
Learning to Control Robot Hopping over Uneven Terrain

M.D. Lemmon, P.M. Wensing, V. Kurtz, and H. Lin

Abstract— Learning how to traverse uneven terrain is an
open challenge for robotic locomotion. Machine learning tech-
niques such as deep reinforcement learning (DRL) have been
used to train walking robots, but the resulting control policies
often fail in the presence of neglected dynamics or uneven ter-
rain. This paper demonstrates that by separating the learning
problem into the identification of the robot’s natural and steady-
state response to terrain variations, one can efficiently adapt
the step-length controller for Raibert’s hopper to successfully
traverse uneven terrain even when there are passive dynamics
that were neglected in earlier training. The approach uses
a moment-matching (MM) model (a.k.a. MM-abstraction) of
the hopper’s steady-state gait over a given class of terrain to
construct a model-following (MF) model (a.k.a. MF-abstraction)
of the hopper’s natural dynamics. These abstractions are then
used to demonstrate the capacity of a simple passivity-based
adaptive controller to enforce robust tracking of the hopper’s
steady-state response to uneven terrain.

I. INTRODUCTION

Learning to adaptively traverse uneven terrain is an open
issue for robotic locomotion. While deep reinforcement
learning (DRL) [1] is capable of learning robotic skills [2],
the resulting control policies often fail on robotic hardware
in an open and uncertain world. Moreover, DRL’s reliance
on offline training makes it difficult for that hardware to
adapt previously learned skills to new situations. With these
observations in mind, this paper examines an approach that
decomposes the learning problem into the identification of
the system’s natural and steady-state response. Because
models for these two behaviors can be identified using
regression techniques, the proposed approach facilitates the
online adaptation of a control policy to maintain hopping in
the presence of terrain variation and excitation of unknown
passive dynamics. This paper demonstrates the method on
the step-length controller of Raibert’s hopper [3].

The approach rests on a well-known behavioral decom-
position for dynamical systems with compact trajectories.
Any trajectory of such a “closed” dynamical system can be
classified as being either recurrent or nonrecurrent [4]. The
distinction is that recurrent trajectories are contained inside
the system’s positive limit set and nonrecurrent trajectories
“connect” disjoint components of the positive limit set. What
we call “steady state” response is simply a recurrent trajec-
tory. What we call “natural” response is then the difference

M.D. Lemmon, V. Kurtz, and H. Lin are with the Department of
Electrical Engineering, University of Notre Dame lemmon@nd.edu,
hlin1@nd.edu, vkurtz@nd.edu

P.M. Wensing is with the Department of Aerospace and Mechanical
Engineering, University of Notre Dame pwensing@nd.edu

between a nonrecurrent trajectory and the recurrent orbit that
it converges to asymptotically.

This behavioral decomposition is useful because identi-
fying models that generate the system’s steady-state and
natural behavior may be posed as regression problems. In
particular, steady-state responses are generated by moment-
matching [5] reduced order models (a.k.a. MM-abstractions)
of the system’s steady-state response to a given time-varying
input. The fact that MM-abstractions can be identified using
regression techniques [6] means that any recursive least
squares algorithm can be used to “learn” or “adapt” these
abstractions in an online, data-driven manner.

The natural response of the system is then generated
by a model-following MF abstraction formed by subtract-
ing the MM-abstraction’s output from that of the plant.
Taken’s theorem [7] justifies the use of delay embeddings
of the MF-abstraction’s outputs as the system state. With
the recurrent behavior subtracted out, the MF-abstraction’s
qualitative behavior is determined by a hyperbolic fixed
point, and so the natural dynamics can be approximated
by a Taylor linearization. In particular, we use the dynamic
mode decomposition with control (DMDc) algorithm [8] to
identify a linear state-based model of the natural dynamics.
Because the DMDc algorithm is based on singular value
decompositions of data matrices, the MF-abstraction can also
be updated recursively as new data becomes available.

The fact that the MF-abstraction is linear means that one
has a range of methods for designing feedback control laws
to regulate the plant’s base controller. Prior work has used
linear quadratic regulators (LQR) [9] and model predictive
controllers (MPC) [10]. This paper uses passivity-based
adaption of the hopper’s step-length controller to demonstrate
robust performance with respect to passive dynamics that
were neglected in the initial training of the hopper.

The remainder of the paper is organized as follows.
Section II reviews the prior work supporting the behavioral
decomposition described above. Section III discusses the use
of moment-matching abstractions in capturing the hopper’s
steady-state behavior. Section IV uses the DMDc algorithm
to identify a linear state-based model of the hopper’s natural
dynamics. Section V demonstrates the use of passivity-based
adaptive control on the hopper. Section VI discusses future
directions.

II. BEHAVIORAL DECOMPOSITION

Any smooth dynamical system with compact orbits can
have its forward trajectories decomposed as the sum of a

natural behavior and a steady-state behavior. This section
reviews the background needed to describe this behavioral
decomposition of the system’s orbits.

Let (X,φ) denote a continuous-time dynamical system
where X ⊂ Rn is compact and φ : R × X → X is a
homeomorphism such that for all p ∈ X we have φ(0, p) = p
and φ(s + t, p) = φ(t, φ(s, p)) for any s, t ∈ R. X is
called the system’s state space and φ is called the system’s
transition function. We define a trajectory of (X,φ) passing
through the point p ∈ X as the function γp : R→ X where
γp(0) = p and γp(t) = φ(t, p) for all t ∈ R. Since all
trajectories are contained in the compact set X , we refer to
(X,φ) as a closed dynamical system.

Given a closed dynamical system, (X,φ) and a set B ⊂
X , then the positive limit set, ω(B), of set B consists of all
points q ∈ X for which there exists a sequence {pk, tk}∞k=0

with pk ∈ B and {tk}∞k=0 increasing to infinity such
that lim

k→∞
φ(tk, pk) = q. As noted in [11], the trajectories

contained in ω(X) represent what we think of as the system’s
steady-state behaviors.

The positive limit set, ω(X), is contained in the union
of mutually disjoint sets that are referred to as basic sets
[4]. If the collection of basic sets is countable, then there
exists a continuous function W : X → [0, 1] such that
W (φ(t, p)) < W (p) for all p not in a basic set [12].
When p lies in the jth basic set, then there is a constant
cj such that W (γp(t)) = cj for all t. This fact implies
that any trajectory, γp, of a closed dynamical system can be
classified as recurrent or nonrecurrent. Recurrent trajectories
are contained within a single basic set of ω(X). Nonrecurrent
trajectories pass through a point, p, outside of a basic set
and these trajectories may therefore be seen as connecting
two different basic sets, Bi, and Bj , in the sense that
γp(t)→ Bj as t → ∞ and γp(t)→ Bi as t → −∞.
Recurrent trajectories may therefore be seen as the system’s
steady-state behavior. A non-recurrent trajectory, γp, may
therefore be seen as asymptotically approaching a recurrent
trajectory, say γq , on one of the basic sets.

Given a nonrecurrent trajectory, γp, that approaches a
recurrent trajectory, γq , we let r = p − q and then define
the system’s natural response as the function γr : R+ → X
which takes values

γr(t) = γp(t)− γq(t), for all t ∈ R+

In the more traditional signals/systems terminology, γp for
p not in a basic set is the system’s total response, γq , is
the associated steady-state response and γr is the natural
response. The next two sections discuss how we identify
abstractions for a dynamical system’s steady-state and natural
behavior.

III. MOMENT-MATCHING ABSTRACTION OF
STEADY STATE BEHAVIOR

This section uses moment-matching reduced order models
[5] to capture the steady-state behavior of an input-output
system called the physical plant. These reduced order models
are called MM-abstractions. Let us consider an input-output
dynamical system denoted as Σc and called the plant. The
plant has two types of inputs; an exogenous disturbance,
ν : R+ → R and a control input, u : R+ → R. The plant’s
internal state, x :→ R+ → Rnc and output y : R+ → R
satisfy

ẋ(t) = F(x(t), ν(t), u(t)), y(t) = G(x(t)) (1)

where F : Rnc×R×R→ Rnc is Lipschitz and G : Rnc → R
is continuous.

Since the behavioral decomposition applies to homoge-
neous systems, we will assume that there is a dynamical
system, denoted as Σg and called the generator, that pro-

duces a signal
[
ν(t)
u0

]
at time t where ν is the exogenous

disturbance and u(t) = u0 is a reference control input that is
driving the plant. To be concrete we assume the disturbance,
ν, is generated by a state-based system with an internal state,
ω, satisfying

ω̇(t) = Sω(t), ν(t) = Lω(t) (2)

where S and L are appropriately dimensioned constant
matrices and ω : R+ → Rna is the generator state. Finally,
we assume that the cascaded system, ΣcΣg , formed by
having the generator drive the plant produces compact plant
state trajectories. With these assumptions, the behavioral
decomposition implies that the cascaded system’s response,
y : R+ → R converges to a steady-state response yss :
R+ → R.

We are interested in using the plant’s observed inputs, ν,
and outputs, y, to construct a reduced order model, Σa, such
that the steady state output of ΣaΣg equals the steady state
output of ΣcΣg . Such abstractions are said to be moment-
matching. For the generator dynamics in equation (2) a
family of moment-matching abstractions is given by [5]

ξ̇(t) = Sξ(t) + ∆(ν(t)− Lξ(t))
ψ(t) = [G ◦Π] (ξ(t))

(3)

where ξ : R+ → Rna and ∆ is a matrix such that S −∆L
is Hurwitz. G ◦Π is the composition of the plant’s output
map, G, with a function Π : Rna → Rnc that lifts the
abstraction’s state into the plant’s state space. This composed
map, G ◦Π is called the plant’s moment with respect to the
given generator. When this lifting map satisfies the moment-
matching partial differential equation (PDE)

F(Π(ξ),Lξ) =
∂Π(ξ)

∂ξ
Sξ (4)

then we are guaranteed [5] that the plant’s and abstraction’s
steady-state response to Σg are equal.

Determining the lifting function, Π, however requires the
solution of the moment-matching PDE in equation (4). If the
plant is linear, then this PDE reduces to a Sylvester equation.
But in either case one needs to know the plant’s state-space
realization to solve for Π. This is an unrealistic expectation
as the plant may be so complex that there is no tractable
analytical model to work with.

In our setup, however, we know the generator’s state
equation is embedded in the abstraction’s state equation
(3). The only thing in the abstraction that depends on the
unknown plant is the moment function, G ◦ Π. The input
to this moment function is the abstraction’s state, ξ, which
we know. The output from the moment function should be
equal to that of the plant’s output, y, which we can observe.
So the moment function can be learned from observations
of the abstraction’s state and the plant’s output using re-
gression methods. This fact was used in [6] to obtain a data-
driven map, Ĝ ◦Π, that approximates the true moment map,
thereby avoiding the issue of trying to solve the moment
matching PDE when we don’t know the plant’s state space
realization.

+

_

disturbance

model
following

error

 Model Following System

generator

abstraction

physical
plant plant

output

abstraction
output

+ +

control
control

perturbation

Fig. 1. Model Following System

Fig. 1 is a block diagram illustrating the relationship
between the generator, Σg , the MM-abstraction, Σa, and the
plant, Σc. The figure shows that these blocks form a model-
following (MF) system, Σmf which has the input ũ(t) that
perturbs the constant reference input u0 being fed into the
MM-abstraction. The perturbed control

u(t) = u0 + ũ(t)

is what drives the plant. The difference ỹ(t) = ψ(t) − y(t)
is called the model following or tracking error. If the MM-
abstraction is truly moment matching then we expect ỹ(t)→
0 as t → ∞. As mentioned above, however, the MM-
abstraction actually uses an approximation of the moment
map and this means that the model following error may only
be bounded in a neighborhood of the origin. A key issue to
be addressed in the following sections involves finding the
perturbed input, ũ(t), that ensures the model following error
is well regulated.

We now demonstrate how one can learn an MM-
abstraction for Raibert’s hopper [13]. The hopper consists
of a spring-loaded leg connected to a head. We assume the
leg is massless. The hopper’s motion has a stance stage and
a flight stage. The stance stage starts when the hopper’s
foot touches the ground. The leg spring compresses upon
impact and when it reaches its shortest length, the spring
constant is changed, thereby injecting energy into the spring
and forcing the leg length to increase until the foot leaves the
ground (take-off). Take off marks the start of the hopper’s
flight stage. During this stage, the hopper is airborne and
it swings the leg forward to a desired position for a safe
landing, after which the robot re-enters the stance stage. We
assumed that the energy injected into the spring during the
stance stage is constant, but that the desired leg position
commanded during the flight stage is given by a step-length
controller [3]. This step-length controller adjusts the desired
leg position as a function of the forward velocity that the
hopper was commanded to follow.

In this example, the hopper is the plant, Σc, with the slope
of the terrain being traversed as the exogenous input, ν(t),
and the commanded forward velocity as the reference input,
u0. For simplicity, we assume the slope of the terrain has two
fundamental harmonics with known fundamental periods Ta
and Tb. This means that the generator in our example has
the state equations

ω̇(t) =

0 − 1

Ta
0 0

1
Ta

0 0 0

0 0 0 − 1
Tb

0 0 1
Tb

0

ω(t) = Sω(t)

ν(t) =
[

1 0 1 0
]
ω(t) = Lω(t)

Now that we know the generator’s state space realization,
we use the S and L matrices to write out the abstraction’s
state equations (3). While any stabilizing gain matrix ∆
can be used, we chose ∆ as the gains of a steady-state
Kalman filter. As noted above, the only thing that remains to
be determined is an approximation Ĝ ◦W of the moment
map. The moment map approximation is learned through
a regression on the observed plant’s output, y, and the
abstraction’s state, ξ. As suggested in [6], this problem may
be solved by constructing data matrices

Y =
[
y(t1) y(t2) · · · ytN

]T
X =

[
ξ(t1) ξ(t2) · · · ξ(tN)

1 1 · · · 1

]T
where y(ti) is the ith observation of the plant’s output at
time ti for i = 1, . . . , N . The X data matrix has columns
formed by stacking the ith abstraction state ξ(ti) on top of
a row of 1’s. In a linear regression, we assume there is a
vector a such that Y = Xa, and so the minimum mean
square estimate of a is

â = (XTX)−1XTY (5)

This estimate, however, may also be computed recursively.
In particular, we used the Sherman-Morrison formula to
make rank one updates of the inverse in equation (5) every
time a new observation of the plant’s output and terrain
slope, ν was received. The bottom plot in Fig. 2 shows
how well this recursive update of the abstraction tracks the
plant’s forward velocity while traversing the uneven terrain
in the top plot. The plot shows the commanded velocity
(dashed) u0, the plant’s actual velocity (blue) y, and the
abstraction’s prediction (red) ψ. From this plot we readily
see that after the initial transient in which the abstraction
states are converging, there is a small steady-state prediction
error ψ−y. This steady state error is nonzero because we are
using the approximate moment Ĝ ◦Π rather than the true
moment.

0 20 40 60 80 100 120 140 160 180 200
0.4

0.6

0.8

1

1.2

1.4 Learning the MM-Abstraction - Predicted Forward Velocity

forward vx
RoM predicted vx
commanded vd

number of hops

fo
rw

ar
d

ve
l (

m
/s

ec
)

m

Fig. 2. Performance of MM-abstraction of Raibert’s hopper traversing
uneven periodic terrain.

IV. MODEL-FOLLOWING ABSTRACTION OF
NATURAL RESPONSE

The MM-abstraction, Σa, predicts the steady-state behav-
iors of the plant, Σc, to the disturbances produced by the
generator, Σg , assuming a constant control input, u0. This
is, however, an open loop prediction. Prediction errors enter
due to the approximate nature of the estimated moment
map, Ĝ ◦Π, and because the generator’s dynamics are not
exactly what was assumed in the abstraction’s state equation
(3). Additional errors occur because some plant modes that
were neglected in training Σa were later excited in the real
world. This means we need to “close” the loop to ensure the
model-following error ỹ(t) = ψ(t)−y(t) remains sufficiently
bounded in the presence of these unmodeled effects. One
particular feedback architecture is shown in Fig. 3, which is
discussed at greater length in Section V. Closing the loop
requires us to construct a model for the MF-system, Σmf , as
shown in Fig. 3. We call this model the MF-abstraction and

show that a linear MF-abstraction can also be learned in a
data driven manner.

 Model
Following

System

delay
embedding

model
error

output
passivation

High-gain
controller

ZOH

Fig. 3. Passive feedback controller used to regulate the MF-system, Σmf .

To establish the feasibility of using linear abstractions,
we recall from section II that any plant trajectory may be
classified as recurrent or nonrecurrent. A recurrent trajectory
is contained within a basic set of the system’s positive limit
set. A nonrecurrent trajectory connects to different basic
sets and asymptotically it converges to one of the steady-
state behaviors. Since the MF-system, Σmf subtracts this
steady-state behavior from the nonrecurrent trajectory, the
corresponding natural response is governed by a hyperbolic
fixed point which means the flows of the MF-system are
qualitatively the same as that of its Taylor linearization.
In other words, the natural dynamics of the plant can be
captured by a linear state-space model thereby allowing one
to use a number of linear control methods to regulate the
MF-system’s tracking error, ỹ.

We used the dynamic mode decomposition with control
(DMDc) algorithm [8] to learn a linear MF-abstraction for
Σmf . This algorithm takes the state of the given system
and its input to solve a regression problem yielding a linear
state space model. In particular, let z(t) denote the internal
state of the MF system at time t. Consider a finite set of
times {tk}Nk=1 at which one samples the system’s state and
input. Let zk and ũk denote the sample state and input,
respectively, at time tk. We are interested in finding a matrix

K =

[
K11 K12

K21 K22

]
that minimizes the mean squared

prediction error

N−1∑
k=1

∣∣∣∣[zk+1

ũk+1

]
−
[

K11 K12

K21 K22

] [
zk
ũk

]∣∣∣∣2
where N is the length of the data record. The matrix K may
be found from the data matrices

Z =

[
z1 z2 · · · zN−2 zN−1
ũ1 ũ2 · · · ũN−2 ũN−1

]
Z+ =

[
z2 z3 · · · zN−1 zN
ũ2 ũ3 · · · ũN−1 ũN

]

The desired matrix minimizing the mean squared prediction
error is

K = Z+ZT (ZTZ)−1

The DMDc algorithm [8] computes the above inverse from
the singular value decomposition of the data matrix. The
resulting linear system model then has the from

zk+1 = K11zk + K12ũk

This algorithm has previously been used to obtain reduced
order representations of Koopman operators [14].

The DMDc algorithm outlined above presumes state ac-
cessibility. In many cases, however, this is not a realistic
assumption and we will only have access to the inputs and
outputs. Provided the system is observable, then Taken’s
embedding theorem [7] allows us to use a vector formed
from past sampled outputs as the system state,

zk =
[
y(tk−Ne

) y(tk−Ne+1) · · · y(tk−1) y(tk)
]T

provided the embedding dimension, Ne, is sufficiently large.
We refer to this as the delay-embedding of the output. Fig. 3
shows that the continuous-time output of the MF-system,
ỹ(t), is passed though a delay embedding block to create
the discrete-time state vector zk. This state is then used in
a feedback controller to create the control input ũk. This
control is also discrete-time and Fig. 3 shows a zero order
hold (ZOH) is used to convert this discrete-time signal into
the continuous-time input used by Σmf .

We now present initial results showing how well our
DMDc learned MF-abstraction worked on the hopper. For
the hopper, the command u(t) is the forward speed, and the
output is the difference between the hopper’s actual forward
speed and the speed predicted by the MM-abstraction. To
generate the data used by the DMDc algorithm, we simu-
lated the MF-system over the terrain shown in Fig. 2. The
control input was chosen to periodically disturb the nominal
command, u0 every T hops,

u(t) = u0 −
∞∑
k=0

ake
−λk(t−kT)us(t− kT)

where us is a unit step function and (ak, λk) are randomly
chosen parameters characterizing the size and duration of
the perturbation. The resulting training data was then used
in the DMDc algorithm to identify a linear MF-abstraction
for Σmf .

The testing performance of a trained MF-abstraction is
shown in Fig. 4. The top plot shows the MF-system’s output,
ỹ(t), and the MF-abstraction’s prediction of that output. The
bottom plot shows the testing error. The MF-abstraction’s
testing error is nearly zero except at those points where
there is a discontinuous jump in the input. These results,
therefore, suggest that the MF-abstraction accurately predicts
the natural dynamics of the plant. The following section

100 150 200 250 300 350 400

-2

-1

0
Testing Outputs

actual output
linear model

100 150 200 250 300 350 400
-2

0

2
Testing Error

m/sec

m/sec

sec

Fig. 4. Testing Data and Performance of the DMDc linear model of the
Hopper’s MF-system

uses this abstraction to design an adaptive passivity-based
controller (see Fig. 3) for the hopper.

V. PASSIVE ADAPTIVE HOPPING

Because the MF-abstraction is linear, there are several
linear control techniques one can use to design the controller.
Prior work focused on linear quadratic regulators (LQR)
[9] and model predictive controllers [10], all of which
seek an optimal control law. This section uses a passivity-
based approach to regulating the hopper’s model-following
system. The objective of this control is to force the plant’s
forward velocity to track the MM-abstraction’s predicted
forwarded velocity. We demonstrate that the performance
of this controlled system is robust to unmodeled passive
dynamics.

We consider a modification of Raibert’s hopper shown
in Fig. 5. The template for this hopper is a triple inverted
pendulum whose first link is the leg, second link is the head,
and third link is a “load” attached to the head through a
spring as shown in Fig. 5. This “load” has sufficient mass so
that when it swings about its pivot it moves the leg/head. In
particular, if the spring constant is small then the hopper is
a bobble head and when the spring is stiff then the hopper
has a stiff head.

head

leg

foot

load

Fig. 5. Bobble Headed Hopper

We used the DMDc al-
gorithm from section IV
to identify a discrete-time
linear MF-abstraction for
the hopper. We obtain a
passive input-output sys-
tem by defining a vir-
tual output, qk, shown in
Fig. 3, that takes values

qk = Czk + Dũk

This input/output system’s
state-space realization,[

A B
C D

]
, will be

strictly passive if there
exists a symmetric positive
definite matrix, P, such
that [15][

P−ATPA CT −ATPB
C−BTPA D + DT −BTPB

]
> 0 (6)

We need to find the C and D matrices that satisfy the linear
matrix inequality (6). Provided the MF-system is zero-state
observable, then control inputs of the form ũk = −Kgqk
would asymptotically stabilize the hopper for any Kg > 0.

The matrices C and D are found as follows. We first
determine a symmetric positive definite matrix, P, that
satisfies the discrete-time Lyapunov equation. We then let
C = BTPA and choose D sufficiently large so that
D+DT−BTPB > 0 These choices force the left hand side
of equation (6) to be a block diagonal matrix whose blocks
are all positive definite.

We used the recursive learning algorithms described in
sections III and IV to identify MM and MF abstractions
for a bobble head hopper whose spring constant was stiff
enough to prevent bobbling. A passive control law was then
designed for the MF-abstraction. We then tested our system
by having the hopper traverse the uneven terrain shown in the
top plot of Fig. 6. For the first 45 seconds of this test scenario
the hopper had a stiff head, after 45 seconds the spring
constant was changed so the head could bobble. The second
plot in Fig. 6 shows that the feedback control keeps the
hopper moving forward even though oscillatory bursts occur
every time the hopper transitions from hopping downhill to
hopping uphill.

An important feature of passivity-based control is that
it often reduces to a high-gain feedback strategy whose
performance can be improved by simply increasing the gain,
Kg . We tested this aspect of the controller by adaptively
changing Kg so the hopper learns to more effectively regu-
late its MF-abstraction even though we trained with a stiff
headed hopper. In particular, we used the signed version of
the MIT rule to update Kg using the update law Kk+1 =
Kk + γsgn(ỹk)ỹ2k where Kk+1 is the gain updated using
the model following error ỹk = ψk − yk at time k. The
bottom plot in Fig. 6 shows the forward velocity for the
adaptively controlled hopper. Comparing this to the middle
plot where no adaptation was done, we can readily see that
each oscillatory burst changes the gain in a way that reduces
the severity of subsequent bursts.

VI. FUTURE DIRECTIONS

This paper reports on recent work demonstrating an ap-
proach for learning how to hop across uneven terrain. The
approach assumes there is a base controller that ensures
the plant’s orbits are compact and that the inputs driving
the plant are generated by a dynamical system Σg , whose
dynamics are approximately known. From this information,

No Adaptation

Adaptation

stiff head bobble head

oscillatory bursts correlated to switching
from downhill to uphill hopping

m

m/sec

m/sec

sec

Fig. 6. Adaptive Improvement of Bobble Head through MIT rule

we demonstrate a two-step process in which input-output
data from be step-length controlled hopper is used to 1)
train a moment-matching abstraction of the plant’s steady-
state behavior and once this abstraction is known we use
2) the DMDc algorithm to learn a linear state-based model
of the hopper’s natural dynamics. These abstractions were
used to design a high-gain controller that adapted to passive
dynamics neglected during training.

The benefit of the proposed approach is that it avoids
the offline training techniques found in popular machine
learning methods such as deep reinforcement learning. This
occurs because the MM-abstraction and MF-abstraction can
be learned through regression methods that lend themselves
to online recursive implementation. The approach may be
seen as an example of structured risk management (SRM)
[16] in which the model structure can be explained in terms
of the plant’s basic decomposition into steady-state and
natural behaviors.

Future work is examining the extent to which this frame-
work can be applied to identifying and managing other
complex dynamical systems. We are currently working to
extend this approach to a robotic quadruped. Related work
with another group is applying this approach to wireless
network congestion control algorithms to changes in link
reliability.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski

et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[2] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International Conference on Machine
Learning Proceedings, ser. Proceedings of Machine Learning Re-
search, vol. 37, 2015, pp. 1889–1897.

[3] J. Hodgins and M. Raibert, “Adjusting step length for rough terrain
locomotion,” IEEE Transactions on Robotics Automation, vol. 7, no. 3,
pp. 289–298, 1991.

[4] R. W. Easton, Geometric methods for discrete dynamical systems.
Oxford University Press on Demand, 1998, no. 50.

[5] A. Astolfi, “Model reduction by moment matching for linear and
nonlinear systems,” IEEE Transactions on Automatic Control, vol. 55,
no. 10, pp. 2321–2336, 2010.

[6] G. Scarciotti and A. Astolfi, “Data-driven model reduction by moment
matching for linear and nonlinear systems,” Automatica, vol. 79, pp.
340–351, 2017.

[7] F. Takens, “Detecting strange attractors in turbulence,” in Dynamical
systems and turbulence, Warwick 1980. Springer, 1981, pp. 366–381.

[8] J. L. Proctor, S. L. Brunton, and J. N. Kutz, “Dynamic mode
decomposition with control,” SIAM Journal on Applied Dynamical
Systems, vol. 15, no. 1, pp. 142–161, 2016.

[9] E. Kaiser, J. N. Kutz, and S. L. Brunton, “Data-driven discovery of
koopman eigenfunctions for control,” Machine Learning: Science and
Technology, vol. 2, no. 3, p. 035023, 2021.

[10] M. Korda and I. Mezić, “Linear predictors for nonlinear dynamical
systems: Koopman operator meets model predictive control,” Auto-
matica, vol. 93, pp. 149–160, 2018.

[11] A. Isidori and C. I. Byrnes, “Steady-state behaviors in nonlinear
systems with an application to robust disturbance rejection,” Annual
Reviews in Control, vol. 32, no. 1, pp. 1–16, 2008.

[12] C. C. Conley, Isolated invariant sets and the Morse index. American
Mathematical Soc., 1978.

[13] M. H. Raibert, Legged robots that balance. MIT press, 1986.
[14] S. Brunton, B. Brunton, J. Proctor, and J. Kutz, “Koopman invariant

subspaces and finite linear representations of nonlinear dynamical
systems for control,” PLoS ONE, vol. 11, no. 2-e0150171, 2016.

[15] S.-P. Wu, S. Boyd, and L. Vandenberghe, “Fir filter design via
semidefinite programming and spectral factorization,” in Proceedings
of 35th IEEE Conference on Decision and Control, vol. 1. IEEE,
1996, pp. 271–276.

[16] V. Vapnik, Statistical Learning Theory. John Wileu & Sons, 1998.

	INTRODUCTION
	BEHAVIORAL DECOMPOSITION
	MOMENT-MATCHING ABSTRACTION of STEADY STATE BEHAVIOR
	MODEL-FOLLOWING ABSTRACTION of NATURAL RESPONSE
	PASSIVE ADAPTIVE HOPPING
	FUTURE DIRECTIONS
	References

