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ADAPTING THE PLANNING AND CONTROL OF LEGGED ROBOTS

TO EXTREME ENVIRONMENTS

Abstract

by

Nolan Fey

The bio-inspired design of legged robots offers them the potential to traverse com-

plex environments like their animal counterparts, making them ideal for deployment

either alongside or in place of humans in dangerous environments—whether it be

the forest floor during a wildfire, the rubble after a natural disaster, or the Mar-

tian surface during a mission for scientific samples. State-of-the-art control methods

for quadrupeds achieve impressive performance and robustness over various terrains

(i.e. stairs, rocky soil, and snow). As these methods approach greater sophistication,

there is a growing interest toward developing planning and control algorithms that

can overcome uncertainties in new environments, thereby expanding the capabili-

ties of legged systems on extreme terrains. As a step toward this goal, this thesis

aims to develop algorithms for quadrupeds that allow them to plan motions through

complex environments and adapt their control input on the fly in response to chang-

ing terrain and unmodeled dynamics. The first objective is to develop a planning

method for carefully choosing contacts over cluttered and discontinuous terrain. Our

approach considers a mixed-integer programming formulation based on a single-rigid-

body model with an impulsive stance phase, allowing us to include a treatment of

3D orientation dynamics and actuator limits while keeping the computational de-

mands manageable for real-time deployment. We found that our impulsive stance
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formulation typically finds a solution to a 4-hop planning problem within 1 second,

even in larger environments where an equivalent full stance formulation fails to find

a solution within 10 seconds. Our second and third objectives coexist in an overar-

ching learning framework that allows the robot to stabilize itself under unmodeled

dynamics in dynamic environments. The second objective is to develop techniques

for estimating the steady-state response of the robot in response to an environmental

disturbance. Specifically, we introduce a new technique that relies on a transformer

neural network trained offline to predict the steady-state output of the system. Before

deployment, we remove the last layer of the neural network and replace them with

an adaptable layer of linear coefficients, which can be updated online to finetune the

model to the environment at hand. The final objective is to implement a technique to

learn the robot’s unmodeled dynamics and apply a control method to force the robot

back to its steady-state behavior. Leveraging the observation that the dynamics are

nearly linear about the steady-state behavior, we use dynamic mode decomposition

with control to learn a linear approximation of the error system dynamics and then

implement a passivity-based control law to regulate the system. We demonstrate the

effectiveness of our approach in a MuJoCo simulation of a Ghost Robotics Vision

60 quadruped, applying our framework to adapt it to unmodeled dynamics while

walking on a treadmill with a time-varying speed setting.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The bio-inspired design of legged robots makes them uniquely capable for travers-

ing complex environments because they theoretically can maneuver over any terrain

that a human can, either alongside them or in their place. Their locomotion capa-

bilities make them a promising platform for future robotic applications that require

significant mobility and control—i.e. a construction robot, a cave exploration robot

for distant planets (Figure 1.1), or a home robot that can empty the dishwasher and

fetch a glass of water. Recent advancements in quadrupedal and bipedal robotics

have made impressive progress toward making these possibilities a reality. State-of-

the-art control methods for quadrupedal robots achieve considerable robustness over

various terrains, including stairs, rocky soil, grass, and snow. The MIT Mini Chee-

tah robot can maintain its balance even when running over icy terrain (Figure 1.3).

Modern control methods also allow legged robots to execute precise dynamic move-

ments. For example, Boston Dynamics often releases online videos of its Atlas robot

dancing and performing acrobatic parkour motions (Figure 1.2). The success of these

approaches enables the deployment of quadruped robots for industrial applications.

Within the Oil & Gas and Chemical industries, engineers deploy quadruped robots

to remotely inspect equipment at high risk facilities (Figure 1.3). These applications

are impressive and free people from monotonous and unsafe tasks. Still, significant

improvement is necessary before legged robots can fully realize their potential.
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Figure 1.1. Two Nebula-SPOT quadruped robots developed by Boston
Dynamics and deployed by NASA to explore a cave as part of the Defense
Advanced Research Projects Agency Subterranean Challenge. Engineers at
the Jet Propulsion Laboratory equipped the quadruped with sensors and
autonomy software to enable it to construct maps of underground cave
systems and urban environments. In the future, these robots may be

deployed to map and explore cave systems on other worlds, potentially to
collect scientific samples in search for signs of alien life.

Figure 1.2. Two Atlas humanoid robots developed by Boston Dynamics
performing back flips off of an elevated surface.
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Figure 1.3. On the left is a Boston Dynamics Spot Robot at a power plant.
Recently, these robots have been deployed in industrial settings to inspect
high-risk equipment to avoid placing human lives at risk. On the right is a
snapshot of the MIT Mini Cheetah Robot running over a patch of ice. MIT
researchers have demonstrated the incredible robustness of learning-based
control strategies for quadrupeds when blindly maneuvering in diverse

environments [33].

In pursuit of this goal, there is an increasing interest in adapting these methods

to extreme environments with complex terrain and unmodeled disturbances. In this

thesis, we consider two remaining challenges: (1) enabling legged system to carefully

choose contact sequences in cluttered or discontinuous terrain and (2) learning-based

techniques to adapt to unmodeled dynamics. The next section provides some back-

ground on past work in robotic planning and control.

1.2 Previous Research

1.2.1 Planning Methods

The motion planning problem in robotics is the task of finding the optimal (or

sometimes just feasible) path for a robot to travel from a starting point to its goal

while satisfying some constraints, which can include obstacle avoidance as well as the

kinematic and dynamic limitations. The high-order, nonlinear, and hybrid nature of

the dynamics of legged robots makes planning their motions especially challenging

due to fundamental limitations such as overcoming local optima and keeping the
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computation time tractable to be solved online.

Planning frameworks for legged robots often formulate the problem as a trajectory

optimization (TO) problem over continuous variables. The problem can be directly

transcribed as

min
x(t),u(t)

J(x(t), ẋ(t),u(t))

s.t. x(0) = x0

ẋ(t) = f(x(t),u(t), t)

other constraints on x(t) and u(t)

(1.1)

where x is the robot’s state trajectory, u is the control input trajectory, J is a

cost function, and f is the robot’s dynamics. The cost function is often set to

minimize the control effort or energy consumption of the robot, and when given

a reference trajectory, the cost function can also include terms to minimize tracking

error. The problem can also be formulated as a collocation problem where x and

u are parametrized by piecewise polynomial functions or a shooting problem where

only u is a decision variable.

The TO problem as presented can be passed to state-of-the-art nonlinear pro-

gram (NLP) solvers (i.e. IPOPT [55]) to solve for the optimal trajectory and its

corresponding control tape. However, it’s more common to approximate the robot’s

dynamics f using a simplified model (i.e. a single rigid body model (Section 2.3) or

the spring-loaded linear inverted pendulum [45, 53]) or a Taylor linearization to make

Equation 1.1 a convex optimization problem, avoiding issues with local optima and

leveraging state-of-the-art convex optimization solvers that can solve such problems

within milliseconds. After making such approximations, guaranteeing kinematic and

dynamic feasibility becomes more challenging without making the robot’s motion too

conservative.

Popular planning methods for wheeled and tracked mobile robots usually involve

some form of random sampling and search methods to find an optimal trajectory that
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avoids obstacles. For example, the probabilistic road map method involves sampling

random points in the environment, checking if the point is in an obstacle-free region,

computing a feasible path to there from another node, and then performing a graph

search algorithm such as Dijkstra Algorithm or A* [24]. Other common methods

are variants of the rapidly-exploring random tree (RRT) algorithm that uses similar

principles to build a tree of feasible paths throughout free space. These methods are

less popular for legged robots because its difficult to check for kinematic and dynamic

feasibility between two sample points within a reasonable time limit. However, recent

work has addressed these challenges to extend RRT to dynamic legged robots [37].

1.2.1.1 Contact-Implicit Planning

A grand challenge in legged robotics is simultaneously optimizing the contact

sequence and the whole body trajectory within a single problem framework over a

sufficiently large time horizon at real-time rates. It’s common for motion planning

frameworks to use fixed gait patterns to avoid this problem, while contact-implicit

TO methods remove the fixed-gait assumption, allowing the robot to simultaneously

optimize its state, control inputs, and contact sequence [44, 31]. While recent work

shows promising progress [9, 4], it remains a challenge to solve this highly non-convex

problem online.

One aspect of the contact planning problem that makes it challenging is that it

inherently involves choices over discrete and continuous variables. A walking robot

must first choose what surface it will place its next footstep (discrete) before deciding

where it will place its foot on that surface (continuous). Such problems fit nicely

within a mixed-integer program (MIP), where the decision variables include integer

and continuous variables. Within a MIP, mixed-integer convex constraints can be

used to replace and approximate the non-convex constraints that arise from contact

dynamics [11, 51]. Additionally, these programs can be solved to global optimality.

5



However, fundamental scalability challenges within MIP make this approach difficult

to implement at real-time rates. The work presented in Chapter 2 makes progress

toward addressing these challenges to plan 3D hopping motions for a legged robot

through cluttered environments.

1.2.2 Control Methods

Due to the high-order nature of legged robots, it’s common to approach the control

problem using a hierarchical structure. At the lowest level, motor torques are often

computed using a proportional-derivative (PD) controller with a feedforward torque

that comes from either an online or offline TO problem. Control approaches at

the next level generally separate into two camps: model-based control methods and

reinforcement learning (RL) based methods.

Model-based control methods leverage dynamics models to compute control in-

puts online, often by solving an optimization problem with an onboard computer.

Computational limitations force tradeoffs in model complexity, so many approaches

approximate the dynamics to fit them within a quadratic program (QP). However,

recent research has improved the performance of NLP solvers [16, 34] allowing the

use of nonlinear dynamics in online control frameworks [18]. Some of these methods

are purely reactive, meaning they only compute the control input for the current

timestep, while others solve a TO problem to compute the control input over a finite

time horizon in a model predictive control (MPC) fashion. In an MPC framework,

the robot executes only the first one or two control inputs before solving a new fi-

nite horizon TO problem. Most state-of-the-art controllers use this approach for

dynamic motions to benefit from rapid replanning to recover from disturbances and

anticipatory control actions based on its model [13, 25].

More recently, some of the robotic control community shifted its focus toward deep

RL, where the optimal control policy is approximated using a deep neural network
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(DNN). In RL, the control policy is learned through an offline training phase by

rolling out trajectories with the current policy (occasionally taking random actions),

computing a reward function, and then stepping the parameters of the DNN along the

gradient of the reward function to iteratively approach an optimal policy. Learning-

based methods excel at solving problems that are difficult to model [36, 22, 23] due

to their ability to learn a latent representation of the robot’s state that includes key

details about its dynamics and the environment that are difficult to capture with

physics-based models. However, a challenge with RL is that the policy may fail

under conditions neglected during training. Lee et al. [26] solved this issue using

domain randomization to expose the controller to terrains with varying shapes and

friction coefficients and robots with varying mass, inertia, and link length properties,

resulting in a control policy with impressive robustness across diverse environments.

1.2.3 Learning-based Adaptive Control

An ongoing challenge in legged robotics is adapting to effects that were ignored in

the model of the base controller or during its offline training phase. One promising

approach is to formulate learning techniques to estimate the effects of unmodeled

dynamics on the robot. In [41], Pandala et al. consider an implementation of convex

MPC based on a single-rigid body model with an extra term that accounts for the

unmodeled dynamics. They train a neural network through offline RL to compute the

set of unmodeled dynamics for their framework. In [40], O’Connell et al. demonstrate

a learning-based control framework that allows a quadcopter to adapt to time-varying

wind conditions. They train a DNN offline to compute a basis for the unmodeled

dynamics on the quadcopter, and they then use an adaptive control law online to

update a set of linear coefficients that mix the outputs of the DNN to estimate the

dynamic effects due to the wind. In Chapters 3 and 4, we present a framework

that is similar in spirit to [41] and [40] but focuses on the response of the system
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to unmodeled dynamics rather than estimating them directly. Our approach allows

a walking robot to return to its stable steady-state behavior when disturbed by

unmodeled dynamics.

1.3 Objectives

Our first objective is to develop a motion planning framework to optimize ma-

neuvers through cluttered and discontinuous terrain in real-time. In Chapter 2, we

present a MIP formulation to plan dynamic 3D hopping motions for a legged robot

while optimizing footstep locations and considering a variety of constraints related

to 3D orientation dynamics, actuation limits, and obstacle avoidance. Our approach

differs from past approaches in that it simplifies the dynamics via the consideration

of an impulsive stance phase, allowing us to extend our MIP formulation to plan

aggressive hopping motions in 3D without introducing a significant computational

bottleneck. We found that our impulsive stance formulation typically finds a solu-

tion to a 4 hop planning problem within 1 second, even in larger environments where

an equivalent full stance formulation fails to find a solution within 10 seconds (Section

2.7).

Our second and third objectives are separate components in a single learning-

based framework to adapt a legged robot to dynamics neglected by its base controller.

Rather than learning a control policy end-to-end as in RL, we consider an approach

that simplifies the learning problem into two distinct tasks: predicting the steady-

state behavior of the robot and identifying its natural response to a disturbance [27].

In the context of legged locomotion, the steady-state behavior can be understood as

the steady-state output of the robot along an asymptotically stable periodic orbit

(a.k.a stable limit cycle and attractor), while the natural response is any feasible

trajectory that connects distinct periodic orbits. Past work has shown that both the

steady-state behavior and natural dynamics of the system can be learned through
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well-established online regression techniques to adapt the step-length controller for

Raibert’s hopper to uneven terrain [27].

Decomposing the problem into learning the system’s steady-state behavior and

natural response offers several benefits. Once we have an estimate of the steady-

state output of the system, we can subtract it from the true output to calculate the

system’s natural response. After removing its periodic component, the remaining

output is hyperbolic in nature. It follows from the Hartman-Grobman theorem that

the local behavior of a system near a hyperbolic equilibrium point can be captured

by linearization techniques. Past work has leveraged this observation by applying

the dynamic mode decomposition with control (DMDc) algorithm [46] to learn a

linear state-based model of the error system [27]. With a linear approximation of

the natural dynamics, we can choose from a suite of available control options (i.e.

linear quadratic regulator, linear model predictive control (MPC), passivity-based

feedback, etc.) to force the system back to its steady state behavior.

Our second objective is to develop methods for estimating the steady-state re-

sponse of the robot when driven by a disturbance from the environment (Chapter 3).

We introduce a new technique that relies on a transformer neural network [52] trained

offline to predict the steady-state output of the system. We also demonstrate fine-

tuning the neural network online by removing its final layer and replacing it with an

adaptable layer of linear coefficients, which we update in response to new conditions

that may vary from previous training environments.

The third objective is to implement the DMDc algorithm to learn a linear approx-

imation of the error system between the true output of the robot and our estimate

for its steady-state behavior (Chapter 4). After learning the dynamics of the error

system, we implement a passive feedback controller to regulate the system to its sta-

ble steady-state behavior. We present preliminary simulation results of applying our

framework to adapt a quadruped robot to unmodeled dynamics while walking on a
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treadmill with a time-varying speed setting.

In Chapter 5, we discuss some key findings from this work and how they inform

directions for future research in contact-implicit planning and learning-based methods

to adapt to new conditions online.
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CHAPTER 2

3D HOPPING IN CLUTTERED TERRAIN USING IMPULSE PLANNING

WITH MIXED-INTEGER STRATEGIES

2.1 Introduction

Legged robots have an advantage over other types of robots because they can

traverse complex environments with uneven terrain, gaps, and obstacles. However, a

number of factors make it difficult to plan optimal motions for a robot in these envi-

ronments. For example, planning footsteps can be difficult when the available con-

tact locations are discontinuous—many state-of-the-art trajectory optimization (TO)

methods for legged robots use numerical optimization techniques on continuous vari-

ables that struggle with the inherently combinatorial problem of choosing a contact

surface. Also, the planner must navigate the robot through clutter to avoid collisions

with the environment. These challenges are further complicated when executing dy-

namic movements, since each action must satisfy friction constraints, actuator torque

limits, and the robot’s dynamics to guarantee the motion is physically feasible. The

high-order, nonlinear, and hybrid nature of the dynamics makes guaranteeing feasi-

bility challenging. To address these challenges, this chapter describes a method to

find an optimal trajectory for a legged robot to hop through a cluttered environment.

An example of a simulated hopping environment with convex safe regions to step and

obstacles is shown in Figure 2.1
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Figure 2.1. An example of a hopping environment. The colored platforms
denote convex safe regions for footsteps. The red platform is angled at 10
degrees about the x-axis, the green platform marks the goal position, and
the black wall is an obstacle. The black line is the COM trajectory from

the MIP solution for this environment.

2.1.1 Previous Work

There are a number of existing approaches to determine feasible trajectories for a

legged robot across complex terrain. The problem can be formulated as a nonlinear

programming problem (NLP) where all the optimization variables must be continu-

ous. In [42], the MIT Cheetah 2 could solve a nonlinear TO problem online to find

a feasible trajectory over a sensed obstacle. Winkler et al. [54] uses a phase-based

parameterization of each foot’s position and contact force to keep these variables con-

tinuous. This approach optimizes the gait sequence of the robot and even allows a full

flight phase across gaps. While recent research has improved the numerical stability

and speed of NLP solvers (e.g., [16, 34]) with impressive recent demonstrations [18],

these methods remain fundamentally prone to become stuck in local optima near the

initial guess and lack an ability to search over contact options.

Another approach is to formulate the problem as a mixed-integer program (MIP),

in which mixed-integer convex constraints can be used to replace and approximate

the non-convex constraints from the dynamics and kinematics of the legged robot.
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Such an approach enables handling discontinuous terrains with existing MIP solvers

(e.g., [19]) that include search strategies via branch and bound to avoid local optima

from the non-convex MIP constraints. Due to fundamental scalability limitations in

MIP formulations, it is common to adopt simplified models, most often focused on

the center of mass (COM) or the centroidal dynamics, to generate a motion sketch for

subsequent whole-body planning. Deits and Tedrake [11] use a MIP that considers

kinematic reachability constraints to plan footsteps for the Atlas Humanoid robot

on uneven terrain. They limit the reachable set of footstep positions to a convex

set near the robot and leave considering torque limits in a MIP as future work.

Valenzuela [51] extended this work to consider a key subset of the robot’s dynamics

by using a McCormick Envelope [35] to approximate the bilinear terms in a centroidal

dynamics model. Aceituno et al. [1] plan motions for a quadruped robot in 3D using

a MIP. They also constrain contact locations to a region near the (COM), so their

formulation is not suitable for (nor designed for) hopping long distances. Ding et

al. [14, 15] use a MIP to plan impressive dynamic motions for a single-legged and

a multi-legged robot, respectively, while satisfying torque limits. Their framework

addresses the 2D case, while our approach addresses 3D environments and includes

3D orientation dynamics.

2.1.2 Contribution

The contribution of this chapter is to detail a new method for planning dynamic

hopping trajectories over cluttered terrain that simplifies the dynamics via the con-

sideration of an impulsive stance phase. The influence of this simplification is that it

reduces the number of decision variables during stance, allowing us to extend the MIP

formulation to address many other constraints related to 3D orientation dynamics,

contact choice, and obstacle avoidance, without introducing a significant computa-

tional slowdown. We found that on average our impulsive stance formulation finds
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a solution to a 4-hop planning problem within 1 second, even in larger environments

where the full stance formulation fails to find a solution within 10 seconds (Section

2.7). Additionally, we show that we can further reduce the average solve time by

adding supplementary problem-specific constraints and A*-like heuristics to the cost

function. Compared to previous MIP locomotion planners, this approach of simpli-

fying the contact dynamics provides a more coarse motion sketch. However, we show

that an NLP polishing step (with contacts fixed) restores dynamic feasibility, while

also enabling the MIP to bias the NLP toward a favorable local optimum. While our

NLP polishing step considers a single rigid body model, more sophisticated whole-

body solvers could, in principle, be used as a stand-in for this step. Overall, the work

provides a new perspective on how high-level MIP planners can be teamed with NLP

solutions for motion synthesis in challenging terrain.

2.2 Overview

The system architecture developed in this work is shown in Fig. 2.2. The main

components of the work are the MIP formulation for dynamic navigation (Section

2.4) and the NLP for motion polishing (Section 2.6), while the remaining components

employ a nonlinear model predictive control (MPC) strategy, as in [29], to compute

ground reaction forces that simultaneously track the hopping trajectory and stabilize

the robot via feedback. The simulation results (Section 2.7.3) also include a state

estimator for the base position/orientation and velocities, which shows additional

robustness of the architecture proposed.

The MIP planner considers alternating periods of stance and flight and selects

contact patches on each jump to enable the quadruped to move dynamically through

clutter. The motion plan also considers the evolution of the body orientation, both

in terms of the roll and pitch it must achieve to land on each contact patch, as well

as the heading yaw angle. A notable distinction of this planner is that it simplifies
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Figure 2.2: System overview. Blue blocks are the main components introduced, with
the MIP formulation representing the main contribution of the work.

each stance to be a single time step with fixed configuration (i.e., it considers each

stance as impulsive). This reduction enables this work to plan 3D orientation and

the COM together for navigation in cluttered terrain while maintaining a reasonable

average solve time, which has not been demonstrated experimentally in prior MIP

locomotion work.

Due to the impulse assumption, the COM trajectories have non-physical velocity

discontinuities at transitions to and from stance. The NLP-based motion polisher

takes the reference wrench and COM trajectories along with the fixed chosen con-

tact patches to generate smooth COM trajectories that have better dynamic fidelity

than with the coarse-grained MIP planner. In this work, our NLP polisher considers

a single-rigid-body model, although more sophisticated whole-body trajectory opti-

mizers could also be used. The use of this motion polisher, in particular, smooths

the contact impulse during stance and also considers a higher-fidelity model for the

orientation evolution during flight. We introduce the Single Rigid Body model used

in this work in the following section.
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2.3 Single Rigid Body Model

The full body dynamics equations of legged robots are highly nonlinear and non-

convex, making them difficult to incorporate into an optimization problem without

facing the challenges of overcoming undesirable local optima. By leveraging key

aspects of the hardware design of quadruped robots, namely the low inertia legs and

concentration of mass in the torso, we can make simplifying assumptions to reduce

model complexity while still capturing key aspects of the robot’s dynamics.

We follow spirit of centroidal dynamics planning [38] and adopt a single-rigid-

body (SRB) model of the robot for high-level planning. In the SRB model, the total

spatial wrench on the robot is the sum of the wrench at each contact. Thus, the net

spatial wrench F ∈ R6 [17] is given by

F =

NEE∑
i=1

ni
fi

−mg, ni = ri × fi, (2.1)

where NEE is the number of end effectors of the robot, fi ∈ R3 is the ground reaction

force (GRF) at contact point i, m is the total mass of the robot, g = (03×1,g) is the

spatial acceleration due to gravity, ni ∈ R3 is the moment due to the force at contact

i, and ri ∈ R3 is the vector pointing from the COM to contact point i.

The net spatial force is then related to the angular acceleration ω̇ ∈ R3 and COM

acceleration p̈COM ∈ R3 according to the Newton and Euler equations

F =

Iω̇ + ω × Iω

mp̈COM

 , (2.2)

where I is the rotational inertia of the body. The SRB model assumes that the mass

of the robot’s legs is negligible, which is a valid assumption for many legged robots

because the mass of the body greatly outweighs the mass of the legs. In [13], Di
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Carlo et al. used an SRB model to achieve a variety of gaits including a flying trot,

pronking, and galloping, on the Cheetah 3 robot. The SRB model is sufficient for

planning footstep locations in our MIP, and we can later substitute an improved

model in our NLP as necessary.

2.4 MIP Formulation for Dynamic Navigation

Our MIP formulation borrows inspiration from the work in [11, 15] while providing

a unified treatment of 3D orientation evolution, friction limits, and actuation limits

that is lacking in past work. Our stance constraints described in Section 2.4.1 consider

a fixed nominal pose at touchdown and consider an impulse in wrench space to address

actuation and friction limitations in a unified manner. Since stance is treated as

impulsive, we isolate our collision avoidance constraints to flight (Section 2.4.2), and

couple flight and stance via the chosen footsteps at touchdown and takeoff (Section

2.4.3). We add an additional kinematic constraint (Section 2.4.4) to avoid local

infeasibility errors during the NLP-polishing step. The complete formulation of our

MIP is presented in 2.4.5.

2.4.1 Impulsive Stance Formulation

In our MIP, we simplify each stance phase to be impulsive, meaning that each

stance is a single time-step with a fixed configuration. This change reduces the

number of decision variables in our optimization, leading to a reduction in average

solve time compared to a full stance formulation, even when including the extra

time for the NLP-polishing step. We further reduce the number of decision variables

during stance by planning the net spatial wrench of the robot rather than GRFs, also

avoiding the bilinear terms in (2.1). While state-of-the-art MIP solver Gurobi [19] can

solve MIPs with bilinear constraints, such constraints increase the complexity of the

optimization, sometimes creating a significant computational slowdown. Considering
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the net spatial wrench is useful when checking the dynamic feasibility of a trajectory,

while the nonlinear MPC framework can determine GRFs on-the-fly to track the

trajectory from our optimization.

2.4.1.1 Wrench Feasibility

We define the robot’s configuration as C = (pCOM,Θ, q, c), where Θ are the Euler

angles of the trunk, pCOM is the COM position, q are the joint angles and c is the

contact status of each foot. When given the robot’s current configuration, we can

compute the set of all possible wrenches that the robot can generate on its COM by

considering its actuation capabilities, the surface normals at each contact, and the

friction coefficient of the terrain. The resulting 6-polytope is commonly referred to

as the feasible wrench polytope (FWP) [39]. With the FWP, constraining a wrench

to be physically feasible is as simple as adding the linear constraint,

AFWP(C)F ≤ bFWP(C), (2.3)

where AFWP(C) and bFWP(C) is the minimum half-space form of the FWP in config-

uration C. However, it’s too expensive to compute the FWP for a given configura-

tion online. In [15], Ding et al. address this issue by discretizing the configuration

space (C-space) into Nd distinct convex polytopes and enforcing the robot to be in

one of these regions at all times during stance with integer variables in their MIP.

They underapproximate the FWP of each region in C-space by computing the in-

tersection of the FWPs at each vertex of the region. This approach is realizable in

a low-dimensional C-space (3-dimensional in [15]) but becomes unwieldy in higher

dimensions.

As an alternative, we compute offline the FWP for the nominal configuration

defined by the following criteria: zero Euler angles, equidistant COM position from
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each contact at a fixed height, and feet positioned just outside of the hips. Within our

MIP, we constrain the wrench during each impulsive stance phase to be within this

nominal FWP, and we then add a constraint to our NLP-polishing step that restricts

COM position and orientation during stance to a bounding box centered around

the nominal configuration. The bounding box constraint assures the robot stays

near the configuration where the FWP is valid and prevents configurations where

the feet cannot reach the desired contact positions. We found this approximation

to be sufficiently conservative to keep the torques within the actuation limits, while

still allowing for longer jumps with rotations. We also add an additional kinematic

constraint to our MIP to assure the robot can remain within the bounding box

across its entire stance phase (Section 2.4.4), preventing the possibility there’s not a

feasible solution to the NLP near the MIP solution. The next section describes how

we compute the FWP.

2.4.1.2 Computing the FWP

We use the open-source Multi-Parametric Toolbox (MPT) for MATLAB [20] and

follow spirit of the method in [39] to precompute the feasible wrench polytope (FWP)

in the robot’s nominal configuration. The FWP is the intersection of the contact

wrench cone (CWC) and the actuation wrench polytope (AWP), where the CWC

considers friction constraints and the AWP considers actuation constraints. Rather

than compute this intersection directly, we instead compute the intersection of the

friction cone and actuation force polyhedron (AFP) at each contact and then calcu-

late their Minkowski sum, thereby computing NEE intersections of polyhedrons (3D)

instead of computing a single intersection of two 6-polytopes.

The friction cone at each contact i, FCi, with friction coefficient µ is

√
f2x,i + f2y,i ≤ µ fz,i ≥ 0, (2.4)
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where fz,i is the z-component of the force at contact i. We approximate 2.4 as a

polyhedron, 

1 0 −µ√
2

−1 0 −µ√
2

0 1 −µ√
2

0 −1 −µ√
2

0 0 1

0 0 −1


fi ≤



0

0

0

0

fz,max

0


, (2.5)

where fi ∈ R3 is the force at contact i. This conservative approximation simplifies

the second-order cone constraint to a linear constraint and can be made as close

as desired to the true friction cone by adding more faces to the polyhedron. We

chose a four-sided polyhedron, which is sufficient even for longer hops. Since we will

eventually calculate the intersection of the friction cone with the AFP, we can set

fz,max at an arbitrarily large value. Figure 2.3 contains a plot of a polyhedral friction

cone with µ =0.7 and fz,max =150 Newtons.

We construct AFPi by calculating each of its vertices,

fv,i = −J(q, i)+T τmax,v, ∀v = 1, . . . , 2n, i = 1, . . . , NEE (2.6)

where fv,i is the v
th vertex, J(q, i)+T ∈ R3×n is the pseudo-inverse of the transposed

contact jacobian for end effector i, and τmax,v ∈ Rn is the vth combination of max

torques generated by its n actuated joints. The polyhedron will have 2n vertices

because each element of a τmax,v can be the positive or negative of the max torque at

the corresponding joint. Once we calculate these vertices, we can pass them to MPT

to calculate the minimum half-space form.
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Figure 2.3. Shown on the top left is a polyhedral friction cone with µ =0.7
and fz,max =150 Newtons. On the top right is the AFP for the front right
leg of the MIT Mini Cheetah where the maximum torque for each joint is

approximated to be ±17 Newton-meters. The bottom plot is the
intersection of the two above polyhedrons—the FFP for the front right leg.
Any vector in the FFP satisfies the friction constraints and actuation limits
of the MIT Mini Cheetah and thus is a dynamically feasible force for the

front right leg.
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We calculate the feasible force polyhedron at contact i, FFPi, as

FFPi = FCi ∩ AWPi. (2.7)

Since we take the intersection, each vector in FFPi is a force the robot can generate on

its COM with contact i, satisfying both friction and actuation constraints while in its

nominal configuration. We extend FFPi to FWPi by calculating the corresponding

moment generated by the force at each vertex and stacking the two vectors into a

wrench,

Fv,i =

ri × fv,i

fv,i

 ∈ R6, (2.8)

where Fv,i is the v
th vertex of the FWP of contact i. We calculate Fv,i for all of the

vertices of FFPi and then pass them to MPT to calculate the minimum half-space

form of the FWP at contact i, FWPi. We take the Minkowski sum of the FWPs at

each contact to calculate the total FWP,

FWP = FWP1

⊕
FWP2

⊕
· · ·
⊕

FWPNEE
. (2.9)

The Minkowski sum FWP1

⊕
FWP2 is the result of adding each vector in FWP1

to each vector in FWP2, {F1 +F2|F1 ∈ FWP1,F2 ∈ FWP2}. Each vector in the

FWP is a feasible wrench the robot can generate on its COM while in its nominal

configuration.

2.4.2 Flight Formulation

We plan a single touchdown (TD) point qTD = (pTD,ΘTD) =

(xTD, yTD, zTD, θTD, ϕTD, ψTD) ∈ R6 for each stance phase of the robot. Here,

pTD marks the midpoint of the robot’s contact points in Cartesian space, and the
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Θ ∈ R3 gives the Euler angles for the trunk. We denote pCOM,i ∈ R3×Npts as the

COM trajectory for flight phase i in Cartesian space, where Npts is the number of

sample points in a flight phase. We add flight kinematics constraints,

pCOM,i,j+1 = pCOM,i,j + ṗTO,iTair,i,j +
1

2
g T 2

air,i,j,

Tair,i,j =
1

Npts − 1
Tair,i,

ΘTD,i+1 = ΘTD,i + Θ̇TO,iTair,i,

∀i = 1, ..., Nhops,∀j = 1, ..., Npts − 1

(2.10)

where q̇TO,i = (ṗTO,i, Θ̇TO,i) is the i
th take-off velocity, Tair,i is the flight time for the

ith hop, and Nhops is the number of hops in the trajectory.

Gurobi can handle the bilinear terms in (2.10) [19]. However, we found a piecewise

linear approximation for T 2
air as in [14] empirically decreased the average solve time.

We can approximate a nonlinear constraint using a piecewise linear approximation

by assigning integer variables zTl,i to each piece l of the function at hop i and adding

constraints

zTl,i ⇒


T lair ≤ Tair,i ≤ T l+1

air ,

T 2
air = mT

l Tair,i + bTl ,

∀l = 1, . . . , NT ,

NT∑
l=1

zTl,i = 1 ∀i = 1, . . . , Nhops,

(2.11)

where NT is the number of pieces in the approximation. The arrow means that if

zTl,i = 1, then the constraints are enforced. We implement the constraints using the

Big-M trick through YALMIP’s implies() syntax [30].

The Big-M trick can be written as

Aj,kpcom,i ≤ bj,k +M zCOM

i,j,k , (2.12)

23



whereM is a large number. If zCOM
i,j,k = 1, the half-space constraint can be ignored due

to the large number on the right side of the inequality, else the half-space constraint

is enforced. The bottom constraint in Equation 2.11 enforces that only one piece of

the linear approximation is imposed for each hop, while the rest are ignored. We can

improve the approximation by adding more pieces, but this also increases the number

of integer variables in our formulation, which also increases the worst-case algorithmic

complexity. Figure 2.4 shows an example of a piecewise linear approximation to a

nonlinear function.

2.4.2.1 Obstacle Avoidance:

We add mixed-integer constraints to avoid collisions with obstacles. We model

obstacles as polytopes. For each face, we add half-space constraints so that each

pCOM point is outside of the obstacle. We assign binary variables zCOM
i,j,k to the ith pCOM

point and the kth face of the jth obstacle. If zCOM
i,j,k = 0, the half-space constraint is

enforced, but if zCOM
i,j,k = 1, the constraint can be ignored. To avoid obstacles, we add

additional constraints,

NF,j − 1 =

NF,j∑
k=1

zCOM

i,j,k , ∀i = 1, . . . , Npts, j = 1, . . . , NO (2.13)

where NF,j is the number of faces of the jth obstacle [10] and NO is the number of

obstacles. We over-approximate each half-space constraint by a constant equal to the

radius of the smallest sphere that encloses the robot to avoid collisions. In [12], Deits

and Tedrake restructure the obstacle avoidance constraints in [49] by discretizing free

space into convex safe regions. They assign integer variables to each space and enforce

that their quadcopter is within one of these regions at all times. This approach can

drastically reduce the number of binary variables in the MIP in environments with

a large number of obstacles. In this work, we chose not to follow this approach to
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avoid the challenge of precomputing convex regions of safe space. Additionally, we

considered environments with a small number of obstacles (i.e. less than 10) in our

experiments, so the approach in [49] was sufficient.

In our approach, there is a trade off between Npts and collision risk because we

do not check if the line segment between consecutive point collides with an obstacle.

Increasing Npts will decrease the probability of collision. but it will also add more

variables to the MIP and likely increase its average solve time. In [12], Deits and

Tedrake demonstrate path planning for a drone with polynomial segments and using

sums-of-squares tricks to constrain each segment to a convex safe region. We chose

not to follow this approach to avoid the challenge of predicting a sufficient number

of polynomial segments for each flight phase a priori.

2.4.3 Coupling Flight and Stance

2.4.3.1 Footstep Planning:

Similar tricks to Section 2.4.2.1 can be used to plan footsteps in convex safe

regions of the terrain, which we will call platforms. We add binary variables denoted

zTD
i,j for the ith platform and jth hop. The half-space constraints that constrain qTD,j

to the ith platform are ignored if zTD
i,j = 1. We add additional constraints similar to

(2.13) to avoid hops on unsafe terrain,

NP∑
i=1

zTD

i,j = 1, ∀j = 1, . . . , Nhops + 1, (2.14)

whereNP is the number of platforms. These constraints enforce that each pTD satisfies

the half-space constraints for exactly one platform. We constrain pTD,0 to the current

position of the robot and pTD,Nhops+1 to the goal platform. We under-approximate

each half-space constraint by a constant equal to the max distance between a contact

and the midpoint of the contacts, ensuring all contacts will be on the platform. Due
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to our impulsive stance formulation, the robot is in a single pose during stance, so

the position and orientation in qTD determines the contacts points.

Our assumption that we have full knowledge of the environment allows us to deal

with angled platforms. We precompute a body to world rotation matrix Ri for each

platform i. We add constraints

zTD

i,j ⇒


pCOM,j,0 = pTD,j +Ric,

θj = θi, ϕj = ϕi,

∀j = 1, ..., Nhops + 1. (2.15)

where θi and ϕi are the pitch and roll angles of the ith platform and c is the the

vector pointing from pTD to pCOM in the body frame for the nominal configuration.

We do not fix ψj and instead allow the MIP to discover that the robot may need

to do a “spin jump” to reach the next platform. We also add a constraint that

pCOM,f,0 = pCOM,f−1,Npts ,∀f = 2, ..., Nf , to connect flight phases together after each

impulse.

2.4.3.2 Take-off to Take-off Dynamics:

Since we compute the FWP for the nominal configuration, we plan F i in the

robot’s base frame, avoiding the need to rotate the wrench to check for dynamic

feasibility. The rotation would make Equation 2.3 a bilinear constraint. We use

rotation matrices to transform the robot’s spatial acceleration to the world frame

when constraining the impulsive relationship between touchdown velocity and the

takeoff velocity. Each rotation matrix can be broken down into two parts such that

Rj = Rψ,jRi, where Rψ,j handles the rotation due to ψj and Ri corresponds to the

current platform i. To avoid the trigonometrics terms in Rψ,j, we approximate them

with piecewise linear sinusoids (Figure 2.4), as in [11]. We fix the stance time h and
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Figure 2.4. We use piecewise linear approximations of sine and cosine for
rotation matrices about the z-axis of the robot, replacing the nonlinear
constraints due to the sinusoids as mixed-integer linear constraints (as in

Equation 2.11).

plan one spatial wrench over this time. The spatial wrench satisfies the constraint

zTD

i,j ⇒ q̇TO,j = q̇TO,j−1 + gTair,j−1 + h(R̃jH
−1F j + g)) (2.16)

where g = (g,03×1) is the spatial acceleration due to gravity and H =

blkDiag(m13×3, I) is the mass-inertia matrix with 13×3 ∈ R3×3 the identity matrix.

Likewise the matrix R̃j = blkDiag(Rj,Rj) to rotate both the linear and angular

components of the wrench. The sum q̇TO,j−1 + gTair,j−1 is the touchdown velocity at

the end of hop j−1, while the final term is the change in velocity from touchdown to

takeoff due to the impulse. Notice that this is a bilinear constraint due to the term

R̃jH
−1F j.

We add an additional constraint

zTDg,i = 1 ⇒ q̇TO,i = 0 ∀i = 1, . . . , Nhops + 1 (2.17)
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to address the case when Nhops cannot be predicted a priori. This constrains the

takeoff velocity to zero when the robot is on the goal platform g, preventing any

additional hops away from (and back to) the goal. With this constraint, the robot

will take the number of hops needed to reach the goal and then remain stationary.

2.4.4 Bounding Box Constraint

In our proposed framework, we provide the MIP solution as a reference trajectory

for an NLP with a higher fidelity dynamics model. The MIP solution biases the NLP

toward a favorable local optima, but we must be careful there is a dynamically feasible

solution to the NLP near the MIP solution, else the NLP solver may return a local

infeasibility error. To avoid this issue, we add an additional kinematic constraint that

considers the evolution of the robot’s position and orientation across an impulsive

stance phase. The difference in the body state ∆qi = (∆pCOM,i,∆Θi) at the beginning

and end of the impulsive stance phase i is

∆qi = h (q̇TO,i−1 − g Tair,i−1)) +
h2

2
(R̃jH

−1F i − g). (2.18)

We add constraints that bound ∆qi to assure that the robot can stay within a

bounding box during each stance phase of the NLP. We can write this constraint

only in terms of velocities, avoiding the bilinear terms,

zTD

i,j ⇒


h
2
(q̇TO,i−1 − g Tair,i−1 + q̇TO,i) ≤ R̃j∆qmax

−h
2
(q̇TO,i−1 − g Tair,i−1 + q̇TO,i) ≤ R̃j∆qmax

(2.19)

The bounds, ∆qmax, which are also used for the bounding box constraint in the NLP,

can be set empirically to avoid local infeasibilty errors and constrain the robot near

the nominal configuration where the FWP constraint is invalid.
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2.4.5 Full MIP Formulation

We now present the complete formulation of our MIP over the optimization vari-

ables xopt = (pCOM,qTD, q̇TO,F , Tair, T 2
air, C, S, z

COM, zTD, zT , zC , zS):

min
xopt

J(xopt)

subject to:

initial condition and terminal condition:

qTD,0 = (ϕ0, θ0, ψ0,pTD,0), pTD,Nhops+1 ∈ P g, θNhops+1 = θg, ϕNhops+1 = ϕg,

bound free variables to improve efficiency of Gurobi’s branch and bound search:

plCOM ≤ pCOM,i,j ≤ puCOM ∀j = 1, . . . , Npts,

qlTD ≤ qTD,i,j ≤ quTD, q̇lTO ≤ q̇TO,i,j ≤ q̇uTO, F l ≤ F i,j ≤ Fu, ∀i = 1, . . . , Nhops + 1,

piecewise linear approximation of T 2:

zTl,i ⇒


T lair ≤ Tair,i ≤ T l+1

air ,

T 2
air = mT

l Tair,i + bTl ,

∀l = 1, . . . , NT ,

NT∑
l=1

zTl,i = 1 ∀i = 1, . . . , Nhops,
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piecewise cosine and sine with NC and NS pieces respectively:

zCl,i ⇒


ψl,C ≤ ψi ≤ ψl+1,C ,

Ci = mC
l ψi + bCl ,

∀l = 1, . . . , NC ,

zSl,i ⇒


ψl,S ≤ ψi ≤ ψl+1,S,

Si = mS
l ψi + bSl ,

∀l = 1, . . . , NS,

Rψ,i =


Ci −Si 0

Si Ci 0

0 0 1

 ,
NC∑
l=1

zCl,i = 1,

NS∑
l=1

zSl,i = 1, ∀i = 1, . . . , Nhops + 1,

flight kinematics constraints:

pCOM,i,j+1 = pCOM,i,j + ṗTO,iTair,i,j +
1

2
g T 2

air,i,j,

Tair,i,j =
1

Npts − 1
Tair,i,

ΘTD,i+1 = ΘTD,i + Θ̇TO,iTair,i,

∀i = 1, ..., Nhops,∀j = 1, ..., Npts − 1

impulsive stance with nominal FWP constraint:

zTD

i,j ⇒


q̇TO,j = q̇TO,j−1 + gTair,j−1 + h(R̃i,jH

−1F j + g)),

Ri,j = Rψ,jRi,

AFWP F j ≤ bFWP, ∀i = 1, . . . , NP, j = 1, . . . , Nhops + 1
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footstep planning:

zTD

i,j ⇒


pTD,j ∈ P i,

pCOM,j,0 = pTD,j +Ric,

θj = θi, ϕj = ϕi,

NP∑
i=1

zTD

i,j = 1, ∀i = 1, . . . , NP, j = 1, . . . , Nhops + 1,

(2.20)

obstacle avoidance:

zCOM

i,j,k = 0 ⇒ Aj,k pCOM,i ≤ bj,k, NF,j − 1 =

NF,j∑
k=1

zCOM

i,j,k ,

∀i = 1, . . . , Npts, j = 1, . . . , NO, k = 1, . . . , NF ,

(2.21)

bounding box constraint:

zTD

i,j ⇒


h
2
(q̇TO,i−1 − g ∗ Tair,i−1 + q̇TO,i) ≤ R̃j∆qmax,

−h
2
(q̇TO,i−1 − g ∗ Tair,i−1 + q̇TO,i) ≤ R̃j∆qmax,

∀i = 1, . . . , NP, j = 1, . . . , Nhops + 1,

(2.22)

where zC and zS are binary variables corresponding to each piece of the piecewise

linear approximations of sinusoids, J(xopt) is a linear or quadratic cost function of

xopt, P i is platform i, and (Aj,k, bj,k) is the half-space form corresponding to the kth

face of the jth obstacle.

2.5 Problem-Specific Strategies to Decrease Average Solve Time

This section describes two constraints and cost function terms that we can add

to our MIP formulation in some cases to further reduce the average solve time. We

provide an assessment of the effectiveness of these strategies in Section 2.7.2
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2.5.1 Hard Reachability Constraint

The binary variables zTD determine the sequences of platforms the robot will hop

on during its trajectory. In our current formulation, there is a binary variable for

every platform during each stance phase. However, there are often combinations of

zTD that are nonphysical. For example, it’s often impossible for the robot to hop

directly from the starting position to the goal. It would be ideal if we could eliminate

these nonphysical combinations within our problem formulation to reduce the size of

our MIP.

We address this issue by adding extra constraints to our MIP that allow the

solver to easily evaluate nonphysical combinations of zTD as infeasible. Specifically,

we approximate the greatest distance the robot can jump, dmax, and add constraints

zTD

i,j ⇒ zTD

i+1,k = 0, ∀k s.t. dj,k ≥ dmax, i = 1, . . . , Nhops (2.23)

where dj,k is the shortest distance between platforms j and k. Gurobi can dismiss

nonphysical combinations of zTD because they will not satisfy this constraint.

2.5.2 Forward Progress Constraint

We can further reduce the number of undesirable combinations of zTD by elimi-

nating combinations that hop on the same platform twice. We can accomplish this

by adding the constraint

zTD

i,j ⇒ zTD

k,j = 0 ∀k s.t. i < k ≤ Nhops + 1, i = 1, . . . , Nhops. (2.24)

Note there are some cases when adding this constraint is undesirable, such as when a

platform is large and the robot can take multiple hops on it to move toward its goal.
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2.5.3 A*-Inspired Cost Function

In some cases, we can further reduce the MIP’s average solve time by constructing

a cost function in the spirit of the A* graph search algorithm. A key component of

the algorithm that differentiates it from Dijkstra’s algorithm is a heuristic function

for each node that often is an estimate of the cost to go to the goal. Similarly, we

assign a reward Bi to each platform i and add terms to the cost function

−Biz
TD

i,j , ∀i = 1, . . . , NP, j = 1, . . . , Nhops + 1. (2.25)

In practice, we assign rewards based on their distance from the goal and nearby

obstacles, with the highest reward being at the goal and lowest reward closest to

obstacles, but reward assignments could in principle be done by a higher level planner.

The additional terms in the cost function bias the solver to pick a combination of zTD
i,j

that directly leads to the goal.

Constructing the cost with the terms in Equation 2.25 allows Gurobi to ignore

solutions that take a nonoptimal footstep trajectory toward the goal. When solving

a MIP, Gurobi relaxes all the binary variables to continuous variables from range 0

to 1 and solves the resulting convex optimization problem. If the solution returns the

relaxed variables as binary values, then Gurobi found the optimal solution, else it

found a lower bound on the optimal cost. Gurobi also can round the binary variables

in the solution to their nearest integer and solve the program to find an upper bound

on the optimal cost. When the lower and upper bound converge to an established

threshold, Gurobi returns a solution. With the additional cost terms in 2.25, Gurobi

can dismiss a combination of zTD
i,j that offers a low reward by comparing its cost

function with its upper bound.
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2.6 Motion Polishing via NLP

This section discusses how we formulate our NLP that receives the MIP solution

as a reference trajectory and outputs a physical COM and wrench trajectory for

the robot. We fix the contact sequence, positions, and timings to those of our MIP

solution, and the NLP polishes the wrench, twist, and position trajectories to remove

the effects of the impulsive stance assumption. We parametrize the wrench, twist,

and position trajectories in our NLP with Bézier curves to make the trajectories more

smooth and feasible for the robot to track online.

Bézier curves are defined by a set of control points, in which the first and last

control points are always the beginning and end of the curve. The curve is completely

contained within the convex hull of all the points, and the number of control points

is one more than the order of the polynomial. Within our optimization, we make

the control points of the Bézier curves our optimization variables, allowing us to

sample the NLP solution at a finer timestep without adding additional variables to

the optimization. We denote αq ∈ R(d+3)×6×(Nhops+1) as the Bézier control points for

the position trajectories during stance, αq̇ ∈ R(d+2)×6×(Nhops+1) as the control points

for the spatial twist trajectories during stance, αF ∈ R(d+1)×6×(Nhops+1) as the control

points for the spatial wrench trajectories during stance, αqf ∈ R3×6×(Nhops+1) as the

control points for the position trajectories during flight, and αq̇f ∈ R2×6×(Nhops+1) as

the control points for the spatial twist trajectories during flight.

We begin by interpolating the MIP solution to a smaller timestep and choosing

our desired trajectory as the Bézier curves that match our MIP solution. We set the

desired control points as

αF ,des
j,i = F i, αq̇,des

j,i = q̇TO,i, αq
j,i = (pCOM,i,0,ΘTD,i),

α
q̇f ,des
j,i = q̇TO,i − g Tair/2, α

qf

j,i = (pCOM,m,0,
1

2
(ΘTD,i +ΘTD,i)),

∀i = 1, . . . , Nhops + 1

(2.26)
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where m is 1
2
Npts rounded to the nearest integer. In theory, we could solve a least

squares regression problem to find the best fit Bézier curves for our MIP solution,

but the impulse assumption makes our approach sufficient.

We formulate the cost function to minimize the squared difference between the

Bézier control points of the position trajectories for the MIP solution and the NLP

solution:

L =

Nhops+1∑
i=1

d+3∑
j=1

(αq
j,i −α

q,des
j,i )TQ(αq

j,i −α
q,des
j,i )

+

Nhops∑
i=1

3∑
j=1

(α
qf

j,i −α
qf ,des
j,i )TR(α

qf

j,i −α
qf ,des
j,i ),

(2.27)

where Q and R are weight matrices. One could also consider adding quadratic terms

of αF to the cost function to minimize the control effort, but we chose to solely

minimize the position tracking error to prioritize the obstacle avoidance task.

The control points of a Bézier curve and its integral are related by a linear oper-

ation, so we relate αF and αq̇ through the linear constraint [15],

M1

h
Φαq̇

i = [R̃iH
−1αF

i − g, q̇i,0], (2.28)

where q̇i,0 is the initial spatial twist for the stance phase i. The matrix Φ ∈

R(M+2)×(M+2) is defined as [15],

Φi,j :=



−1, j = i = 1, . . . ,M + 1

1, j = i+ 1 = 2, 3, . . . ,M + 2

h
M+1

, i =M + 2, j = 1

0, otherwise.

(2.29)

We plan the wrench trajectory in the body frame, so we can check for feasibility via

the nominal FWP constraint (Equation 2.3) without requiring a rotation. We then
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rotate the wrench trajectory for stance i into the world frame using the matrix R̃i

from our MIP solution. Otherwise, we plan all motion in the world frame. We can

add similar constraints to Equation 2.28 to relate αq̇ and αq as well as αq̇f and αqf .

We constrain the first control point of αq
0 and the last control point of αq

Nhops to

the start and end positions of the MIP trajectory, and we constrain the first control

point of each αF
i to mg and the last to zero. This makes the wrench trajectory

more smooth and feasible for the robot [14]. We leave all other control points as

optimization variables. During stance, we constrain the position control points to a

bounding box around the MIP solution

R̃i(α
q
i −α

q
i,des) ≤ ∆qmax

−R̃i(α
q
i −α

qi

i,des) ≤ ∆qmax, ∀i = 1, . . . , Nhops + 1

(2.30)

to remain near the nominal configuration where the FWP constraint is valid and

to avoid undesirable configurations where the end-effectors cannot reach the contact

positions.

As presented, our smoothing NLP is a quadratic program (QP), but we could

use more sophisticated whole-body solvers as a stand-in for this step. We found this

formulation to be sufficient for smoothing out the MIP solution to a dynamically

feasible trajectory for our tracking controller. Additionally, Gurobi typically solves

this QP well within 500 ms, affirming that we could plausibly deploy our approach

as an online global path planning framework.

2.7 Results

In this section, we present an example of our approach planning a hopping tra-

jectory in an environment with an angled platform and an obstacle (Section 2.7.1),

a performance comparison of various MIP formulations (Section 2.7.2), and prelimi-

36



nary simulation results with the MIT Mini Cheetah (Section 2.7.3). All computation

was done on a laptop computer with an Intel i7 processor clocked at 2.60 GHz.

2.7.1 Example Environment with 3D Rotations

This section validates our MIP dynamic motion planner by testing it in an envi-

ronment with an angled platform and an obstacle. The obstacle prevents the robot

from jumping directly to the goal, so it must use the angled platform to maneuver

around it. The platform to the side of the obstacle is angled at 11.5 degrees about

the x-axis and its center is positioned 0.2 meters above the ground.

Gurobi found a feasible solution to the MIP for this environment in 40 millisec-

onds. The robot hops to its right while rolling to the left to land upright on the

angled platform. It then jumps to the left off of the angled platform and onto the

goal platform. It also yaws to the right on its first jump and then to the left on its

second jump to fit all four of its contacts on the square platforms. The MIP solution

was polished with the QP formulated in Section 2.6. Gurobi solved the QP in 50

milliseconds. A comparison of COM and orientation trajectories for the MIP and

QP solutions is presented in Figure 2.5. The QP removes the discontinuities in the

velocity of the COM, resulting in a smooth position trajectory for the robot. Figure

2.6 compares the wrench trajectories of the MIP and NLP. The NLP finds a smooth

net wrench trajectory near the approximation provided by the MIP.

2.7.2 MIP Formulation Comparisons

In this section, we benchmark the performance of our MIP formulation with an

impulsive stance phase against a formulation with a full stance phase. We also com-

pare the performance of our MIP formulation with and without the hard reachability

constraint (Section 2.5.1), the forward progress constraint (Section 2.5.2), and the

A* inspired terms in the cost function (Section 2.5.3). We perform our testing in
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Figure 2.5. Plots of the COM and the orientation trajectories of the robot
from the MIP and QP solutions to the path planning problem through the

environment shown in the figure. The MIP solution (dotted lines) has
squared edges due to the impulse assumption. The QP finds a smooth

solution (solid lines) near the MIP solution.

Figure 2.6. The net moment and net force trajectories corresponding to the
position trajectories presented in Figure 2.5. The NLP solution is a smooth
polynomial while the MIP solution has discontinuities due to the impulse

assumption.

38



Figure 2.7. An example of a random environment for our experimental
comparison. The red cubes are obstacles the robot must avoid. Across

tests, we fix the x and y positions of the platforms as well as the start and
goal platforms, but we randomly vary their height, orientations, and the

positions of the obstacles.

randomly generated environments with 9 platforms and 2 obstacles. We fix the x

and y positions of the platforms to a grid, but we randomly choose each z position

from a uniform random distribution from 0 to 0.1 meters and the roll and pitch ori-

entation of each platform from a uniform distribution from 0 to 0.2 radians (0 to

11.5 degrees). We also randomly choose two platforms where we place obstacles. An

example of a random test environment is shown in Figure 2.7, where the green star

marks the start platform and the black star marks the goal platform. The start and

goal platforms are constant across all tests. For each formulation, we solve 100 path

planning problems, limiting the max solve time to 10 seconds.

2.7.2.1 Full Stance Phase Formulation

When designing the MIP formulation with a full stance phase, we started with

our proposed formulation and changed as little as possible to make a fair compari-

son. We removed the variable F and replaced it with Bézier control points for the

spatial wrench, spatial twist, and position/orientation trajectories for the robot. We
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removed the constraints for the take-off to take-off dynamics (Equation 2.16) and

replaced them with constraints that establish the linear relationships between the

Bézier control points as in Equation 2.28. We constrain the control points for the

wrench to be within the nominal FWP, and we replaced the MIP box constraint with

that of the NLP, which constrains the position and orientation control points to a

bounding box (Equation 2.30). Otherwise, the full stance formulation is identical to

the impulsive stance formulation.

2.7.2.2 Experimental Comparison

For each formulation, we solved 100 path planning problems in randomly gener-

ated environments, as explained in Section 2.7.2. We limited the max solve time to 10

seconds and present the average solve time (mean), the maximum solve time (max),

the percentage of problems where the solver failed to find a solution (fail), and the

percentage of problems where the solver found the optimal solution (optimal). We

compared our impulsive stance (IS) formulation with the full stance (FS) formula-

tion. We also compared formulations with and without a cost function (cost), with

and without the hard reachability constraint (reachability), with and without the

forward progress constraint (forward), and with and without the extra A* inspired

cost function terms (A* terms). In formulations with a cost function, we chose to

use a cost function

J(xopt) =

Nhops+1∑
i=1

iF6,i or

Nhops+1∑
i=1

d+1∑
j=1

iαF
j,6,i (2.31)

that penalizes the net force in the z-direction for each stance phase. We use the cost

function to the left for the impulsive stance formulation, and the one to the right for

the full stance formulation. By including a factor i in each term we penalize taking

hops later in the trajectory, biasing the solver toward solutions that hop to the goal
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in a small number of hops. We set Nhops = 4, but the robot typically reached the

goal within 3 hops.

The performance of the various MIP formulations considered in this work is pre-

sented in Table 2.1. The solver struggled to find a solution to problems in the full

stance formulation within the 10 second time limit, while it never failed to find a so-

lution to problems in the impulsive stance formulation, validating our claim that the

impulsive stance formulation allows us to add constraints that consider 3D orientation

dynamics, contact choice, and obstacle avoidance without introducing a significant

computational slow down.

The hard reachability constraints and the forward progress constraints had vary-

ing successes. When adding the reachability constraint to the feasibility problem, we

saw a slight reduction in the maximum solve time from 1.284 seconds to 1.07 seconds,

and when adding the forward reachability constraint to the formulation with a cost

function, Gurobi solved 96% of the problems to global optimality, whereas without

the constraint it did not solve any of the problems optimally. However, there is an in-

herent tradeoff with adding these constraints because it adds more binary constraints

to the optimization. Future work could consider methods to eliminate nonphysical

combinations of binary variables before the optimization without introducing such

constraints. Adding the A* terms to the cost function seemed to significantly reduce

the average solve time, with and without the cost function in Equation 2.31.

2.7.3 Preliminary Simulation Results

This section presents preliminary simulation results where we track optimal hop-

ping trajectories generated by our framework with the MIT Mini Cheetah using the

nonlinear MPC strategy presented in [29]. We chose to use an MPC framework for

our tracking controller to benefit from on-the-fly replanning in case the robot departs

from the desired reference trajectory. We found that purely reactive control strategies
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Formulation Mean (s) Max (s) Fail (%) Optimal (%)

IS w/o Cost 0.345 1.284 0 N/A

FS w/o Cost N/A N/A 100 N/A

IS w/ Cost 10.015 10.055 0 0

FS w/ Cost 9.9364 10.063 98 2

IS w/o Cost + Reachability 0.347 1.07 0 N/A

IS w/ Cost + Reachability 10.013 10.048 0 0

IS w/o Cost + Forward 2.876 10.016 0 N/A

IS w/ Cost + Forward 5.2487 10.012 0 96

IS w/o Cost + A* Terms 0.187 0.819 0 N/A

IS w/ Cost + A* Terms 3.927 10.017 0 95

FS w/o Cost + A* Terms 10.0179 10.0592 96 N/A

FS w/ Cost + A* Terms N/A N/A 100 0

TABLE 2.1

BENCHMARK TEST RESULTS FOR VARIOUS MIP FORMULATIONS
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can struggle with longer hops, often failing to maintain the small rotational velocities

needed at takeoff to set up a stable landing without excessive offline gain tuning.

The MPC strategy we selected uses a variant of a constrained Differential Dy-

namic Programming (DDP) solver [28], which provides both a feedforward control

tape for its replanned trajectory and a feedback control gain to regulate the body

coordinates, xB = (Θ,p,ω,v), to the desired trajectory as closely as possible. We

provide the controller with the optimized footstep positions and contact status from

our MIP solution as well as the position and orientation trajectories from our NLP.

Additionally, we perform inverse kinematics to provide the controller with reference

joint position angles. The controller uses the DDP solver to repeatedly solve a TO

problem with the running cost function

l =

∫ tf

t0

(
∥δΘT , δpT , δωT , δvT∥2Qb

+ ∥Ŝδq∥2Qf
+ ∥Sδpf∥2QJ

+ ∥Sδλ∥2Rλ

)
dt (2.32)

where δ represents the deviation from the desired trajectory, Qb, QJ , Qf , Rλ are

weight matrices, S is a diagonal matrix of the contact status of each foot, Ŝ is a

diagonal matrix of the swing status of each foot, pf is the vector of foot positions,

and λ is the vector of GRFs. The notation ∥x∥2Q is shorthand for xTQx. The

TO problem also includes friction constraints and a hybrid kinodynamic model that

extends the SRB model to consider foot positions during stance and joint angles

during swing. The MPC controller outputs a new plan that minimizes the tracking

error with respect to our desired trajectory from the MIP and NLP solutions. It

provides a desired body trajectory xB,des, desired foot positions pf,des, foot velocities

ṗf,des, desired GRFs λ∗, and feedback control gainsK∗. For the stance leg controller,

we used proportional-derivative (PD) tracking for the Cartesian foot positions as

well as the feedforward GRFs and feedback control law from the MPC output. We
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Gain Stance Swing Early Contact Units

Kp 0 700 1000 N ·m−1

Kd 0 7 100 N · s ·m−1

TABLE 2.2

PD GAINS FOR CARTESIAN FOOT TRACKING

implemented the control law,

τ = JT (Kp(pf,des − pf) +Kd(ṗf,des − ṗf) + λ
∗ +K∗(xB,des − xB)), (2.33)

where τ is the vector of joint torques and Kp and Kd are the PD control gains.

During swing, λ∗ and K∗ are set to zero, and we only use the Cartesian foot PD

terms to track the foot swing trajectories, which we parametrize as Bézier curves

after each iteration of the MPC.

We implemented a contact estimator by checking if any of the knee joint velocities

changed past a certain threshold in between iterations of the leg controller. The leg

controller runs at around 700 Hz, and we set the threshold at 4 meters per second.

At an early contact, we increase the Cartesian foot PD terms to dampen the impact

of the landing. We provide the PD gains for each phase of the trajectory in Table

2.2.

We used the MPC framework and stance controller to track a trajectory of the

MIT Mini Cheetah taking two consecutive jumps. We planned the trajectory offline

using our proposed planning framework. We set the duration of stance as 0.2 seconds.

Figure 2.8 shows images from the simulation captured at various points of the tra-

jectory, and Figure 2.9 is a plot of the position and orientation tracking. The robot
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Figure 2.8. Images captured from the simulation as the MIT Mini Cheetah
tracked the double jump trajectory planned with our proposed framework.
During the first flight phase, the robot maintains near zero Euler angles,
and it makes a clean first landing. On the second hop, the robot begins to
pitch backward, causing the hind knees to hit the ground on its second

landing. The robot quickly recovers and sticks the landing.

landed both jumps cleanly, although the hind knees hit the ground on the second

landing due to the pitch tracking error. The controller slightly under tracked the x

and z position trajectories, but we suspect that we could improve the tracking by

fine tuning the MPC’s cost function and the parameters of the DDP solver, both of

which we left untouched.

45



Figure 2.9. The position and orientation tracking from the MIT Mini
Cheetah simulation as it tracks the double jump trajectory planned with

our proposed framework. The controller under tracked the x and z position
trajectories, and the pitch tracking error diverges during the second jump.
We suspect that we can reduce the tracking error by tuning the MPC

framework to optimize its performance for hopping motions.
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CHAPTER 3

MACHINE LEARNING TECHNIQUES FOR ESTIMATING THE

STEADY-STATE RESPONSE

3.1 Introduction

In this chapter, we focus our efforts toward comparing techniques that estimate

the steady-state output of a legged robot when driven by an external disturbance. We

propose a new method that relies on a transformer neural network [52] trained offline

to predict the output of the system. Popular within the field of natural language

processing, transformers excel at processing sequence-to-sequence data. We pass a

sequence of the robot’s past outputs and environment information as input to the net-

work and set the robot’s current output as the target. We compare the performance of

the transformer with another popular network architecture for sequence-to-sequence

data: the long short-term memory (LSTM) neural network. We also demonstrate

finetuning the neural network by removing its final layer and replacing it with adapt-

able linear coefficients, offering a pathway toward recursive online updates to our

model. Additionally, we compare our approach to a moment-matching reduced or-

der model (MM-abstraction) [3], with the key difference being that MM-abstractions

assume we have a dynamics model for the disturbance generator and that the dis-

turbances enter the robot’s dynamics in a known, structured manner that can be

described through physics-based models. However, it is difficult, if not impossible, to

anticipate all the ways that disturbances will enter a system deployed in uncertain en-

vironments. Neural networks address this issue by learning a set of features common
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Figure 3.1. A model of the 2D Raibert Hopper. The state of the hopper is
completely described by the center of mass position (x, y), the body angle

θb, the leg angle θl, and the leg length l.
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across all environments seen during their offline training period. These features can

subsequently be used as nonlinear basis functions for an online regression to estimate

the steady-state output of the system.

We validate our approach by training a transformer to estimate the steady-state

output of Raibert’s hopper [47] as it traverses moving terrain, demonstrating its supe-

rior robustness to changes in the environment relative to moment-matching models.

The training environment is comparable to the conditions on the pitching deck of

a naval ship, which has a time-varying slope and velocity. The remainder of this

section reviews related work in the field of legged locomotion control relevant to the

framework we present in this chapter and Chapter 4. We then provide some back-

ground on MM-abstractions, transformers, and LSTMs (Section 3.2). We applied

these methods to estimate the steady-state output of Raibert’s hopper (Section 3.3)

and compared their performance (Section 3.4).

3.1.1 Related Work

State-of-the-art legged locomotion control methods often use physics-based mod-

els for the robot and choose an optimization-based control approach that offers some

desirable performance guarantees. However, these control guarantees rely on the as-

sumption the models are correct. This often fails to hold true because physics-based

models struggle to capture some details about the environment. Our work offers

an avenue toward addressing the issue of model uncertainty by detailing a method

that isolates the robot’s response to unmodeled dynamics. Once this response is

known, we can apply a feedback control law to drive the system back to its stable,

steady-state behavior.

More recently, some of the legged locomotion community has shifted their focus

toward offline policy optimization through deep reinforcement learning (RL). Past

work has demonstrated the use of domain randomization to achieve impressive ro-

49



bustness in a diverse range of environments [26, 36]. Still, the resulting policy is often

implemented in an open-loop fashion, leading to the inability to stabilize the robot in

response to dynamics neglected during training. Further, the resulting policy lacks

performance guarantees, and the end-to-end training process can be extremely data

inefficient. Our approach addresses the efficiency issue by (1) considering the com-

bined system of the robot and a base controller, thereby avoiding the need to learn a

control policy from scratch, and (2) simplifying the learning problem to the identifi-

cation of the steady-state behavior and natural dynamics of the system. Additionally,

our approach allows for improving performance through online updates.

3.2 Background

This section offers brief overviews of three different methods for capturing the

steady-state behavior of a system: MM-abstractions (Section 3.2.1), transformers

3.2.2, and LSTM models (Section 3.2.3). For a more in-depth description of MM-

abstractions, we recommend [3] or Section III of [27]. For more background on trans-

formers, we recommend [52] and Chapter 11 of [8], while for LSTMs, we recommend

[21] and Chapter 10 of [8].

3.2.1 MM-Abstractions

When provided a model of how disturbances enter a system, one can set up an

MM abstraction to estimate its steady-state behavior. To illustrate this concept, we

consider a dynamical system called the plant with state equations

ẋ(t) = F (x(t),u(t),ν(t)), y(t) = G(x(t)), (3.1)

where F : Rn×Rc×Rd → Rn is Lipschitz, G : Rn → Ro is continuous, x : R+ → Rn

is the plant’s state, u : R+ → Rc is the plant’s control input, ν : R+ → Rd is the
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disturbance from the environment, and y : R+ → Ro is the plant’s output. In this

case, we assume that the disturbance ν is generated by a linear time-invariant system

called the generator with state equations

ω̇(t) = Sω(t), ν(t) = Lω(t), (3.2)

where ω(t) : R+ → Rg is the generator’s state, S ∈ Rg×g is the generator’s state

matrix, and L ∈ Rd×g is its output matrix. When the generator’s dynamics take the

form in Equation 3.2, the moment-matching abstraction takes the following form [3]

ξ̇(t) = Sξ(t) +∆(ν(t)−Lξ(t)), (3.3a)

ψ(t) = [G ◦Π](ξ(t)), (3.3b)

where ξ : R+ → Rg is the abstraction’s state, ∆ ∈ Rg×d is a gain matrix such that

S −∆L is Hurwitz, ψ : R+ → Ro is the MM-abstraction’s output, and G ◦Π is a

map from ξ to the plant’s output y. WhenΠ satisfies the partial differential equation

(PDE)

F (Π(ξ),L(ξ)) =
∂Π(ξ)

∂ξ
Sξ, (3.4)

we can guarantee that the abstraction’s steady-state response is equal to the plant’s

steady-state response. Forming this PDE requires a perfect dynamics model, F , of

the plant, so it is impractical to solve for Π analytically. However, the map G ◦Π

only depends on the abstraction state ψ, which we can calculate using Equation

3.2, and its output should be equal to the plant’s output y, which we can observe.

Therefore, we can avoid solving Equation 3.4 and instead learnG◦Π using regression

techniques.
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3.2.2 Transformers

The transformer architecture revolutionized natural language processing, outper-

forming recurrent neural network architectures (such as the LSTM), and serving as

the foundation for large language models [6], such as ChatGPT. Each data point in

the input sequence to a transformer is often referred to as a token. The key com-

ponent to the transformer’s success is known as the self-attention mechanism, which

attunes the representation of each token to that of related tokens within its sequence.

At a higher level, it allows tokens within a sequence to communicate contextual infor-

mation with each other. Transformers typically have multiple heads of self-attention,

each of which learns different representations of the input.

As in [52], a self-attention head has three embedding layers that learn linear

transformations of the input denoted as the key, query, and value of the token. The

query vector can be interpreted as a representation for what information the token

is looking for in other tokens in its sequence, while the key vector resembles what

kind of information the token contains. The value is a representation for the actual

information the token contains. Often, the key and value can be the same vector.

The output of a self-attention head is computed as

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V, (3.5)

where Q, K, and V are matrices of the queries, keys, and values for each token in the

input sequence and dk is the dimension of the query and key vectors. The softmax

acts a normalization mechanism and proves useful when adding a mask to remove

unwanted connections. In our architecture, we use a lower triangular mask to enforce

causal relationships from past outputs to the current output. The matrix product

QKT computes the dot products between the queries and values of all the data

points. These dot products can be interpreted as affinities—the dot product between
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the query of one token and the key of another is large when the former is looking for

information contained by the latter. The division by
√
dk is another normalization

technique. Lastly, the multiplication by V performs a weighted average of the values.

The input travels through an embedding layer before it’s passed to the self-

attentions heads. In natural language processing, the token are integers, and this

layer is a word embedding table. Since our tokens are vectors of floats, we replace

this table with a linear layer. We also include a position embedding table and sum

its output with that of the embedding layer, giving the network context about the

position of each token within the sequence. The transformer architecture includes

additional normalization layers, dense layers, and feedforward connections.

We implement our transformer neural network in Pytorch [43]. Our network

includes 8 self-attention heads, and we add an additional linear decoder layer at the

output that can later be replaced by adaptable linear coefficients for online updates.

In total, the network had about 150 thousand parameters. We can scale the size of the

network as needed to leverage the onboard computational abilities of state-of-the-art

legged robots.

3.2.3 LSTM Models

An LSTM is a recurrent neural network (RNN) structure, meaning that it in-

corporates feedback of past outputs into its current output. It excels at processing

time-series data where there is a causal relationship between past outputs and the

current output. Relative to LSTMs, simple RNNs struggle to establish long term

dependencies in time-series data. Their shortcomings can be attributed to the ”van-

ishing gradient problem”: In deep neural networks, the gradient of the loss function

can be very small, making it difficult to update the weights of the network in a mean-

ingful way using backpropagation [5]. The LSTM architecture addresses this issue

by explicitly saving information from past outputs to prevent it from vanishing over
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time [21].

Each node of an LSTM network has three inputs: the input xt, the previous

output yt−1, and the carry ct. The carry term ”carries” relevant information from

outputs prior to t− 1. The output of each node takes the form [8]

yt = A[Wx,oxt +Wy,oyt−1 +Wc,oct + bo] (3.6)

where yt is the current output, A is an activation function, bo is a bias, and Wx,o,

Wy,o, and Wc,o are weight matrices. The carry term ct is determined by the following

equations [8]

it = A[Wx,ixt +Wy,iyt + bi],

ft = A[Wx,fxt +Wy,fyt + bf ],

kt = A[Wx,kxt +Wy,kyt + bk],

ct+1 = it ∗ kt + ct ∗ ft,

(3.7)

where ∗ symbolizes element by element multiplication. The term ct∗ft can be thought

of as a way to purposely forget irrelevant information, while the term it ∗kt adds new

information [8].

In our work, we use an implementation of the LSTM architecture provided by the

Pytorch [43]. We found that LSTM layers achieved a lower mean average error than

simple feed-forward networks and gated recurrent units (GRUs) when predicting the

steady-state behavior of the hopper.

3.3 Methods

This section describes how we formulated our MM-abstraction (Section 3.3.1)

and how we trained a transformer (Section 3.3.2) to predict the steady-state behav-

ior of the step-length controller for Raibert’s hopper traversing moving terrain. It

also briefly covers key details about the dynamics in our MATLAB-based simulation
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environment (Section 3.3.3).

3.3.1 Moment Matching Model Formulation

Our approach for formulating the MM-abstraction for Raibert’s hopper follows

suit of [27], although we make adjustments to account for the effects of moving terrain.

We select the forward velocity of the hopper, ẋ, as the output to predict with the MM-

abstraction because the step-length controller accepts the desired forward velocity as

input. In Chapter 4, we will close the loop, adapting this control input to mitigate a

legged robot’s natural response to a disturbance (see Figure 3.2).

We assume the disturbance is the output of a generator with the state equations

given by Equation 3.2, where S and L take the form

Sa =

 0 − 1
Ta

1
Ta

0

 Sb =

 0 − 1
Tb

1
Tb

0


S = blkDiag(Sa,Sa,Sb,Sb)

L =

 1 0 0 0 1 0 0 0

0 0 1 0 0 0 1 0

 .
With these choices of S and L, we assume the generator takes the form of a harmonic

oscillator with two fundamental periods Ta ∈ R and Tb ∈ R. The disturbance output

ν(t) : R+ → R2 is the current slope and velocity of the terrain, which we know will

have the same fundamental harmonics but will vary in phase. We set the gain matrix,

∆, for the abstraction state observer (Equation 3.3a) as the gains of a steady-state

Kalman filter.

In practice, the robot can estimate the current slope and velocity of the terrain

using a perception system. If it collects this data at a sufficiently large sampling

rate, we know by the Nyquist Theorem that we can perform a Fourier analysis to
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Figure 3.2. System overview. The blue blocks are the main components
introduced in this chapter, while the red block are introduced in Chapter 4.

determine the terrain’s fundamental harmonics. If we find the terrain exhibits more

than two dominant fundamental harmonics, we can easily extend the abstraction

state ξ and adjust the state matrices accordingly.

To learn the lifting map G ◦Π from the abstraction state ξ to the output ψ, we

perform a standard least squares regression to estimate the parameters θ̂mm ∈ Rg+1

so that the prediction of the steady-state behavior, ψ̂(ti), takes the form

ψ̂(ti) = θ̂
T

mm(ti−1)

ξ(ti)
1

 , i = 1, ..., N. (3.8)

The parameters θ∗mm minimize the squared estimation error between ψ̂ and the

robot’s true output, y. Here, the abstraction state, ξ, and a bias term serve as

the basis functions for the regression, while θ̂mm is a set of adaptable linear coeffi-
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cients. In practice, we perform the regression on about 40 seconds of training data.

We step the abstraction state observer once in each phase of the gait cycle and record

the output of the hopper at each takeoff.

3.3.2 Transformer Training

Transformers accept sequence data as input and learn a mapping between past

outputs and the current output. We chose to provide the Transformer with the same

inputs as the MM-abstraction: the time between samples h, the disturbance ν(t)

and the plant’s output ẋ(t). We pass these inputs through a delay embedding block

(Figure 3.2), which outputs the sequence

[
x(ti−L) x(ti−L+1) ... x(ti−1)

]
, where

x(ti) is the stacked vector of inputs at time ti and L is the length of the sequence. In

our experiments, we set L equal to 10 and train the transformers to predict the next

element i in the output sequence, x(ti), which includes the plant’s current output

ẋ(ti). We use a loss function that minimizes the mean-squared error between the

output and its target. We set our optimizer as the Adam algorithm with its default

learning rate of 0.001.

During the training period, the final layer of the network is a linear layer of weights

and biases. For deployment, we demonstrate in Section 3.4 removing this layer and

using the new outputs (in the embedding space) as basis functions for a regression

to finetune the network to the current environment. As in the previous section, we

find the optimal parameters θ∗ through a standard least squares regression on 40

seconds of training data. In practice, finetuning the network may be unnecessary as

the estimation error of the offline-trained network is sufficiently small. However, it

may prove useful when deploying the network in settings that slightly vary from the

training environment.

We collect training data for the transformer with a MATLAB-based simulation

of Raibert’s hopper equipped with the step-length controller. The simulation is set
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up such that the slope and velocity of the terrain varies sinusoidally over time. On

each run of the simulation, we randomly choose two fundamental periods and an

amplitude for the terrain from uniform distributions. For data collection, we record

data from 1000 episodes, and then we randomly distribute the data into 800 episodes

for the training set and 200 for the testing set. When computing batch gradients

for training, we mix rollouts from different episodes to encourage learning a common

representation for all the training environments. We set the batch size as 16 and the

maximum number of gradient descent steps as 5000. We found that our approach

offered training, validation, and testing data sets that were sufficiently uncorrelated

by observing the network’s tendency to overfit to its training data in less than 1000

gradient descent steps.

Each episode of the simulation during data collection terminates if it meets one

of the following conditions: (1) part of the hopper’s body touches the terrain (fall)

or (2) the total simulation time surpasses 40 seconds. If the hopper falls, we drop

the last few gait cycles from the recorded data before adding it to the dataset.

3.3.3 Contact and Stance Dynamics on Moving Terrain

In our MATLAB-based simulation of Raibert’s hopper (Figure 3.3), the terrain

varies sinusoidally over time. We designed the simulation so that the terrain continues

to accelerate during a stance phase. Thus, the hopper’s foot also has a nonzero

acceleration during stance. Additionally, the hopper’s foot has a nonzero velocity at

the instant it makes contact with the terrain. We show how these two observations

our reflected in the hopper’s equation of motion during stance and our hard contact

model.

The equation of motion of the hopper is

Aq̈ +Cq̇ + τg = τ + JTf (3.9)
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where A is its mass-inertia matrix, C is a Coriolis matrix, τg is the generalized force

due to gravity, τ is the actuator torques, J is the contact Jacobian, f is the contact

force, and q = (x, y, θb, θl, l) is the state of the hopper (see Figure 3.1). During a

stance phase, the acceleration of the foot is equal to the acceleration of the terrain.

Thus, we add an additional equation to the system

 A JT

J 0


 q̈
f

 =

 τ −Cq̇ − τg

−J̇ q̇ + ag

 , (3.10)

where ag is the acceleration of the terrain. Notice that in the bottom row, the time

derivative of the foot velocity, d
dt
(Jq̇) = Jq̈ + J̇ q̇, is equal to the acceleration of the

terrain.

We use a hard contact model in the simulator. At the instant of impact, the

hopper’s acceleration, q̈, is equal to the difference between the hopper’s velocity just

after and before the impact (q̇+ − q̇−). Thus, the dynamics are

 A JT

J 0


 q̈
f

 =

 0

−vf/g

 , (3.11)

where vf/g is the velocity of the foot relative to the ground. With Equation 3.11,

the velocity of the foot just after impact, Jq̇+, will be equal to the velocity of the

terrain.

3.4 Results

This section compares the performance of the proposed methods for estimating

the steady-state response of the hopper over moving terrain. We compare three

cases: (1) MM-abstraction from Section 3.3.1, (2) the transformer 3.3.2, and (3) an

LSTM. We train the LSTM on the same training data as the Transformer. We used 5

59



Figure 3.3. A snapshot of the animation of our Matlab-based simulation of
Raibert’s hopper. The blue line marks the terrain height. Within our

simulation, the terrain has a nonzero velocity, similar to a ship deck rocking
at sea. The green line along the hopper’s leg is the GRF.
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stacked LSTM layers and a total network size about equal to that of the transformer

(∼150 thousand parameters). Our data collection period takes approximately 20-30

minutes on a laptop computer with an Intel i7 processor, 16 GB of RAM, and an

Nvidia GTX 1660 Ti graphics card (GPU). It takes approximately 2 minutes to train

the transformer network and 5 minutes to train the LSTM. The small difference in

training time is attributed to the transformer architecture being more parallelizable

relative to the LSTM, allowing Pytorch to better leverage computation on the GPU.

The transformer, unlike the LSTM, has no recurrent connections. At inference time,

the LSTM takes 800 microseconds on average, while the Transformer took about 700

microseconds. The difference in training time and inference time seemed negligible

for our use case, but the transformer may be noticeably faster with longer sequences

of input data and a higher dimension for each token.

After formulating our MM abstraction and training the transformer and LSTM,

we evaluated each approach’s mean absolute error (MAE) on the test dataset. In

Table 3.1, we provide the test MAEs from one dataset of 200 simulation episodes,

each having terrain with two harmonics.

For the method MM-Fit, we fit a new MM abstraction to each set of test data,

including the true fundamental harmonics in S for each episode. In MM-Test, we

fit a single MM abstraction to a random episode, with the true fundamental har-

monics for that episode, and then tested its performance across all of the test data.

The order of magnitude difference in MAE between these two cases shows that the

MM-abstraction may track the steady-state output less closely when the parameters

of the environment change online. It’s important to note, however, that the MM-

abstraction error remains bounded, likely due to the feedback within the disturbance

generator’s observer. The transformer and LSTM had a lower MAE across all the

test environments, demonstrating an aptitude for robustness when parameters of the

environment change online. This robustness can be attributed to our training scheme
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Method MM-Fit MM-Test Transformer LSTM

MAE (m/s) 0.0072 0.0425 0.0016 0.0022

TABLE 3.1

MAE FOR ESTIMATING THE HOPPER’S FORWARD VELOCITY.

that leverages domain randomization to learn an effective model across a diverse set

of environments. The MAE for the neural networks was on the same order as MM-

Fit, but next, we show that we can further reduce the estimation error by finetuning

the transformer to a specific environment.

3.4.1 Finetuning

We also compared the outputs of the offline-trained transformer and the fine-

tuned transformer on specific environments. In Figure 3.4, we show a snapshot of

the outputs of both networks (left) as well as a plot of the estimation error (right).

The desired forward velocity of the hopper was 1 meter per second, but the moving

terrain caused the hopper’s velocity to diverge and oscillate from its reference. How-

ever, the transformer predicts the change in velocity due to the terrain, estimating

the hopper’s steady-state response to the disturbance. There is a small steady-state

estimation error for the baseline transformer, but we demonstrate eliminating this

error by finetuning the network with the input-output data for this specific environ-

ment. Finetuning decreases the mean average estimation error from 0.0044 to 5.6 ×

10−5 meter per second. Note, however, that this is an aggressive finetuning frame-

work because the model forgets the information embedded within its final layer and

replaces it with information relevant to the current environment.

A potential less aggressive alternative to our finetuning strategy is to freeze all
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Figure 3.4. On the left is a plot of the true forward velocity output of the
robot alongside the estimates of the forward velocity from the baseline
transformer (blue) and the finetuned transformer (dotted red). The

finetuned model has a final layer of adaptive coefficients trained exclusively
on output data when driven by the disturbance generator in the test

environment. On the right is a plot of the corresponding estimation error.

layers of the baseline transformer except the final layer, then perform 1-3 gradient

descent steps with training data from the target environment. Another alternative

is to update the least squares parameters θ̂ online with other methods, such as

recursive least squares with a forgetting factor, to control how much the new training

data affects the parameters. The transformer’s estimation error (right plot in Figure

3.4) is the robot’s natural response to disturbances not considered in the training

environment. Online updates must occur strategically, and likely at a low frequency,

to avoid capturing components of the transient response due to new disturbances.

We leave considering online update strategies other than finetuning as future work.
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CHAPTER 4

ONLINE ADAPTATION TO UNMODELED DYNAMICS VIA DYNAMIC MODE

DECOMPOSITION AND PASSIVE FEEDBACK CONTROL

4.1 Introduction

In Chapter 4, we proposed methods for estimating the steady-state response of

a legged robot when driven by a disturbance generator, and we interpreted the esti-

mation error as the robot’s transient response, which includes the effects of dynamic

modes that we ignored in prior training but were later excited online. In this chapter,

we demonstrate how to close the loop on the estimation error to mitigate the effects

of these dynamic modes and regulate the robot back to its steady-state behavior.

Our approach leverages the observation that the robot’s dynamics about a stable

periodic orbit are approximately linear and learns a dynamics model for the error

system via the DMDc algorithm. With a linear dynamics model for the error system,

we can apply a variety of linear control techniques to regulate it to its equilibrium.

We implement a passive feedback control law to stabilize the robot under passive

dynamics neglected by its base controller.

In this chapter, we apply our framework in a MuJoCo simulation [50] of a Ghost

Robotics Vision 60 quadruped equipped with a convex MPC framework (Section

4.2.2) to adapt to unmodeled dynamics while walking on a treadmill with a time-

varying speed setting. Our results act as a proof of concept of our approach and will

serve as a baseline as we improve our implementation in future iterations.

In the next section, we provide background on DMDc and the Vision 60’s base

controller. In Section 4.3, we outline our approach to formulating and implementing
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our learning-based adaptation framework, and in Section 4.4, we present preliminary

results from our MuJoCo simulation.

4.2 Background

4.2.1 Dynamic Mode Decomposition With Control

DMDc is a method for learning a linear dynamics model for a system with mea-

surable outputs [46]. Since it’s purely data-driven, no prior knowledge of a dynamics

model for the system is necessary to implement this approach. Assume we have a

dynamical system ẋ = f(x) with an output equation y = g(x) and we do not know

the functions f and g, but we have a length N sequence of measured outputs. We

can construct matrices

Y =

 y0 y1 . . . yN−1

 , Y ′ =

 y1 y2 . . . yN

 , (4.1)

and solve for the best-fit linear model

Y ′ = AY , s.t. A = Y ′ Y +, (4.2)

where Y + is the psuedo-inverse of Y . Now, we have a linear model to predict the

next output of the system based on the current output. However, there are a few

concerns: (1) if N is large, then A may be too large to compute, (2) the resulting

system has no control inputs, and (3) if the system is highly nonlinear, then the

dynamics cannot be captured with a linear approximation.

To address the first concern, the DMD algorithm computes the singular value

decomposition, Y = UΣV and looks at the singular values along the diagonal of

Σ to determine the number of dominant modes in the system. In practice, we scale
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the singular values by their sum and consider all modes with singular values past a

certain threshold. The columns of U are the modes of the system ordered from left

to right in order of importance in capturing the behavior of Y . If there are r singular

values above the threshold, we take the first r columns of U to construct U r. Then

we can calculate the projection of A onto these most dominant modes as

Ã = Y ′V Sr(SrS
T
r )

−1U r (4.3)

where Sr is the first r rows of S. The model yi+1 = Ãyi captures most of the

dynamic behavior of the system, yi+1 = Ayi.

To consider systems with control inputs, we can follow the same algorithm only

replacing Y with

Z =

 y0 y1 . . . yN−1

u0 u1 . . . uN−1

 . (4.4)

Then, we can take the first n rows and n columns of K = ZZ+ as the matrix A,

where n is the dimension of the output, and the next m columns of the first n rows

as the matrix B, where m is the dimension of the control input. One issue with this

approach is that we need a nonzero sequence of u. The standard approach to solving

this issue is the periodically kick the system (i.e. provide a random exponentially

decaying control input).

If the system is highly nonlinear, we can look for a Koopman Operator [7], h,

where ϕ = h(y), such that the dynamical system within this embedding space,

ϕi+1 = Lϕi, is approximately linear. Then, we can recover the output with the

inverse of h. One approach to finding a Koopman Operator is to project the output

to a higher dimension with an encoder neural network. In this work, we use a delay

embedding so that the state of our system is a vector of the last d outputs. As the

size of d increases, the learned model approaches the system’s true dynamics.
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4.2.2 Convex Model Predictive Control

The base controller of the Vision 60 quadruped in our MuJoCo simulation is

a variant of a convex MPC framework first presented in [13] to control the MIT

Cheetah 3. The controller is based on a single rigid body model (Section 2.3) with the

additional assumptions that the pitch and roll angles of the trunk are small and the

robot’s contact sequence is fixed. With these assumptions, the dynamics model can

fit within a convex program. On each iteration, the controller solves for GRFs that

minimize a standard cost function quadratic in the COM and orientation trajectory

of the robot and the magnitude of its GRFs, subject to a polyhedral friction cone

(Section 2.4.1.2).

4.3 Methods

4.3.1 Treadmill and Bobbling Head

We add additional objects to our MuJoCo simulation as disturbances for the robot

to validate our learning-based adaptation framework. Specifically, we add a long box

to the environment to simulate a treadmill. We directly control the velocity of the

treadmill, vT , setting it to vary periodically with two modes,

vT (t) = v0 +
1

Ta
va sin(2π Ta t) +

1

Tb
vb sin(2π Tb t), (4.5)

where v0 is its center speed, Ta and Tb are the its fundamental periods, and va and

vb are their corresponding amplitudes. The treadmill is the disturbance generator in

our framework.

We also add passive dynamics to the robot that are not considered within the

model of its base controller. We mount an inverted pendulum to the robot’s back,

modeled as a long, skinny box with a hinge joint oriented such that it rotates about

the y-axis in the robot’s body frame. We call this inverted pendulum a bobbling
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head, although it is similar in spirit to a manipulator arm or some other object the

robot is carrying on its trunk. We add spring and damping constants such that the

bobbling head is stable about its equilibrium position, which we arbitrarily chose to

be the upright position.

When the robot is driven by the disturbance due to the treadmill’s time-varying

speed, it may excite the modes of the bobbling head. As it oscillates, it causes the

trunk of the robot to wobble. The control task for our learning-based framework

is to stabilize the quadruped under these oscillations. We can adjust the difficulty

of the control task by increasing the mass of the head or by decreasing the spring

constant. In our experiments (Section 4.4), we set the mass of the head as 5 kilograms,

the length as 40 cm, the spring constant at 30 Newton-meters, and the damping

coefficient as 2 Newton-meters-seconds. Figure 4.1 is a snapshot of our simulation

with the treadmill and the bobbling head.

4.3.2 Moment-Matching Model

We formulate a moment-matching model as in Section 3.3.1 to estimate the

steady-state output of the quadruped in response to the time-varying treadmill speed.

The base controller accepts a twist command as input, so we consider the robot’s ve-

locity as the relevant output and fit a moment matching model from the disturbance

generator state to the 6-dimensional velocity. We provide the moment-matching

model the true fundamental periods of the disturbance, assuming the robot has a

perception system and is capable of performing a Fourier analysis to identify them.

One challenge when formulating the moment-matching model is to separate os-

cillations in the robot’s forward speed due to the time-varying treadmill from the

natural oscillations of its gait cycle. We show an example of the forward speed tra-

jectory of the robot while driven by the disturbance in Figure 4.2. We command the

robot to trot at zero velocity in the world frame. The tall oscillations in the forward
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Figure 4.1. A snapshot of our MuJoCo simulation with a model of the
Ghost Robotics Vision 60 Quadruped. The simulation environment

includes a model of a treadmill (white) with a time-varying speed setting,
as well as a bobbling head (red) mounted on the trunk of the robot. We
model the bobbling head as a long, skinny box with a hinge joint oriented

along the y-axis in the robot’s body frame.
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speed are due to the robot’s gait cycle. If we were to fit a moment-matching to all of

the available output data, we would mistakenly capture part of the dynamics of the

robot’s gait cycle rather than the steady-state response to the disturbance generator.

We addressed this challenge by strategically choosing when to sample the forward

speed. The circles on the figure are samples when the robot is midway through the

full-stance portion of its trot gait. The black circles correspond to the full-stance

phase after an odd step (left front and hind right), while the red circles correspond to

that of an even step (right front and hind left). We noticed that when choosing one

of these options (odd or even), the resulting trajectory appeared to have the same

fundamental harmonics as the disturbance generator. We chose to sample the robot’s

output for our moment-matching model midway through each full stance phase after

odd steps.

4.3.3 Model-Following Abstraction

We have a moment-matching model that outputs the steady-state behavior of the

robot when driven by the time-varying treadmill. Now, we can collect the model-

following error and the robot’s input data and apply the DMDc algorithm (Section

4.2.1) to learn a linear dynamics model for the 6-dimensional error system. We train

the DMDc model exclusively on input/output data from the quadruped without the

bobbling head, and we test its performance both with and without it.

After removing the steady-state response of the robot, we can capture the dy-

namics of the remaining output with a linear approximation. Still, we choose to use

a delay embedding of the robot’s past output to improve our linear fit. This choice

adds additional robustness when the moment-matching model does not fully capture

the steady-state response. In this case, some of the output from the nonlinear dy-

namics will be included in the error system. With a delay embedding of sufficient

length, we can still capture the dynamics of the error system.
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Figure 4.2. Shown is an example of a forward speed trajectory of the robot
when driven by the disturbance due to the time-varying treadmill. The

large oscillations in the forward speed (blue line) are due to the robot’s gait
cycle. We show that when sampling once per gait cycle midway through a
stance phase, either after an odd step (left front and hind right) or an even
step (right front and hind left), we can isolate the robot’s response due to
the disturbance generator. The sampled output in either of these cases
appears to have the same fundamental harmonics as the disturbance

generator.
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The model-following abstraction takes the form,

zi+1 = Azi +Bui, (4.6)

where z is a delay embedding of the robot’s output and u is its twist command. After

we learn the linear approximation, we formulate a discrete-time passive feedback

controller to regulate the system to its steady-state behavior. The intuition behind

a passive feedback law is to construct the output of the system such that it’s always

dissipating energy. A discrete-time linear system is strictly passive if there exists a

positive definite matrix P such that [27]

 P −ATPA CT −ATPB

C −BTPA D +DT −BTPB

 > 0, (4.7)

where the system’s passive output takes the form

yi = Czi +Dui. (4.8)

We determine the matrices C and D by finding a P that satisfies the discrete-time

Lyapunov equation, setting C = BTPA, and choosing a D sufficiently large so that

D +DT −BTPB > 0.

4.3.4 Training Pipeline

We follow a training pipeline to learn a moment-matching model and a model-

following abstraction for the Vision 60 quadruped walking on a time-varying treadmill

with a bobbling head on its trunk. We collect data of the quadruped walking on the

time-varying treadmill for 40 seconds. We then fit the moment-matching model with

the collected data to estimate the steady-state velocity of the robot when it’s driven
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by this disturbance. Next, we collect data for a second period of 180 seconds, this time

recording the model-following error and the robot’s input data. Every 20 seconds, we

add an exponentially decaying control kick to the robot’s input with a max amplitude

and time constant sampled from a uniform distribution. The control kick allows us to

learn the matrix B of our model-following abstraction. We then perform the DMDc

algorithm to learn a linear approximation of the error system. In our experiments,

we used a delay-embedding of length 10. Finally, we formulate the output matrices

C and D according to Equation 4.7. When we deploy our learning framework, we

set the control input to the quadruped’s base controller as

ui = u0 +K(Czi +Dui−1) (4.9)

where u0 is the base control input and K is a scalar feedback control gain.

4.4 Results

Figure 4.3 shows an example of the output of the generator’s observer (top), the

corresponding moment-matching output plotted alongside the true forward velocity

(middle), and the model following error (bottom), which is the moment-matching

output after subtracting out the robot’s true output. We sample the output of the

disturbance generator at a faster rate than the robot’s output because we found

that when sampling at lower frequencies the observer had a larger estimation error.

The moment-matching model follows the general trend of the forward velocity but

has noticeable estimation error. We speculate that the machine learning techniques

presented in Chapter 3 would outperform the moment-matching model in this setting,

but we left validating these techniques on a quadruped as future work.

Figure 4.4 presents an example plot of the model-following error alongside the

robot’s input data for the quadruped’s forward velocity during a model-following
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Figure 4.3. The top plot is an example of the estimates of the disturbance
generator’s output from its observer. We sample the disturbance

generator’s output at a faster speed than the robot’s output to minimize
estimation error. The middle plot is the corresponding moment-matching
output along the x-dimension plotted alongside the true forward speed of

the robot, while the bottom plot is the model following error.

74



Figure 4.4. On the left is a plot of the model-following error (blue)
alongside the robot’s input (orange) for the forward velocity of the robot
(along the x-direction in the body frame). The periodic control kicks can
be seen as sudden spikes in the input, which exponentially decay to zero.
The control kicks cause a sudden spike in the model-following error as the
robot strays from its steady-state behavior. On the right is the DMDc
fitting error for each sample (i.e. the difference between the true output

and the predicted output from the learned linear approximation).

training period (left) as well as the fitting error for each sample (right). The sharp

spikes in the robot’s input are the periodic control kicks.

We present the root mean squared model following error for various cases with

our framework. In ”Baseline”, there is no bobbling head and the control gain K is

set to zero, and in ”DMDc”, there is no bobbling head and the control gain was set

to 0.04. In ”Baseline w/ Head”, we added the bobbling head and set the control

gain to 0, while in ”DMDc with Head”, we added the bobbling head and set the

control gain to 0.02. After adding the bobbling head, the baseline model-following

error more than doubles. As the robot is driven by the time-varying treadmill, the

bobbling head oscillates, causing the robot to wobble and depart from its steady-state

behavior. We expect the model-following error to decrease after adding the passive

feedback control law, regulating the robot to the estimated steady state output of the
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Errors Baseline DMDc Baseline w/ Head DMDc w/ Head

ẋ (m
s
) 0.0063 0.0060 0.0173 0.0172

ẏ (m
s
) 0.0109 0.0113 0.0218 0.0209

ż (m
s
) 0.0106 0.0087 0.0247 0.0218

ω̇x (
rad
s
) 0.0193 0.0149 0.0872 0.0767

ω̇y (
rad
s
) 0.0120 0.0082 0.0493 0.0430

ω̇z (
rad
s
) 0.0022 0.0017 0.0081 0.0073

TABLE 4.1

ROOT MEAN SQUARE MODEL FOLLOWING ERROR

moment-matching model. In general, we saw small reductions in the model-following

error, validating the soundness of our approach.

We would expect the model-following error to decrease more significantly after

adding the passive feedback control law. We speculate that we could reduce the track-

ing error by improving the fit of our moment-matching model to the robot’s steady-

state output. The current estimation error is on the same order as the robot’s vari-

ation from its commanded speed. Ideally, these estimation errors would be smaller.

We provide more discussion on the results and how they will inform future work in

the next chapter.
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CHAPTER 5

CONCLUSIONS

As legged robots become more capable of traversing various types of terrain, a

next-level challenge relates to developing planning and control algorithms that can

overcome uncertainty, expanding their capabilities to more extreme environments.

Examples of such environments may include terrains where the robot must carefully

plan its footsteps in real-time to avoid stepping on unsafe regions of the terrain, or

settings where there are disturbances from the environment that cause the robot to

diverge from its desired behavior. With these examples in mind, we considered two

major challenges in this work: contact implicit planning and learning-based methods

to adapt to new conditions online.

5.1 Contact-Implicit Planning

At the heart of the challenge in contact-implicit planning is its inherently combi-

natorial and continuous nature. As we include more contact options, whether they

be additional end-effectors, potential contact surfaces, or contact modes (i.e. float-

ing, static, or sliding), the exponential algorithmic complexity of the problem quickly

grows out of hand. In this work, we choose to formulate the planning problem as a

mixed-integer program to allow the solver to consider a wider range of contact options

relative to local methods such as an NLP. We demonstrate that we can decrease the

average solve time by simplifying the stance phase to be impulsive and then restoring

dynamic feasibility of the trajectory with a smoothing NLP equipped with a higher

fidelity dynamics model. We show that we can further decrease the average solve
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time of our MIP with heuristics. However, it’s important to note that our approach

still has exponential complexity in the worst case. Our impulsive stance technique

decreases the number of continuous variables in the formulation, speeding up the eval-

uation of each convex relaxation during Gurobi’s branch and bound search, but it

can still take a large number of iterations to find the combination of integer variables

which gives the globally optimal solution.

Future work may choose to take on the exponential algorithmic complexity more

directly by reducing the number of available contact options in the formulation. A

good place to start would be to remove unphysical combinations of contact options,

such as in Section 2.5.1, or undesirable combinations, such as in Section 2.5.2.

Another possible direction is to improve the “tightness” of the MIP formulation.

The convex relaxation of a tight MIP formulation always returns an integer solution.

In [32], Marcucci et al. demonstrate how MIPs like the one considered in our work

can be reformulated as the problem of finding the shortest path in a graph of convex

sets. Their approach is inspired by the shortest path problem in a graph, which is di-

rectly transcribed as an integer program, but its convex relaxation returns an integer

solution. The first convex relaxation of the formulations in [32] often returns a near

(sometimes exact) integer solution. This is exciting because it could make consid-

ering the true nature of the contact optimization problem, as both a combinatorial

and continuous optimization, feasible online.

In the immediate future, we plan to finetune the MPC tracking controller in Sec-

tion 2 for hopping motions, enabling us to perform further simulation and hardware

tests with our framework on the MIT Mini Cheetah robot. As is, the MPC con-

troller assumes that the ground is flat, so it often fails to reliably jump onto elevated

platforms. We plan to update the MPC controller to remove this assumption.

We also could extend our impulsive-stance MIP formulation to include more gait

options for the robot. Currently, the framework can only plan hopping motions on all
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4 contacts, but there is room to extend the formulation to other contact options such

as a short stance phase on the robot’s two hind legs or its two front legs, allowing

for bounding behaviors. We can add this functionality by adding binary constraints

that enforce the robot to be in only one contact configuration during each stance

phase while allowing the solver to pick the optimal option. It also would be exciting

to incorporate a perception system into our framework that can identify convex safe

regions for the robot to step online.

5.2 Learning-based Adaptation

State-of-the-art control methods for legged robotics exhibit impressive robustness

on a variety of terrains. However, it’s often unclear how these controllers will respond

in uncertain environments, where disturbances may excite dynamical modes ignored

by its base controller. This problem is relevant to model-based and model-free RL

approaches alike. A model-based controller may fail under dynamics neglected by its

model, and a model-free RL approach may fail under dynamics neglected in previous

training. Often, the training environment for an RL approach is a simulation that

also fundamentally relies on physics models. Even when training on real-world data,

it’s possible some key dynamical modes were not excited during the data collection

period.

In this work, we consider an approach that addresses the challenge of dealing with

unmodeled dynamics by first learning a moment-matching model that estimates the

steady-state behavior of the robot in response to a disturbance. Once we can reliably

estimate this stable behavior, we can subtract it from the true output of the robot to

estimate its transient response to the disturbance due to dynamical modes ignored by

the moment-matching model. We implement DMDc to learn a linear approximation

of the dynamics about the robot’s steady-state behavior and add a passive feedback

controller to regulate it back to this behavior. We demonstrate how LSTMs and
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transformer neural networks offer a more robust approach than moment-matching

models when estimating the steady-state output of the robot. Specifically, the neural

networks maintain a higher level of accuracy across a wider domain of environments.

We also demonstrate how our approach can adapt a Vision 60 quadruped to the

unmodeled dynamics of an inverted pendulum when driven by the disturbance of a

treadmill with a time-varying speed setting. Further simulation tests, varying the

properties of the pendulum and the treadmill, will inform future analysis on the

performance of our approach.

A challenge in learning-based adaptation is both deciding and controlling how

much new information to incorporate into your framework without losing key old

information. In Chapter 3, we demonstrated how we can remove the last layer from

our neural network and replace it with adaptable linear coefficients. This transfer

learning technique maintains information relevant across all domains that’s embed-

ded within the parameters of the neural network’s base. However, it’s unclear how

we should update the coefficients of the last layer to improve our estimate of the

steady-state behavior online. An aggressive strategy risks capturing some of the un-

desirable transient behavior in our model. We finetune the network with a single

linear regression to data collected from the current environment, acknowledging the

captured behavior will be what our adaptation strategy regulates towards, regardless

of its quality. Future work may consider more clever recursive adaptation strategies.

A promising direction for future work would be to restructure the learning problem

to minimize tracking error rather than estimate the dynamics of the error system. In

[48], Richards et al. propose a learning-based adaptive control framework for dealing

with unmodeled dynamics and demonstrate its effectiveness in adapting a quadcopter

to time-varying wind conditions. They label their approach as ”control-oriented”

rather than ”regression-oriented,” citing past work in adaptive control literature [2]

to support their intuition that the downstream control objective should be prior-
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itized over the regression objective. They demonstrate that perfect estimation of

the parameters of the disturbance is unnecessary for tracking convergence. In our

approach, we learn a linear approximation of the dynamics of our error system via

DMDc and formulate a passive feedback controller, but a better approach may be

to learn a control policy with the objective of minimizing the tracking error between

the robot’s current output and its steady-state output.

A next-level challenge is to devise control methods that can adapt to new environ-

ments and tasks far outside of the domains considered in the training environment.

One potential approach is to learn a set of action primitives from which any relevant

task could be constructed. However, there is uncertainty as to whether such a set

even exists, and even if we had the set, it’s unclear how we could adaptively mix it

to achieve the desired behavior to perform a new task or traverse a new environment

online.

We also have plans for our learning-based adaptation framework in the immediate

future. Our first step will be to add an interface to the MuJoCo simulation to allow for

large-scale data collection, allowing us to train a transformer to estimate the steady-

state output of the quadruped. We suspect that the machine learning techniques

proposed in this work will outperform the moment-matching model considered in

Chapter 4. If we can better capture the steady-state behavior, it also should improve

the performance of our model following abstraction because more of the nonlinear

dynamics from the steady-state behavior will be removed from the error system,

leading also to an improvement in our feedback control law. Before deploying our

framework on hardware, we may need to adjust the number of parameters in our

transformer to make our approach computationally feasible with the robot’s onboard

computer. We also may investigate alternative methods for sampling the robot’s

output to isolate the steady-state behavior. One possibility may be to project the

robot’s output onto the fundamental modes of the disturbance generator, removing
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the oscillations due to the gait cycle. When we deploy our framework on hardware,

we plan to add some form of passive unmodeled dynamics on the robot’s back. It

could be a mass-spring-damper system, an inverted pendulum, or even a box of water.
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