
CPS: SMALL: Learning How to Control - A Meta-Learning Approach
for the Adaptive Control of Cyber-Physical Systems

1.0 Introduction:
Cyber-physical systems may be seen as consisting of two types of fabrics; a physical fabric whose
dynamics govern mass and energy flows and a cyber fabric whose dynamics govern information
flows. The Internet-of-Things (IoT) enabled manufacturing system depicted in Fig. 1 is an exam-
ple of a particularly important class of CPS. The physical fabric for this system is woven from a
heterogeneous mix of machines that carry and process materials across the factory floor. The cyber
fabric is a heterogeneous mix of wired and wireless communication networks that ensure digital
data streams from factory sensors and machines can be used by cloud-based planners and edge
devices to manage the physical fabric’s workflows in a safe and efficient manner. The problem
addressed in this project is concerned with learning how to control both fabrics, physical and cyber,
in a coordinated and scalable manner.
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Figure 1: IoT-enabled Manufacturing as a Cyber-Physical System

The IoT-manufacturing system depicted in Fig. 1 is a complex CPS with a great deal of modeling
uncertainty. The physical and cyber fabrics are open to environmental forcing that can shift in an
abrupt and unpredictable manner. These shifts may be due to changes in customer work orders
that change factory floor workflows. These shifts may also be caused by environmental changes
that increase interference in the cyber fabric’s wireless communication networks. The dynamics
of both fabrics are coupled since congestion in the physical fabric may engender congestion in the
cyber fabric and vice versa. IoT manufacturing’s inherent complexity and uncertainty stand as
major obstacles to U.S. manufacturer’s adoption of IoT technologies [14]. So while the worldwide
rate of investment in IoT technologies by the manufacturing sector stands at 6.5%. This rate is
highest in China and Europe with the U.S. lagging behind [13]. This disparity may be addressed
through the development of methods that manage the uncertainty and complexity of these partic-
ular CPS systems. This project proposes doing that by developing a meta-learning framework [23]
that learns how to control complex CPS performing a variety of tasks in an uncertain environment.

Prior work has often used deep reinforcement learning (DRL) [64] to learn how to control CPS



fabrics [59, 76, 85]. This prior work, however, has focused on idealized applications in station-
ary environments. Moving to real-life CPS with nonstationary disturbances requires an adaptive
approach that is difficult to realize using DRL. The difficulties stem from fundamental criticisms
of deep learning [61] with regard to its need for huge data sets and the lack of transparency of
the resulting models. Deep learning is data hungry since it requires extremely large training sets
to achieve acceptable performance. Its data sets are usually processed offline, which is clearly
unsuitable for real-time adaptive control. Moreover, it is difficult to interpret how a deep neural
network’s parameters are related to fundamental features in the CPS. This makes it difficult to
transfer knowledge between different tasks in a way that ensures controlled performance is both
optimal and robust. When deep learning is used in reinforcement learning, we find impressive
results demonstrating near human levels of control [64]. But these successes are not robust to envi-
ronmental change [37]. In other words, DRL does not have the robust stability to reliably manage
the complex CPS found in the IoT-manufacturing application shown in Fig. 1.

This project will address DRL’s robust stability problem through a novel learning model that
we call a behaviorally ordered abstraction or BOA. BOAs are based on the fact that when a dynam-
ical system’s orbits are closed and bounded, then its trajectories can be written as the sum of its
steady-state and natural response [28]. A BOA is a pair of models that separately capture these
two responses. In particular, a BOA has a moment-matching (MM) model [3] capturing the plant’s
steady-state response and a model-following (MF) system capturing the plant’s natural response.
The remarkable thing is that both models have a linear structure that can be efficiently learned in
a data driven manner through regression [78] or dynamic mode decomposition algorithms [74].
This means that BOA models will address deep learning’s issues with regard to being data-hungry
and using offline training. Moreover, the BOA’s parameters can be concretely interpreted in terms
of the system’s natural and steady-state response, thereby addressing issues regarding a deep
neural network’s interpretability. The final useful BOA property is that its MF-model is the aug-
mented plant of a generalized regulator used in formulating a robust control problem [98]. This
means that BOAs provide a framework for ensuring a DRL control policy has robust stability.

The BOA-models used in this project represent a novel approach to learning control that we
introduced in [48] to robustly control hopping robots. This project will explore how one can use
these models to robustly control complex CPS found in IoT manufacturing systems. In particular,
this project will develop a meta-learning [23] framework based on BOAs that learn how to control
complex CPS performing a number of different tasks. The resulting meta-learning algorithms will
be experimentally evaluated using a hardware testbed based on the IoT-manufacturing system
shown in Fig. 1. The proposed testbed will be an IoT-enabled CPS whose physical fabric consists
of robots following scheduled routes determined by a central planner receiving real-time robot
data streams over a cyber fabric formed by a 5MHz WiFi network.

The remainder of the project description is organized as follows. Section 2 is the Research Descrip-
tion. Section 3 is the project’s Evaluation Plan. Section 4 is the Project’s Management Plan. Broader
Impacts and results form prior NSF research are in sections 5 and 6, respectively
2.0 Research Description:
This section describes the research to be performed by the project. Section 2.1 defines behaviorally
ordered abstractions (BOAs). Section 2.2 describes preliminary work. Section 2.3 describes the pro-
posed research activities. Section 2.4 is the subsection on CPS Research Focus.
2.1 Behaviorally Ordered Abstractions (BOAs): Machine learning (ML) is often posed as an op-
timization problem selecting models that minimize a chosen loss function with respect to a finite
amount of data generated by a system. One may also, however, think of ML as selecting models



for coordinate-free concepts that are used to understand and manage what a given system is doing.
These “concepts” are then represented as low-dimensional manifolds in a high dimensional data
space [55]. The complexity of finding such manifolds depends greatly on the features used to en-
code the data. The reason why deep learning is data hungry is because it is trying to learn these
features directly from the data. This approach makes sense for image classification [43], but this
project is concerned with learning how to control dynamical systems and for such systems the “con-
cepts” of interest are the system’s basic limit sets [12]. These basic sets are fundamental features for
all compact dynamical systems. By structuring our models in terms of these particular features,
one can greatly reduce the sample complexity of learning these models.

Basic limit sets are invariant sets that form natural features for homogeneous dynamical systems
with closed and bounded (i.e. compact) orbits. For such systems there always exists a limit set that
is invariant, attracting, and is formed from the union of mutually disjoint basic limit sets [12]. When
there are a countable number of basic sets, then one can classify any orbit of the system as being
either recurrent or nonrecurrent [7]. Recurrent orbits are contained within a single basic set and
they represent what we commonly think of as the system’s steady-state response. A nonrecurrent
trajectory connects two different basic sets in the sense that the trajectory approaches different
basic sets as t → ∞ and as t → −∞. Any nonrecurrent trajectory converges asymptotically to a
recurrent orbit and the difference between the nonrecurrent and recurrent orbits forms what we
commonly think of as the system’s natural response. In traditional signals/systems terminology,
this means that the trajectories of any homogeneous system with compact orbits can be decom-
posed as the sum of its natural and steady-state responses [28]. For convenience, we refer to this
as the system’s behavioral decomposition. BOA models are based on this behavioral decomposition.
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Figure 2: The MF System, Σmf , captures the natural dynam-
ics of the plant, Σ0, under auxiliary control, ũ0(t), with re-
spect to a given generator, Σg , and base control policy Σc.

To formally define a BOA, we consider a
plant, Σ0, with two types of inputs and two
types of outputs. The plant inputs are distur-
bances, w(t), and controls, u(t). The plant out-
puts are the system loss, z(t), and the system
observations, y(t). To take advantage of behav-
ioral decompositions, we assume the distur-
bance, w(t), is the output of another dynami-
cal system, Σg, called the generator. The plant
is the process we wish to control and the gen-
erator is the process representing the dynam-
ics of the external environment that the plant
is embedded within. We also assume that the
control, u(t), is generated by a stabilizing base
controller, Σc, that ensures the plant’s states remain closed and bounded. This base controller
could have been obtained previously through a number of methods. For instance, it could have
been the policy learned using DRL. But the stabilizing control policy could have also been gener-
ated through model predictive control methods (as done in [9]). For whatever base control policy,
Σc, the main requirement is that it is “stabilizing” with respect to some generator, Σg. Our main
problem is then to learn how to robustly stabilize the control policy in the presence of perturbations
to the environment, Σg or to the physical plant, Σ0. Since we don’t have an accurate prior model
for Σg or Σ0, we must use ML methods to learn how to stabilize the prior base policy, Σc.

A behaviorally ordered abstraction (BOA) for the plant, Σ0, with respect to generator, Σg, and
base controller, Σc, is a pair of state-based systems, (Σ̂mm, Σ̂mf), called the moment-matching or
MM-model and model-following or MF-model, respectively. The MM-model, Σ̂mm, captures the



plant’s steady-state response with respect to the generator and base control policy. This means
that the MM-model’s output, ψ(t), asymptotically converges to the steady-state response of the
plant’s observation, y(t). The MF-model, Σ̂mf , is a state-based model for a model-following MF-
system shown in Fig. 2. The MF-system is a classical model-following system [66] often used in
model reference adaptive control (MRAC) [69]. The difference from conventional MRAC is that
our MF-system uses the MM-model, Σ̂mm, as the reference model. Our model, Σ̂mf , for the MF-
system has an auxiliary control input, ũ(t), injected on top of the base control, u0(t). The output of
the MF-system is a model following error , ỹ(t) = y(t) − ψ(t), describing how closely the plant’s
observation , y(t), is tracking the MM-model’s output, ψ(t). The MF-system therefore captures
how the auxiliary inputs, ũ(t), excite those controllable plant states that are observable from the
observation, y(t). Since the MF-system subtracts out the MM-model’s response, we see that the
MF-model, Σ̂mf , is capturing the plant’s natural response whereas the MM-model, Σ̂mm, is capturing
the plant’s steady-state response.

Both components of a BOA can be learned in an efficient and online manner. Let us take a closer
look at the two models to justify this assertion. Let the plant, Σ0, and generator, Σg, be

Σ0 :

{
ẋ(t) = F(x(t), w(t), u0(t))
y(t) = G(x(t))

Σg :

{
ω̇(t) = S(ω(t))
w(t) = Lω(t)

Following [3], a moment matching MM-model, Σ̂mm, has the state space realization model

ξ̇(t) = S(ξ(t)) + ∆(w(t)− Lξ(t))
ψ(t) = [G ◦Π] (ξ(t))

(1)

where ξ(t) is the MM-model state and ∆ is a matrix parameter. The moment map, G ◦Π, lifts the
MM-model’s state into the plant’s state space and is chosen in such a way [3] that the MM-model’s
steady-state output, ψ(t), equals the plant’s steady-state output, y(t).

Learning the MM-model has two parts; learning the state dynamics and the moment map. If
the inputs, w and u0, are bounded, then we can use a Fourier analysis of w to find the disturbance
signal’s fundamental harmonics and then use the periods of these harmonics to construct a set
of harmonic oscillators, thereby fixing the S matrix in equation (1). This approach reduces the
MM-model’s state equations to that of a Luenberger observer that is estimating the “state” of the
generator, Σg. Note that the MM-model’s state equations are linear so that the plant’s nonlineari-
ties are pushed into the moment map, G◦H. Learning this memoryless map is a classical machine
learning problem that can be solved by training linear or kernel-based support vector machines
(SVM). In other words, the MM-model can be trained as a data-driven regression problem [78].
Such regressions can also be solved in an online manner using recursive least-squares estimators.
Moreover, the SVM’s VC-dimension is given the size of the moment map model, thereby allowing
one to use existing frameworks to manage the model’s complexity [6].

Let us now examine how one trains the second BOA model, Σ̂mf . The MF-system, Σmf , is a
model-following system built around the MM-model, Σ̂mm. In other words, the MF-system char-
acterizes how well the plant is tracking the steady-state behavior predicted by the MM-model.
Locally, this tracking behavior can be modeled by a linear state-based system, Σ̂mf . Our approach
for learning the MF-model is based on the Koopman decomposition [5]. In particular, we inject
a test signal, ũ(t), on top of the base control input, u0(t). The test signal is a sequence of expo-
nentially decaying impulses that excite the natural dynamics of the plant about the steady-state
response. We then use delay embeddings [32] of the MF-error, ỹ(t), as a surrogate for the con-



trollable/observable states of the MF-system. This approach allows us to use algorithms such as
dynamic mode decomposition with control (DMDc) [74] to identify the MF-model, Σ̂mf . The DMDc
algorithm is also solving a regression algorithm, though its implementation is more involved since
it takes the singular value decomposition (SVD) of the data matrix. Nonetheless, the regressive
nature of the problem suggests that the DMDc algorithm can also be realized in an online manner.

It may be surprising, at first glance, that the BOA’s linear structure is capable of capturing a non-
linear plant’s behavior. The reason for this is that the MF-model captures the dynamics about one
of the plant’s basic limit sets. These dynamics are inherently hyperbolic since the center manifold
lies in the basic limit set and so the plant’s natural dynamics are locally approximated by lin-
earizations. This means that the plant’s nonlinearities are isolated to its behavior on a basic limit
set; behaviors that are captured by the MM-model’s moment map. Since training that moment
map is basically a regression, we can again get away with linear modeling structures. Another
reason why linearly structured models can be used is because we are using them in a feedback
loop. In other words, one does not need to use a high fidelity open loop plant model because the
feedback signals act to reduce the closed loop system’s sensitivity to modeling error.

Figure 3: BOA as a multi-layered re-
current network

Let us now consider how a BOA differs from deep neural net-
works. Deep neural networks consist of numerous layers captur-
ing fundamental “features” in the data set. Deep learning trains
these layers through the backpropagation algorithm and places no
assumptions on what these features will be. As a result deep learn-
ing yields small biases but that performance is achieved after train-
ing on very large data sets. Deep learning is well suited for image
classification applications where the fundamental features need to
be learned [43]. This project, however, focuses on dynamical sys-
tems whose behaviors can be characterized in terms of naturally
occurring invariant sets that allow us to decompose a system’s re-
sponse into its natural and steady-state responses. These two re-
sponses are invariant concepts that we take as the dynamical sys-
tem’s features. Training BOAs is efficient because we have fixed
the type of features we are trying to learn, rather than attempting
to relearn what those concepts should be.

Even though we have described BOAs without referring to traditional neural network modeling
methods, it is possible to view the BOA as a specialized multi-layered recurrent neural network.
Fig. 3 illustrates an alternative view of the BOA model consisting of three layers. The bottom ξ-
layer captures the features of the generators, Σg. The MM-model’s moment map is captured in the
middle layer of Fig. 3. Finally the MF-model is captured by the top q-layer in the figure. Because
the q-layer and ξ-layer are modeling state-space dynamics, these are actually recurrent layers. In
this regard, one may therefore view the BOA as a specialized recurrent neural network whose
layers are trained in a manner that allows them to be concretely interpreted with respect to the
behavioral decomposition described above.

The last important feature we wish to emphasize regarding BOA modeling is that it provides
a powerful and flexible way of formulating robust control systems. In particular, the BOA’s MF-
model may be viewed as a model for the augmented plant of the generalized regulator shown in
Fig. 4. Generalized regulators are canonical feedback structures used to formulate robust optimal
control problems [98]. The augmented plant is formed by augmenting the original plant, Σ0, with
dynamical systems that characterize how we want the controlled plant to behave. A state feedback
controller forces the plant to track the steady-state response predicted by the MM-model.



Figure 4: BOA-based Generalized Regulator: The MF-
system acts as the augmented plant of a generalized regula-
tor. Delay-embedding of the MF-error signal, ỹ(t) forms the
MF-system’s controllable/observable states which are used
by state feedback control to regulate the MF-error, ỹ(t).

This augmented plant, therefore has three in-
puts; disturbancesw(t), from the generator, Σg,
the base control from the policy, Σc, and auxil-
iary control inputs, ũ(t). The augmented plant
has two outputs; a loss signal, z(t), that mea-
sures the controlled system’s performance and
the MF-error signal, ỹ(t), that is used by the
feedback controller to generate the auxiliary
input, ũ(t). The controller shown in Fig. 4 is
designed from the MF-model, Σ̂mf . It is a state-
based feedback control that uses delay embed-
dings [32] of the MF-error, ỹ, to reconstruct the
MF-system’s controllable states. Because the
MF-model is a linear state space realization, there are a number of control synthesis methods
we can use to manage the closed-loop sensitivity at z to disturbances, w. In essence, this control
architecture is regulating the system’s MF-error so the steady-state output is tracking that of the
MM-model’s prediction of the steady-state behavior.

Note that we are proposing to first “learn” a BOA for the open-loop plan and then we synthesize
the associated controller. This is similar to the strategy used in model-based DRL [68]. It is widely
acknowledged that model-based DRL is more sample efficient than model-free DRL [64] since one
doesn’t have to relearn the plant dynamics for each new task the system performs. What model-
based DRL, however, does not provide are guarantees on the robustness of the learned control
policy. The BOA models can provide such guarantees on robust stability and performance when
we embed them in the generalized regulator shown in Fig. 4. In particular, rather than seeing
BOA-based control as an alternative to DRL, we should think of it as providing a way to robustly
stabilize an existing base control policy. That base policy could have been learned using DRL or it
could have been synthesized using model-predictive control [9]. In this regard BOA-based control
may provide a mature theory for robustly stable DRL-based control policies.
2.2 Preliminary Results for BOA-based Control: This subsection describes prior work demon-
strating that training BOA models for control can be done in a sample efficient and online manner.
This prior work used BOAs to control information flows in wireless communication networks [20]
and to control hopping robots traversing changing terrain [48]. This prior work suggests that
BOAs provide a good basis for robustly controlling the cyber and physical fabrics of CPS.
2.2.1 BOA-based Flow Control in Wireless Networks:. Preliminary results presented at EMSOFT
2021 [20] demonstrated that one could use BOA-based methods to learn how to control the in-
formation flows in a wireless network forming the cyber fabric of an IoT-enabled system. The
generalized regulator for this application is shown in Fig. 5 where the plant is a mesh wireless
network connecting machines on the factory floor. The base control, u0(t), is a primal-dual flow
controller [57] used in wired TCP/IP networks [31]. This base control is realized as a distributed
policy in which users generate flow rates and a network manager generates “ prices” to keep the
total link traffic below a known capacity limit. The network is subject to multiuser interference
because of the network’s wireless (RF) nature. This means that network links may randomly drop
packets whose subsequent retransmission increases the flow rate. Fig. 5 shows packet drops as ex-
ternal disturbances, w(t). The loss, z(t), is the network’s QoS measured by the average utilization
of all network flows.
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Figure 5: Prior results [20] demonstrated BOA-
based control of information flow rates in a
cyber-fabric formed from a wireless RF commu-
nication network.

We used a simulation of the wireless network to learn
a BOA whose MF-model captured the error between the
MM-model’s predicted QoS and the plant’s actual QoS.
As discussed above, delay embeddings of the MF error
were used to reconstruct the system’s state vector, q(t),
and we then used a linear quadratic regulator (LQR) for
the feedback control gain, K, shown in the block dia-
gram. The top plot in Fig. 5 shows the MF-error for a
simulation run. In the first half of this run, the BOA was
trained in an online manner with the auxiliary control,
ũ(t), set to zero. The plot shows an initial transient that
stabilizes to a steady-state error varying between ±0.5.
At the end of the training period, the LQR control gain is
synthesized from the BOA’s MF-model and we then turn
on the auxiliary control. Fig. 5’s plot shows that the con-
trolled system was very effective in regulating the MF-
error well below what was observed using the base con-
trol policy alone. These results therefore demonstrated that BOA-models could be trained in a fast
online manner to regulate the information flows in an IoT system’s wireless cyber fabric.
2.2.2 BOA-based Adaptive Control of Robotic Hopper: Preliminary work in [48] trained BOAs
used to adapt the step-length controller [22] for Raibert’s hopper [75] to changes in terrain slope
and hopper dynamics. This is an example of BOA-based methods being used to control a partic-
ular type of CPS known as a hybrid system [49]. We considered a variation of the standard hopper
that had an additional spring connected link that would cause the robot’s head to bobble. We
initially trained the BOA on a stiff-headed hopper (large spring constant) as it traversed uneven
terrain. The learned BOA was used to synthesize a passivity based control for the MF-system. The
resulting controlled system was then tested on the bobble-headed hopper (small spring constant).
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Figure 6: Prior work [48] demonstrated that BOA-based learning could be used to adaptively control Raibert’s hopper.
The example was initially trained on a stiff-headed hopper (top plot) and then used the MIT rule to adapt that controller
to effectively control a bobble-headed hopper (bottom plot).

The left side of Fig. 6 shows the block diagram for the controlled hopper. The top plot on the
right side of Fig. 6 shows the hopper’s forward velocity with the learned controller and no adapta-
tion. Prior to 50 seconds, we are controlling a stiff-headed hopper and after 50 seconds we switch



to the bobble-headed hopper. The bold vertical dashed lines mark times when the hopper tran-
sitions from hopping downhill to hopping uphill. The plot shows that the head begins to bobble
every time the hopper changes its hopping direction. The bobble head results in an oscillatory
burst in the hopper’s forward velocity. While the passivity based control ensures these oscilla-
tions do not cause the hopper to fall down, the hopper does stumble awkwardly since its forward
velocity clearly exhibits large deviations away from the commanded forward speed.

This preliminary work also demonstrated that a BOA-based passivity controller could adapt
to the bobbling head. We demonstrated this adaptive capacity by using the fact that passivity
based controllers are high gain controllers. This means that closed loop system performance can
be improved by simply increasing the control gain. We used a simple gradient-based adaptation
rule to increase the control gain, Kg, every time an oscillatory burst was detected. There are many
ways of realizing this gradient based rule, but the simplest was to use the MIT rule [62].

The bottom plot in Fig. 6 shows what happens when the MIT rule was used to adjust the feed-
back gain. The plot shows that after every oscillatory burst, the subsequent bursts are smaller. If
we think of hopping with a stiff head and hopping with a bobble head as two distinct tasks, then
the result demonstrates the ability to transfer, or rather “adapt”, control knowledge from the stiff-
headed task to the bobble-headed task. This is precisely what one is looking for in meta-learning.
It suggests that BOAs provide a model for meta-learning that may be better at switching between
tasks than previous meta-DRL methods used to control robotic systems [68].
2.3 Proposed Research Activities
The preliminary work in section 2.2 only demonstrates that it is feasible to use BOA models to
robustly stabilize complex CPS. This prior work, however, does not create an engineering system
for learning these BOA models, it did not explore the limitations of BOA-based modeling, and it
did not directly demonstrate that BOA-based control could indeed be used to improve the robust
stability of DRL base control policies. The following research activities (tasks) will address these
deficiencies in the prior work

1. Task 1 - Modeling Nonstationary Environments: While the prior work considered time-
varying disturbances, these generators were stationary in the sense that the number and
frequency of the disturbance harmonics did not change. In addition to this, each MM-model
may be seen as capturing the steady-state behavior on a specific basic limit set. Complex
dynamical CPS may have multiple basic limit sets and this means one must have a way of
searching for this basic limit sets. This task will develop algorithms for generating a BOA
database that captures the full environmental complexity we expect to find in real-life CPS.

2. Task 2 - Coordinated Online BOA Training: The preliminary work learned BOAs in a se-
quential episodic manner. We first identified the harmonics in the generator, Σg and then we
learned the MM-model. That MM-model was used to construct an MF-system that was then
learned by a DMDc algorithm and finally that model for the MF-system was used to synthe-
size a controller. This episodic approach does not provide an agile way of training BOAs in
a nonstationary environment. This task will develop sample efficient online methods that
avoid using this episodic approach to training.

3. Task 3 - BOA-based Control for Multiple Tasks: CPS such as the IoT manufacturing system
in Fig. 1 are complex because they perform a number of different tasks. These tasks may be
seen as abrupt changes in the base control policy, Σc, or even in the plant, Σ0. Shifts in the
base control may arise due to planned schedule changes in workflows. Shifts in the plant
may occur due to automatic reconfiguration of the cyber-fabric or faults in the physical plant.
The main challenge in this task involves finding ways to easily adapt previously trained
BOA-models and controls to such shifts. This task proposes addressing that challenge by



using meta-learning [23] for adapting previously trained BOAs.
4. Task 4 - Robust Stabilization of DRL Policies: The prior work involving the robotic hopper

demonstrated that one could learn BOAs that would serve as the basis for robustly stabi-
lizing a control policy with respect to passive shifts in the plant dynamics. Such demon-
strations, however, do not analytically characterize the robust stability guarantees that we
believe BOA-based control will extend to DRL derived base control policies. This task will
use approximate simulation concepts [19] to derive formal guarantees on using BOA-based
control for the robust stability of DRL policies.

 Task 2.3.1 - Model Nonstationary Environments

Task 2.3.2 - Coordinated Online BOA Training

AY1 AY2 AY3Research Tasks

Task 2.3.3 - BOA-based Control for Multiple Tasks

Task 3.1 - Tesbed Setup

Task 3.2 - BOA-based Meta-learning Evaluation

AY1 AY2 AY3Evaluation Tasks

Task 3.3 - Robust Stabilization DRL Policies

Task 2.3.4 - Robust Stabilization of DRL Policies

Figure 7: Proposed Project Schedule

The following subsections describe these re-
search activities in greater detail. Fig. 7 shows
the Gantt chart for the research tasks and the
evaluation tasks.
2.3.1 Research Task 1 - Modeling Nonstation-
ary Environments: Our prior work assumed
the generator dynamic had distinct harmonics
that did not change over time. In reality, we
expect the generator to change due to environ-
mental shifts and this means we will need to
develop methods for training BOAs when the
external environment changes. This task proposes using unsupervised learning methods to build
a database of BOA models that can be used in switching between different controllers for the plant.
Unsupervised learning takes unlabeled data and groups it into clusters of “similar” elements and
then identifies “keys” that serve as a canonical example of a given cluster’s elements. We propose
storing this clustered data in a relational database using the given “keys” for context sensitive data
retrieval. The algorithm to be developed here will serve as the database’ storage engine. We will use
MySQL for the database’ search engine. This task therefore will develop software implementing a
BOA database that will be later used in the project’s evaluation tasks (section 3).

Critical research issues in building the BOA database storage engine revolve around the particular
clustering algorithm being used and the type of similarity metric used to form clusters. We pro-
pose using a similarity metric that places two BOAs in the same clusters if their MF-errors, ỹ(t),
are close to each other. Such norms on ỹ(t) should be useful similarity measures since we already
know that the plant is an approximate simulation [19] of the MM-model. While there are numer-
ous clustering algorithms available, we propose to start by using graph-clustering techniques [89]
since they are known to scale well for image segmentation [79] but also because we’ve had success
using them to identify basic sets of complex dynamical systems [47]. We also intend to compare
graph-clustering against competing methods; KNN algorithms, hierarchical clustering, and bar-
code methods [17]. The main deliverable from this task will be software components for the BOA
database engine as well as analysis characterizing how well the graph-clustering methods are at
capturing the nonstationarity we expect to see in real-life CPS applications.
2.3.2 Research Task 2 - Coordinated Online BOA Training:. This task will develop algorithms
used for online BOA training. These algorithms will address implementation issues with the
episodic training that we used in the preliminary results of section 2.2. This task’s activities con-
cern the development of a data-driven online DMDc algorithm and the use of recurrent backprop-
agation for the coordinated training of the BOAs MM and MF models.

Our preliminary work in section 2.2 used the DMDc algorithm [74] to train MF-models. The
DMDc algorithm is usually implemented in a batch manner. Converting the DMDc algorithm
into an online algorithm should be possible since it is basically solving a regression problem.



The most computationally intensive part of the algorithm is the computation of the data matrix’
singular value decomposition (SVD). Recursive updating of an SVD can be done through matrix
perturbation methods. We believe this can be done using a recent recursive algorithm used for
low-rank modifications of the SVD of “thin” data matrices [4].

This fast SVD algorithm will also be useful in addressing another issue faced by the online train-
ing of MF-models. Prior work in section 2.2 assumed the auxiliary test inputs, ũ(t), were scalar
valued. Clearly many of the CPS systems we are interested in controlling will have vector-valued
test inputs and this means we must identify the “best” direction along which these vector-valued
test inputs should be injected. The “best” direction is the one that is maximally coupled to the sys-
tem’s internal states and it may be determined from an SVD of the system’s controllability matrix.
Recent work in [63] developed data-driven controllability tests and we propose using these data-
driven tests along with the fast SVD algorithm to track those test input directions maximizing the
degree of controllability defined with respect to the system’s gramians [60]. Our exponentially
decaying test signals will then be injected along those “best” directions and the resulting output
will be used in the online DMDc algorithm described in the preceding paragraph. The main de-
liverable from this part of the task will be an online DMDc algorithm that automatically selects its
test auxiliary signals to maximize the degree of controllability.

This task will also develop methods that avoid the sequential episodic manner in which BOAs
were trained in the preliminary work. While one can avoid this sequential update strategy by sim-
ply separating the timescales at which the MM and MF-models are trained, this approach requires
some prior assumptions about time scale separation that may difficult to justify for complex CPS.
We will therefore consider an alternative approach based on the earlier observation that every
BOA may be viewed as a multilayer recurrent network (see. Fig. 3). This observation suggests
that some variation on classical backpropagation [77] may be used. The main wrinkle with this
is that our BOAs are recurrent networks and this means we would either use backpropagation
through time (BPTT) [93,94] or recurrent backpropagation (RBP) [2,73]. At this point we are lean-
ing toward starting with RBP because BPTT requires an unfolding of the recurrent network into
a feedforward structure. We worry that this unfolding may not scale well for our current systems
and so our initial impulse is to start using RBP for training the BOA. The main issues for RBP will
be the stability of the learning process. But because our models have a linear structure, we believe
we can get useable bounds on RBP stability using classical diagonal dominance arguments [80] on
Lyapunov-like functions that verify the learning process is contractive [56]. This direction is similar
to what recently appeared in [8] for recurrent networks. The main deliverable from this part of
the task will be algorithms that allow coordinated online training of the MM and MF models of
a BOA with analytical guarantees on learning convergence rates that can be used to help control
how the RBP learning methods are implemented.
2.3.3 Research Task 3 - BOA-based Control for Multiple Tasks: DRL or BOA-based learning
should all be able to generalize beyond their training data in the sense they still effectively reg-
ulate the plant against small perturbations of the generator provided the base control policy
and the plant doesn’t change. This assumption is unrealistic for the class of CPS found in IoT-
Manufacturing. In reality, the cyber fabric of the IoT system will change due to shifts in network
topology or shifts in load balancing strategies. In the IoT factory’s physical fabric, there will be
similar shifts that may greatly modify the dynamics in that fabric. In particular, we attribute all of
these shifts to changes in the task that the system is performing. So while we expect well trained
models (BOA or DRL) to generalize with respect to in-distribution data (i.e. changes in the envi-
ronment), we do not expect similar robustness with respect to out of distribution data (i.e. changes
in the base policy or plant). Since such “out of distribution” shifts will occur in IoT-enabled CPS,



this task will explore the use of meta-learning to adapt a previously trained BOA control system so
it works well when the system performs a task that was not in the original training data.

Meta-learning [23] or “learning to learn” [86] has emerged as a powerful way to generalize
between tasks. Meta-learning extends classical machine learning by parameterizing the model in
terms of task parameters and meta parameters. These two types of parameters are selected by two
different types of learning agents. The meta-learner is an agent that selects meta parameters which
minimize the model’s loss when it is averaged over all tasks the system might perform. The meta
parameter represents a family of models and so one may think of the meta-learner as configuring
how the classical machine learning problem is to be solved. The second agent solves a classical
machine learning problem and is called the task-learner. For a given meta parameter, the task
learner selects task parameters minimizing the model’s loss on the system’s current task.

One may formalize the preceding description as a bilevel optimization problem [23] of the form,

θ∗ = arg min
θ

1

N

N∑
i=1

Lmeta(φ∗i (θ), θ;Dtest
i )

φ∗i (θ) = arg min
φ
Ltask(φ, θ : Dtrain

i )

(2)

The upper problem is solved by the meta-learner agent and selects a meta-parameter, θ∗, minimiz-
ing a meta loss function, Lmeta(θ, φ), averaged over a test data set,Dtest, containing representatives
of all tasks being performed. The lower problem is solved by the task-learner agent and selects a
task-parameter, φi(θ), that minimizes the task loss function, Ltask(θ, φ), for the ith task’s training
data, Dtrain

i , with respect to a fixed meta parameter θ.

task learner

meta-learner

BOA
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Figure 8: The BOA-based meta-learning framework ap-
plies meta-learning’s bilevel optimization framework (blue
blocks) to the generalized regulator (yellow blocks) whose
augmented plant is formed from the BOA’s MF-system.

This task’s approach to meta-learning for con-
trol integrates the bilevel optimization frame-
work in equation (2) with the BOA-based gen-
eralized regulator shown in Fig. 4. In particu-
lar, we take the plant’s BOA and associatd con-
trol gains, K, as the model’s task parameters,
φ. An important fact that is not always well
appreciated outside of the controls community
is that controller synthesis is a recursive pro-
cess in which the designer has to search for the
best way of configuring the synthesis problem.
The best known example of this is seen in the
design of linear quadratic controllers where
the designer selects a pair of weighting matri-
ces that trade off the control effort expended
against the controlled system’s regulation er-
ror. The choice of these weighting matrices
has a profound impact on the robustness of the
controlled system [10] and so weight selection is a critical part of the design process. This project
takes these weighting matrices as the meta parameters in the bilevel framework in equation (2).
Our proposed approach, therefore, has the meta-learner determine the best way of trading off
control effort and regulation in a manner that is fair to all tasks. The task-learner then uses that
configuration of the synthesis problem to select the optimal control gains for the current task.

We can then merge the BOA-based generalized regulator and the bilevel meta-learning frame-



work in equation (2) as shown Fig 8. In particular, let us assume the controlled system is currently
performing task i. This task’s training data, Dtrain

i , consists of the augmented plant’s outputs, z
and ỹ, and the task learner uses Dtrain

i to adaptively learn an optimal BOA and then select control
gains, Ki, that minimize the regulation error for this task. As mentioned above, that regulation
problem is configured by the meta parameters, θ∗, trading off control effort against regulation per-
formance. The meta-learner selects these meta parameters with respect to a test data set,Dtest, that
is generated by Markov-Chain Monte Carlo (MCMC) simulations drawing from the BOA database
of models and control gains that were obtained by the task learner in previous tasks. The MCMC
sim-engine will generate simulation runs for all tasks that the system previously performed.

The main deliverable from this task will be software realizing a distributed implementation of the
meta-learning framework in Fig. 8. The proposed work will build an MCMC simulation engine
that uses the BOA database from research task 2.3.1 to generate testing data for the meta learner.
This testing data must include representatives from all tasks that the CPS system has performed.
We propose using MCMC methods to efficiently and fairly sample the BOA database for BOAs
representative of all tasks the system has previously performed. The MF-models retrieved by the
MCMC sim-engine will be used to automate the generation of computational simulation models
of the MF-system with randomly generated auxiliary control inputs along those directions with
the maximum degree of controllability. The resulting simulation outputs will then be added to
the testing data set, Dtest. The main deliverable from this task will be the software components
generating the data sets used by the meta-learner.

The research issue to be addressed in this software development task concerns the fact that IoT-
enabled CPS will have thousands of interacting subsystems in the cyber and physical fabrics. This
means that it will be impractical to field a software platform whose task-learner and meta-learner
are realized in a centralized manner. The raw information used by task learner will be generated
across edge devices. The BOAs and controllers trained by our meta-learning framework will be
geographically dispersed throughout the IoT system’s cyber and physical fabrics. This means that
the task and meta learners will need to be implemented in a distributed manner.

This problem is relevant to federated machine learning [42]. Federated learning is concerned with
fusing edge data into a centralized model that usually takes the form of a feedforward neural
network. There has already been extensive work focused on federated learning’s statistical is-
sues [97] and privacy issues [87]. This research task will pivot to focus on a federated learning
paradigm that fuses edge data to train models that are distributed across the IoT manufacturing
system’s cyber and physical fabrics. Based on our prior work with distributed optimization [90],
networked control [27], and consensus [50], we will explore algorithms that make use of social
learning protocols to train distributed BOA models. We are aware that there has been a great deal
of prior work using distribution schemes based on consensus protocols [70], but we also know
these methods can lead to models that are unfairly biased by the data from edge devices with the
greatest out-degree connectivity [50]. One way that has recently emerged to address this issue
is through social learning [29] protocols (rather than consensus protocols [71]). Recent work has
begun to formally explore the convergence properties of social learning [88]. This task’s research
will explore the extent to which social-learning algorithms can be used as a basis for developing
distributed software implementations of the meta-learner framework in Fig. 8. This task will first
build a centralized meta-learning software that can be quickly used by section 3’s evaluation tasks.
This task’s main deliverable will be a distributed implementation of the meta-learning software
based on social learning algorithms.
2.3.4 Research Task 4 - Robust Stabilization of DRL Policies: While Deep Reinforcement Learn-
ing (DRL) has provided impressive demonstrations controlling millipede robots over changing



terrain [67], it is widely known that these policies are not robustly stable [37]. When the plant
models are linear, then one can establish the stability of traditional reinforcement learning poli-
cies [81] using adaptive dynamic programming (ADP) [51]. For nonlinear discrete-time plants one
can use the methods in [21]. But neither of these works can be extended to deep neural networks
in a way that provides a mature theory for the robust stability of DRL-derived control policies.

In our opinion BOA-based modeling provides a way to obtain theoretical guarantees on the ro-
bust stability of DRL control policies. The main reason for this belief is that we already know that
the plant is an approximately simulation [19] of the moment matching (MM) model. An approxi-
mate simulation relation means that we can bound the model-following error, ỹ(t), with respect to
bounded perturbations of the disturbances. An approximate simulation relation exists when we
embed the MM-model in a hierarchical control system [18] with an appropriately chosen control
interface. In particular, the BOA-based control architecture shown in Fig. 4 is that hierarchical
control system proposed in [18] and this should provide formal guarantees on the robust stabil-
ity of the DRL-derived base policy. These formal guarantees will be in the form of bounds on
the model following error that can be obtained from simulation functions computed using SoS
methods, similar to what was done in [44]. This task’s main deliverable will be formal analysis
providing guarantees on how BOA-based control can robustly stabilize DRL-derived policies.
2.4 CPS Research Focus: This project’s challenge problem is to learn how to control complex CPS
that perform multiple tasks in a changing and uncertain world. The project’s focus CPS attributes lie in
our target CPS application, the IoT-enabled manufacturing system in Fig. 1. This system has a
physical fabric formed by the flow of materials across the factory floor and a cyber fabric formed
by the digital communication network controlling the flow of information used to manage flows
in the physical fabric. An important CPS attribute of this system is coupled dynamics in both
fabrics since congestion in one fabric can trigger congestion in the other fabric and vice versa.

Learning how to control complex CPS such as the IoT manufacturing system will address a
number of core CPS research areas in control, real-time learning for control, IoT, and networking. The
project will develop new real time methods for learning how to control complex IoT systems.
These methods will control the IoT system’s cyber and physical fabrics in a coordinated real-time
manner that is impossible to do using current reinforcement learning methods. The applications
targeted by this project will be in the area of IoT-enabled manufacturing, a critical class of CPS
system whose optimal management is projected to have a great impact on national economic
activity [1, 58]. This suggests that the products delivered by this research may play a significant
role in expanding the role that CPS control methods play in IoT-enabled applications.
3.0 Evaluation and Experimentation Plan:
The fourth Industrial revolution (Industry 4.0) [45] refers to rapid change in the manufacturing
sector driven by Internet-of-Things (IoT) technologies. The project’s evaluation and experimenta-
tion plans revolve around a hardware testbed inspired by the IoT manufacturing system shown
in Fig. 1. The physical fabric is formed from webcams and autonomous mobile robots that move
along specified routes in the physical workspace. The cyber fabric is formed from a mesh ad hoc
wireless 5 GHz network connected to the Internet and accessed through WiFi adaptors attached to
each robot and webcam. This testbed may be seen as a simplified version of the IoT-manufacturing
system in Fig. 1. This simplified testbed would have autonomous WiFi connected robots moving
through the hallways of the engineering building.

The purpose of this testbed is not to duplicate how autonomous robots might be used in a
real-life manufacturing 4.0 environment. The development of such a realistic industrial testbed is
expensive and well beyond the scope of this project. The purpose of this testbed is to realistically
capture the unpredictable variations in connectivity and message latency that are known to exist in



real-life mobile ad hoc networks. This real-life uncertainty cannot be accurately replicated through
computer simulation models due to uncertainties in the indoor RF environment. The project’s
testbed, therefore, will provide a way to generate large data sets that are representative of the un-
predictable task and environmental shifts we expect to see in real-world IoT-manufacturing sys-
tems. The proposed plan will use these data sets to experimentally evaluate how well BOA-based
meta-learning performs relative to competing meta-versions of deep reinforcement learning. The
plan will be carried out through three related tasks that 1) setup the testbed, 2) experimentally
evaluate the performance of the BOA-based software in learning how to regulate traditional job
shop scheduling and Internet rate control algorithms, and 3) experimentally evaluate how well
BOA-based meta-learning can robustly stabilize DRL-based flow-control policies in the IoT sys-
tem’s cyber and physical fabrics.
Evaluation Task 3.1 - Testbed Setup:. This subtask will build the proposed testbed in the project’s
first year. The physical fabric will consist of five turtlebot robotic platforms equipped with lap-
top, 2d laser scanner, camera system, and WiFi adaptors supporting IEEE 802.11ac standards. We
expect this to cost $20,000 and that cost has been included in the project’s first year budget. The
physical fabric will be built to emulate the movement of robots ferrying parts across a factory floor.
The movement of these robots will be decided by a centralized planner using data gathered from
edge devices over the wireless RF network. While the centralized plan schedules robot move-
ments based on global information about customer orders, the implementation of that plan is left
to the robots. This means that the robots may deviate from the schedule should local situations
(i.e. congestion) require it. This configuration will capture shifts in workflow dynamics as a result
of scheduling decisions moving between the centralized planner and edge devices.

The cyber fabric will be configured to host at least two different network configurations. One
configuration will have all robots connect to a traditional WiFi access point (AP) from which they
can access the job shop planner. The other configuration will support ad hoc networking based on
the WiFi Direct standard. WiFi Direct [16] enables peer to peer communication without an access
point. This is done by forming groups of users with a single user (device) acting as the group
owner (GO). The GO supports some of the traditional AP functionality associated with assigning
IP addresses and broadcasting. This is done to avoid flooding issues that plagued earlier mesh
networking based on the 802.11s standard [91]. The use of multiple network configurations will
allow us to study how shifts in network topology impact flow rates.
Evaluation Task 3.2 - Evaluating BOA-based Meta-Learning Performance:. This subtask has
two objectives. It will first build the base controller for both the physical and cyber fabrics. At this
point, we intend to implement flow controllers similar to the primal-dual controller used in our
preliminary work (see Fig. 5). This will be done for both the cyber and physical fabrics. In the
cyber fabric, flow control will be used to determine how much information each robot transmits
across the network. In the physical fabric, flow control will be used to adjust the speed with
which a given robot traverses the route assigned to it by the centralized planner. The second part
of this subtask will then use the testbed to generate the data sets used to train a BOA for the flows
in this combined cyber/physical fabric. The meta-learning software from the task 2.3.3 will be
implemented and used to evaluate the testbed performance when there are shifts in the physical
fabric (i.e. congestion events) and the cyber fabric (i.e. shifts in network configuration).
Evaluation Task 3.3 - Evaluating Robust Stabilization of DRL Policies:. This subtask has two
objectives. We will first use well known DRL toolkits to develop control policies that optimize flow
rates in the testbed’s physical and cyber fabrics. This policy will be implemented in a centralized
computer that gathers information from all edge devices, decides the best global policy and then
broadcasts that policy to all edge devices. We will then study the robustness of this DRL policy to



perturbations in the physical and cyber fabric. Perturbations to the cyber-fabric will be introduced
through a robot initiating a denial-of-service attack on the network. Perturbations to the physical
fabric will be introduced through intermittent obstacles that create congestion along robot paths.
The objective will be to experimentally evaluate how large of a disturbance is needed to cause a
catastrophic breakdown in the DRL policy. We will use the robust stability results from Task 2.3.4
to predict stability margins for the DRL policy. These stability margins will be experimentally
evaluated on the testbed. We will then experimentally assess the extent to which BOA-based
controls enlarge the stability margin of the DRL-derived base control policy.
4.0 Project Management and Collaboration
Prof. M.D. Lemmon will direct the project. Dr. Lemmon is an expert in networked control systems.
The PI will meet weekly with project students where students present their work and receive the
PI’s feedback. These meetings will facilitate regular review of the project schedule to keep track of
progress on project deliverables. We are budgeting for two Ph.D. students to assist with the work.
5.0 Broader Impacts:
Community Outreach: The project will use ND’s Research Experience for Teachers in Engineering
program (EngRET@ND) for outreach to local high schools. This outreach would host a high school
teacher for four weeks to work alongside graduate students. Later followup will assess the extent
to which the teacher has integrated IoT concepts into the high school curriculum.
Broadening the Participation of Women in Computing: This project will broaden the participation of
women in computing through an existing partnership with Saint Mary’s College. Saint Mary’s
is a four-year women’s liberal arts college that is one mile from Notre Dame. The percentage
of women at Saint Mary’s graduating with STEM degrees is twice the national average. One
opportunity available to Saint Mary’s students is the 4+1 dual-degree program that is offered in
partnership with Notre Dame. As part of this program, students earn a degree of their choice from
Saint Mary’s in four years while earning an engineering degree from Notre Dame in the fifth year.
The PI will apply for REU supplements to host Saint Mary’s students. The PI will work with Saint
Mary’s program coordinator to identify students that are a good fit for this proposed project. This
activity’s success will be measured by the number of Saint Mary’s students joining the PI’s REU
program and the ultimate placement of these students once they graduate.
Curriculum Development: Prof. Lemmon is the director of graduate studies for Notre Dame’s de-
partment of electrical engineering. He is currently working with Notre Dame’s wireless institute
to stand up an in-person professional MS degree that would focus on CPS systems with an em-
phasis on IoT. The program is similar to others across the country (Vanderbilt). The novelty from
other programs rests with our leadership in 5G wireless technologies for IoT applications. We
expect to stand up the program in this project’s second year.
5.0 Results from Prior NSF Sponsored Research:
Lemmon was PI of NSF project CNS-1239222 CPS: Synergy: Resilient Wireless Sensor-Actuator
networks, $1,000,000, 9/2012–09/2016. Intellectual Merits: This project developed resilient wire-
less sensor-actuator networks through the coordinated management of the control system and
the associated communication infrastructure. The approach rested on integrating innovations
in event-triggered control and machine-to-machine communication. Broader Impacts: The project
broadened its impact through Notre Dame’s Wireless Institute, the Midwest Control and Game
Theory workshop, the development of a multi-robot research lab, and the graduation of 6 Ph.D.
students. Publications: 18 conference papers [24–26, 33, 35, 38–41, 46, 52, 53, 65, 82–84, 92, 95], and 6
journal papers [27, 34, 36, 47, 54, 96].
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