base Model is Misspecified

Jöreskog (1971) and Lee and Leung (1982) recommended using the chi-square differ-

ence test for cross-group constraints in analyzing multiple samples. Under some standard

regularity conditions, Steiger et al. (1985) proved that the chi-square difference statistic

asymptotically follows a noncentral chi-square distribution (see also Satorra & Saris, 1985).

Chou and Bentler (1990) studied the chi-square difference test when Ma is correctly specified

and found that it performs the best compared to the Lagrange Multiplier test and the Wald

test in identifying omitted parameters. The chi-square difference test has been widely used in

SEM, essentially in every application of SEM with multiple groups. However, how to appro-

priately apply the chi-square difference test in practice is not clear at all. Paradoxes readily

occur, for example, a nonsignificant Ta and a nonsignificant ∆T = Tb − Ta cannot guarantee

a statistically nonsignificant Tb. While Ta = 3.84 ∼ χ2
1 is statistically nonsignificant at the

.05 level, and ∆T = 3.84 ∼ χ2
1 is statistically nonsignificant at the .05 level, Tb = 7.68 ∼ χ2

2

is statistically significant at .05 level. Another paradox occurs when sequential application

of nonsignificant ∆T may lead to a highly significant final model. The general point is that

when ∆T is not statistically significant, one may derive the conclusion that Mb is less mis-

specified than Ma. However, we will show that this is not necessarily the case. In this section
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we will show the effect of a misspecified base model Ma on the significance of ∆T through

three simulation studies. Since the normal theory based likelihood ratio statistic TML is

commonly used in practice, we only study the performance of ∆T based on this statistic

for simulated normal data. When data are not normal or when another statistic is used in

practice, one cannot expect ∆T to perform better.

2.1 Type II error of ∆T in deciding the number of factors

We first study using ∆T to judge the number of factors in a confirmatory factor model.

Using ∆T to decide the number of factors in the exploratory factor model was recommended

by Lawley and Maxwell (1971). It is also commonly applied when confirmatory factor

analysis is used for scale development.

Let’s consider a confirmatory factor model with 5 manifest variables and 2 latent factors.

The population is generated by

x = µ0 + Λ0f + e

with

E(x) = µ0, Cov(x) = Σ0 = Λ0Φ0Λ
′
0 + Ψ0, (1)

where

Λ0 =

(
.700 .790 0 0 0
0 0 .926 .774 .725

)′

, Φ0 =

(
1.0 .818
.818 1.0

)
,

ψ150 = ψ510 = .285 and the diagonal elements of Ψ0 are adjusted so that Σ0 is a correlation

matrix. Note that the subscript 0 is used to denote the population value of a parameter.

The corresponding model parameter without the subscript 0 is subject to estimation before

its value can be obtained. Except for ψ150, the population parameter values for the model

defined in equation (1) are obtained from fitting the 2-factor model to the open-closed book

data set in Table 1.2.1 of Mardia, Kent and Bibby (1979). The purposes of choosing this

set of population values are: (a) they are represented by real data and thus realistic; (b)

φ120 = 0.818 is large enough so that ∆T will not be able to judge the correct number of

factors when Ma is misspecified.

Let the covariance structure model be

M(θ) = ΛΦΛ′ + Ψ,
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where

Λ =

(
λ11 λ21 0 0 0
0 0 λ32 λ42 λ52

)′

, Φ =

(
1.0 φ12

φ21 1.0

)

and Ψ is a diagonal matrix. Due to ignoring the covariance ψ15, the above 2-factor model is

no longer correct for the population covariance matrix in (1). Of course, the 1-factor model

excluding ψ15 is not correct either. In such a circumstance, however, a researcher may be

tempted in practice to justify the 1-factor model by a nonsignificant ∆T . We next evaluate

the effect of ignoring ψ15 on ∆T for such a purpose.

Without a mean structure, there is only 1 degree of freedom difference between Ma (the

1-factor model) and Mb (the 2-factor model). We refer ∆T to the 95th percentile of χ2
1 for

statistical significance. With 500 replications, Table 1 contains the number of replications

with nonsignificant ∆T . For comparison purposes, we also include the performance of ∆T

when ψ15 is explicitly included in both Ma and Mb. When ψ15 is excluded, although the

1-factor model is inadequate, due to a misspecification, ∆T cannot reject the 1-factor model

more than 50% at sample size n = 100. With correct model specification in Ma, ∆T has a

much greater power to reject the wrong model Mb.

Insert Table 1 about here

2.2 Type II error of ∆T in testing invariance in factor pattern coefficients

With a misspecified base model Ma, the statistic ∆T not only loses its power with

smaller sample sizes, it may also have a weak power even with very large sample sizes. We

will illustrate this through a two-group comparison.

Consider two groups, each has 4 manifest variables that are generated by a 1-factor

model. The population covariance matrix Σ10 of the first group is generated by

x1 = µ10 + λ10f1 + e1,

where

λ10 = (1, .80, .50, .40)′, Var(f1) = φ
(1)
0 = 1.0, Cov(e1) = Ψ10 = (ψ

(1)
ij0)

with ψ
(1)
110 = ψ

(1)
220 = 1.0, ψ

(1)
330 = 1.24, ψ

(1)
440 = 1.09, ψ

(1)
140 = .32 and ψ

(1)
240 = .25. The population

covariance matrix Σ20 of the second group is generated by

x2 = µ20 + λ20f2 + e2,
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where

λ20 = (1, .80, .70, .80)′, Var(f2) = φ
(2)
0 = 1.0, Cov(e2) = Ψ20 = (ψ

(2)
ij0)

with ψ
(2)
110 = ψ

(2)
220 = ψ

(2)
330 = ψ

(2)
440 = 1.0, and ψ

(2)
340 = −.559. It is obvious that the two

groups do not have invariant factor pattern coefficients. In model Ma, the 1-factor model

M(θ) = λφλ′ + Ψ, where Ψ is a diagonal matrix, is fitted to a normal sample from each

of the populations corresponding to Σ10 and Σ20 and the statistic Ta is the sum of the two

TML’s. The first factor pattern coefficient was set at 1.0 for identification purposes. In

model Mb, the three factor pattern coefficients as well as the factor variances were set equal

across the two groups which results in the statistic Tb. Referring ∆T = Tb − Ta to the 95th

percentile of χ2
4, the number of nonsignificant replications are given in the middle column of

Table 2. For the purpose of comparison, a parallel study in which the three error covariances

are included in Ψ in both Ma and Mb was also performed and the corresponding results are

in the last column of Table 2.

Insert Table 2 about here

When ignoring the error covariances, only 494 replications out of the 500 converged

when n1 = n2 = 100; and 497 replications converged when n1 = n2 = 200. When error

covariances were accounted for, 496 replications converged when n1 = n2 = 100. The

number of nonsignificant replications are based on the converged replications only. When

the base model is misspecified, although the power for ∆T to reject the incorrect constraints

increases as sample sizes increase, the speed is extremely slow. Even when n1 = n2 = 1000,

more than 60% of the replications could not reject the incorrect constraints. When Ma is

correctly specified, the statistic ∆T has a power greater than .95 in rejecting the incorrect

constraints at sample size n1 = n2 = 500.

2.3 Type I error of ∆T in testing invariance in factor pattern coefficients

A misspecifiedMa not only leads to attenuated power for the chi-square difference test, it

can also lead to inflated type I errors, as illustrated in the following two-group comparison.

Again, consider two groups, each has 4 manifest variables that are generated by a 1-factor

6



model. The first group Σ10 = Cov(x1) is generated by

x1 = µ10 + λ10f1 + e1,

where

λ10 = (1, .80, .70, .50)′, Var(f1) = φ
(1)
0 = 1.0, Cov(e1) = Ψ10 = (ψ

(1)
ij0)

with ψ
(1)
110 = ψ

(1)
220 = ψ

(1)
330 = ψ

(1)
440 = 1.0, ψ

(1)
140 = .70 and ψ

(1)
240 = .30. The second group

Σ20 = Cov(x2) is generated by

x2 = µ20 + λ20f2 + e2,

where

λ20 = (1, .80, .70, .50)′, Var(f2) = φ
(2)
0 = 1.0, Cov(e2) = Ψ20 = (ψ

(2)
ij0)

with ψ
(2)
110 = ψ

(2)
220 = ψ

(2)
330 = ψ

(2)
440 = 1.0, and ψ

(2)
340 = −.25. Now, the two groups have invariant

factor pattern coefficients and factor variances. We want to know whether ∆T can endorse

the invariance when Ma is misspecified. Let the three error covariances be ignored in Ma

when fitting the 1-factor model to both samples, and Mb be the model where the factor

pattern coefficients and factor variances are constrained equal. Instead of reporting the

nonsignificant replications of ∆T , we report the significant ones in Table 3. When Ma is

misspecified, ∆T is not able to justify the cross-group constraints. As indicated in Table 3,

even when n1 = n2 = 100, more than 70% of the equal factor pattern coefficients and factor

variances are rejected. When the error covariances were accounted for in Ma and Mb, type

I errors are around the nominal level of 5% for all the sample sizes in Table 3.

Insert Table 3 about here

In summary, when the base model Ma is misspecified, the chi-square difference test can-

not control either the type I errors or the type II errors for realistic sample sizes. Conclusions

based on ∆T are misleading. For the simulation results in Tables 1 to 3, we did not dis-

tinguish the significant Ta’s from those that are not significant. Some of the nonsignificant

∆T ’s in Tables 1 and 2 have nonsignificant Ta’s, and some of the significant ∆T ’s in Table

3 also correspond to nonsignificant Ta’s. As was discussed at the beginning of this section,
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even when both Ta and ∆T are not significant at the .05 level, we are unable to control the

errors of inference regarding model Mb. When constraints across groups hold partially, Ka-

plan (1989) studied the performance of TML, which is essentially the Tb here. The results in

Tables 1 to 3 are not in conflict with Kaplan’s results which indicate that Tb has a nice power

in detecting misspecifications. Actually, both Ta and Tb can also be regarded as chi-square

difference tests due to Ma and Mb being nested within the saturated model Ms. Because Ms

is always correctly specified, Ta and Tb do not possess the problems discussed above.

Because ∆T , the Lagrange Multiplier, and the Wald tests are asymptotically equivalent

(Buse, 1982; Lee, 1985; Satorra, 1989), the results in Tables 1 to 3 may also imply that the

two other tests cannot perform well in similar circumstances. All of these tests are used in

model modification and our results may explain some of the poor performance of empirically

based model modification methods (e.g., MacCallum, 1986).

Steiger et al. (1985) showed that chi-square differences in sequential tests are asymp-

totically independent and each difference follows a noncentral chi-square even when Ma is

misspecified. The results in this section imply that, (a) when the base model Ma is wrong

and the constraints that differentiate Ma and Mb are substantially incorrect, the noncentral-

ity parameter of the chi-square difference can be tiny so that ∆T loses its power; (b) when

the base modelMa is wrong and the constraints that differentiateMa and Mb are correct, the

noncentrality parameter of the chi-square difference can be substantial so that ∆T always

rejects the correct hypothesis. Section 3 explains why the noncentrality parameter is tiny or

substantial due to misspecifications.

3. The Effect of Misspecified Model on Parameters

In this section we explain why the chi-square difference test is misleading when the

base model is misspecified. Specifically, when a model is misspecified, parameter estimates

converge to different values from those of a correctly specified model. Thus, equal parameters

in a correctly specified model become unequal in a misspecified model. Consequently ∆T

for testing constraints will be misleading. In the context of mean structures, rather than

using a chi-square statistic to evaluate the overall model, researchers often use z tests to
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evaluate the statistical significance of mean parameter estimates (see Hong, Malik & Lee,

2003; Whiteside-Mansell & Corwyn, 2003). We will also show the effect of a misspecified

model in evaluating the mean parameters. We need to use results in Yuan, Bentler and

Zhang (2004) for this purpose.

Let x̄ and S be the sample mean vector and sample covariance matrix from a p-variate

normal distribution Np(µ0,Σ0). Let ν∗(γ) and M∗(γ) be the correct mean and covariance

structure, thus there exists a vector γ0 such that µ0 = ν∗(γ0) and Σ0 = M∗(γ0). Let the

misspecified model be ν(θ) and M(θ). We assume that the misspecification is due to model

ν(θ) and M(θ) missing parameters δ of γ = (θ′, δ′)′. In the context of mean and covariance

structure analysis, one obtains the normal theory based maximum likelihood estimate (MLE)

θ̂ of θ0 by minimizing (see e.g., Browne & Arminger, 1995)

FML(θ, x̄,S) = [x̄ − ν(θ)]′M−1(θ)[x̄− ν(θ)] + tr[SM−1(θ)] − log |SM−1(θ)| − p.

Under some standard regularity conditions (e.g., Kano, 1986; Shapiro, 1984), θ̂ converges to

θ∗ which minimizes FML(θ,µ0,Σ0). Note that in general θ∗ does not equal its counterpart

θ0 in γ0 = (θ′0, δ
′
0)

′, which is the population value of the correctly specified model. We will

call ∆θ = θ∗−θ0 the bias in θ∗, which is also the asymptotic bias in θ̂. It is obvious that, if

the sample is generated by µ0 = ν(θ0) and Σ0 = M(θ0), then θ∗ will have no bias. We may

regard the true population (µ0,Σ0) as a perturbation to (µ0,Σ0). Due to the perturbation,

θ∗ 6= θ0, although some parameters in θ∗ can still equal the corresponding ones in θ0 (see

Yuan, Marshall & Bentler, 2003). Yuan et al. (2003) studied the effect of misspecified model

on parameter estimates in covariance structure analysis. Extending their result to mean and

covariance structure models, Yuan, Bentler and Zhang (2004) characterize θ as a function

of µ and Σ in a neighborhood of (µ0,Σ0). Denote this function as θ = g(µ,σ), where σ is

the vector containing the nonduplicated elements of Σ. Then there approximately exists

∆θ ≈ ġ1(µ
0,σ0)∆µ+ ġ2(µ

0,σ0)∆σ, (2)

where ġ1 is the partial derivative of g with respect to µ and ġ2 is the partial derivative of g

with respect to σ; ∆µ = µ0 −µ0 and ∆σ = σ0 −σ0. Explicit expressions of ġ1 and ġ2 are

given in Yuan et al. (2004). Equation (2) implies that the bias in θ∗ caused by ∆µ and ∆σ
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are approximately additive. Let q be the number of free parameters in θ, then ġ1(µ
0,σ0)

is a q × p matrix and ġ2(µ
0,σ0) is a q × p∗ matrix, where p∗ = p(p + 1)/2. For the lth

parameter θl, we can rewrite (2) as

∆θl ≈
p∑

i=1

cli∆µi +
p∑

i=1

p∑

j=i

clij∆σij. (3)

When the parameter is clear, we will omit the subscript l in reporting the coefficients in

examples.

Now we can use the result in (2) or (3) to explain the misleading behavior of ∆T when

Ma is misspecified. Due to the misspecification, θ∗ may not equal θ0. Most nested models

can be formulated by imposing constraints h(θ) = 0. When h(θ0) = 0, h(θ∗) may not

equal zero. With a misspecified Ma, it is the constraints h(θ∗) = 0 that is being tested by

∆T . Because h(θ∗) 6= 0, Tb will be significantly greater than Ta and thus ∆T tends to be

statistically significant as reflected in Table 3. Similarly, when h(θ0) does not equal zero,

h(θ∗) may approximately equal zero. Consequently, the power for ∆T to reject h(θ∗) = 0

is low, as reflected in Tables 1 and 2. However, researchers in practice treat h(θ0) = 0 as

plausible.

In general, it is difficult to control the two types of errors by ∆T when Ma is misspecified.

If treating ∆T as if Ma were correctly specified when it is actually not, the conclusion

regarding h(θ0) = 0 will be misleading. For example, the ∆T that produced the results in

Table 1 tests whether φ120 = 1. When ignoring ψ15 in M(θ), using (3) and the population

parameter values in Table 1, we have ∆φ12 ≈ .166×∆σ15 = 0.166×0.285 = .047. This leads

to φ∗
12 ≈ 0.865, which is closer to 1.0 than φ120 = 0.818. Actually, any positive perturbation

on σij, i = 1, 2; j = 3, 4, 5 will cause a positive bias in φ∗
12, as illustrated in the following

example.

Example 1. Let θ0 be the population parameter values of model (1) excluding ψ150,

evaluating (3) at θ0 we obtain the coefficients cij for the approximate bias cij∆σij of φ∗
12 in

Table 4. For purposes of comparison, the exact biases when ∆σij = 0.05, 0.10, and 0.20 were

also computed by minimizing FML(θ,µ0,Σ0) directly. The approximate biases cij∆σij are

very close to the exact ones when ∆σij = 0.05. The accuracy of the approximation decreases

as the amount of perturbation ∆σij increases. This is because equation (2) is based on a
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local linearization. The smallest cij is with σ45, implying that the function φ12 = φ12(Σ)

is quite flat in the direction of σ45. The direction obtained at this point is usually not

stable. Actually, the c45∆σ45 predicts a small positive bias in φ∗
12 when ∆σ45 = .10 or .20,

but the actual biases are negative. Except for this element, the predicted biases and the

actual biases agree reasonably well for perturbations on all the other covariances σij. Notice

that positive perturbations on the covariances between indicators for different factors (σij,

i = 1, 2; j = 3, 4, 5) lead to an inflated φ∗
12. Perturbations in opposite direction will lead to

an attenuated φ∗
12. So the estimate φ̂12 and the testing for φ120 = 0 or 1 based on φ̂12 are

not trustworthy when model Ma is misspecified, especially when φ120 is near 0 or 1.0.

Insert Table 4 about here

Similarly, due to the changes in parameters, the chi-square difference test for the equiva-

lent constraints across groups is misleading when either of the models does not fit the data

within a group. Instead of providing more examples about the bias on factor pattern coeffi-

cients when σij are perturbed, we illustrate the effect of a misspecified model on the mean

parameters in simultaneously modeling mean and covariance structures.

Let y = (y1, y2, . . . , yp)
′ be repeated measures at p time points. Then a latent growth

curve model can be expressed as (Curran, 2000; Duncan, et al., 1999; McArdle & Epstein,

1987; Meredith & Tisak, 1990)

y = Λf + e, (4)

where

Λ =

(
1.0 1.0 1.0 . . . 1.0
0 1.0 λ1 . . . λp−2

)′

,

f = (f1, f2)
′ with f1 being the latent slope and f2 being the latent intercept, µf = E(f) =

(α, β)′,

Φ = Cov(f) =

(
φ11 φ12

φ21 φ22

)

and Cov(e) = Ψ = diag(ψ11, ψ22, . . . , ψpp). This setup leads to the following mean and

covariance structures

ν(θ) = Λµf , M(θ) = ΛΦΛ′ + Ψ.
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In fitting such a model in practice researchers often need to elaborate on the significance

of the parameter estimates α̂ and β̂ although the overall model fit is typically significant as

judged by a chi-square statistic. If the misspecification affects the mean structure to such a

degree that the significances of α̂ and β̂ are only due to a systematic bias, then caution is

needed to specify the model before meaningful α̂ and β̂ can be obtained. We will consider

the models for both linear growth and nonlinear growth.

Example 2. When letting λ1 = 2, λ2 = 3, . . ., λp−2 = p − 1, equation (4) describes the

linear growth model. The unknown parameters in this model are

θ = (α, β, φ11, φ21, φ22, ψ11, . . . , ψpp)
′.

Detailed calculation (see Yuan et al., 2004) shows that all the c1ijs and c2ijs in (3) are zero.

So there is no effect of misspecification in M(θ) on α∗ and β∗. This implies that we can still

get consistent parameter estimates α̂ and β̂ when ν(θ) is correctly specified even if M(θ) is

misspecified.

Insert Table 5 about here

However, the misspecification in ν(θ) does have an effect on α∗ and β∗ as presented in

Table 5 using p = 4, where (3) was evaluated at

α0 = 1, β0 = 1, φ110 = φ220 = 1.0, φ120 = 0.5, ψ110 = . . . = ψpp0 = 1.0,

and the perturbation was set at ∆µi = 0.2. The positive perturbations ∆µ1 and ∆µ2

cause positive biases on α∗ but negative biases on β∗. The positive perturbation ∆µ4 = 0.2

causes a negative bias on α∗ but a positive bias on β∗. Because ν(θ) is a linear model, the

approximate biases given by (2) or (3) are identical to the corresponding exact ones.

When the trend in µ0 = E(y) cannot be described by a linear model, a nonlinear model

may be more appropriate. However, any misspecification in M(θ) will affect the α∗ and β∗

as illustrated in the following example.

Example 3. When λ1, λ2, . . ., λp−2 are free parameters, (4) subjects the shape of growth

to estimation. The unknown parameters in this model are

θ = (α, β, λ1, . . . , λp−2, φ11, φ21, φ22, ψ11, . . . , ψpp)
′.
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Because the λi’s are in both ν(θ) and M(θ), misspecification in M(θ) will cause biases in

α∗ and β∗. To illustrate this, let’s consider a population that is generated by (4) with

α0 = 1, β0 = 1, λj0 = j + 1, φ110 = φ220 = 1.0, φ120 = 0.5, ψ110 = . . . = ψpp0 = 1.0

and p = 4. Table 6 gives the approximate biases in α∗ and β∗ as described in (2) and (3)

when ∆µi = 0.2 or ∆σij = 0.2 while the remaining elements of µ and Σ are fixed at θ0

as specified above. When µj is perturbed, the changes in α∗ and β∗ are no longer linear

functions of ∆µi, and the approximate biases given in (2) or (3) are no longer identical

to the exact biases ∆α or ∆β. This occurs even though the population mean vector and

covariance matrix are identical to those in Example 2. The ∆α or ∆β in Table 6 do not

equal the corresponding ones in Table 5 due to the nonlinear nature of the model.

Insert Table 6 about here

We need to notice that when µ0 = E(y) = 0 in the population, there is no effect of a

misspecified M(θ) on α∗ or β∗. This can be see from the form of FML(θ,µ0,Σ0). With any

given M(θ) and Σ0, when µ0 = 0 the minimum of FML(θ,µ0,Σ0) is at α∗ = β∗ = 0.

We next consider comparing factor means across groups. For convenience, we will only

give details for two groups. Let y1 and y2 represent random vectors from the two groups

that are generated by

y1 = ι1 + Λ1f1 + e1 and y2 = ι2 + Λ2f2 + e2, (5)

whose first two moment structures are

ν1(θ) = ι1 + Λ1τ 1, M1(θ) = Λ1Φ1Λ
′
1 + Ψ1,

ν2(θ) = ι2 + Λ2τ 2, M2(θ) = Λ2Φ2Λ
′
2 + Ψ2.

It is typical to assume ι1 = ι2 = ι and Λ1 = Λ2 = Λ in studying the mean difference τ 2−τ 1

(Sörbom, 1974). But there can be exceptions (Byrne, Shavelson, & Muthén, 1989). For the

purpose of identification one typically fixes τ 1 = 0 and consequently the interesting null

hypothesis is H0: τ 20 = 0. The free parameters in (5) are

θ = (ι′, τ ′
2,λ

′,φ′
1,ψ

′
1,φ

′
2,ψ

′
2)

′,

13



where λ, φ1, ψ1, φ2 and ψ2 are vectors containing the free parameters in Λ, Φ1, Ψ1, Φ2

and Ψ2. With the sample moments ȳ1, S1 and ȳ2, S2, the normal theory based MLE θ̂ is

obtained by minimizing

FML(θ, ȳ1,S1, ȳ2,S2) = n−1n1FML(θ, ȳ1,S1) + n−1n2FML(θ, ȳ2,S2),

where n1 and n2 are the sample sizes for the two groups with n = n1 + n2. Under standard

regularity conditions, θ̂ converges to θ∗ which minimizes FML(θ,µ10,Σ10,µ20,Σ20), where

µ10 = E(y1), Σ10 = Cov(y1), µ20 = E(y2), and Σ20 = Cov(y2).

Notice that, when the population parameter values satisfy µ10 = µ20 = µ0, whether

M1(θ) and M2(θ) are misspecified or not, the ι∗ has to take the value µ0 and τ ∗
2 has to be

zero in order for FML(θ,µ10,Σ10,µ20,Σ20) to reach its minimum. So when µ10 = µ20 = µ0,

there will be no bias in τ ∗
2 even when M1(θ) and M2(θ) are misspecified. The converse is

also partially true. That is, when τ ∗
2 6= 0, µ10 will not equal µ20 regardless whether M1(θ)

or M2(θ) are correctly specified or not. This partially explains the results of Kaplan and

George (1995) and Hancock, Lawrence and Nevitt (2000) regarding the performance of TML

in testing factor mean differences when factor pattern coefficients are partially invariant.

They found that TML performs well in controlling type I and type II errors when n1 = n2

and it is preferable to other types of analysis.

However, any misspecification will cause an asymptotic bias in τ̂ 2 when H0 is not true or

when µ10 6= µ20. We illustrate how misspecified (ν1(θ),M1(θ)) and (ν2(θ),M2(θ)) interfere

with the estimate τ̂ 2 and with testing the null hypothesis τ 20 = 0. Let θ0 be the population

value of θ corresponding to correctly specified models and ν0
1 = ν1(θ0), ν

0
2 = ν2(θ0), Σ0

1 =

M1(θ0), Σ0
2 = M2(θ0). Similar to the one-group situation, θ is a function of (ν1,σ1,ν2,σ2)

in a neighborhood of (ν0
1,σ

0
1,ν

0
2,σ

0
2). For the ∆θ = (∆θ1, . . . ,∆θq)

′ = θ∗ − θ0, we have

∆θl ≈
p∑

i=1

c
(1)
li ∆µ

(1)
i +

p∑

i=1

p∑

j=i

c
(1)
lij ∆σ

(1)
ij +

p∑

i=1

c
(2)
li ∆µ

(2)
i +

p∑

i=1

p∑

j=i

c
(2)
lij ∆σ

(2)
ij . (6)

Explicit expressions for c
(1)
li , c

(2)
li , c

(1)
lij and c

(2)
lij are provided in Yuan et al. (2004). Equation

(6) can be used to evaluate the effect of any misspecifications of (ν1(θ),M1(θ)) and/or

(ν2(θ),M2(θ)) on θ∗, as illustrated in the following example.
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Example 4. Let the population means and covariances be generated by (5) with four

variables measuring one factor. We will use λ1 and λ2 to denote the vectors of factor

pattern coefficients instead of their matrix versions Λ1 and Λ2. Set the population values

ι10 = ι20 = (1.0, 1.0, 1.0, 1.0)′, τ10 = 0, τ20 = 0.5, λ10 = λ20 = (1.0, 1.0, 1.0, 1.0)′,

φ
(1)
0 = 1.0, φ

(2)
0 = 1.0, ψ

(1)
110 = . . . = ψ

(1)
440 = 1.0 and ψ

(2)
110 = . . . = ψ

(2)
440 = 1.0.

So model (5) is correct for the population if there are no perturbations. Fix the first factor

pattern coefficient at 1.0 for the purpose of identification and let

λ1 = λ2 = (1, λ1, λ2, λ3)
′

and τ1 = 0 in the model, the free parameters are

θ = (ι′, τ2, λ1, λ2, λ3, φ
(1), ψ

(1)
11 , ψ

(1)
22 , ψ

(1)
33 , ψ

(1)
44 , φ

(2), ψ
(2)
11 , ψ

(2)
22 , ψ

(2)
33 , ψ

(2)
44 )′.

Using (6), with equal sample size in the two groups, we get the coefficients ci and cij in the

first column of Table 7 for the biases in τ ∗2 . With ∆µ
(1)
i = 0.2, ∆µ

(2)
i = 0.2, ∆σ

(1)
ij = 0.2 and

∆σ
(2)
ij = 0.2, the approximate biases using (6) as well as the exact ones in τ ∗2 are given in

the second and third columns of Table 7, where the approximate biases closely match the

corresponding exact ones.

Insert Table 7 about here

According to the coefficients in Table 7, any positive perturbation on µ
(1)
i will cause a

negative bias on τ ∗2 , and the opposite is true when µ
(2)
i is positively perturbed. Similarly, τ ∗2

will change in the direction specified by cij when σij is perturbed. The results in Table 7

imply that one has to be cautious when using a z test for τ20 = 0. When ι10 and ι20 do not

equal, or the factor pattern coefficients Λ10 and Λ20 are not invariant, or the structure models

M1(θ) and M2(θ) are misspecified, the estimate τ̂2 cannot be regarded as the estimate of the

latent mean difference τ20. The bias ∆τ2 can be substantial. Just like a nonzero parameter,

the bias in τ̂2 will be statistically significant when sample sizes are relatively large.
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For the four examples in this section, we only studied ∆θl for a few interesting parameters

when the mean µi or covariance1 σij are perturbed individually. The formula (3) or (6) can

also be used to obtain an approximate bias on any parameter in a model with simultaneous

perturbations on elements of means and covariances. For example, when µ
(1)
1 and σ

(2)
34 are

perturbed by ∆µ
(1)
1 = 0.2 and ∆σ

(2)
34 = 0.2 simultaneously, the approximate bias on τ ∗2 is

about ∆τ2 = −.314 × .2 − .057 × .2 = −.074.

4. Discussion and Conclusion

When variables contain measurement errors, correlation or regression analysis might lead

to biased parameter estimates. SEM supposedly removes the biases in regression or correla-

tion coefficients. However, if a model is misspecified, the correlation or regression coefficients

among latent variables are also biased. Because the measurement errors are partialled out,

SEM also has merits over the traditional MANOVA in comparing mean differences, as dis-

cussed in Cole, Maxwell, Arvey, and Salas (1993) and Kano (2001). However, this method-

ology can also be easily misused. In such a case, the estimated latent mean differences may

not truly reflect the mean differences of the latent variables.

There are many model fit indices in the literature of SEM. For example, SAS CALIS

provides around 20 fit indices in its default output. Consequently, there is no unique criterion

for judging whether a model fits the data or not. Conceivably, these different criteria might

provide good resources because each fit index may provide additional information for looking

at the discrepancy between data and model. Actually, Hu and Bentler (1999) recommended

using multiple indices in judging the fit of a model. However, people in practice often pick

the most favorable index to sell a model. Particularly, with a given fit index, the cuttoff

value between a good and a bad model is not clear; the commonly used terms “adequate”,

“plausible” or “tenable” for models have never been defined clearly. For example, for the

comparative fit index, the criterion CFI > .95 has been recommended for an acceptable model

(Bentler, 1990; Hu & Bentler, 1999), but CFI > .90 is also commonly used for indicating

“adequate”, “plausible” or “tenable” models. It is interesting to observe that fit indices are

1Tables 4, 6 and 7 do not contain σii because its perturbation does not cause any biases on the reported
parameters.
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often used when judging a covariance structure because of the need to accept the model,

while chi-squares or z tests are generally used when judging a mean difference because of

the need to find significance (see Hong, Malik & Lee, 2003; Whiteside-Mansell & Corwyn,

2003). Such a practice most likely leads to misleading conclusions.

We totally agree that any model is an approximation to the real world, and that there is

some need to quantify the degree of approximation. But there are good approximations and

bad ones. As we have shown, if a significance or a substantive conclusion following a SEM

model is due to systematic biases, caution is needed in elaborating on the findings from the

model. In order to minimize the misuse of ∆T and z tests, one should use multiple criteria

to make sure the base model Ma is correctly specified. When Ma is not good enough, one

may need to find a different model structure that better fits the data before adding extra

constraints or performing a z test. An alternative is to further explore the structure of the

data to better understand the substantive theory.

Our study leads to two humble but definite conclusions with regard to the specific types of

models. In the latent growth curve models as represented by (4), when α̂ or β̂ is statistically

significant at .05 level, then with 95% confidence one can claim that E(y) is different from

zero. In comparing factor means as represented in model (5), if τ̂ 2 is statistically significant

at .05 level, then one can be 95% confident that E(y1) 6= E(y2). But the significance in α̂

or β̂ may not be due to nonzero E(f1) or E(f2), and the significance of τ̂ 2 may not be due

to a nonzero E(f2 − f1).
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Table 1

Number of Nonsignificant ∆T = Tb − Ta (Type II Error) out of 500 Replications

1-factor model (Ma) versus 2-factor model (Mb)
Sample Misspecified Correct Ma

size Ma & Mb misspecified Mb

50 363 176
100 276 48
200 148 1
300 60 0
400 34 0
500 8 0

Table 2

Number of Nonsignificant ∆T = Tb − Ta (Type II Error) out of 500 Replications

Incorrect Equality Constraints Across Two-group Factor Pattern Coefficients
Sample size Misspecified Correct Ma

(n1 = n2) Ma & Mb misspecified Mb

100 447/4941 342/496
200 444/497 239
300 417 131
400 402 66
500 387 23
1000 329 1
3000 66 0

1Converged solutions out of 500 replications.

Table 3

Number of Significant ∆T = Tb − Ta (Type I Error) out of 500 Replications

Correct Equality Constraints Across Two-group Factor Pattern Coefficients
Sample size Misspecified Correct
(n1 = n2) Ma & Mb Ma & Mb

100 362/4971 25
200 481 28
300 498 23
400 500 25

1Converged solutions out of 500 replications.



Table 4

The Effect of a Perturbation ∆σij on Factor Correlation φ∗
12

∆σij = .05 ∆σij = .10 ∆σij = .20
σij cij cij × ∆σij ∆φ12 cij × ∆σij ∆φ12 cij × ∆σij ∆φ12

σ12 -0.740 -0.037 -0.035 -0.074 -0.065 -0.148 -0.117
σ13 0.464 0.023 0.023 0.046 0.044 0.093 0.068
σ14 0.212 0.011 0.011 0.021 0.024 0.042 0.056
σ15 0.166 0.008 0.009 0.017 0.018 0.033 0.041
σ23 0.363 0.018 0.017 0.036 0.031 0.073 0.032
σ24 0.221 0.011 0.012 0.022 0.025 0.044 0.058
σ25 0.173 0.009 0.009 0.017 0.019 0.035 0.044
σ34 -0.362 -0.018 -0.020 -0.036 -0.042 -0.072 -0.090
σ35 -0.305 -0.015 -0.018 -0.030 -0.040 -0.061 -0.092
σ45 0.097 0.005 0.002 0.010 -0.002 0.019 -0.046

Table 5

The Effect of a Perturbation ∆µi = 0.2 on the Intercept α∗

and Slope β∗ for the Linear Growth Curve Model
α β

µi ci ci ×∆µi ∆α ci ci ×∆µi ∆β
µ1 0.700 0.140 0.140 -0.300 -0.060 -0.060
µ2 0.400 0.080 0.080 -0.100 -0.020 -0.020
µ3 0.100 0.020 0.020 0.100 0.020 0.020
µ4 -0.200 -0.040 -0.040 0.300 0.060 0.060

Table 6

The Effect of a Perturbation ∆µi = 0.2 or ∆σij = 0.2 on the Intercept α∗

and Slope β∗ for the Nonlinear Growth Curve Model
α β

µi ci ci ×∆µi ∆α ci ci ×∆µi ∆β
µ1 0.869 0.174 0.171 -0.684 -0.137 -0.131
µ2 0.185 0.037 0.035 0.487 0.097 0.097
µ3 0.021 0.004 0.002 0.078 0.016 0.018
µ4 -0.076 -0.015 -0.015 0.119 0.024 0.023
σij cij cij × δij ∆α cij cij × δij ∆β
σ12 0.020 0.004 0.003 -0.032 -0.006 -0.007
σ13 0.013 0.003 0.002 -0.017 -0.003 -0.003
σ14 0.020 0.004 0.005 -0.064 -0.013 -0.013
σ23 -0.079 -0.016 -0.016 0.123 0.025 0.023
σ24 0.001 0.000 0.000 0.063 0.013 0.011
σ34 0.026 0.005 0.005 -0.073 -0.015 -0.015



Table 7

The Effect of a Perturbation ∆µi = 0.2 or ∆σij = 0.2 on the Difference τ ∗2
of Factor Means in Latent Mean Comparison

µi ci ci × ∆µi ∆τ2

µ
(1)
1 -0.314 -0.063 -0.059

µ
(1)
2 -0.229 -0.046 -0.044

µ
(1)
3 -0.229 -0.046 -0.044

µ
(1)
4 -0.229 -0.046 -0.044

µ
(2)
1 0.314 0.063 0.066

µ
(2)
2 0.229 0.046 0.047

µ
(2)
3 0.229 0.046 0.047

µ
(2)
4 0.229 0.046 0.047
σij cij cij × ∆σij ∆τ2

σ
(1)
12 0.057 0.011 0.012

σ
(1)
13 0.057 0.011 0.012

σ
(1)
14 0.057 0.011 0.012

σ
(1)
23 -0.057 -0.011 -0.015

σ
(1)
24 -0.057 -0.011 -0.015

σ
(1)
34 -0.057 -0.011 -0.015

σ
(2)
12 0.057 0.011 0.012

σ
(2)
13 0.057 0.011 0.012

σ
(2)
14 0.057 0.011 0.012

σ
(2)
23 -0.057 -0.011 -0.015

σ
(2)
24 -0.057 -0.011 -0.015

σ
(2)
34 -0.057 -0.011 -0.015


