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Post-Fair Federated Learning: Achieving Group and Community Fairness
in Federated Learning via Post-processing

Anonymous Authors1

Abstract
Federated Learning (FL) is a distributed machine
learning framework in which a set of local com-
munities collaboratively learn a shared global
model while retaining all training data locally
within each community. Two notions of fairness
have recently emerged as important issues for fed-
erated learning: group fairness and community
fairness. Group fairness requires that a model’s
decisions do not favor any particular group based
on a set of legally protected attributes such as
race or gender. Community fairness requires that
global models exhibit similar levels of perfor-
mance (loss) across all collaborating communities.
Both fairness concepts can coexist within an FL
framework, but the existing literature has focused
on either one concept or the other. This paper
proposes and analyzes a post-processing fair fed-
erated learning (FFL) framework called post-FFL.
Post-FFL uses a linear program to simultaneously
enforce group and community fairness while max-
imizing the utility of the global model. Because
Post-FFL is a post-processing approach, it can be
used with existing FL training pipelines whose
convergence properties are well understood. Anal-
ysis of Post-FFL shows how it can be used to esti-
mate the accuracy lost in simultaneously enforc-
ing group and community fairness. This paper
uses post-FFL on real-world datasets to mimic
how hospital networks, for example, use feder-
ated learning to deliver community health care.
The experimental results illustrate that post-FFL
simultaneously improves both group and commu-
nity fairness in Federated Learning. Moreover,
it is an effective tool for estimating the accuracy
compromised to enhance fairness in Federated
Learning.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

1. Introduction
Federated Learning (FL) (McMahan et al., 2017) is a dis-
tributed machine learning framework that uses data collected
from a group of community clients to learn a global model
that can be used by all clients in the group. The communities
served by these clients are formed from sets of remote users
(e.g. mobile phones) or organizations (e.g. medical clinics
and hospitals) that all share some defining attribute such
as a similar geographical location. FL algorithms such as
FedAvg (McMahan et al., 2017) train the global model in
a distributed manner by first having each community client
use its local data to train a local model. This local model
is then sent to the cloud server who averages these mod-
els and sends the averaged model back to the community
clients who then retrain that model with their local data.
This interaction between the clients and server continues for
a several update cycles until it converges on a global model
that is agreeable to all clients. While there were no theoreti-
cal convergence guarantees with the original FL algorithm
(McMahan et al., 2017), subsequent analysis (Smith et al.,
2018; Li et al., 2020) did provide theoretical convergence
analysis for this FL training pipeline. Since then FL has
come to be a dominant framework for distributed machine
learning (Kairouz et al., 2021), particularly in smart city
(Jiang et al., 2020; Zheng et al., 2022; Qolomany et al.,
2020; Pandya et al., 2023) and smart healthcare applications
(Rieke et al., 2020; Nguyen et al., 2022; Antunes et al., 2022;
Brisimi et al., 2018) .

This paper considers two related notions of fairness rele-
vant to federated learning: Group Fairness and Community
Fairness. Group fairness (Dwork et al., 2012; Hardt et al.,
2016; Zafar et al., 2017) is concerned with achieving simi-
lar outcomes for groups defined by legally protected (a.k.a.
sensitive) attributes such as race or gender. Community
fairness (Gross, 2007; 2008) is concerned with the equal
allocation of benefits across all communities regardless of
their legally protected status. For community fairness, a
community may consist of individuals living in the same ge-
ographic location. Community fairness, therefore, is more
concerned with ensuring that these geographically distinct
communities have equal access to resources. Group fair-
ness, on the other hand, requires that all individuals with the
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Post-Fair Federated Learning

same legally protected attribute receive the same benefits
as those outside of the protected group regardless of their
membership in these geographically distinct communities or
neighborhoods. Both fairness concepts (group vs. commu-
nity) are relevant to federated learning. This is particularly
true in smart healthcare applications where a physician’s
decisions should not be influenced by factors such as age,
race, or gender (Parsa-Parsi, 2017) and yet city leaders want
to ensure that all geographically distinct neighborhoods per-
ceive they have the same accessibility to adequate health
care. Whether one can balance these two fairness concepts
in an FL platform and what might be the cost of attaining
such balance is the main topic of this paper.

Several recent papers have proposed methods for achieving
either group or community fairness in federated learning.
The methods fall into three categories: pre-processing, in-
processing, and post-processing. Pre-processing techniques
achieve model fairness by modifying the data set used to
train the model. This may be done by weighting the training
samples as described in (Abay et al., 2020). Pre-processing
techniques, however, cannot simultaneously address group
and community fairness. In-processing techniques typically
modify the federated learning framework’s optimzation al-
gorithms. Current approaches either employ dynamic ag-
gregation weights (Yue et al., 2023; Ezzeldin et al., 2023;
Chu et al., 2021; Rodrı́guez-Gálvez et al., 2021; Lyu et al.,
2020; Li et al., 2019) or use adversarial training (Du et al.,
2021; Mohri et al., 2019). These approaches, however, com-
plicate the existing FL training pipeline and lack formal
convergence guarantees. Post-processing, on the other hand,
uses models selected by an existing training to generate
a randomized model that achieves fairness (Hardt et al.,
2016; Fish et al., 2016; Menon & Williamson, 2017; Pleiss
et al., 2017; Chzhen et al., 2019; Denis et al., 2021; Zhao
& Gordon, 2022; Zeng et al., 2022; Xian et al., 2023). This
prior post-processing work, however, does not consider a
federated learning (FL), which is the subject of this paper.

This paper’s novel contributions are:

• the development of a post-processing FL framework
(post-FFL) that simultaneously enforces group fairness
and community fairness,

• results that characterize when post-processing can si-
multaneously achieve group and community fairness
for a given group of communities,

• results that allow one to evaluate the model’s accuracy
lost in achieving group and community fairness,

• and finally the experiment results on a real-world
dataset, which show that our framework outperforms
existing baselines in both group fairness and commu-
nity fairness improvement, as well as in communica-
tion efficiency and computation cost.

2. Preliminary Definitions
This section provides a statistical interpretation of group and
community fairness that allows us to address fairness issues
in the federated learning of models that predict outcomes
for individuals in a group of communities. The community
group is a collection of geographically distinct human com-
munities. Each community is a client that uses the local
data it has on its inhabitants to select a local model that
predicts health outcomes for a given inhabitant. All com-
munity clients send their local models to a global server
who then aggregate the models into a global model. The
resulting global model, however, may not be fair either with
respect to group or community notions defined below. The
main problem is to find a way to transform the global model
into a fair global model. Since this transformation is done
after the FL pipeline has selected the global model, this is a
post-processing approach to achieving fairness.

Notational Conventions: This paper will denote random
variables using upper case letters, X , and lower case letters,
x will denote instances of those random variables. A random
variable’s distribution will be denoted as FX and an instance,
x, drawn from that distribution will be denoted as x ∼
FX . Bold face lower case symbols will be reserved for
vectors and bold face upper case symbols will be reserved
for matrices.

To formalize our statistical setup, we first need to define the
notion of a community group.

Definition 2.1. A community group consists of K geo-
graphically distinct communities that we formally represent
as a tuple of jointly random variables, D = (X,A,C, Y )
with probability distribution FD : X ×A×C ×Y → [0, 1].
An instance of the community group, (x, a, c, y), is called
an individual where x ∈ X is the individual’s private data
vector, a ∈ A = {0, 1} denotes the individual’s protected
sensitive attribute, and c ∈ C = {1, 2, . . . ,K} denotes
which community the individual belongs to. The other
value, y ∈ Y = {0, 1} denotes the individual’s qualified
outcome.

The variables in definition 2.1 have concrete interpretations
in a community health application. Each community is a
geographically distinct neighborhood served by a single
health clinic. For an individual (x, a, c, y) ∼ FD, the vari-
able x represents that individual’s private health data, a may
represent a protected attribute such as race or gender, c is
the individual’s local health clinic. Finally y represents
the whether or not the individual is ill and needs to access
medical resources to treat that illness.

We are interested in selecting an outcome predictor, Ŷ :
X ×A× C → Y for community group D such that for any
individual (x, a, c, y) ∼ FD we have Ŷ (x, a, c) = y with a
high probability. In particular, let (1−∆) ∈ (0, 1) denote
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Post-Fair Federated Learning

a specified accuracy level, then the outcome predictor is
∆-accurate if PrD

{
Ŷ (X,A,C) = Y

}
≥ 1 − ∆. With

these definitions and notational conventions we can now
formalize a specific notion of group fairness known as equal
opportunity (Hardt et al., 2016).

Definition 2.2. . The outcome predictor Ŷ : X×A×C → Y
for community group D satisfies equal opportunity if and
only if

PrD

{
Ŷ (X,A,C) = 1 |Y = 1, A = 1

}
=

PrD

{
Ŷ (X,A,C) = 1 |Y = 1, A = 0

} (1)

Definition 2.2 asserts that the probability of the outcome
predictor correctly predicting a positive outcome for an
individual (x, a, c, y) from D who qualifies for positive
outcome (i.e. y = 1) is independent of the individual’s
protected attribute a. The following definition provides a
statistical characterization of community fairness that is
similar to the concept of fair resource allocation in (Li et al.,
2019).

Definition 2.3. The outcome predictor Ŷ : X ×A×C → Y
for community group D satisfies community fairness if
and only if for any j, k ∈ C, we have

PrD

{
Ŷ (X,A,C) = Y |C = j

}
=

PrD

{
Ŷ (X,A,C) = Y |C = k

} (2)

Definition 2.3 asserts that the probability of the outcome
predictor correctly predicting an individual’s qualified out-
come is independent of which community the individual
belongs to.

This paper develops a post-processing FL algorithm that
selects an outcome predictor Ỹ : X × A × C → Y that
satisfies both community fairness and group fairness. If a
∆-accurate predictor exists that achieves community and
group fairness on community group D, then we say the
community group is ∆-equalizable. This paper will also
establish necessary conditions for a community group to be
∆-equalizable.

3. Achieving Group and Community Fairness
Let D = (X,A,C, Y ) be a community group and consider
the loss function ℓ : Y × Y → {0, 1} that takes values

ℓ(ỹ, y) = 1(ỹ ̸= y) (3)

for any ỹ, y ∈ Y , where 1(·) is the indicator function. A
fair outcome predictor is any map Ỹ : X ×A× C → Y
that satisfies the equal opportunity equation (1) and commu-
nity fairness equation (2) with respect to community group

D. The following proposition asserts that if an outcome
predictor Ỹ satisfies the following optimization problem in
equation (4), then Ỹ must be a fair outcome predictor with
respect to community group D.
Proposition 3.1. Consider the community group, D =
(X,A,C, Y ), and the binary loss function, ℓ, in equation
(3). If the outcome predictor Ỹ : X ×A× C → Y satisfies
the following optimization problem

minimize ED

[
ℓ(Ỹ (X,A,C), Y )

]
with respect to Ỹ : X ×A× C → Y
subject to PrD(Ỹ (X,A,C) = 1 |Y = 1, A = 0)

= PrD(Ỹ (X,A,C) = 1 |Y = 1, A = 1),

PrD(Ỹ (X,A,C) = Y |C = j)

= PrD(Ỹ (X,A,C) = Y |C = k),∀j, k ∈ C

(4)

then Ỹ is a fair outcome predictor.

Proof: Any Ỹ that solves optimization problem must satisfy
the given constraints. Since these constraints are equation
(1) and (2) for equal opportunity and community fairness,
respectively, the outcome predictor must also be fair with
respect to community group D. ♢

It is not yet clear if the optimization problem in equation
(4) actually has a solution. To obtain conditions for the
existence of a fair outcome predictor, we will first show that
equation (4) can be recast as a linear program. The existence
of a fair outcome predictor is then equivalent to that linear
program having non-negative solutions.

Let Ŷ : X × A × C → Y be an optimal outcome pre-
dictor that minimizes the expected value of the indicator
loss function in equation (3) with respect to community
group D. For notational convenience we will drop the argu-
ments on the outcome predictors so we write Ŷ (X,A,C)

(or Ỹ (X,A,C)) as Ŷ (or Ỹ ). For convenience we intro-
duce the following notational conventions for the optimal
outcome predictor’s joint probability of false or true posi-
tives and negatives:

FNac = PrD

{
Ŷ = 0, Y = 1, A = a,C = c

}
TNac = PrD

{
Ŷ = 0, Y = 0, A = a,C = c

}
FPac = PrD

{
Ŷ = 1, Y = 0, A = a,C = c

}
TPac = PrD

{
Ŷ = 1, Y = 1, A = a,C = c

}
(5)

We will also find it convenient to define the following statis-
tics that can be from the group community, D.

pc = PrD(C = c)

α = PrD(Y = 1 , A = 0)

β = PrD(Y = 1 , A = 1)

(6)

3
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Post-Fair Federated Learning

pc is the probability of random individual being in com-
munity c, α is the probability of random individual being
qualified and non-sensitive, β is the probability of random
individual being qualified and sensitive.

Finally, the variables we will use to characterize our fair
outcome predictor, Ỹ , will be

zacj = PrD

{
Ỹ = Ŷ | Ŷ = j, A = a,C = c

}
(7)

So zacj is the probability that the fair predictor’s outcome,
Ỹ , equals that of the optimal predictor’s outcome, Ŷ , for
an individual, (x, a, c, y), for which the optimal predictor’s
output is j ∈ Y , the sensitive attribute is a ∈ A and the
community label is c ∈ C.

Proposition 3.2. (Appendix B.1) Let z ∈ R4K satisfy the
following linear program

minimize: cT z
with respect to: z ∈ R4K

subject to: Az = b
0 ≤ z ≤ 1

(8)

where the parameters of the linear program, A ∈
R(K+1)×4K , c ∈ R4K , and b ∈ RK+1, are constructed
using the statistics defined in (5) and (6). The concrete
representation of the linear program is in Appendix A.

Let the solution of the linear program z be:

zT =
[
zT1 zT2 · · · zTK

]
with

zTi =
[
z0i0 z0i1 z1i0 z1i1

]
Then the outcome predictor ỸŶ ,z : X ×A× C → Y taking
values

If: Ŷ (x, a, c) = 0, A = a,C = c :

ỸŶ ,z(x, a, c) =

{
0 with probability zac0
1 with probability 1− zac0

If: Ŷ (x, a, c) = 1, A = a,C = c :

ỸŶ ,z(x, a, c) =

{
1 with probability zac1
0 with probability 1− zac1

is a fair outcome predictor.

Remark 3.3. It is worth noting that the optimization shown
in (8) can incorporate a more relaxed version of equal op-
portunity and community fairness constraints:

|PrD(Ỹ = 1|Y = 1, A = 0)− PrD(Ỹ = 1|Y = 1, A = 1)| ≤ ϵ

∀k ∈ C, |Pr(Ỹ ̸= Y |C = k)− 1

K

K∑
c=1

Pr(Ỹ ̸= Y |C = c)| ≤ δ

(9)

In such cases, the linear program with the relaxed fairness
constraints is:

minimize: cT z
with respect to: z ∈ R4K

subject to: b− ϵ ≤ Az ≤ b+ ϵ
0 ≤ z ≤ 1

(10)

where,

ϵT =
[
ϵ δ · · · δ

]
By resolving the linear program, with different ϵ ∈ R(K+1),
we can precisely control the degree of community fairness
and group fairness, setting ϵ = 0 gives us the outcome
predictor that strictly satisfies equal opportunity and com-
munity fairness.♢

We can write the linear program (8) in the standard form by
introducing a set of slack variables s ∈ R4K :

sT =
[
sT1 sT2 · · · sTK

]
with

sTi =
[
s0i0 s0i1 s1i0 s1i1

]
The variables we need to solve for in linear program (8) rep-
resents the probabilities, thus, 0 ≤ zacj ≤ 1. It is equivalent
to:

zacj + sacj = 1

zacj , sacj ≥ 0
(11)

Combine the linear program (8) with (11), the standard form
of the linear program (8) is:

minimize: c̄T z̄
with respect to: z̄ ∈ R8K

subject to: Āz̄ = b̄
z̄ ≥ 0

(12)

with

c̄T =
[
cT 0

]
∈ R8K

z̄T =
[
zT sT

]
∈ R8K

Ā =

[
A 0
I I

]
∈ R(5K+1)×8K

b̄T =
[
bT 1T

4K

]
∈ R5K+1

where 14K ∈ R4K is all 1 vector.

Theorem 3.4. (Appendix B.2) The linear program (12) al-
ways has non-negative solutions.
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Theorem 3.4 indicates that the linear program (8), which
is equivalent to (12), always has a solution. Thus, there
always exists fair outcome predictors satisfying both equal
opportunity and community fairness. We next demonstrate
the necessary conditions for the existence of a ∆-accurate
fair outcome predictor. An outcome predictor: Ỹ : X ×
A× C → Y is a ∆-accurate fair outcome predictor if:

PrD(Ỹ ̸= Y ) ≤ ∆

PrD(Ỹ = 1|Y = 1, A = 0) = PrD(Ỹ = 1|Y = 1, A = 1)

∀k ∈ C,PrD(Ỹ ̸= Y |C = k) =
1

K

K∑
c=1

PrD(Ỹ ̸= Y |C = c)

(13)

Theorem 3.5. (Appendix B.3) The three conditions in
(13) are impossible to hold simultaneously if ∆ <

−∥c̄∥∞∥ĀT b̄∥2

σ2 +
∑K

c=1(TN
0c +TP0c +TN1c +TP1c) ,

where, σ is the smallest singular value of the matrix Ā.

Theorem 3.5 establishes a necessary condition for the exis-
tence of an ∆-accurate fair outcome predictor, based on the
statistics of the data represented by Ā, b̄, c̄.

Theorem 3.6. (Appendix B.4) Let z ∈ R4K be the solution
of the linear program (10) with a predefined ϵ, then the
minimum accuracy we lose for improving both community
fairness and group fairness under post-FFL is cT (z− 14k),
where, 14K is all 1 vector.
Theorem 3.6 above can serve as a tool for evaluating the ac-
curacy we lose for improving group fairness and community
fairness

4. Post-FFL: Fair Outcome Predictor in FL
This section shows how the linear program (8) can be used
within a federated learning framework to construct a fair
outcome predictor. An overview of post-FFL is shown in
Fig.1. We provide the concrete training steps of post-FFL:

1. Training an Optimal Outcome Predictor using Fe-
dAvg: The server and communities collaboratively
train an optimal predictor Ŷ : X ×A× C → Y using
the FedAvg algorithm (McMahan et al., 2017). The
participating community trains a local model at time
t and sends the local model’s parameters, θt

c ∈ Rn,
to the global server. The global server then aggre-
gates the local models into a global model parameter,
θt =

∑K
c=1 pcθ

t
c, and sends it back to the local com-

munities. This iterative process continues until the
parameters, θ, of the optimal predictor Ŷ are deter-
mined. The aggregation weight, pc = PrD(C = c), is
estimated from the dataset as shown in (14).

pc =
number of samples in community c

number of total samples
(14)

2. Local Prediction and Probability Calcula-
tion: Each local community generates predic-
tions Ŷ (X,A,C) ∈ Y , computes local statis-
tics PrD(Ŷ = y, Y = y′, A = a | C = c) for all
(y, y′, a) ∈ {0, 1}3 as specified in (15), and then
transmits these probabilities to the global server.

PrD(Ŷ = y, Y = y′, A = a | C = c) =

number of samples with (Ŷ = y, Y = y′, A = a) in community c

number of samples in community c
(15)

3. Constructing and Solving the Linear Program: The
global server computes the parameters defined in Equa-
tions (5) and (6) using the probabilities sent by the com-
munities. The parameters FNac,TNac,FPac,TPac in
(5) are computed as:

PrD

{
Ŷ = y, Y = y′, A = a,C = c

}
=pcPrD

{
Ŷ = y, Y = y′, A = a | C = c

}
The parameters α and β in (6) are computed as:

α = PrD(Y = 1, A = 0) =

K∑
c=1

(FN0c +TP0c)

β = PrD(Y = 1, A = 1) =

K∑
c=1

(FN1c +TP1c)

Using the above parameters, the global server con-
structs the linear program (8), finds the minimizer z:

zT =
[
zT1 zT2 · · · zTK

]
and then sends the corresponding minimizer zTk to
community k, where k = 1, 2, · · · ,K.

4. Fair Outcome Predictor: The local community k,
(k = 1, 2, · · ·K) employs Algorithm 1 to make fair
predictions. The received minimizer zTk indicates the
probability that the fair predictor’s outcome equals to
the optimal predictor’s outcome for community k.

Algorithm 1 provides a community dependent randomized
function that is used to decide whether to accept or deny
the prediction from the optimal model. The output of the
optimal model, combined with the randomized function,
will yield a fair outcome predictor.

5. Experiments
We conduct experiments on the real-world dataset to demon-
strate that our framework is an effective tool for controlling
the degree of both fairness and estimating the accuracy lost
for improving fairness. It outperforms the existing in com-
munication effencicy and computation cost.

5
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Figure 1. Overview of the proposed post-FFL framework. The black arrow signifies the exchange of local models θti and global models θt

and during FedAvg model training. The blue arrow depicts the post-processing workflow following FedAvg, where local communities
forward their local statistics to the global server. The global server constructs a linear program and send the solution back to local
communities. Each local community uses a decision tree, as shown on the right, to make fair outcome predictions.

Algorithm 1 Fair Outcome Predictor

Input: The optimal outcome predictor: Ŷ : X ×A× C → Y , the community k’s corresponding minimizer:
zTk =

[
z0k0 z0k1 z1k0 z1k1

]
Output: Fair outcome predictor ỸŶ ,zk

: X ×A× C → Y
1. randomly sample s ∼ U(0, 1), the uniform distribution between (0,1)
2. Construct ỸŶ ,zk

(x, a, k) as

ỸŶ ,zk
(x, a, k) =


a = 0 :

{
0 If (Ŷ = 0 and s ≤ z0k0 ) or (Ŷ = 1 and s > z0k1 )

1 If (Ŷ = 0 and s > z0k0 ) or (Ŷ = 1 and s ≤ z0k1 )

a = 1 :

{
0 If (Ŷ = 0 and s ≤ z1k0 ) or (Ŷ = 1 and s > z1k1 )

1 If (Ŷ = 0 and s > z1k0 ) or (Ŷ = 1 and s ≤ z1k1 )

return ỸŶ ,zk

5.1. Experimental Setup

Dataset. We demonstrate the effectiveness of our frame-
work on two real-world datasets. The datasets we use are
the Adult dataset and the Diabetes dataset.

The Adult dataset (Asuncion & Newman, 2007) consists of
6 numerical features (age, final weight, education number,
etc.) and 8 categorical features (work class, education, gen-
der, race, etc.) and is used to predict whether an individual
earns more than 50K/year. We set gender as the sensitive
attribute. Following the federated setting in (Li et al., 2020;
Mohri et al., 2019), we split the dataset into two communi-
ties: one is the PhD community, in which all individuals are
PhDs, and the other is the non-PhD community.

The Diabetes dataset (Strack et al., 2014) contains 10 nu-
merical features (time in hospital, number of procedures,

etc.), 40 binary features (race, gender, age range, admission
source, diabetMed, etc.), and is used to predict whether a
patient will be readmitted within 30 days. We set the group
’older (aged over 60) African-American females’ as the sen-
sitive group. We split the data into 7 communities based on
their admission source. The communities 1, 2, 3, 4, 5, 6,
and 7 represent samples admitted from the Emergency room,
Physician referral, NULL, Transfer from a hospital, Trans-
fer from another healthcare facility, Clinic referral, Transfer
from a Skilled Nursing Facility, and Others, respectively.

Evaluation Metrics. We evaluate the model’s perfor-
mance from the following perspectives: (1) Model utility:
We use the model’s Average Accuracy (Avg-Acc) as a mea-
sure of its utility. The Average Accuracy is the weighted
average accuracy across all communities, where the weight
of each community is determined by its data size. (2) Group

6
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fairness: Group fairness, as defined in 2.2, requires that
the true positive rates are the same for sensitive and non-
sensitive groups, so we assess group fairness using the Equal
Opportunity Difference (EOD). The EOD is defined as the
disparity of true positive rates between sensitive and non-
sensitive groups. (3) Community fairness: Community fair-
ness, as defined in 2.3, requires that the model has similar
accuracy across all communities. We measure community
fairness using the Accuracy Disparity (AD), which is de-
fined as the difference in accuracy between the community
with the highest accuracy and the one with the lowest.

The full experiments details (including model and hyperpa-
rameters) can be found in Appendix C.1

5.2. Fairness of post-FFL

In this section, we verify that the proposed framework can
simultaneously enforce group fairness and community fair-
ness within a FL platform. We demonstrate that our frame-
work can result in a relaxed fair outcome predictor. Specifi-
cally, we can control the degree of group fairness and com-
munity fairness by adjusting the ϵ and δ in the linear pro-
gram (10) respectively. Smaller ϵ and δ values will lead to a
fairer outcome predictor. Setting (ϵ = 0, δ = 0) results in a
predictor that strictly achieves both group fairness and com-
munity fairness. We demonstrate that Theorem (3.6) within
our framework allows one to evaluate the accuracy loss
incurred while improving group fairness and community
fairness.

We report the Avg-Acc, EOD, and AD of the initial Fedavg
and after our post-processing with (ϵ = 0, δ = 0) in Table 1.
We observe that for the UCI Adult dataset, the EOD and AD
of post-FFL are 0.016 and 0.012, respectively, and for the
Diabetes dataset, they are 0.008 and 0.021. Compared to the
initial Fedavg, post-FFL effectively reduces the Equal Op-
portunity Difference and Accuracy Disparity, demonstrating
that post-FFL can enforce group fairness and community
fairness simultaneously.

We present the results of Avg-Acc, EOD, and AD for dif-
ferent settings of (ϵ, δ) in the left side of Table 2. Our
framework is flexible in that it allows one to choose (ϵ, δ) to
tradoff between fairness and global accuracy. With a fixed
ϵ, decreasing δ reduces the AD, indicating a model that is
fairer with respect to community fairness. Similarly, with a
fixed δ, the degree of equal opportunity can be effectively
controlled.

We next show that the the average accuracy loss for improv-
ing fairness aligned with our theoretical analysis. In the
right of Table 2, the empirical accuracy loss is the disparity
between the model’s accuracy under the initial FedAvg and
its accuracy after applying post-FFL adjustments from our
experiments. The estimated accuracy loss is calculated us-

Table 1. The EOD, AD and Avg-Acc of FedAvg (McMahan et al.,
2017) and our post-FFL

DATASET FRAMEWORKS EOD AD AVG-ACC

ADULT
FEDAVG 0.106 0.124 0.854

POST-FFL 0.016 0.012 0.780

DIABETES
FEDAVG 0.057 0.083 0.833

POST-FFL 0.008 0.021 0.812

ing the theoretical result (3.6), which states the accuracy we
loss is cT (z − 14K). We observe that the actual accuracy
loss for a given degree of fairness closely matches our theo-
retical estimations. The estimated error is always less than
0.01 across different settings. This proves that the theoret-
ical result (3.6) within our framework is an effective tool
for evaluating the accuracy loss associated with improving
fairness.

5.3. Comparison with other objectives

We compare our post-FFL framework with other objec-
tives. We did not find prior work that tries to simultaneously
achieve group and community fairness in a federated set-
ting. The most relevant prior work employs in-processing
(rather than post-processing) techniques to achieve either
equal opportunity or fair resource allocation (community
fairness) in a federated setting. We use q-FedAvg (Li et al.,
2019) and FairFed (Ezzeldin et al., 2023) as baselines for
community fairness and group fairness, respectively. We
modified the original in-processing techniques to regularize
with respect to both fairness concepts. Specifically, we de-
veloped q-FedAvg+FairFed. The global model parameter
is set as θt = λθ1

t + (1− λ)θ2
t, with θt

1 representing the
global model updated by FairFed, and θt

2 representing the
global model updated by q-FedAvg. A full description of all
baselines is provided in Appendix C.2

We compare our post-FFL approach with the objectives
above on the Adult dataset using the three evaluation met-
rics. The results are reported in Table 3. In our experi-
mental setting, q-FedAvg improves community fairness but
exacerbates the equal opportunity difference. Conversely,
FairFed improves equal opportunity while worsening com-
munity fairness. For q-FedAvg+FairFed, increasing λ im-
proves group fairness; however, this comes at the expense
of community fairness. All baselines cannot simultaneously
improve both group fairness and community in federated
learning. Our post-FFL demonstrates the ability to reduce
both Equal Opportunity Difference (EOD) and Accuracy
Difference (AD) at a minimal level. Therefore, our method
outperforms the baselines in improving both group fairness
and community fairness.

We show the convergence behavior of FedAvg, FairFed and
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Table 2. Post-FFL with varying (ϵ, δ): The left side of the table illustrates we can adjust ϵ and δ to control the level of group fairness and
community fairness. The right side of the table shows that the estimated accuracy loss, as evaluated by Theorem 3.6, closely matches the
empirical accuracy loss in experiments.

Dataset (ϵ, δ) EOD AD Avg-Acc empirical accuracy loss estimated accuracy loss estimated error

Adult

(0.00, 0.00) 0.016 0.012 0.780 0.074 0.074 0.000
(0.00, 0.02) 0.008 0.053 0.804 0.050 0.056 0.006
(0.00, 0.04) 0.001 0.091 0.841 0.013 0.012 0.001
(0.02, 0.00) 0.033 0.014 0.766 0.088 0.095 0.007
(0.02, 0.02) 0.030 0.051 0.802 0.051 0.056 0.004
(0.02, 0.04) 0.017 0.090 0.837 0.017 0.018 0.001
(0.04, 0.00) 0.049 0.016 0.758 0.095 0.096 0.001
(0.04, 0.02) 0.029 0.056 0.797 0.057 0.057 0.000
(0.04, 0.04) 0.044 0.094 0.839 0.014 0.018 0.004

Diabetes

(0.00, 0.00) 0.008 0.021 0.812 0.022 0.022 0.000
(0.00, 0.02) 0.034 0.067 0.830 0.002 0.001 0.001
(0.00, 0.04) 0.047 0.080 0.831 0.003 0.003 0.000
(0.02, 0.00) 0.040 0.013 0.815 0.018 0.022 0.004
(0.02, 0.02) 0.025 0.048 0.830 0.004 0.001 0.003
(0.02, 0.04) 0.027 0.077 0.832 0.002 0.000 0.002
(0.04, 0.00) 0.057 0.025 0.815 0.018 0.022 0.004
(0.04, 0.02) 0.006 0.070 0.831 0.002 0.001 0.001
(0.04, 0.04) 0.032 0.076 0.831 0.002 0.00 0.002

Table 3. Adult dataset: EOD, AD and Avg-Acc of all objectives.

Objectives EOD AD Avg-Acc
Initial FedAvg 0.106 0.124 0.854

Our post-FFL (ϵ = 0, δ = 0) 0.016 0.012 0.780
q-FedAvg 0.337 0.002 0.811
FairFed 0.017 0.362 0.846

q-FedAvg+ FairFed(λ = 0.3) 0.113 0.040 0.848
q-FedAvg+ FairFed(λ = 0.5) 0.106 0.128 0.845
q-FedAvg+ FairFed(λ = 0.7) 0.056 0.168 0.837

q-FedAvg. At each communication round, all methods per-
form the same amount of local model updates, with each
completing one epoch of local updates per community, us-
ing identical batch sizes and optimization settings. As show
in Table 4, the existing in-processing techniques such as
FairFed and q-FedAvg will lead to slower convergence in
terms of communication rounds. In contrast, the post-FFL
does not change the convergence behavior of the original
FedAvg algorithm. It outperforms in-processing fair fed-
erated learning methods in the number of round for model
convergence and communication efficiency. The training
curves are in Appendix C.3

We also report the time taken to complete one communi-
cation round for FedAvg, FairFed, and q-FedAvg. In each
communication round, all methods first train all local mod-
els for 1 epoch using identical batch sizes and optimization
settings, compute the model aggregation weights, and finally
aggregate all weights in the global model. We report the
average time taken by all objectives to complete one round
of global model updates in Table 4. We trained all objec-
tives on our local Linux server with a 16-Core 4.00 GHz
AMD RYZEN Threadripper Pro 5955WX Processor. The

Table 4. Adult dataset: Number of communication rounds for con-
vergence and average time taken for completing one round of
update of FedAvg, q-FedAvg andFairFed.

Objectives FedAvg q-Fedavg FairFed
# of convergence rounds ≈ 5 > 1000 ≈20

Avg-time for 1 round 0.631s 0.639s 16.428s

average time is calculated over 30 communication rounds
for each objective. We found that FairFed requires much
more time to update one round, mainly because its aggrega-
tion weights are the mismatch between the global EOD and
the local EOD. Calculating the EOD for all communities
and the global EOD in every round introduces additional
computation. The aggregation weights for q-FedAvg are
a function of local loss, and those for FedAvg are static,
so they do not require extra computation. The post-FFL
does not change the time required for each round of initial
FedAvg. It outperforms in-process fair federated learning
methods in terms of computation cost, as evidenced by the
smallest time required for one round of updates.

6. Conclusion
In this work, we propose the post-FFL framework, which si-
multaneously achieves group and community fairness in FL.
Experiments on real-world datasets demonstrate that post-
FFL allows users to adjust the degree of fairness based on
their requirements. Post-FFL outperforms existing baselines
in fair federated learning in terms of fairness improvement,
communication efficiency, and computational cost. It is
an effective tool for estimating the accuracy of predicted
outcomes when smart city and hospital networks seek to
simultaneously achieve group and community fairness.
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7. Impact Statements
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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approach for balancing fairness and accuracy. In Proceed-
ings of the 2016 SIAM international conference on data
mining, pp. 144–152. SIAM, 2016.

Goldman, A. J. and Tucker, A. W. 2. Polyhedral Convex
Cones, pp. 19–40. Princeton University Press, Prince-
ton, 1957. ISBN 9781400881987. doi: doi:10.1515/
9781400881987-003. URL https://doi.org/10.
1515/9781400881987-003.

Gross, C. Community perspectives of wind energy in aus-
tralia: The application of a justice and community fair-
ness framework to increase social acceptance. Energy
policy, 35(5):2727–2736, 2007.

Gross, C. A measure of fairness: An investigative frame-
work to explore perceptions of fairness and justice in
a real-life social conflict. Human Ecology Review, 15
(2):130–140, 2008. ISSN 10744827, 22040919. URL
http://www.jstor.org/stable/24707597.

Hardt, M., Price, E., and Srebro, N. Equality of opportunity
in supervised learning. Advances in neural information
processing systems, 29, 2016.

Jiang, J. C., Kantarci, B., Oktug, S., and Soyata, T. Fed-
erated learning in smart city sensing: Challenges and
opportunities. Sensors, 20(21):6230, 2020.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode,
G., Cummings, R., et al. Advances and open problems in
federated learning. Foundations and Trends® in Machine
Learning, 14(1–2):1–210, 2021.

Li, T., Sanjabi, M., Beirami, A., and Smith, V. Fair re-
source allocation in federated learning. arXiv preprint
arXiv:1905.10497, 2019.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A.,
and Smith, V. Federated optimization in heterogeneous
networks. Proceedings of Machine learning and systems,
2:429–450, 2020.

Lyu, L., Xu, X., Wang, Q., and Yu, H. Collaborative fairness
in federated learning. Federated Learning: Privacy and
Incentive, pp. 189–204, 2020.

9

http://tensorflow.org/
https://doi.org/10.1515/9781400881987-003
https://doi.org/10.1515/9781400881987-003
http://www.jstor.org/stable/24707597


495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Post-Fair Federated Learning

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Menon, A. K. and Williamson, R. C. The cost of fairness in
classification. arXiv preprint arXiv:1705.09055, 2017.

Mohri, M., Sivek, G., and Suresh, A. T. Agnostic feder-
ated learning. In International Conference on Machine
Learning, pp. 4615–4625. PMLR, 2019.

Nguyen, D. C., Pham, Q.-V., Pathirana, P. N., Ding, M.,
Seneviratne, A., Lin, Z., Dobre, O., and Hwang, W.-J.
Federated learning for smart healthcare: A survey. ACM
Computing Surveys (CSUR), 55(3):1–37, 2022.

Pandya, S., Srivastava, G., Jhaveri, R., Babu, M. R., Bhat-
tacharya, S., Maddikunta, P. K. R., Mastorakis, S., Piran,
M. J., and Gadekallu, T. R. Federated learning for smart
cities: A comprehensive survey. Sustainable Energy Tech-
nologies and Assessments, 55:102987, 2023.

Parsa-Parsi, R. W. The Revised Declaration of Geneva: A
Modern-Day Physician’s Pledge. JAMA, 318(20):1971–
1972, 11 2017. ISSN 0098-7484. doi: 10.1001/jama.
2017.16230. URL https://doi.org/10.1001/
jama.2017.16230.

Pleiss, G., Raghavan, M., Wu, F., Kleinberg, J., and Wein-
berger, K. Q. On fairness and calibration. Advances in
neural information processing systems, 30, 2017.

Qolomany, B., Ahmad, K., Al-Fuqaha, A., and Qadir, J.
Particle swarm optimized federated learning for indus-
trial iot and smart city services. In GLOBECOM 2020-
2020 IEEE Global Communications Conference, pp. 1–6.
IEEE, 2020.

Rieke, N., Hancox, J., Li, W., Milletari, F., Roth, H. R.,
Albarqouni, S., Bakas, S., Galtier, M. N., Landman, B. A.,
Maier-Hein, K., et al. The future of digital health with
federated learning. NPJ digital medicine, 3(1):119, 2020.

Rodrı́guez-Gálvez, B., Granqvist, F., van Dalen, R., and
Seigel, M. Enforcing fairness in private federated learning
via the modified method of differential multipliers. arXiv
preprint arXiv:2109.08604, 2021.

Smith, V., Forte, S., Ma, C., Takáč, M., Jordan, M. I.,
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A. The Parameters of LP in Proposition 3.2
The linear program (8) is:

minimize: cT z
with respect to: z ∈ R4K

subject to: Az = b
0 ≤ z ≤ 1

with

cT =
[
cT1 cT2 · · · cTK

]
zT =

[
zT1 zT2 · · · zTK

]

A =



mT
1 mT

2 mT
3 · · · mT

K−1 mT
K

−K−1
K nT

1
1
KnT

2
1
KnT

3 · · · 1
KnT

K−1
1
KnT

K

1
KnT

1 −K−1
K nT

2 nT
3 · · · 1

KnT
K−1

1
KnT

K

1
KnT

1
1
KnT

2 −K−1
K nT

3 · · · 1
KnT

K−1
1
KnT

K

...
...

...
. . .

...
...

1
KnT

1
1
KnT

2
1
KnT

3 · · · −K−1
K nT

K−1
1
KnT

K

1
KnT

1
1
KnT

2
1
KnT

3 · · · 1
KnT

K−1 −K−1
K nT

K



bT =

[
K∑
c=1

(
FN1c

β
− FN0c

α

)
1

K

K∑
c=1

(b1 − bc)
1

K

K∑
c=1

(b2 − bc) · · · 1

K

K∑
c=1

(bK − bc)

]

with

cTi =
[
(FN0i − TN0i) (FP0i − TP0i) (FN1i − TN1i) (FP1i − TP1i)

]
nT
i =

1

pi

[
(FN0i − TN0i) (FP0i − TP0i) (FN1i − TN1i) (FP1i − TP1i)

]
zTi =

[
z0i0 z0i1 z1i0 z1i1

]
mT

i =
[

−FN0i

α
TP0i

α
FN1i

β
−TP1i

β

]
bi =

1

pi
(TN0i +TP0i +TN1i +TP1i)

for i = 1, 2, · · ·K.

B. Theoretical Proof
B.1. Proof of Proposition 3.2

We first show that the outcome predictor ỸŶ ,z : X ×A× C → Y satisfies equal opportunity:
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The probability PrD(ỸŶ ,z = 1|Y = 1, A = a) can be extended as:

PrD(ỸŶ ,z = 1|Y = 1, A = a)

=
PrD(ỸŶ ,z = 1, Y = 1, A = a)

PrD(Y = 1, A = a)

=

∑K
c=1 PrD(ỸŶ ,z = 1, Y = 1, A = a,C = c)

PrD(Y = 1, A = a)

=

∑K
c=1(PrD(Ŷ = 1, Y = 1, A = a,C = c) · PrD(ỸŶ ,z = Ŷ |Ŷ = 1, A = a,C = c))

PrD(Y = 1, A = a)

+

∑K
c=1(PrD(Ŷ = 0, Y = 1, A = a,C = c) · PrD(ỸŶ ,z ̸= Ŷ |Ŷ = 0, A = a,C = c))

PrD(Y = 1, A = a)

=

∑K
c=1(PrD(Ŷ = 1, Y = 1, A = a,C = c) · zac1

PrD(Y = 1, A = a)
+

∑K
c=1(PrD(Ŷ = 0, Y = 1, A = a,C = c) · (1− zac0 )

PrD(Y = 1, A = a)

=

∑K
c=1 TP

ac · zac1
PrD(Y = 1, A = a)

+

∑K
c=1 FN

ac · (1− zac0 )

PrD(Y = 1, A = a)

(16)

We can now calculate the Equal opportunity Difference of the outcome predictor ỸŶ ,z, which is defined as: PrD(ỸŶ ,z =

1|Y = 1, A = 0)− PrD(ỸŶ ,z = 1|Y = 1, A = 1):

PrD(ỸŶ ,z = 1|Y = 1, A = 0)− PrD(ỸŶ ,z = 1|Y = 1, A = 1)

=

∑K
c=1 TP

0c · z0c1
PrD(Y = 1, A = 0)

+

∑K
c=1 FN

0c · (1− z0c0 )

PrD(Y = 1, A = 0)
− (

∑K
c=1 TP

1c · z1c1
PrD(Y = 1, A = 1)

+

∑K
c=1 FN

1c · (1− z1c0 )

PrD(Y = 1, A = 1)
)

=
−
∑K

c=1 FN
0c · z0c0

α
+

∑K
c=1 TP

0c · z0c1
α

+

∑K
c=1 FN

1c · z1c0
β

−
∑K

c=0 TP
1c · z1c1

β
+

∑K
c=1 FN

0c

α
−
∑K

c=1 FN
1c

β
(17)

The first linear equation of Az = b in (8) is:

0 =

K∑
c=1

mT
c zc −

K∑
k=1

(
FN1k

β
− FN0k

α

)

=

K∑
c=0

[
−FN0c

α
TP0c

α
FN1c

β
−TP1c

β

]T
·


z0c0

z0c1

z1c0

z1c1

−
K∑
c=1

(
FN1c

β
− FN0c

α

)

=
−
∑K

c=1 FN
0c · z0c0

α
+

∑K
c=1 TP

0c · z0c1
α

+

∑K
c=1 FN

1c · z1c0
β

−
∑K

c=0 TP
1c · z1c1

β
+

∑K
c=1 FN

0c

α
−
∑K

c=1 FN
1c

β

Combine the above with the Equal Opportunity Difference’s expression (17) :

PrD(ỸŶ ,z = 1|Y = 1, A = 0)− PrD(ỸŶ ,z = 1|Y = 1, A = 1) = 0

(18)

We can see from (18) the first linear equation leads a outcome predictor that satisfies equal opportunity.

Then, we show that the outcome predictor ỸŶ ,z : X ×A× C → Y satisfies community fairness.

The condition for community fairness in Definition 2.3 is equivalent to:

12
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∀k ∈ C,Pr(ỸŶ ,z ̸= Y |C = k) =
1

K

K∑
c=1

Pr(ỸŶ ,z ̸= Y |C = c)

The error rate of community k: Pr(ỸŶ ,z ̸= Y |C = k) can be extended as:

Pr(ỸŶ ,z ̸= Y |C = k) =

1∑
a=0

(PrD(ỸŶ ,z = 0, Y = 1, A = a|C = k) + PrD(ỸŶ ,z = 1, Y = 0, A = a|C = k))

=

1∑
a=0

[PrD(Ŷ = 0, Y = 1, A = a|C = k) · PrD(ỸŶ ,z = Ŷ |Ŷ = 0, A = a,C = k)

+ PrD(Ŷ = 1, Y = 1, A = a|C = k) · PrD(ỸŶ ,z ̸= Ŷ |Ŷ = 1, A = a,C = k)

+ PrD(Ŷ = 1, Y = 0, A = a|C = k) · PrD(ỸŶ ,z = Ŷ |Ŷ = 1, A = a,C = k)

+ PrD(Ŷ = 0, Y = 0, A = a|C = k) · PrD(ỸŶ ,z ̸= Ŷ |Ŷ = 0, A = a,C = k)]

=

1∑
a=0

(FNak · zak0 +TPak · (1− zak1 ) + FPak · zak1 +TNak · (1− zak0 ))/Pr(C = k)

=

1∑
a=0

((FNak − TNak) · zak0 + (FPak − TPak) · zak1 + (TPak +TNak)) · 1

pk

= nT
k · zk + bk

(19)

The last n linear equations of Az = b in (8) are:

for k = 1, 2, 3, · · ·K:

0 = −K − 1

K
nT
k zk +

1

K

∑
(c∈C,c̸=k)

nT
c zc −

1

K

K∑
c=1

(bk − bc)

= −(nT
k zk + bk) +

1

K

∑
c∈C

(nT
c z

T
c + bc)

= −Pr(ỸŶ ,z ̸= Y |C = k) +
1

K

K∑
c=0

Pr(ỸŶ ,z ̸= Y |C = c)

(20)

The last equation is from (19).

We can see from (20) the last K linear equations of Az = b , the outcome predictor satisfies community fairness.

From the proceeding, if z ∈ R4K is the solution of the linear program (8), the outcome predictor that satisfies (7) is a fair
outcome predictor. The outcome predictor ỸŶ ,z that takes values of (9) has:

PrD(ỸŶ ,z = Ŷ |Ŷ = 1, A = a,C = c) = zac1

PrD(ỸŶ ,z = Ŷ |Ŷ = 0, A = a,C = c) = zac0

which satisfies (9).

Thus, the outcome predictor ỸŶ ,z is a fair outcome predictor w.r.t. both equal opportunity and community fairness. ♢

B.2. Proof of Theorem 3.4

We show that the linear program (12) always has solutions. Before presenting the proof, we first present Farkas’ lemma
(Goldman & Tucker, 1957): Let A ∈ Rm×n and b ∈ Rm. Then exactly one of the following two assertions is true:

13
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1. There exists a z ∈ Rn such that Az = b and z ≥ 0.

2. There exists a y ∈ Rm such that ATy ≥ 0 and bTy < 0.

Faraks’ lemma states that either the system Az = b has a non-negative solution or the system ATy ≥ 0 has a solution
with bTy < 0 but not both. Thus, we can show the linear program (12) always exist a solution by showing that the set
{y|y ∈ R5K+1, ĀTy ≥ 0, b̄Ty < 0} is always empty.

Let: yT =
[
yT
1 yT

2

]
, with y1 ∈ RK+1, y2 ∈ R4K , then, the condition ĀTy ≥ 0 is:

ĀTy =

 AT I

0 I

 ·

 y1

y2


=

 ATy1 + Iy2

y2

 ≥ 0

→ 1T
4K · (ATy1 + y2) ≥ 0

1T
4K · y2 ≥ 0

(21)

The condition b̄Ty < 0 is:

b̄Ty =
[
bT 1T

4K

]
·

 y1

y2


= bTy1 + 1T

4Ky2

=
1

2
ATy1 + 1T

4Ky2 < 0

(22)

The last equation above is from the fact: 1
pc
(TN0c +TP0c +TN1c +TP1c) = 1− 1

pc
(FN0c + FP0c + FN1c + FP1c).

When 1T
4Ky2 ≥ 0, which is the second condition in (21), the first condition in (21): 1T

4K · (ATy1) ≥ −1T
4Ky2 is always

conflict with the condition (22): 1T
4K · (ATy1) < −2 · 1T

4Ky2, as −2 · 1T
4Ky2 ≤ −1T

4Ky2.

Thus, the set: {y|y ∈ R5K+1, ĀTy ≥ 0, b̄Ty < 0} is always empty. This indicates the system Āz̄ = b̄ always has
non-negative solutions. The variables in the linear program represent probabilities that are bounded in [0, 1]. Therefore, the
objective function of (12) is bounded. The linear program always has solutions.

♢

14



770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Post-Fair Federated Learning

B.3. Proof of Theorem 3.5

Proof: The PrD(Ỹ ̸= Y ) in first condition can be extended as:

PrD(Ỹ ̸= Y ) =

K∑
c=1

1∑
a=0

(PrD(Ỹ = 0, Y = 1, A = a,C = k) + PrD(Ỹ = 1, Y = 0, A = a,C = k))

=

K∑
c=1

1∑
a=0

[PrD(Ŷ = 0, Y = 1, A = a,C = k) · PrD(Ỹ = Ŷ |Ŷ = 0, A = a,C = k)

+ PrD(Ŷ = 1, Y = 1, A = a,C = k) · PrD(Ỹ ̸= Ŷ |Ŷ = 1, A = a,C = k)

+ PrD(Ŷ = 1, Y = 0, A = a,C = k) · PrD(Ỹ = Ŷ |Ŷ = 1, A = a,C = k)

+ PrD(Ŷ = 0, Y = 0, A = a,C = k) · PrD(Ỹ ̸= Ŷ |Ŷ = 0, A = a,C = k)]

=

K∑
c=1

1∑
a=0

(FNak · zak0 +TPak · (1− zak1 ) + FPak · zak1 +TNak · (1− zak0 ))

= cT z+

K∑
c=0

bcpc

= c̄T z̄+

K∑
c=0

bcpc

(23)

As we show in proposition (3.2), the constraints of equal opportunity and community fairness in the linear program (8) (or a
standard form (12)) are:

Āz̄ = b̄

⇒ ĀT Āz̄ = ĀT b̄

For matrix ĀT Ā, we have:

λmin(Ā
T Ā)z̄T z̄ ≤ z̄T ĀT Āz̄ (24)

where, λmin(Ā
T Ā) is the smallest eigenvalue of ĀT Ā.

Then, we show the l2 norm of z̄ is bounded:

λmin(Ā
T Ā)z̄T z̄ ≤ z̄T ĀT Āz̄ ≤ ∥z̄∥2∥ĀT Āz̄∥2 = ∥z̄∥2∥ĀT b̄∥2

⇒ λmin(Ā
T Ā)∥z̄∥2 ≤ ∥ĀT b̄∥2

⇒ ∥z∥2 ≤ ∥ĀT b̄∥2
σ2

(25)

where, σ is the smallest singular value of the matrix Ā.

Thus, the PrD(Ỹ ̸= Y ) has:

PrD(Ỹ ̸= Y ) = c̄T z̄+

K∑
c=0

bcpc

≥ −∥c̄∥∞∥z̄∥∞ +

K∑
c=0

bcpc (all elements in c are negative)

≥ −∥c̄∥∞∥z̄∥2 +
K∑
c=0

bcpc (∥z̄∥2 ≥ ∥z̄∥∞)

≥ −∥c̄∥∞
∥ĀT b̄∥2

σ2
+

K∑
c=0

bcpc (the upper bound (25))

(26)
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with bcpc = (TN0c +TP0c +TN1c +TP1c) as list in Appendix A.

When ∆ < −∥c̄∥∞∥ĀT b̄∥2

σ2 +
∑K

c=0 bcpc, the inequality: PrD(Ỹ ̸= Y ) ≥ −∥c̄∥∞∥ĀT b̄∥2

σ2 +
∑K

c=0 bcpc is conflict with

the first condition in (13): PrD(Ỹ ̸= Y ) ≤ ∆.

Thus, if ∆ < −∥c̄∥∞∥ĀT b̄∥2

σ2 +
∑K

c=0 bcpc, the fairness condition and ϵ-accurate condition are incompatible with each
other. ♢

B.4. Proof of Theorem 3.6

The error rate of the fair outcome predictor is demonstrated in (23), which is: PrD(Ỹ ̸= Y ) = cT z+
∑K

c=0 bc · pc.

The predictor Ỹ is optimal when z = 14k, the error rate of the optimal predictor is: PrD(Ŷ ̸= Y ) = cT14K +
∑K

c=0 bc · pc.

Thus, the minimum error we need to compromise for enforcing group fairness and community fairness is:

PrD(Ỹ ̸= Y )− PrD(Ŷ ̸= Y ) = cT z− cT14K . ♢

C. Additional Experimental Details and results
C.1. Additional Experimental Details

For UCI Adult, in each local community, we randomly divide the data into three subsets: 60% for the training set, 20% for
the validation set, and 20% for the test set. We first implement the FedAvg algorithm. For each communication round in
FedAvg, the number of participating communities is set to N = 2. We set the number of local update epochs to E = 1 with
a batch size of B = 128. The local models are logistic regression classifiers with two layers, containing 64 and 32 nodes,
respectively. We use Relu as the activation functions for each hidden layers. These models are trained using the Adam
optimizer with a learning rate of η = 0.05. We select the number of rounds that minimize the disparity between training
and validation accuracy, and then report the evaluation metrics on the test dataset. We construct a linear program using the
training data. Finally, we apply post-processing to the test dataset based on the solution from the linear program and report
its evaluation metrics.

For the Diabetes dataset, we similarly split the local dataset into 60% for training, 20% for validation, and 20% for testing.
The number of participating communities for FedAvg is set to N = 7. We maintain the number of local update epochs at
E = 1 with a batch size of B = 256. We follow the same model structure, optimization algorithm, and evaluation process
as with the UCI Adult dataset and report its evaluation metrics.

We implement all code in TensorFlow (Abadi et al., 2015), simulating a federated network with one server and several local
communities.

C.2. Baselines

• q-FedAvg (Li et al., 2019) improves community fairness in Federated Learning (FL) by minimizing an aggregated
reweighted loss, parameterized by q. The algorithm assigns greater weight to devices with higher loss. The parameter q
controls the trade-off between community fairness and model utility. In our experiments, we set q = 4, following the
recommendation in the original implementation of the q-FedAvg paper.

• FairFed, (Ezzeldin et al., 2023) improves equal opportunity in FL, which also minimizes an aggregated reweighed loss,
parameterized by β. The weights are a function of the mismatch between the global EOD (on the full dataset) and the
local EOD at each community, favoring communities whose local measurement match the global measurements. β
is the parameter that control the tradeoff between the group fairness and model utility. We follows the initial paper’s
setting: β = 1.

• q-FedAvg+FairFed: We build q-FedAvg+FairFed, a combination of q-FedAvg and FairFed. In the communication
round t, the global model is set as θt = λθ1

t + (1− λ)θ2
t, with θt

1 representing the global model updated by FairFed,
and θt

2 representing the global model updated by q-FedAvg.λt is the parameter that controls the balance between
community fairness and group fairness. Setting λ = 0 recovers the q-FedAvg and setting q = 1 recovers the FairFed.
We set λ to different values and report the result.
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C.3. Convergence Curves

Figure 2. Adult dataset: Training curves of Fedavg (left), FairFed (middle), and q-FedAvg (right)
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