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Linear Homogeneous Dynamical System

Consider a linear homogeneous (LH) system whose state trajectory
x : R → Rn satisfies the IVP

ẋ(t) = A(t)x(t), x(t0) = x0

for t ≥ t0.

All solutions of the LH system form an n-dimensional linear space.

Let V denote the set of all solutions to LF over [t0,T ]. If ϕ1, ϕ2 ∈ V ,
then

d

dt
(α1ϕ1(t) + α2ϕ2(t)) = αqA(t)ϕ1(t) + α2A(t)ϕ2(t)

= A(t) [α1ϕ1(t) + α2ϕ2(t)]

So V is closed with respect to addition/dilation and must be a linear
space.
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Solutions of LH Systems

To show V is n-dimensional, we first need to find a basis.

Choose n linearly independent vectors, {xi0}ni=1 that span Rn. Let
{ϕi}ni=1 denote n solutions to the LH using initial conditions
ϕi (t0) = xi0.

Assume solutions are not linearly independent, then
n∑

i=1

αiϕi (t) = 0

where not αi are zero.

This holds at t0, so
n∑

i=1

αixi0 = 0, which contradicts the linear

independence assumption so span {ϕ1, . . . , ϕn} ⊂ V .

Let ϕ ∈ V such that x(t0) = x0 and x0 =
n∑

i=1

αixi0. So

ϕ(t) =
n∑

i=1

αiϕi (t) and V ⊂ span {ϕ1, . . . , ϕn}
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Solutions of LH Systems

Find all solutions to ẋ =

[
−1 e2t

0 −1

]
x .

We know the linear space, V , of solutions has dimension 2. So we
only need to find 2 linearly independent solutions.

We can readily verify that these functions satisfy the LHS.

ϕ1(t) =

[
e−t

0

]
, ϕ2(t) =

[
1
2e

t

e−t

]
Since these two solutions are clearly linearly independent

x(t) = α1

[
e−t

0

]
+ α2

[
1
2e

t

e−t

]
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Solutions to LH Systems

A set of n linearly independent solutions of ẋ = A(t)x is called a set
of fundamental solutions. The matrix

Ψ(t) =
[
ϕ1(t) ϕ2(t) · · · ϕn(t)

]
whose columns are fundamental solutions is called a fundamental
matrix.

Any fundamental matrix satisfies the matrix differential equation

Ψ̇(t) = A(t)Ψ(t)

A solution Ψ of Ψ̇(t) = A(t)Ψ(t) is a fundamental matrix iff Ψ(t) is
nonsingular for all t.
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Solutions of LH Systems

Let Ψ be a fundamental matrix and let ϕ be any solution to the LHS.
There are coefficients (no all zero) such that

ϕ(t) =
n∑

i=1

αiϕi (t) = Ψ(t)α

For any time t, the LAE ϕ(t) = Ψ(t)α only has a unique solution if
Ψ(t) is nonsingular for all t.

Conversely, assuming Ψ satisfies the matrix differential equation and
is nonsingular for all t. This means det(Ψ(t)) ̸= 0 for all t and so the
columns of Ψ are linearly independent. This means Ψ is a
fundamental matrix.
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State Transition Matrix

The fundamental matrices for an LH problem are not unique.

We would like a ”unique” way to characterize the LH problem’s
solution. This is done through the idea of a transition matrix, Φ.

In particular, we denote the state transition matrix over [t0, t] as
Φ(t; t0) and define it as the fundamental matrix whose ith column is
a solution to the LHS with initial condition x(t0) = ei .

Note that Φ(t; t0) = Ψ(t)Ψ−1(t0) where Ψ(t) is any fundamental
matrix of the LHS.

If T is a nonsingular matrix and we let Ψ1 = Ψ2, then Ψ2 is aso a
fundmental matrix.

We also have

Φ(t; t0) = Ψ1(t)Ψ
−1
1 (t0) = Ψ2TT

−1Ψ2(t0)

= Ψ2(t)Ψ
−1
2 (t0)
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Transition Matrices

Φ(t; t0) is unique solution to the matrix differential equation

∂

∂t
Φ(t; t0) = A(t)Φ(t; t0), Φ(t0; t0) = I

Proof:

∂

∂t
Φ(t; t0) = Ψ̇(t)Ψ−1(t0)

= A(t)Ψ(t)Ψ−1(t0) = A(t)Φ(t; t0)

For all t, τ, σ ∈ R we have

Φ(t; τ) = Φ(t;σ)Φ(σ; τ)

Proof: Note that

Φ(t; τ) = Ψ(t)Ψ−1(τ) = Ψ(t)Ψ−1(σ)Ψ(σ)Ψ−1(τ)

= = Φ(t;σ) = Φ(σ; τ)
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Transition Matrices

Φ(t; t0) is nonsingular for all t, t0 and [Φ(t; t0)]
−1 = Φ(t0; t).

Since det(Ψ(t)) ̸= 0 for any t we have

det(Φ(t; t0)) = det(Ψ(t)Ψ−1(t0)) = detΨ(t)× detΨ−1(t0) ̸= 0

Also note that

[Φ(t; t0)]
−1 =

[
Ψ(t)Ψ−1(t0)

]−1
= Ψ(t0)Φ

−1(t)

The unique solution x(t; t0, x0) to LHS is

x(t; t0, x0) = Φ(t; t0)x0
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Solutions of Inhomogeneous Systems

Consider solutions to inhomogeneous problem

ẋ(t) = A(t)x(t) + B(t)u(t), x(t0) = x0

where u is known input.

We claim the solution is

x(t; t0, x0) = Φ(t; t0)x0 +

∫ t

t0

Φ(t; τ)B(τ)u(τ)dτ

where Φ is the state transition matrix for the LH system. This is
readily verified by substituting back into ODE.
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Solutions to Linear Inhomogeneous Problem

Since Transition matrix plays such a prominent role in solution to
inhomogeneous system, we will discuss several approaches for finding
Φ(t; t0).

Consider

ẋ =

[
2 t
0 2

]
x

Note that ẋ2 = 2x2 implies x2(t) = e2tx20.

Note that ẋ1 = 2x2 + te2tx20 is the first ODE and we can use our
prior formula to get

x1(t) = e2tx10 +

∫ t

0
τe2tx20dτ

= e2tx10 + x20
t2

2
e2t
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Transition Matrices

So selection a pair of linearly independent x0, say

{[
1
0

]
,

[
1
1

]}
to

get fundamental matrix

Ψ(t) =

[
e2t t2

2 e
2t

0 e2t

]
The inverse of the fundamental matrix is

Ψ−1(t) =
1

e4t

[
e2t − t2

2 e
2t

0 e2t

]
=

[
e−2t − t2

2 e
−2t

0 e−2t

]
So LHS state transition matrix is

Φ(t; τ) =

[
e2(t−τ) t2−τ2

2 e2(t−τ)

0 e2(t−τ)

]
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Matrix Exponential

For homogeneous LTI systems the transition matrix can be written as
the matrix exponential function eAt .

Φ(t; t0) = eA(t−t0)

= I+ A(t − t0) +
1

2!
A2(t − t0)

2 + · · ·+ 1

m!
Am(t − t0)

m + · · ·

Given the ODE ẋ = Ax , the solution can also be written as

x(t) = x0 +

∫ t

t0

Ax(τ)dτ

We are going to prove that the above series formula is indeed the
unique solution to the ODE.

Our proof of uniqueness and the solution is based on a successive
approximations that form a contraction mapping over a completed
normed linear signal space.
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Matrix Exponential

Consider a linear transformation G : L∞ → L∞. This transformation
is a contraction mapping if for any x , y ∈ L∞ there exists 0 ≤ γ < 1
such that

∥G[x ]− G[y ]} |L∞ ≤ γ |x − y∥L∞

We focus on L∞ because it is a complete normed linear space and we
know that every Cauchy sequence is convergent to an L∞ function.
This fact is used to prove the contraction mapping principle

Let X be a Banach space, let S ⊂ X and G : S → X be a contraction
mapping, then there exists a unique element x∗ ∈ X such that
x∗ = G[x∗].
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Matrix Exponential

Recall that our LHS has solution

x(t) = x0 +

∫ t

0
Ax(s)ds

We view the RHS of equation as a linear transformation on the
function x .

So consider the linear transformation G : L∞ → L∞ that takes values

G[x ](t) = x0+ ∈T
0 Ax(s)ds

Clearly if x∗ is a fixed point of this transformation (i.e. x∗ = G[x∗])
then x∗ ∈ L∞ is a solution to the LHS.
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Matrix Exponential

Consider a sequence of function {xk}∞k=1 generated by G, (i.e.,
xk+1 = G[xk ]).

Assume xk : [0,T ] → Rn is defined over [0,T ]. For any t ∈ [0,T ] we
have

|G [x ] (t)− G [y ] (t)| =

∣∣∣∣∫ t

0
(Ax(s)− Ay(s))ds

∣∣∣∣
≤

∫ t

0
|A(x(s)− y(s))| ds

≤ ∥A∥
∫ t

0
|x(s)− y(s))ds

where ∥A∥ is matrix norm of A.
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Transition Matrix

Since t < T we can bound this as

|G [x ] (t)− G [y ] (t)| ≤ ∥A}
∫ T

0
|x(s)− y(s)|ds = ∥A∥ ∥x − y∥L∞

This holds for all t ∈ [0,T ] and so we have

∥G[x ]− G[y ]∥L∞
≤ T ∥A∥ ∥x − y∥L∞

If we let T < 1
∥A∥ , then G is a contraction mapping and the

contraction mapping principle implies there exists a unique solution to
the LTI ystem over the interval existence [0,T ].

Note that this method can be applied to any ODE, ẋ = f (x) to show
it has unique solution provided f is Lipschitz.

for linear systems, the interval existence can be extended to infinity by
simply applying the same idea over and over again.
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Matrix Exponential

We now show how the series solution to the matrix exponential is
obtained.

x1(t) = x0

x2(t) = x0 +

∫ t

0
Ax1(s)ds = x0 + A

∫ t

0
x0ds

= x0 (I+ At)

x3(t) = x0 +

∫ t

0
Ax2(s)ds = x0 + A

∫ t

0
(I+ As) x0ds

= x0

(
I+ At +

1

2
(At)2

)
...

xm(t) = x0

(
I+ At + · · ·+ 1

m!
(At)m

)
...
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Matrix Exponential

Consider the LTI inhomogenous system

ẋ = Ax + Bu, x(0) = x0

y(t) = Cx(t)

Using our matrix exponential and equation for y we get

y(t) = CeAtx0 +

∫ t

0
CeA(t−τ)Bu(τ)dτ

The RHS two terms are the zero input and zero-state response of the
system. The impulse response function is readily seen to be

g(t) = CeAtBu(t)

where u is unit step function.
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Matrix Exponential

The matrix exponential is an infinite power series

f (A) = eAt =
∞∑
k=0

βkA
ktk

We want to find finite series representations for eAt so we can
actually get a closed form expression for the solution.

We can use the division algorithm to rewrite eAt as

eAt = p(A)q(A) + r(A)

where p(A) = det(sI− A) and q(s) and r(s) are polynomials with
r(s) having a degree less than n − 1.

p(A) = 0 by Cayley-Hamilton so we can write

eAt = r(A) =
n−1∑
k=0

αk(t)A
k
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Matrix Exponential

. We find αk(t) as follows. Assume A has n distinct eigenvalues,
{λi}ni=1.

Since p(λi ) = 0 we have

f (λi ) = eλi t = p(λi )q(λi ) + r(λi ) = r(λi ) =
n−1∑
k=0

αk(t)λ
k
i

We have n distinct λi , so this gives n linear equations that we can
solve for αk(t).

Consider A =

[
0 1
−2 −3

]
with p(s) = s2 + 3s + 2.

The eigenvalues of A are λ1 = −2 and λ2 = −2. so our finite order
representation is

eAt = α0(t)I+ α1(t)A
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Matrix Exponential

The LAE formed from the eigenvalues are

e−t = α0(t)− α1(t)

e−2t = α0(t)− 2α1(t)

We can solve symbolically for α0 and α1

α0(t) = 2e−t − e−2t

α1(t) = e−t − e−2t

So our expression for matrix exponential is

eAt = (2e−t − e−2t)I+ (e−t − e−2t)A

=

[
2e−t − e−2t e−t − e−2t

−2e−t + 2e−2t −e−t + 2e−2t

]
See lecture notes for cases where eigenvalues not distinct or not real.
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Matrix Exponential

COmputing eAt using a truncated series. This is exact if Ak = 0 for
some k . But in general truncating the series is not advised because
the series converges very slowly.

Most people use Laplace transforms to find eAt . Note that matrix
exponential satisfies

d

dt
eAt = AeAt , eA0 = I

Take bilateral Laplace transform since eAt is defined for all t.

sΦ̂(s)− eA0 = AΦ̂(s)

Solving for Φ̂(s) gives

Φ̂(s) = (sI− A)−1

This gives concrete representation for Laplace transforms of eAt

which we can then invert using the residue method.
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Matrix Exponential

A =

[
0 1
−2 −3

]
with

Φ̂(s) = (sI− A)−1 =

[
s+3

(s+2)(s+1)
1

(s+2)(s+1)
−2

(s+2)(s+1)
s

(s+2)(s+1)

]

We now expand as PFE

Φ̂(s) =

[
K10
s+2 + K20

s+1
K11
s+2 + K21

s+1
K12
s+2 + K22

s+1
K13
s+2 + K23

s+1

]

Evaluate residues — a bit tedious to get[ −1
s+2 + 2

s+1
−1
s+2 + 1

s+1
2

s+2 + −2
s+1

2
s+2 + −1

s+1

]
⇒

[
−e−2t + 2e−t −e−2t + e−t

2e−2t − 2e−t 2e−2t − e−t

]
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Matrix Exponential

In general if you use PFE of (sI− A)−1 to find eAt we get

eAt =
σ∑

i=1

mi−1∑
k=0

Rikt
keλi t

The residues Rik are called modes of the system.

if Re(λi ) < 0, then the mode asymptotically goes to zero and we say
this mode is asymptotically stable.

This eigenvalue condition is necessary and sufficient for the
asymptotic stability of the LTI system’s origin.
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Matrix Exponential

You can also use similarity transformations to compute eAt .

This is particularly useful when A is diagonalizable through a matrix
V whose columns are the eigenvectors of A.

Λ = diag(λ1, . . . , λn) = V−1AV

The transition matrix of Λ is

eΛt = diag(eλ1t , . . . , eλnt)

and the transition matrix is then

Φ(t) = Vdiag(eλi t)V−1
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Matrix Exponential

In our example for A =

[
0 1
−2 −3

]
,so we have V =

[
−1/2 −1
1 1

]
.

So we get

Φ(t) = V

[
e−2t 0
0 e−t

]
V−1

=

[
−1/2 −1
1 1

] [
e−2t 0
0 e−t

] [
2 2
−2 −1

]
=

[
2e−t − e−2t e−t − e−2t

2e−2t − 2e−t 2e−t − e−t

]
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Discrete Time Transition Matrix

Consider discrete-time state equations

x(k + 1) = A(k)x(k) + B(k)u(k)

y(k) = C(k)x(k) +D(k)u(k)

Consider the homogeneous problem

x(k + 1) = A(k)x(k)

and note that

x(k + 2) = A(k + 1)x(k + 1)

= A(k + 1)A(k)x(k)
...

x(k + n) = A(n − 1)A(n − 2) · · ·A(k + 1)A(k)x(k)

=
n−1∏
j=k

A(j)x(k)
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Discrete-time Transition Matrix

This suggests the transition matrix is

Φ(n; k) =
n−1∏
j=k

A(j), n > k

and that Φ(k ; k) = I.

So the solution to the homogeneous problem is

x(n) = Φ(n; k0)xk0 =
n−1∏
j=k0

A(j)x(k0)

for all n > k0.
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Discrete-time Transition Matrix

Computing closed form expression for Φ(n; k0) is difficult, We usually
have to resort to inductive arguments.

We can use (zI− A)−1 to find time-invariant transition matrices.
here we need |λk | < 1 for Ak → 0.

Some useful properties of discrete-time transition matrices are similar
to those of continuous time. One notable exception is the group
property. For discrete-time we only have a semi-group property

Φ(k ; ℓ) = Φ(k ;m)Φ(m; ℓ), k ≥ m ≥ ℓ

The solution of the inhomogeneous problem for the time-invariant
case will be

y(k) = CA(k−k0)x(k0) +
k−1∑
j=k0

CAk−(j+1)Bu(j) +Du(k), k > k0

y(k0) = Cx(k0) +Du(k0)
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