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Linear Homogeneous Dynamical System

o Consider a linear homogeneous (LH) system whose state trajectory
x : R — R" satisfies the IVP

x(t) = A(t)x(t), x(tp) = xo0

for t > tg.
@ All solutions of the LH system form an n-dimensional linear space.

@ Let V denote the set of all solutions to LF over [ty, T]. If ¢1,¢2 € V,
then

%(a1¢1(f)+a2¢2(f)) = agA(t)¢1(t) + axA(t)go(t)
= A(t) [a101(t) + cxp2(t)]

So V is closed with respect to addition/dilation and must be a linear
space.
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Solutions of LH Systems

@ To show V is n-dimensional, we first need to find a basis.

@ Choose n linearly independent vectors, {xjo}"_; that span R". Let
{¢i}"_, denote n solutions to the LH using initial conditions

¢i(to) = xio-
n
@ Assume solutions are not linearly independent, then Za;q&;(t) =0
i=1
where not «; are zero.
n

@ This holds at tp, so Zoz,-x,-o = 0, which contradicts the linear
i=1
independence assumption so span {¢1,...,¢,} C V.

@ Let ¢ € V such that x(tg) = xp and xp = Za,-x,-o. So
] i=1
¢(t) =Y a;gi(t) and V C span{¢1, ..., ¢n}
i=1
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Solutions of LH Systems

-1 e’
@ Find all solutions to x = [ 0 -1 } X.

@ We know the linear space, V, of solutions has dimension 2. So we
only need to find 2 linearly independent solutions.

@ We can readily verify that these functions satisfy the LHS.

=] ] =] ]

e—t

@ Since these two solutions are clearly linearly independent

x(t):al[eot]—i-ag{éi]
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Solutions to LH Systems

@ A set of n linearly independent solutions of x = A(t)x is called a set
of fundamental solutions. The matrix

W(t)=[ ou(t) ¢2(t) - on(t) ]

whose columns are fundamental solutions is called a fundamental
matrix.

@ Any fundamental matrix satisfies the matrix differential equation

o A solution W of W(t) = A(t)W(t) is a fundamental matrix iff W(t) is
nonsingular for all t.
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Solutions of LH Systems

o Let W be a fundamental matrix and let ¢ be any solution to the LHS.
There are coefficients (no all zero) such that

$(t) = aigi(t) = W(t)a
i—1

e For any time t, the LAE ¢(t) = W(t)a@ only has a unique solution if
W(t) is nonsingular for all t.

o Conversely, assuming W satisfies the matrix differential equation and
is nonsingular for all t. This means det(W(t)) # 0 for all t and so the
columns of W are linearly independent. This means W is a
fundamental matrix.
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State Transition Matrix

@ The fundamental matrices for an LH problem are not unique.

@ We would like a "unique” way to characterize the LH problem’s
solution. This is done through the idea of a transition matrix, ®.

@ In particular, we denote the state transition matrix over [to, t] as
®(t; tp) and define it as the fundamental matrix whose ith column is
a solution to the LHS with initial condition x(tp) = e;.

o Note that ®(t; ty) = W(t)W (o) where W(t) is any fundamental
matrix of the LHS.

o If T is a nonsingular matrix and we let W1 = W5, then W5 is aso a
fundmental matrix.

@ We also have

¢(t; to) = wl(t)\UIl(to) = WQTT_1W2(t0)
= Wy(t)W, ' (to)
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Transition Matrices

e ®(t; tp) is unique solution to the matrix differential equation

(,id)(t; to) = A(t)P(t; tp), P(to; t0) =1

Proof:

I otty) = W)W (1)

ot
= AW ()W () = A(t)D(t; to)
o For all t,7,0 € R we have

®(t;7) = D(t;0)P(0;7)

Proof: Note that
O(t;7) = WOV () =w( )W (o)W (o)w ()
®(t;0) = P(0;7)
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Transition Matrices

o ®(t; ty) is nonsingular for all t, ty and [®(t; t)] " = ®(to; t).
Since det(W(t)) # 0 for any t we have
det(®(t; t9)) = det(W(t)W (1)) = detW(t) x detW(t) # 0
Also note that
[@(t0)] 7t = (W)W ()] = W(t)®(t)
@ The unique solution x(t; ty, xp) to LHS is

x(t; to, x0) = P(t; tg)xo
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Solutions of Inhomogeneous Systems

o Consider solutions to inhomogeneous problem
x(t) = A(t)x(t) + B(t)u(t), x(to) = xo

where u is known input.

@ We claim the solution is

x(t; to, x0) = ®(t; to)x0 + /t &(t; 7)B(7)u(r)dT

to

where ® is the state transition matrix for the LH system. This is
readily verified by substituting back into ODE.
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Solutions to Linear Inhomogeneous Problem

@ Since Transition matrix plays such a prominent role in solution to
inhomogeneous system, we will discuss several approaches for finding

d(t; to).
[24]-

o Consider

o Note that X, = 2x, implies xx(t) = €*'xap.

o Note that x; = 2x3 + tetxog is the first ODE and we can use our
prior formula to get

t
Xl(t) = e2tx10—|—/ TEZtXQOdT
0

2
t
= e2tX10 + X20562t
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Transition Matrices

@ So selection a pair of linearly independent xg, say {[ é ] ) [ i ]} to

get fundamental matrix

t2 2t
e e
v - | 4

@ So LHS state transition matrix is

e2(t—'r) t2—72 eZ(t—T)
¢(t; 7-) = [ 0 262(t7‘r)
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Matrix Exponential

@ For homogeneous LTI systems the transition matrix can be written as

the matrix exponential function eAt.

®(t;tg) = et

1 1
= |+A(t—t0)+§A2(t—t0)2+---+ﬁA’"(t—to)’”+-

@ Given the ODE x = Ax, the solution can also be written as

x(t) = xo + /t Ax(7)dT

0
@ We are going to prove that the above series formula is indeed the
unique solution to the ODE.

@ Our proof of uniqueness and the solution is based on a successive
approximations that form a contraction mapping over a completed
normed linear signal space.
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Matrix Exponential

@ Consider a linear transformation G : L, — L. This transformation
is a contraction mapping if for any x,y € L, there exists 0 < v < 1
such that

IGIx] = Gy} [£oe <7 Ix—yllz,,

@ We focus on L, because it is a complete normed linear space and we
know that every Cauchy sequence is convergent to an L., function.
This fact is used to prove the contraction mapping principle

@ Let X be a Banach space, let S C X and G : S — X be a contraction

mapping, then there exists a unique element x* € X such that
x* = G[x*].

(ND) week 5 14 /30



Matrix Exponential

@ Recall that our LHS has solution
t
x(t) = xo +/ Ax(s)ds
0

We view the RHS of equation as a linear transformation on the
function x.
@ So consider the linear transformation G : £L* — L, that takes values

G[x](t) = xo+ €] Ax(s)ds

Clearly if x* is a fixed point of this transformation (i.e. x* = G[x*])
then x* € L is a solution to the LHS.
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Matrix Exponential

e Consider a sequence of function {x,}?°; generated by G, (i.e.,
Xk+1 = G[Xk])

@ Assume xi : [0, T] — R" is defined over [0, T]. For any t € [0, T] we
have

IGIX] (1) -GlI(t) =

0
< [ AG(s) - y(s))| ds
< 1Al [ Ix(s) - y(s))ds

where ||A|| is matrix norm of A.
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Transition Matrix

@ Since t < T we can bound this as

IGIx](t) =Gyl (t)] < IIA}/ s)lds = [[All[Ix =yl
@ This holds for all t € [0, T] and so we have

1G] = Gyl 2., < TIAIIx = yll..,

o Ifwelet T < ”}\—”, then G is a contraction mapping and the
contraction mapping principle implies there exists a unique solution to
the LTI ystem over the interval existence [0, T].

o Note that this method can be applied to any ODE, x = f(x) to show
it has unique solution provided f is Lipschitz.

o for linear systems, the interval existence can be extended to infinity by
simply applying the same idea over and over again.
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Matrix Exponential

We now show how the series solution to the matrix exponential is
obtained.

Xl(t) = X
t t
x(t) = xo+/ Axl(s)ds:xo+A/ Xods
0 0
= X (l + At)

t t
Xg(t) = Xp+ / AX2(S)dS =Xxp + A/ (l + AS) Xods
0 0

= xp <I + At + ;(At)2>

wlt) = % <|+At+...+n1ﬂ(At)m>
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Matrix Exponential

@ Consider the LTIl inhomogenous system

x = Ax+Bu, x(0)=xo
y(t) = Cx(1)

@ Using our matrix exponential and equation for y we get
t
y(t) = Cefixp + / Cert=Bu(r)dr
0

@ The RHS two terms are the zero input and zero-state response of the
system. The impulse response function is readily seen to be

g(t) = CertBu(t)
where u is unit step function.
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Matrix Exponential

@ The matrix exponential is an infinite power series
(o]
F(A) =M =" piAktk
k=0

We want to find finite series representations for et so we can

actually get a closed form expression for the solution.

@ We can use the division algorithm to rewrite et as

et = p(A)q(A) + r(A)

where p(A) = det(sl — A) and q(s) and r(s) are polynomials with
r(s) having a degree less than n — 1.
e p(A) =0 by Cayley-Hamilton so we can write

n—1
At =r(A) =) au(t)A
k=0
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Matrix Exponential

o . We find ay(t) as follows. Assume A has n distinct eigenvalues,
(At

e Since p()\j) = 0 we have

f(Ai) = eV = p(Ai)q(Ai) + r(A Zak(t )AF

@ We have n distinct A;, so this gives n linear equations that we can
solve for a(t).

o Consider A = [ _02 _13 ] with p(s) = s? + 3s + 2.
@ The eigenvalues of A are A\; = —2 and Ap = —2. so our finite order

representation is
ert = ao(t)1 + ar(t)A
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Matrix Exponential

@ The LAE formed from the eigenvalues are

et = ap(t) — as(t)
e 2t = ap(t) — 2a1(t)

@ We can solve symbolically for ap and «y

ag(t) = 2et—e 2t
a(t) = et—e®
@ So our expression for matrix exponential is

eft = (et —e )+ (et — e ?)A
De—t _ =2t et _ o2t

—Qe t42e 2t _et e 2t

@ See lecture notes for cases where eigenvalues not distinct or not real.
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Matrix Exponential

COmputing et using a truncated series. This is exact if AX = 0 for

some k. But in general truncating the series is not advised because
the series converges very slowly.

Most people use Laplace transforms to find eAt. Note that matrix
exponential satisfies

—eft = APt A0

Take bilateral Laplace transform since e?t is defined for all t.
s®(s) — e = Ad(s)
Solving for ®(s) gives
®(s) = (sl — A)?

This gives concrete representation for Laplace transforms of eAt
which we can then invert using the residue method.
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Matrix Exponential
0 1 .
°A={_2 _3:|Wlth
+3

S 1
$(5) = (sl — A)—l _ [ (S+2)(25+1) (s+2)s(s+1) ]

(s+2)(s+1) (s+2)(s+1)

@ We now expand as PFE

22 23
s+2 + s+1  s+2 +

KlO K20 K11 K21

~ 210 220 7_‘_7
o — | iETEE T
s+1

@ Evaluate residues — a bit tedious to get

-1 2 -1 1 —2t —t —2t —t
532 + 52 + o —e 2t 427t —e 2t
2422 2y 1| T ge2t et g2t

s+2 s+1  s42 s+1

— et

(ND)
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Matrix Exponential

o In general if you use PFE of (sl — A)~! to find eAt we get

g m,-—l

eAt — Z Z R,-ktke)“'t
i=1 k=0
@ The residues Ry, are called modes of the system.

e if Re(\;) < 0, then the mode asymptotically goes to zero and we say
this mode is asymptotically stable.

@ This eigenvalue condition is necessary and sufficient for the
asymptotic stability of the LTI system'’s origin.
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Matrix Exponential

@ You can also use similarity transformations to compute e?f.

@ This is particularly useful when A is diagonalizable through a matrix
V whose columns are the eigenvectors of A.

A = diag(\1,...,\,) = V1AV
@ The transition matrix of A is
et = diag(eM?,. .. eMt)
and the transition matrix is then

®(t) = Vdiag(eM)V!
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Matrix Exponential

_| 0 1 [ =172 -1
enlnourexampleforA—[_2 _3],sowehavev—[ | 1 }

IS
SRR AEE

De—t _ et _ o2t
et _ 2e‘t Qe t— et

@ So we get

d(t) =
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Discrete Time Transition Matrix

o Consider discrete-time state equations
x(k+1) = A(k)x(k)+ B(k)u(k)
y(k) = C(k)x(k)+ D(k)u(k)
@ Consider the homogeneous problem
x(k 4+ 1) = A(k)x(k)
and note that

x(k+2) = A(k+1)x(k+1)
= A(k + 1)A(K)x(k)

x(k + n) : A(n—1)A(n—2)---A(k+ 1)A(k)x(k)
n—1
= [JAG)x(k)
j=k
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Discrete-time Transition Matrix

@ This suggests the transition matrix is
(n; k) = H A(j), n>k

and that ®(k; k) = 1.

@ So the solution to the homogeneous problem is

x(n) = ®(n; ko)xk, = H A(j)x(ko)
Jj=ko

for all n > ko.
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Discrete-time Transition Matrix

e Computing closed form expression for ®(n; ko) is difficult, We usually
have to resort to inductive arguments.

@ We can use (zI — A)~! to find time-invariant transition matrices.
here we need |\x| < 1 for Ak — 0.

@ Some useful properties of discrete-time transition matrices are similar
to those of continuous time. One notable exception is the group
property. For discrete-time we only have a semi-group property

®(k; () = &(k; m)®(m; (), k>m>"¢

@ The solution of the inhomogeneous problem for the time-invariant

case will be
k—1 )
y(k) = CA¥ (k) + Y CA*UTDBu(j) + Du(k), k> ko
J=ko

y(ko) = CX(k0)+DU(k0)
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