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Preface

This book grew out of lectures I gave for a course in advanced control for

first year engineering graduate students at the University of Notre Dame. It

was intended as a survey course that covers a range of topics in control the-

ory in a slightly more sophisticated mathematical level than what is found

in many first year graduate control courses. Early versions of these lectures

were written 5-6 years ago and contained material from more detailed grad-

uate control courses that I had taught in the past. This most recent version

was written after having been asked to teach this course again after a 3 year

hiatus. The pre-requisite for this course is a graduate level course in lin-

ear systems theory and an undergraduate level course in feedback control

systems.

The book is essentially divided into five parts. The first part reviews un-

dergraduate SISO control of linear systems with an emphasis on frequency-

domain design methods such as loopshaping. This follows the same sort of

thread as found in Doyle et al. (2013) and Rohrs et al. (1992). The second

part reviews basic approaches to optimal control systems using the classical

variational methods and dynamic programming. This part is drawn from

Liberzon (2012), Bertsekas (1995), Fleming and Rishel (1972), and Puter-

man (1994). The third part discusses robust optimal control of linear sys-

tems, primarily through the lens of H∞ control based on material in Zhou

et al. (1996), Sanchez-Pena and Sznaier (1998), Dorato et al. (1994), and

Green and Limebeer (2012) The fourth part discusses constructive meth-

ods for nonlinear control using backstepping and passivity methods. This

part was drawn from Khalil (2002), Freeman and Kokotovic (2008), Krstic

et al. (1995), and Sepulchre et al. (2012). The final part is a very brief
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overview on the recent topic of data-driven control. This part covers a range

of methods including indirect methods based on dynamic model decompo-

sition (DmD) and Koopman operators, adaptive control using Control Lya-

punov functions, and Machine learning approaches to data-driven control;

in particular Reinforcement Learning. The material on Koopman operators

and DmD comes from Brunton and Kutz (2022). The material on adaptive

control using control Lyapunov functions comes from Freeman and Koko-

tovic (2008). The material on Reinforcement learning is based on Sutton

and Barto (2018).

These lecture notes are a work in progress, having been revised and re-

organized several times over the past decade.

M. D. Lemmon

Department of Electrical Engineering

University of Notre Dame

Summer, 2024



CHAPTER 1

Controller Synthesis for SISO Linear Control Systems

There are two basic control problems of interest to us. The first problem is

a steering problem that designs an input that drives a dynamical system to a

desired operating point in finite time. The second problem is a stabilization

problem that forces the system state or output to remain in a neighborhood

of the desired operating point for all time. This chapter examines these two

problems for single-input single-output (SISO) linear time-invariant (LTI)

systems. This problem is often the subject of elementary undergraduate

courses in control theory and so this chapter may be seen as a review of

those undergraduate topics in control.

This chapter is organized as follows. We first review the use of trans-

fer functions in modeling LTI systems and then discuss how these models

are used in pole-placement design of control systems. We then review a

frequency-domain controller design method known as loopshaping and use

that method to highlight the inherent tradeoff that control systems make be-

tween closed-loop performance and performance robustness to model un-

certainty. We then review state-space modeling of LTI systems and review

material on state feedback and observer-based controllers. This last topic is

often covered in many linear systems theory courses, and can be taken as a

launch pad for the more advanced techniques covered in this course.

1. Operator-theoretic view of Dynamical Systems:

Before reviewing the transfer function concept, let us first introduce the

notion of a linear system as an abstract linear transformation over a linear

space of signals. We consider a continuous-time system with signals, x :

1



2 1. CONTROLLER SYNTHESIS FOR SISO LINEAR CONTROL SYSTEMS

R → Rn that are functions mapping the real-valued time, t ∈ R, onto a

real-valued vector, x(t) ∈ Rn. These signals form a linear space that we

denote as L(Rn), with respect to the binary operations of vector addition

and dilation (scalar-vector multiplication).

We view a system, G : L(Rp) → L(Rm), as an operator that maps an

input signal, w ∈ L(Rp), onto an output signal, y ∈ L(Rm). The value that

this operator takes for a particular inputw will be denoted as G[w], which is

a function of time. The value of the output signal at a particular time t ∈ R
will be denoted as G[w](t).

We need to restrict the operator G to accurately model the forward flow

of time. Let us consider a signal w ∈ L(R) and define the truncation of w

with respect to a specified time instant, T , as the function wT : R → Rm

that takes values

wT (t) =

{
w(t) if t ≤ T

0 otherwise

The system operator, G : L(R) → L(R) is said to be causal if and only if

for any T ∈ R we have

G [wT ] (t) = G[w](t), for all t ≤ T

Informally this means that the output of the system prior to time T given a

non-truncated input, w, is identical to the system’s output prior to time T

under the truncated input wT . Since wT is zero for t > T this means that

nonzero inputs after time T have no impact on outputs prior to T . In other

words, future inputs have no impact on past outputs. Throughout this book,

we confine our attention to system operators that are causal.

We will also find it useful to distinguish between time-invariant and

time-varying systems. Consider a causal system operator G : L(R) →
L(R) whose response to an input w is the function

y = G[w]
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Let t0 ∈ R denote a specified time index used to shift the input in time. In

other words, we consider an input signal v that takes values v(t) = w(t−t0)
for all t. If the output of G to this time-shifted input takes values

G[v](t) = G[w](t− t0) = y(t− t0)

for all t ∈ R, then we say the system is time-invariant. A system that

is not time invariant is time-varying. Time invariance means that the sys-

tem’s behavior in response to an input is independent of when that input

was applied to the system. To some extent this may be seen as asserting

that time-invariant systems do not “age”.

We will also find it convenient to define a special class of linear systems.

A system G : L(R) → L(R) is said to be linear if for any two inputs

w1, w2 ∈ L(R) we have

G [αw1 + βw2] (t) = αG [w1] (t) + βG [w2] (t)

for all t ∈ R and any α, β ∈ R. This is also referred to as the princi-

ple of superposition and it essentially says that a linear system is a linear

transformation between the linear spaces of input and output signals.

So far our operator theoretic view of a dynamical system treats the sys-

tem as an algebraic object; a linear transformation between two linear

spaces. It has no notion of distance to tell us how ”close” one output signal

might be to another. We will therefore find it useful to introduce a topology

or metric on these linear signal spaces. Such topologies can be introduced

in many ways, but for our purposes we will do so using the concept of a

norm.

Consider a linear space L(Rn) of integrable continuous-time functions,

x : R→ Rn. We define the Lp norm of x where p is a positive integer as

∥x∥Lp

def
= lim

T→∞

(∫ T

0

|x(τ)|pdτ
)1/p

where |x(τ)| is the Euclidean 2-norm of the vector x(τ) ∈ Rn. We define

the normed linear space, Lp, as the linear space consisting of all functions
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x ∈ L(Rn) such that ∥x∥Lp is finite. The most commonly used Lp norms

are for p = 1, 2, and∞. For p =∞, the norm can be shown to be

∥x∥L∞
def
= lim

p→∞
∥x∥Lp = max

i

{
sup
t∈R
|xi(t)|

}

where |xi(t)| is the absolute value of the ith component of vector x(t). The

L∞ space is then the space of all integrable functions with a finiteL∞ norm.

One can show that the set of linear transformations we use to represent

an LTI SISO system also form a linear space. So we introduce a topology or

metric on these linear spaces as well. Let us consider a system G : L2 → L2

mapping finite energy input signals onto finite energy output signals. The

amount of energy gained or lost between the input and output is sometimes

called a gain for the system. We can therefore define the system’s L2-

induced gain as

∥G∥L2−ind

def
= sup

w ̸=0

∥G[w]∥L2

∥w∥L2

= sup
∥w∥L2

=1

∥G[w]∥L2

= inf {γ ∈ R : ∥G[w]∥L2 ≤ γ∥w∥L2}

we say ∥G∥L2−ind is an induced gain because it is induced by our selection

of norms for the input and output spaces. The choice of signal space norms

is usually driven by the application.

2. Impulse Response Function

The operator-theoretic view of dynamical systems provides a high level ab-

straction without a concrete computational way of representing a system.

There are several concrete representations for such systems. The first one

of interest to us is based on an LTI system’s impulse response function.
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Let us consider a causal continuous-time SISO linear system G : L(R)→
L(R) to which we apply an input signal w ∈ L(R). Note that one can ap-

proximate this function as

w(t) ≈ wh(t) =
∞∑
k=0

w(kh)hδh(t− kh)

for all t where δh : R→ R is an impulse-like function taking values

δh(t) =

{
1
h

if 0 ≤ t < h

0 otherwise

The parameter h is a positive real constant representing the duration of a

regular sampling interval. In particular, as the length of the sampling in-

terval goes to zero, i.e. h → 0, the values of the approximate function

wh(t) converge to the original function’s values w(t) provided w is smooth

enough.

If we were to apply the impulse δh(t − τ) to the linear system, G :

L(R)→ L(R), it would generate an output response, gh(t, τ). The impulse

is time shifted so the impulse starts at time τ and this means that the output

response, gh, is not only a function of time, t, it is a function of the time,

τ , when that impulse was applied. Since the system is linear we can de-

duce that the system’s output to the approximate input signal wh will be a

function yh, that can be written as

yh(t) = G

[
∞∑
k=0

δh(t− kh)w(kh)h

]

=
∞∑
k=0

hw(kh)gh(t, kh)

In the limit as the sampling interval, h, goes to zero, we can take the limit

inside the above summation to deduce that the system’s response y = G[w]
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to the original input w is

y(t) = lim
h→0

yh(t)

= lim
h→0

∞∑
k=0

hw(kh)gh(t, kh)

=

∫ ∞

0

w(τ)g(t, τ)dτ

where g : R2 → R is the limiting value of gh as h→ 0. In other words, g’s

values are

g(t, τ) = lim
h→0

gh(t, τ)

This function g is called the impulse response function of the linear system

G because as h→ 0 the impulse-like functions δh converge to the classical

Dirac delta function, δ.

A linear system’s impulse response function has a number of useful

properties that we itemize below without formal proof.

• If the linear system, G, is causal, then g(t, τ) = 0 for τ > t.

• If the linear system is time invariant then g(t, τ) = g(t− τ).
• For causal LTI systems, one can see that

y(t) =

∫ t

−∞
g(t− τ)w(τ)dτ = [g ∗ w] (t)(1)

where g ∗ w denotes the convolution integral of the two functions.

Note that the impulse response function, g, plays a critical role in equation

(1) in computing a system’s output. We can therefore see that one way of

concretely representing an LTI system is by first specifying what its impulse

response function is.
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3. Transfer Function Modeling of LTI Systems

Impulse response functions provide a concrete time-domain representation

of an LTI system. Determining this system’s response to any input requires

the solution of a convolution integral that can be tedious and difficult to

compute directly. It is common practice to analyze such systems by first

transforming them in a way that turns the calculus operations of integra-

tion and differentiation into the algebraic operations of multiplication and

division. These algebraic operations are much easier to work. This section

discusses one such transform-based representation known as the system’s

transfer function; namely the single sided Laplace transform of the system’s

impulse response function.

Given the impulse response function, g, equation (1) provides a way

to concretely compute the response of a SISO LTI system to any input w.

This computation, however, is easier to do if we first transform the time-

domain signals in the equation into functions of a complex variable using

single sided Laplace transforms. The Laplace transform of a real function

x : R → R maps that function x onto a function of a complex variable

X : C→ C through the integral equation

X(s) =

∫ ∞

0

x(τ)e−sτdτ

where s ∈ C. The transform may be seen as an operator L : L(R)→ L(C)
mapping the linear space of real functions onto the linear space of complex

functions, so that X(s) = L[x](s).

Laplace transforms are often seen in undergraduate courses in signals

and systems and ordinary differential equations, so we will not review that

material here. Instead we will highlight some of the more useful aspects

of those transforms. In particular, we know that Laplace transforms are

invertible transforms so that X may be seen as an equivalent concrete rep-

resentation of the function x.
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• The transformed function X(s) is said to be a rational function if

it can be written as the ratio, X(s) = n(s)
d(s)

, of two polynomials in s

with real coefficients. If the degree of the numerator polynomial,

n(s), is strictly less than the degree of the denominator polyno-

mial, d(s), then X(s) is said to be strictly proper and we can assert

that |X(s)| → 0 as |s| → ∞.

• If the transformed function X(s) is a strictly proper rational func-

tion, then we can factor the denominator polynomial, d(s), into

first order factors and use a partial fraction expansion to express

X(s) as

X(s) =
b1s

n−1 + b2s
n−2 + · · ·+ b1s+ b0

sn + a1sn−1 + a2sn−2 + · · ·+ a1s+ a0

=
b1s

n−1 + b2s
n−2 + · · ·+ b1s+ b0

(s− p1)(s− p2) · · · (s− pn−1)(s− pn)

=
K1

s− p1
+

K2

s− p2
+ · · ·+ Kn

s− pn
where pi (i = 1, . . . , n) are the n distinct roots of the polyno-

mial equation d(s) = 0. We refer to these roots as the finite poles

(removable singularities) of X(s). We refer to the roots of the

polynomial equation n(s) = 0 formed from the transfer function’s

numerator polynomial as the finite zeros of X(s).

• If the transformed function X(s) is a strictly proper rational func-

tion with partial fraction expansion,

X(s) =
K1

s− p1
+

K2

s− p2
+ · · ·+ Kn

s− pn
Then its inverse transform gives the time domain signal, x,

x(t) = K1s
p1tu(t) +K2s

p2tu(t) + · · ·+Kn−1s
pn−1tu(t) +Kns

pntu(t)

where u(t) is the unit step function.

• If we consider the convolution integral, [g ∗ w](t), of two signals,

g(t) and w(t), then the Laplace transform of g ∗ w is

L[g ∗ w](s) = L[g](s)L[w](s) = G(s)W (s)(2)
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The operational transform formula in equation (2) means that if we have

a causal linear LTI system whose response to a given input is given as

y(t) = [g ∗ w](t)

then we can compute the Laplace transform of that output as

Y (s) = G(s)W (s)

We know that for causal LTI systems the Laplace transform of the impulse

response function is going to be a rational function. If we then confine our

input to also be signals with rational Laplace transforms, then the output

will also be rational and we can use Partial Fraction Expansion methods to

easily compute the time domain output of the system to any known input.

The function G(s) in this case can be viewed as a concrete representation

of the linear transformation G and the removable singularities of G then

become the poles of the system G. We refer to G(s) as the transfer function

of the system G and we can readily see that it is nothing more than the

Laplace transform of the original system’s impulse response function, g.

We will often use boldfaced notation to denote transfer functions.

Transfer functions play an important role in the analysis and design of

dynamical systems. In the first place, note that if we apply to the system G

a sinusoidal input

w(t) = A cos(ωt+ ϕ)

of frequency ω with amplitude A and phase shift ϕ, then the output can be

shown to be

y(t) = A|G(jω)| cos(ωt+ ϕ+ arg(G(jω)))

In other words the output is still a sinusoid of frequency ω but its ampli-

tude is obtained by multiplying the input’s amplitude by the modulus of

the transfer function |G(jω)| evaluated at the specified frequency s = jω

and its phase is shifted by the argument of G(s) at s = jω. The functions

|G(jω)| and arg(G(jω)) are commonly called the system’s frequency re-

sponse function. One important aspect of this is that the frequency response
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of a system can be readily measured experimentally by simply applying a si-

nusoidal input and measuring the gain and phase of the resulting sinusoidal

output. So transfer functions provide useful empirical representations of a

system’s input/output response.

Another important feature of transfer functions is that the poles of G(s)

play a major role in characterizing the system’s transient response to any

input. In particular, if we know that the input is a bounded function that

asymptotically goes to zero, then the poles of G(s) govern how quickly the

output goes to zero. In particular, we require that the real part of these poles

be negative to ensure exponential rate of decay to the output. In many cases,

we want our controlled systems, G(s), to exhibit this asymptotic behavior.

As a result transfer functions play an important role in control system design

based on placing the poles of the control system. A pole-placement design

methodology for SISO LTI systems will be discussed in the next section.

4. Pole Placement Design for LTI Control Systems

This section examines pole-placement methods for designing control sys-

tems whose output, y, asymptotically track a desired ”reference” input sig-

nal, r. These pole-placements methods are often discussed in undergradu-

ate control courses. Let us consider a one-parameter control system whose

block diagram is shown in Fig. 1.

FIGURE 1. One Parameter Control System
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The original plant we wish to control has the transfer function G(s).

The output of this plant, y, is then subtracted off of a reference input, r,

that has been supplied to the control system. The reference, r, represents

the signal we want the output, y, to track. The resulting error signal e =

r− y is then fed into a feedback controller, K(s), to create the commanded

control signal, u. We assume there is an additional disturbance, w, that

is added to the control input, u. The resulting combined signal, u + w, is

then what drives the plant. Our problem is to design K(s) so the output y

asymptotically tracks r (i.e. e(t) → 0 as t → ∞). The approach we will

take is to design K(s) to place the poles of the closed loop transfer function

from r to e (i.e. Tre) and the transfer function from w to u (i.e., Twu).

In particular we want e to asymptotically go to zero when the disturbance

w = 0 and we want to constrain how large the control input u will be in

response to disturbances, w, that are not zero.

We start by deriving an expression for the closed loop transfer functions.

Note that

Y (s) = G(s)(W (s) +K(s)(R(s)− Y (s)))

We can rewrite this as

(1 +G(s)K(s))Y (s) = G(s)W (s) +G(s)K(s)R(s)

to get

Y (s) =
G(s)

1 +G(s)K(s)
W (s) +

G(s)K(s)

1 +G(s)K(s)
R(s)

Note that

E(s) = R(s)− Y (s)

U(s) = K(s)E(s)
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which means

E(s) = R(s)− G

1 +GK
W − GK

1 +GK
R

= − G

1 +GK
W +

1

1 +GK
R(s)

U(s) = K(s)E(s) = − GK

1 +GK
W (s) +

K

1 +GK
R(s)

Our first objective is to manage the behavior of the error signal in re-

sponse to the reference inputR(s) assuming zero input disturbanceW (s) =

0. In particular, we want to ensure that the error e(t) asymptotically goes

to zero as t → ∞. We know this will be guaranteed if we select K(s) to

ensure all poles of

Tre(s) =
1

1 +G(s)K(s)

have negative real parts.

The second objective is to manage the behavior of the control signal

U(s) in response to the disturbance W (s) assuming a zero reference input,

R(s) = 0. In particular, we will require that u(t) asymptotically goes to

zero as t → ∞ for any bounded W (s) we might have. This requires that

we select K(s) to also ensure that all poles of

Twu(s) =
G(s)K(s)

1 +G(s)K(s)

have negative real parts.

Since we are dealing with SISO LTI systems, we can assume G(s) and

K(s) are all strictly proper rational functions. In particular, we let

G(s) =
ng(s)

dg(s)
, K(s) =

nk(s)

dk(s)
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This means that

Tre(s) =
1

1 + ng(s)nk(s)

dg(s)dk(s)

=
dg(s)dk(s)

dg(s)dk(s) + ng(s)nk(s)

Twu(s) =

ng(s)nk(s)

dg(s)dk(s)

1 + ng(s)nk(s)

dg(s)dk(s)

=
ng(s)nk(s)

ng(s)nk(s) + dg(s)dk(s)

The poles of both transfer functions are determined by our choice of the

controller polynomials nk(s) and dk(s). If we let dd(s) denote the desired

denominator polynomial then we need to select nk(s) and dk(s) to satisfy

the Diophantine equation

dd(s) = ng(s)nk(s) + dg(s)dk(s)

Suppose that the plant G(s) is strictly proper with no pole-zero cancella-

tions. One can then show if there is an mth order proper controller K(s) =

nk(s)/dk(s) solving the Diophantine equation, it must have a degree m ≥
n− 1.

As an example, let us consider the plant

G(s) =
ng(s)

dg(s)
=

1

s3 + s

So we have n = 3 and so the controller must be of order

m ≥ n− 1 = 3− 1 = 2

We therefore choose a proper controller

K(s) =
c2s

2 + c1s+ c0
s2 + d1s+ d0

=
nk(s)

dk(s)

We now form the Diophantine equation

dg(s)dk(s) + ng(s)nk(s) = s5 + d1s
4 + (1 + d0)s

3 + (d1 + c2)s
2 + (d0 + c1)s+ c0

We will let the desired poles be at −3 ± 3j with two poles at −5 and one at −10
so the desired denominator polynomial is

dd(s) = (s+ 3− 3j)(s+ 3 + 3j)(s+ 5)2(s+ 10)

= s5 + 26s4 + 263s3 + 1360s2 + 3750s+ 4500
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equating the coefficients in the two polynomials gives the following set of linear

algebraic equations



26

263− 1

1360

3750

4500


=



d1

d0

d1 + c2

d0 + c1

c0


=



1 0 0 0 0

0 1 0 0 0

1 0 1 0 0

0 1 0 1 0

0 0 0 0 1





d1

d0

c2

c1

c0


The solution to this LAE has d1 = 26, d0 = 262, c2 = 1334, c1 = 3488, and

c0 = 4500. So the controller is

K(s) =
1334s2 + 3488s+ 4500

s2 + 26s+ 262

The linear algebraic equation we formed from the Diophantine equation has a

special structure. To see this structure, let us return to our example but simply

specify the plant as

G(s) =
ng(s)

dg(s)
=

a2s
2 + a1s+ a0

s3 + b2s2 + b1s+ b0

The controller will be the same as before

K(s) =
nk(s)

dk(s)
=
c2s

2 + c1s+ c0
s2 + d1s+ d0

and we’ll leave the desired polynomial to be

dd(s) = s5 + β4s
4 + β3s

3 + β2s
2 + β1s+ β0

The Diophantine equation can then be written out as

ng(s)nk(s) + dg(s)dk(s) = (s3 + b2s
2 + b1s+ b0)(s

2 + d1s+ d0)

+(a2s
2 + a1s+ a0)(c2s

2 + c1s+ c0)

= s5 + β4s
4 + β3s

3 + β2s
2 + β1s+ β0
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Multiplying out and equating coefficients gives rise to the following system of

linear algebraic equations

1

β4

β3

β2

β1

β0


=



1 0 0 0 0 0

b2 1 0 a2 0 0

b1 b2 1 a1 a2 0

b0 b1 b2 a0 a1 a2

0 b0 b1 0 a0 a1

0 0 b0 0 0 a0





1

d1

d0

c2

c1

c0


The matrix is called a Sylvester matrix. The condition m ≥ n − 1 is required to

ensure there are enough equations so any vector [1, β4, β3, β2, β1, β0]T lies in the

range space of the Sylvester matrix (i.e. a solution exists).

Where should we ”place” poles of a closed loop system? In classical under-

graduate courses, we can first places specifications on the steady-state and transient

response of the closed-loop system to various test signals (step, ramp inputs) and

then determines the pole locations that are consistent with those specifications. In

general, this can only be done for systems whose transient response is characterized

by a dominant pole pair. In this case, there are specific formulae relating pole lo-

cation to such specifications on the closed-loop system’s rise time, peak overshoot,

and settling time.

Steady-State Tracking Requirements: Consider a one-parameter control system

in Fig. 1. The tracking error may be written as e(t) = r(t) − y(t) where r is the

reference input and y is the output. Taking the Laplace transform of the error signal

gives

E(s) = R(s)− Y (s) = R(s)−G(s)K(s)E(s)

assuming W (s) = 0. Solving for E(s) gives

E(s) =
1

1 +G(s)K(s)
R(s)

Using the final value theorem for Laplace transforms, we can now evaluate the

steady state tracking error as

ess = lim
s→0

sE(s) = lim
s→0

sR(s)

1 +G(s)K(s)
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We can classify control systems by the type of test signal they can track with zero

steady state error. The type is defined to be the number of poles at zero in the loop

function G(s)K(s). Let us consider a step input so that R(s) = 1
s . In this case we

see that

ess = lim
s→0

1

1 +G(s)K(s)

Note that this goes to zero if lim
s→0

G(s)K(s) =∞. This will occur if the loop

function has a pole at the origin. Since there is one pole at the origin this is called

a ”type 1” systems.

Now let us consider a ramp input as a test input. In this case R(s) = 1
s2

and we

have

ess = lim
s→0

s
1

s2
1

1 +G(s)K(s)
=

1

lim
s→0

sG(s)K(s)

As we can see for ess = 0 to be zero for a ramp input, we need G(s)K(s) to have

two poles at the origin. Hence such as system would be a type 2 control system.

What these observations mean is that if we require the closed loop system to

have zero steady-state tracking error to a type n test input, then we need to select

the controller K(s) so the loop function G(s)K(s) has n poles at the origin. This

is sometimes known as the internal model principle, because it means the desired

”test input” must be embedded within the loop function as an internal model of the

signal we wish to track.

Transient Response Specifications: Specifications on a system’s transient re-

sponse are usually characterized with respect to a system’s step response (i.e. its

response to a unit step input). The common measures we use to characterize this

performance are

• Peak Overshoot, Mp, the peak value ymax that the output takes which is

usually expressed as a percentage equal to 100× ymax−yss
yss

.

• Rise Time, tr, is the amount of time it takes the system response to go

from 0 to first reach 90 percent of its final value.

• Settling Time, ts, is the interval of time it takes the response to go from

0 until it is within 10% of its final value for all future times.
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Fig. 2 illustrates where how these characteristics of a second order system’s tran-

sient response might be measured from a plot of its step response.
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FIGURE 2. (left) step response of second order system

(right) desired location of second order system’s poles

In general, it is only possible to develop formulae relating rise time, settling

time, and overshoot to the poles of first or second order systems. In the following

we focus on second order systems of the form

G(s) =
ω2
n

s2 + 2ζωns+ ω2
n

we can derive explicit formulae that can be used in selecting pole locations. In this

case, one can write the step response as

y(t) = 1− e−ζωnt√
1− ζ2

sin(ωn
√
1− ζ2t+ cos−1 ζ)

for t ≥ 0. The parameters ωn and ζ are standardized parameters known as the

system’s natural frequency and damping ratio, respectively. For this system the

system poles are

s1,2 = −ζωn ± jωn
√

1− ζ2 = −α± jω = −ωnζ ± jωn
√
1− ζ2 = rejθ
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where θ = cos−1 ζ and r = ωn. For such a system the peak overshoot, rise and

settling times can be explicitly approximated as follows.

Mp = 100× e
− πζ√

1−ζ2

tr ≈
0.8 + 2.5ζ

ωn

ts ≈
3.2

ωnζ
, when 0 < ζ < 0.69

We then usually place specifications on these metrics in the form of inequality

constraints. These inequalities then define a region of ”acceptable” pole locations

in the complex plane, which we then use to place the system’s closed-loop poles.

As an example, let’s consider a second order closed loop system where that

requires Mp ≤ 10%, ts < 1 seconds and tr is as fast as possible. The peak

overshoot requirement is

Mp = e
− πζ√

1−ζ2 < 0.1 ⇒ ζ > 0.59

This places a constraint on the damping ratio. In particular since we know the

”angle”, θ, of the pole is θ = cos−1(ζ), we actually define the sector shown above

in Fig. 2. The requirement on the settling times means

ts =
3.2

ζωn
< 1 ⇒ ζωn >

1

3.2

Since the real part of the pole is −ζωn, this means all poles meeting the settling

time constraint must be to the left of the −1/3. This region is also shown in Fig. 2

and the intersection of the two identified regions represents a feasible set of pole

locations. A requirement on the rise time that is less than 0.1 seconds means

tr ≈
0.8 + 0.25ζ

ωn
> 0.1, ⇒ ωn >

0.1

0.3 + 0.25ζ

where ζ was chosen to enforce the peak overshoot constraint. Note that ωn is the

modulus of the poles, so these poles must lie outside of a circular sector determined

by that modules. When put together we have a feasible set of locations for pole

placement.

This is a classical approach used in designing low order control systems for un-

dergraduate courses. But it is extremely limited in its usefulness. In the first place

it really requires that the system’s response is dominated by a pole pair, which

may not be the case in practice. In addition to this, the method relies heavily on
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particular test inputs like steps and ramps, which may not also reflect the actual

environment the system may face. This method confines itself to SISO systems

which means it is of little use in more complicated MIMO control system design.

Finally, this method presumes an accurate prior model of the plant. Since there

can be a great deal of uncertainty in our prior models, these methods provide lit-

tle insight into how to ensure our control system’s performance is robust to model

uncertainty. To address these issues, we will examine two other approaches for de-

signing SISO control systems, that we can then leverage to design more complex

robust MIMO control systems. The first approach is a frequency-domain design

method known as loopshaping. Even though we’ll discuss this method in the con-

text of SISO control systems, it turns out that loopshaping insights can also be

used to help design MIMOH∞ controllers. We will also examine the use of state-

based methods (in particular, observer-based controllers) to provide a systematic

framework that works well for MIMO systems.

5. Conflicting Control Objectives in Feedback Loops

How do we decide where to place the poles of a closed-loop system? In general,

they are chosen to assure the asymptotic stability of the system, but there are many

ways of formulating these regulation objective on various parts of the closed loop

system and it is important that we formulate these objectives so they don’t conflict

with each other. Recall we identified two types of inputs, r and w, for our earlier

one-parameter control system. We also considered two different outputs of interest

to us, the tracking error e and the control effort u. What we showed above is that

E(s) = − G(s)

1 +G(s)K(s)
W (s) +

1

1 +G(s)K(s)
R(s)

U(s) = − G(s)K(s)

1 +G(s)K(s)
W (s) +

K(s)

1 +G(s)K(s)
R(s)

We will find it convenient to define a loop function

L(s) = G(s)K(s)

and two sensitivity functions. The first sensitivity function is

S(s) =
1

1 + L(s)
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and the complementary sensitivity function

T(s) =
L(s)

1 + L(s)

We refer to the transfer function T(s) as being complementary since it is apparent

that

S(s) +T(s) = 1

This complementary relationship places severe constraints on the control objectives

we can enforce with regard to the two outputs.

When we discussed pole placement, the only requirement we placed on the

poles was that they had negative real parts (stable). But in general, we can be a

bit more concrete about ”how stable” we want these poles to be using the system’s

induced gain. Let us consider a system that is L2 stable in the sense that it maps

L2 signals (finite energy) onto L2 signals (finite energy). One can show that for an

SISO LTI system G, its induced L2 gain is

∥G∥2L2−ind = max
ω
|G(jω)| ≡ ∥G∥H∞

Note that since

∥y∥L2 ≤ ∥G∥L2−ind∥w∥L2 = ∥G∥H∞∥w∥L2

we have that for an input w of unit energy, that the total energy in the output signal

is determined by the induced gain of the system itself. In most cases we want the

signal w to be ”rejected” at the output. This is the case in our particular control

system where we wanted the tracking error e to be small for any reference input r

and we want the impact of the disturbance w on the control signal u to be small. In

other words, we require for unit input ∥w∥L2 = 1 that

∥e∥L2 ≤ ∥S∥H∞ ≤ γr

∥u∥L2 ≤ ∥T∥H∞ ≤ γw

where γr and γw are two small positive constants representing the specification on

system performance and S and T are the two sensitivity functions for this control

system. Our objective is now to select K(s) so that both closed loop systems, S

and T, are stable and so that their induced gains satisfy the limits imposed by the

design parameters γr and γw.
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Note that both of these sensitivity functions are complementary to each other

since

S(s) +T(s) = 1

for any s ∈ C. Let us suppose we’ve selected a controller K that kept the tracking

error small

1

γr
∥S∥H∞ < 1

For good tracking performance we obviously want γr ≪ 1. Because S + T = 1,

we have

∥T∥H∞ = ∥1− S∥H∞ ≥ 1− ∥S∥H∞ ≥ 1− γr

Since γr ≪ 1 we can readily see that ∥T∥H∞ is close to one, which means we

cannot make γw arbitrarily small. There is a limit on how aggressively we can

enforce the second requirement if we also require very good reference tracking.

This is a fundamental limitation on what one can achieve in designing feedback

control systems. We need to find a way around this limitation to design real-life

control systems.

To address the conflicting nature of multiple control objectives, we note that

requiring the H∞ norm of the closed loop map S to be less than γr means that the

gain magnitude |S(jω)| of the transfer function is less than γr for all frequencies

ω. The input signal, r, however, may not have significant energy in all frequency

bands. A reference signal, r, often has most of its energy in low frequency har-

monics. In a similar way requiring theH∞ norm of the complementary sensitivity

T to be less than γw means that |T(jω)| < γw for all ω. Again if we think of the

input disturbance as being ”noise”, then it usually does not have significant energy

in all frequencies. In particular, many noise processes have most of their energy in

high frequency harmonics.

What this means is that we do not really require the sensitivity and complemen-

tary sensitivity functions to have their gain magnitudes small over all frequencies.

We therefore introduce a weighting system whose gain magnitude is large for those

frequencies we care about and essentially goes to zero for those less important

frequencies. In this regard, the performance requirement is transformed from an
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unweighted set of constraints into the following weighted constraints

∥WpS∥H∞ < 1 and ∥W∆T∥H∞ < 1

where Wp(s) is a stable minimum phase transfer function that is close to 1/γr for

frequencies where input r has significant energy and is close to zero elsewhere.

The other system W∆(s) is another stable minimum phase transfer function that is

close to 1/γw for those frequencies where the disturbance w has significant energy

content. In this regard, we are treating the weighting systems, Wp and W∆, as

performance specifications on the system that represent the frequency weighted

levels of tracking performance and performance specifications we require of our

system.

Note that we are not free to pick these weighting systems to be anything. In

particular, they too must satisfy the underlying complementary nature of the sensi-

tivity functions. In particular this means they should satisfy

|γrWp(jω) + γwW∆(jω)| < 1

for all ω. In other words, the frequencies where |γtWp(jω)| ≈ 1 must be fre-

quencies where |γwW∆(jω)| is close to zero. So we do not attempt to enforce

the tracking requirement and the disturbance rejection requirements at the same

frequency ω. We identify an interval of frequencies over which the tracking con-

straint is aggressively enforced and this interval must be disjoint from the interval

of frequencies over which the disturbance rejection requirement is aggressively

enforced. Specifications that satisfy these conditions are said to be well posed.

6. Frequency-based Controller Design - Loopshaping

The preceding section asserted that one way of designing controllers for the feed-

back system in Fig. 1 is to select a controller K(s) so the weighted objectives

∥WpS∥H∞
< 1 and ∥W∆T∥H∞

< 1(3)

are satisfied subject to the weighting systems being well posed and the closed loop

system being stable. The requirement that the weighting systems are well-posed

means we are not attempting to enforce tracking and disturbance rejection objec-

tives at the same frequency. The stability condition requires that for all bounded
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inputs, the outputs of the closed loop system are bounded and that any internal

signals of the loop (such as u) remain bounded as well.

The problem with these specifications is that they may be difficult to certify be-

cause they require closed-form representations of the closed loop sensitivity func-

tions. In many real-life applications we don’t actually have concrete representa-

tions of S and T. What we usually have is a concrete representation for the open

loop plant’s transfer function G(s). This is usually in the form of its Bode plot

(see this chapter’s appendix in section 11). So rather than trying to directly certify

equations (3), we see if there is a way to certify these objectives by direct inspec-

tion of the loop function L(s) = G(s)K(s). Procedures that do this are referred to

as loopshaping.

Let us first look at the weighted sensitivity function WpS and assume that at a

specified frequency ω0 we know |Wp(jω0)S(jω0)| ≈ 1. Because these weights

are well-posed, we already know that the disturbance rejection objective satisfies

|W∆(jω0)T(jω0)| ≈ 0 and so we can ignore it.

We now translate our condition on the weighted sensitivity function into a con-

straint on the loop function, L(s). To do this note that

|Wp(jω0)S(jω0)| =
∣∣∣∣ Wp(jω0)

1 + L(jω0)

∣∣∣∣ ≤ |Wp(jω0)|
|1 + L(jω0)|

Let us confine our attention to those frequencies ω0 such that |L(jω0)| > 1. In this

case, the above bound on the weighted sensitivity function becomes

|Wp(jω0)S(jω0)| ≤
|Wp(jω0)|
|1 + L(jω0)|

≤ |Wp(jω0)|
|L(jω0)| − 1

In particular if the loop gain is large enough so that

|L(jω0)| > 1 + |Wp(jω0)| > |Wp(jω0)|

then this clearly means at this frequency, ω0, we have the weighted sensitivity

constraint satisfied

|Wp(jω0)S(jω0)| < 1
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In other words if |L(jω0)| > |Wp(jω0)| > 1, then the weighted condition on the

sensitivity function is satisfied at this frequency. To enforce the tracking constraint,

therefore, all we need to do is ensure the loop gain is greater than |Wp(jω0)|.

A similar argument applies to the disturbance rejection requirement that

|W∆(jω0)T(jω0)| < 1.

Again because we know the weights are well-posed, we know |Wp(jω0)| ≈ 0

and can therefore be ignored. In this case, we focus on frequencies, ω0, where

|L(jω0)| < 1 and ask what condition must be placed on L to ensure the weighted

condition on the complementary sensitivity function is satisfied. In this case we

note that

|W∆(jω0)T(jω0)| =
|W∆(jω0)L(jω0)|

1 + L(jω0)|
≤ |W∆(jω0)| |L(jω0)|

|1 + L(jω0)|

≤ |W∆(jω0)| |L(jω0)|
1− |L(jω0)|

where the last inequality holds because we confined our attention to frequencies

where |L(jω0)| < 1. Now note that if the loop function’s gain satisfies

|L(jω0)| ≤
|W−1

∆ (jω0)|
1− |W−1

∆ (jω0)|
≈ 1

|W∆(jω0)|
< 1

then we must have

|W∆(jω0)T(jω0)| < 1

In other words, if we make the loop gain |L(jω0)| less than
1

|W∆(jω0)|
for fre-

quencies where |L(jω0)| < 1 then the disturbance rejection requirement is met at

this frequency.

Combining both of the preceding observations, we see that a controller that

internally stabilizes the closed-loop system will enforce the well-posed weighted

specifications provided the open-loop gain |L(jω0)| is greater than |Wp(jω0)| for

frequencies where the tracking objective is active and |L(jω0)| <
1

|W∆(jω0)|
over frequencies where the disturbance rejection objective is active. Since one

usually has a Bode plot of the loop function, we can directly check the extent to

which these constraints are satisfied by the open loop plant G and then directly use

that knowledge to introduce a controller K that forces the loop function L = GK

to satisfy the constraints on L.
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Recall that these loopshaping constraints are only valid if we know that the

closed loop system is (internally) stable. In other words, we need to know if for

any inputs r, w ∈ L2 we know that u and y are also in L2. To obtain conditions en-

suring the internal stability of the closed loop system, let us consider the following

irreducible factorizations of the plant and controller transfer functions

G(s) =
ng(s)

dg(s)
, and K(s) =

nk(s)

dk(s)

The closed loop transfer function for this system may be written as

Tcl(s) =

[
ng(s)nk(s)

dg(s)dk(s)+ng(s)nk(s)
ng(s)dk(s)

dg(s)dk(s)+ng(s)nk(s)
nk(s)dg(s)

dg(s)dk(s)+ng(s)nk(s)
ng(s)nk(s)

dg(s)dk(s)+ng(s)nk(s)

]
From the preceding equation we see that internal stability of this system is assured

if the polynomial

p(s) = dg(s)dk(s) + ng(s)nk(s)

has no roots with positive real parts. One can show that if L(s) is a stable minimum

phase transfer function then for every frequency ω0 we have

∠L(jω0) =
1

π

∫ ∞

−∞

d ln |L(jω)|
dν

ln coth
|ν|
2
dν(4)

where the variable of integration is ν = ln(ω/ω0). The formula in equation (4)

is known as the Bode Gain-Phase Formula. This formula asserts that the phase of

a stable minimum phase transfer function is determined from its gain magnitude

plot. In particular, let
d ln |L(jν)|

dν
= c for frequencies about ω0, then the gain-

phase formula reduces to

∠L(jω0) ≈ −
cπ

2

where we used the fact that ln coth essentially looks like an impulse-like function

centered at ω0.

This last relation means that for a gain-magnitude plot that has a sustained 20c

dB/decade roll off around the frequency ω0 that the phase at ω0 will be −90c
degrees. We can therefore relate the roll off |L(jω0)| about the frequency ω0 to the

system’s phase. In particular, if we choose ω0 to be the gain crossover frequency

(i.e. the frequency, ω0 where |L(jω0)| = 1), then this means the phase margin

of the system will be 180 − 90c degrees. From the Nyquist criterion (see this

chapter’s appendix in section 11) we know that a closed loop system is robustly
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stable to phase variations if its phase margin is positive and greater than 60◦. From

the gain-phase formula we therefore see that c can only be about 1 to ensure a

healthy phase margin for the closed-loop system. In other words, to ensure the

closed-loop map is robustly internally stable we need to ensure the loop function L

exhibits a sustained roll off of no more than 20 dB/decade about the gain crossover

frequency.

In view of our earlier discussion regarding tracking and disturbance rejection,

we can now propose a loopshaping design method for the loop function L(s) that

ensures internal stability while also meeting the two control objectives. As dis-

cussed above, this method presumes that G(s) and K(s) are irreducible stable

minimum phase transfer functions so we can use Bode’s gain-phase formula. We

assume there exist two frequency intervals [0, ωℓ) and [ωu,∞) such that ωℓ < ωu.

Then the loopshaping procedure requires us to select a stable minimum phase con-

troller K(s) such that

• Tracking Requirement: |L(jω)| > |Wp(jω)| for frequencies where ω <

ωℓ and |L(jω)| > 1.

• Disturbance Rejection: |L(jω)| < |W−1
∆ (jω)| for frequencies where

ω > ωu and |L(jω)| < 1.

• Internal Stability: For frequencies ωℓ < ω < ωu the loop function

|L(jω)| exhibits a sustained 20 dB/decade roll off about the gain crossover

frequency.

FIGURE 3. DC servo motor example

We now apply these rules to a DC servomotor system shown in Fig. 3. We have

two control objectives the first is that the motor’s speed, ω, tracks a commanded

speed ωc(t) = cos(2πfct) which is a unit amplitude sinusoid whose frequency is



6. FREQUENCY-BASED CONTROLLER DESIGN - LOOPSHAPING 27

fc. We will assume that fc is anything less than 0.1
2π cycles/sec. The second objec-

tive is that vibrational disturbances Tm that are injected at the motor shaft should

generate small variations in the voltage output by the controller. These torques

are generated by flexible coupling of the shaft to the load and are also sinusoidal

disturbances with an amplitude of 0.1 and frequency, fm that is greater than 10
2π cy-

cles/sec. The left side of Fig. 3 shows the physical layout of the controlled system.

The DC motor is shown as a circle in the middle of the picture with a shaft that

is connected through a flexible coupling to the mechanical load. The voltage, v,

over the motor’s terminals generates a torque, Te, that accelerates the motor shaft.

We assume this torque is proportional to the applied voltage v so that Te = Kmv

where Km is a proportionality constant. The mechanical load, Tm, acts in opposi-

tion to Te to decelerate the motor shaft. A tachometer is used to measure the shaft

speed and the sensor measurement is fed back to a voltage regulator that takes the

error e(t) = ωc(t)− ω(t) between the commanded speed and the measured speed

to generate the voltage on the motor terminals. Let us assume that this applied

voltage is proportional to the tracking error, e, so that

v(t) = k(ωc(t)− ω(t))

where k is a controller parameter we select to achieve the desired control objec-

tives.

From the preceding considerations we see that the motor speed, ω, must satisfy

the following ODE

ω̇(t) = Te(t)− Tm(t) = Kmk(ωc − ω)− Tm(t)

To make this example concrete, let us take Km = 1 and we then derive the closed

loop sensitivity functions for this system.

The sensitivity function from ωc (reference input) to the error is

S(s) =
1

1 + k/s

The complementary sensitivity function from the load disturbance Tm to the con-

troller voltage, v is

T(s) =
k/s

1 + k/s
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The loop function associated with these two sensitivity functions is

L(s) =
k

s

We now formalize the control objectives informally described above

• The tracking specification requires the motor speed track the commanded

input ωc. This command is a unit amplitude sinusoid with frequency fc <
0.1
2π cycles/sec. Let us assume we want to reject this sinusoidal command

by 40 dB to obtain a 1% tracking error. Based on this description we

identify the performance weight as an ideal low pass filter

|Wp(jω)| =

{
100 for 0 < ω < 0.1

0 otherwise

Note that in reality we would have selected a minimum phase stable

transfer function that approximated this gain-magnitude.

• The disturbance rejection specification is that the disturbance torque, Tm,

which is also a sinusoid with maximum amplitude 0.1 and frequency

greater than 10
2π cycles/seconds be rejected at the controller’s voltage by

40 dB also. Based on these requirements we then see that the gain mag-

nitude of the weighting function should be a high pass filter that approx-

imates

|W∆(jω)| =

{
100 for ω > 10

0 otherwise

We now see that we should constrain the loop function L(s) to ensure

|Wp(jω)S(jω)| < 1 for 0 < ω < 0.1

|W∆(jω)T(jω)| < 1 for ω > 10

Based on earlier discussion these weighted constraints on the sensitivity func-

tion will be achieved if the closed loop maps are internally stable and the loop

function satisfies

|L(jω)| > |Wp(jω)| for 0 < ω < 0.1

|L(jω)| < 1
|W∆(jω)| for ω > 10
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FIGURE 4. Loop Function for DC servo (left - a ) original

design that does not preserve internal stability (right - b) de-

sign with relaxed specifications that preserve internal stabil-

ity

Both of these constraints are shown by the shaded red region in the Bode plot

in Fig. 4a. For a nominal control gain k = 1, the loop function becomes L(s) = 1
s

whose gain magnitude is plotted in Fig. 4a. What should be apparent here is that the

nominal loop shape does not satisfy the constraints. If we are to design a controller

that achieves the objectives we need to reshape the loop function so it satisfies the

constraints.

In particular we can see that the requirements will never be met by simply ad-

justing the gain k. So instead we propose using a frequency dependent controller,

K(s). Note that if we let

K(s) =
10

(s+ 1)2

then the resulting loop shape does satisfy the high and low frequency design con-

straints. Essentially what we have done is use the controller to reshape the loop

function in a manner that enforces the desired bounds on the sensitivity function.

This method, therefore, is called loopshaping.

However, our prior work presumes the closed loop map is stable and this is not

actually the case. In particular, if we look at the nominal loop function, L(s), it is
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easy to see that both sensitivity functions

S(s) =
1

1 + 1/s
and T(s) =

1/s

1 + 1/s

will be stable. But this is not the case for our reshaped loop function L(s) =
10

s(s+1)2
. For this loop function the sensitivity functions are

S(s) =
s(s+ 1)2

s(s+ 1)2 + 10
and T(s) =

10

s(s+ 1)2 + 10

The denominator polynomial has roots at −2.8675 and 0.4337± 1.8154j which is

clearly unstable.

This is why we also need to enforce the third requirement that the ”slope” of

the loop function be around 20dB/decade across the gain crossover point. Clearly

that requirement is not satisfied by our reshaped loop. However, we can readily see

that this requirement can never be met with the specifications we’ve been given.

The change in the loop function has to be 80 dB over 2 decades to meet the high

and low frequency requirements. This is an average roll off of 40 dB/decade.

One way of addressing the impasse is to relax the requirements. So we reduce

the requirements so that |L(jω)| is greater than 30 dB for ω < 0.1 and we relax the

disturbance rejection constraints so that |L(jω)| is less than −20 dB for ω > 10.

We choose a loop shape that rolls off at 40 dB/decade for low frequencies and

then uses a zero to shift to a 20 dB/decade roll off just before the gain crossover

frequency at 1 rad/sec. The resulting loop shape is shown in Fig. 4b with a loop

function of

L(s) =
s+ 0.3

s2

The sensitivity functions for this system are

S(s) =
s2

s2 + s+ 0.3
and T(s) =

s+ 0.3

s2 + s+ 0.3

both of which have poles at −0.5± .2236j. If we look at the Bode plot, we see we

have a roll off of about 20 dB/decade about the gain cross over at 1 rad/sec. So this

is an internally stable controller that meets the relaxed design requirements.

Loopshaping Blocks: In loopshaping we take the original plant, G(s) and place

it in series with a controller K(s) that alters the loop function in a manner to meet

the desired loopshaping conditions. This controller or desired loop shape can be
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built up in an incremental manner using loopshaping blocks that most undergrad

control students have seen before. This subsection reviews these blocks and shows

how they are used to shape the loop function in a systematic manner.

The most elementary loopshaping block is the proportional gain,

K(s) = K

The effect of this block is to raise the loop gain at all frequencies. This can increase

the system bandwidth, thereby making the system ”faster”, but by increasing band-

width it can also make the system more sensitive to high frequency noise.

The next basic loopshaping block is the lag network. The transfer function for

the lag network is

K(s) =
b

a

(
s+ a

s+ b

)
where a > b ≥ 0. The action of the lag network is to raise the loop gain at

frequencies below b (the compensator’s pole) and add phase in the transition region

between b and a. This tends to increase the low frequency loop gain which implies

better rejection of low frequency disturbances, but the additional phase lag can

destabilize the system if it occurs around the gain crossover frequency. As a result

lag compensators are usually design so the compensator’s pole and zero are placed

about a decade below the gain cross-over frequency. Closely related to the lag

compensator is the proportional-integral (PI) compensator. The transfer function

of the PI controller is

K(s) = Kp +
KI

s
=
sKp +KI

s

The PI controller may therefore be viewed as a lag compensator whose pole is at

the origin.

The lead compensator is another widely used loopshaping block. It has the

transfer function

K(s) =
b

a

(
s+ a

s+ b

)
where b > a ≥ 0. The action of the lead network is to raise the loop gain at

frequencies above b (the compensator’s pole) and add phase lead in the transition

region between a and b. This compensator will increase the system’s bandwidth,
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thereby resulting in a faster system and when the compensator adds phase lead

around the gain crossover frequency it can improve the system’s overall phase

margin. The larger high frequency gain, however, also has the effect of making

the system more sensitive to noise and modeling error. Lead networks are used

primarily to add phase margin to a system. For this purpose there is a well known

design procedure in which the designer first identifies the frequencies over which

phase needs to be added and then places the transition region of the lead network

in that interval.

The phase lead, ϕℓ, that the lead network adds will be

sin(ϕℓ) =
m− 1

m+ 1
, where m =

b

a
=

1 + sinϕℓ
1− sin(ϕℓ)

This phase lead will be added at the frequency

ωℓ =
√
ab = a

√
m

The preceding equations can be used in a systematic way to design lead networks.

Proportional/derivative controllers are special cases of lead networks. The transfer

function for a PD controller is

K(s) = Kp +
KDs

s+ p
=

(Kp +KD)s+Kpp

s+ p

Lead-Lag Loopshaping Block Example: Based on our earlier discussion, loop-

shaping assumes there are two disjoint frequency intervals [0, ωℓ] and [ωu,∞)

where ωℓ < ωu. The weighting systems are chosen so that

• |Wp(jω)| > 1 and |W∆(jω)| ≪ 1 for all ω ∈ [0, ωℓ)

• |W∆(jω)| > 1 and |Wp(jω)| ≪ 1 for all ω ∈ [ωu,∞)

to ensure the specifications are well-posed. The first interval [0, ωℓ) is the set of

frequencies over which the tracking objective is to be enforced. For convenience

we call it the performance region (P-region) of the frequency space. The second

interval [ωu,∞) is the set of frequencies over which the disturbance rejection ob-

jective is to be enforced, so we call it the rejection region (R-region). Finally,

those frequencies in the interval [ωℓ, ωu] form the transition region (T-region) of

the frequency space.
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Loopshaping is done with respect to the three regions identified above. In par-

ticular, we need to ”build” a stable minimum phase controller K(s) such that

• Tracking Objective: |L(jω)| > |Wp(jω)| for all ω in the P-region

([0, ωℓ)),

• Disturbance Rejection Objective: |L(jω)| < |W−1
∆ (jω)| for all ω in the

R-region ([ωu,∞)),

• Closed-loop Stability: |L(jω)| has an average roll off of 20 dB/decade

about the gain crossover frequency ωg in the T-region.

then we know there is a good chance that the preceding performance requirements

will be satisfied and that the resulting closed-loop sensitivity functions S(s) and

T(s) will be stable. This design methodology is approximate since some judge-

ment is required in selecting ωℓ and ωu that define the P frequency region and

R frequency region. There is also some judgement involved in determining how

much one can relax the 20 dB/decade roll off in the T-region before the closed-loop

system is no longer stable.

We are going to use the loopshaping blocks identified above to help find a con-

troller K(s) that meets the requirements. The plant is a voltage regulator whose

circuit diagram is shown in Fig. 5. This circuit uses an operational amplifier1 to

generate a correction voltage on the base of a power transistor, Q1, transferring

the energy in an unregulated voltage source to an RC load. The voltage source

attached to Q1’s emitter is an unregulated device such as a battery whose voltage,

Vin(t), varies with the battery’s state of charge. The operational amplifier’s output

voltage, Va(t), is equal to the difference of a nominal set point voltage Vnom(t).

and the voltage Vout(t) over the RC load, namely the voltage from the transistor’s

collector terminal to ground. This means that Va(t) acts as an error signal measur-

ing how much the load voltage differs from the set point voltage. By applying the

error voltage Va(t) to the transistor’s base, one can increase or decrease the current

Ia(t) delivered to the load, thereby, providing a feedback mechanism which keeps

Vout(t) close to Vnom(t). In other words, this circuit acts to “regulate” the load

1J.K. Roberge, Operational amplifiers: theory and practice, John Wiley $ Sons, NY,

1975.
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voltage about the reference nominal voltage Vnom(t) with respect to variations (i.e.

disturbances) in the unregulated source’s voltage level, Vin(t).
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FIGURE 5. Op-amp based Voltage Regulator

The performance of this circuit is defined with respect to its line regulation

% line regulation = 100
Vout,max − Vout,min

Vnom

where the variation in Vout(t), is generated by bounded variations of the source

voltage, Vin. In this case, we assume the unregulated source has a voltage

Vin(t) ∈ [10, 510] V

We take Vnom(t) = 5u(t) V where u is a unit step function, thereby simulating the

turning on of the regulator at time t = 0.

The issue we have with this circuit lies in the operational amplifier. Introductory

circuit textbooks often take the operational amplifier’s input/output relationship to

be

Va(t) = a(Vout(t)− Vnom)

where a is a real and very large positive constant. But in reality, operational am-

plifiers are linear dynamical systems. The frequency response for this particular

op-amp is shown on the right side of Fig. 5. This means that the input/output

relationship in the Laplace domain is

V̂a(s) = a(s)(V̂out(s)− V̂nom(s))
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The op-amp’s transfer function can be deduced by an inspection of the Bode plot

in Fig. 5 to be

a(s) =
5× 104

(s+ 1)(10−4s+ 1)

Let us see how well this regulator performs with respect to line regulation for

the circuit values shown in the figure. For the moment we’ll ignore the hum and

simply examine how the output voltage varies when Vin is a constant between 10

to 510 volts. The output voltage for a given constant Vin(t) for “large” t will be

Vout = Vin − (a(0))(5− Vout) ⇒ Vout =
Vin − 5a(0)

1− a(0)

Since Vin is a constant between 10 and 510 V, and a(0) = 5× 104, this means

Vout,max =
10− 25× 104

1− 5× 104
= 4.9999 V

Vout,min =
510− 25× 104

1− 5× 104
= 4.9899 V

So the percent line regulation is

percent line regulation = 100× Vout,max − Vout,min

Vnom

= 100× 4.9999− 4.9899

5
= 0.2 percent regulation

This preceding analysis assumed that Vin(t) was a constant somewhere between

10 and 510 volts. But in reality it will be a time varying function, which means we

need to take into account the dynamics introduced by the RC load and the op-amp’s

transfer function, a(s). Let us look at the circuit schematic and apply KVL along

the path from the unregulated source to ground through the transistor and load.

V̂in(s) = Îa(s)R+ a(s)(V̂nom(s)− V̂out(s))

The current Îa(s) is equal to the load current, since the op-amp input currents are

very small.

Îa(s) = ÎL(s) = V̂out(s)
RCs+ 1

R

Inserting this into the first equation gives

V̂in(s) = (RCs+ 1)V̂out(s) + a(s)(V̂nom(s)− V̂out(s))
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which we rewrite as

V̂out(s) =
1

RCs+ 1

(
V̂in(s)− a(s)(V̂nom(s)− V̂out(s))

)
This last equation serves as the basis for a block diagram of the circuit that is shown

in Fig. 6(a).

_

+

_ +

(a) block diagram of voltage regulator (uncompensated)

+
_

+

_
+

-

(b) compensated opamp

FIGURE 6. (a) Block Diagram of Op-amp Based Voltage

Regulator (b) inverted compensated op-amp

This diagram clearly shows that our voltage regulator is a unity gain SISO con-

trol system just like we had drawn in Fig. 1. In this case the controller is a(s), the

operational amplifier, the plant is
1

RCs+ 1
. The input voltage Vnom is the refer-

ence input we want to track and the disturbance we want to reject is the unregulated

voltage, Vin(t).

Using the values in Fig. 5 (R = 104 ohms and C = 10µF) we obtain the loop

function

L(s) =
a(s)

RCs+ 1
=

5× 104

(s+ 1)(10−4s+ 1)(10−1s+ 1)

The Bode plot for this loop function is plotted in Fig. 7, where we’ve marked the

gain crossover frequency and associated phase margin. This system has a gain

crossover of 332 rad/sec and its phase margin is −3◦. Since the phase margin is

negative, we can conclude that this closed-loop system is unstable. It means that

the circuit as drawn will not work and that the line regulation computed in the

preceding paragraph is meaningless since the circuit is unstable.

In the block diagram of Fig. 6(a), the plant is G(s) = 1
RCs+1 and the controller

is the op-amp. Without compensation, the op-amp’s transfer function, a(s), was

shown in the preceding paragraph to destabilize the circuit. So obviously, we need
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FIGURE 7. Bode plot of voltage regulator’s loop function

(uncompensated)

to compensate the op-amp to change its transfer function. The standard compen-

sation scheme is shown in Fig. 6(b), where passive RC networks with impedances

Zf(s) and Zin(s) are connected to the op-amp as shown. Assuming the op-amp’s

gain is sufficiently large, then the compensated transfer function may be taken as

being

ac(s) = −
Zf(s)

Zin(s)

which is something that we can build to provide any set of poles and zeros. So

our problem now involves identifying the desired compensated op-amp transfer

function, ac(s), that is needed to realize a stable closed-loop system meeting a pair

of tracking and disturbance rejection objectives.

We still need to specify the control objectives. In general, these objectives are

stated in terms of desirable steady-state and transient behaviors. In particular, we

will assume the following

• Achieve 0.01% line regulation assuming Vnom(t) = 5 and Vin(t) is a

constant voltage taking value in the interval [10, 510] V.

• Let Vin(t) = V0+sin(ωdt) and reject the hum (sin(ωdt)) where ωd > 104

rad/sec at the op-amp’s output, Va(t) by 40 dB
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• If Vnom = 5u(t) (u is a step function), then make sure Vout(t) settles to

5 volts with at most 20% of overshoot.

The first objective is a tracking objective in the presence of a constant, though

unknown Vin. The second objective is a disturbance rejection requirement that a

“hum” on the line be attenuated to 1 percent (−40 dB) of its maximum amplitude.

The third objective is a transient response requirement which is not really handled

by constraints on the gain magnitude of the loop function. This constraint is han-

dled, indirectly, through the phase margin and where the gain crossover frequency

occurs.

The tracking objective is for line regulation of a constant Vin lying within 10 to

510 volts assuming a constant 5 volt reference voltage, Vnom. so we have

desired percent line regulation = 0.01

≥ 100×
(
Vout,max − Vout,min

Vnom

)
=

100

5

(
10− 5ac(0)− 510 + 5ac(0)

1− ac(0)

)
=

(20)(−500)
1− ac(0)

which places a constraint on the DC gain of the compensated op-amp’s transfer

function,

ac(0) ≥ 100× 2× 500− 1 ≈ 105

So the DC gain of ac(0) should be 105. Since the DC gain of the plant, 1
RCs+1 , is 1,

this means we need the loop gain, |L(j0)| to be greater than 20 log10(10
5) = 100

dB. Note that this is only a constraint at DC.

We will enlarge the P-region (tracking) by selecting a range of frequencies from

0 to ωℓ for which the loop gain should be greater than 100 dB. Note that since we

require disturbances with frequencies greater than 104 rad/sec to be attenuated by

40 dB, this means that the R-region (rejection) is the interval [104,∞) and so the

transition (T) region is [ωℓ, 10
4]. The sustained roll off over the transition region

will be set at approximately 30 dB/decade to ensure closed-loop stability. So the

total change in loop gain over the transition region is 100 + 40 = 140 dB and this

suggests the transition region should be around 5 decades long. This means ωℓ
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should be chosen to be 10−1 rad/sec. With the P-region now set, we can define the

weighting systems as

|Wp(jω)| =

{
100 dB for 0 ≤ ω < 0.1 rad/sec

−∞ dB otherwise

and the R-region’s function will be

|W∆(jω)| =

{
40 dB for ω > 104 rad/sec

−∞ dB otherwise

We are now ready to design the compensated loop function.

Note that since the DC gain of the uncompensated op-amp is 5× 104 and since

the RC circuit’s DC gain is 1, we will need to increase the DC gain of the op-amp

from 50, 000 to 100, 000. This corresponds to a proportional gain, Kp = 2. The

compensated loop function is now

L(s) = 2a(s)

=
100000

10−5s3 + 0.1001s2 + 1.1s+ 1

The Bode plot for this compensated loop function is shown in Fig. 8.

10-2 10-1 100 101 102 103 104 105 106

-100

-50

0

50

100

150

10-2 10-1 100 101 102 103 104 105 106

-250

-200

-150

-100

-50

0

P-region T-region R-region
-40 dB

Compensated Loop Function (Kp)

G
ai

n 
M

ag
ni

tu
de

 (d
B

)
Ph

as
e 

(d
eg

)

-180º

unstable

tracking OK
if stable

rejection OK
If stable

FIGURE 8. Bode plot of voltage regulator’s loop function

with proportional gain block, Kp = 2

What this figure shows is that the tracking constraint and the disturbance rejec-

tion constraints are both met. The loop function has a gain crossover at 997 rad/sec
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with a phase margin of−5.1◦. Since this phase margin is negative, the closed-loop

system would be unstable. We therefore need to add compensation that can address

the negative phase margin. We propose using a lead network for this purpose.

Because the lead network will shift the gain crossover point to the right, we

propose designing our lead network so it adds phase lead at 3000 rad/sec. At this

point the phase of the uncompensated loop is about−200◦, which means we would

have to add 20+50 = 70◦ of phase lead at this frequency so the lead compensated

loop function has a phase margin of 50◦. The compensated loop function is now

L(s) = 2Klead(s)a(s)

= 2

(
32.16s+ 1.7× 104

s+ 1.7× 104

)
a(s)

=
3.216× 106s+ 1.8− 1× 109

10−5s4 + 0.2702s3 + 1704s2 + 1.872× 104s+ 1.701× 104

The Bode plot for this lead compensated loop is in Fig. 9. The figure shows that

the tracking objective is still satisfied, that the phase margin has increased to 57.6◦

with a gain crossover at 1914 rad/sec. But the lead network violates the disturbance

rejection objective by providing only about −20 dB of attenuation at 104 rad/sec.
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FIGURE 9. Bode plot of voltage regulator’s loop function

with proportional gain, Kp = 2, and lead compensator,

Klead(s) =
32.16s+1.7×104

s+1.7×104
).
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So we need to find a way to reduce this by an additional 20 dB. This may be

done by reducing the loop gain by a factor of 10. So we modify our loop function

to

L(s) =
2

10
Klead(s)a(s)

The Bode plot for this loop function is shown in Fig. 10. What we see here is

that this change led to a violation of the tracking constraint and a reduced though

positive phase margin of 31.8◦ at a gain crossover frequency of 345 rad/sec.
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FIGURE 10. Bode plot of voltage regulator’s loop function

with reduced proportional gain, Kp = 2/10, and lead com-

pensator, Klead(s) =
32.16s+1.7×104

s+1.7×104

This reduction in phase margin, however, occurs because the gain crossover

moved to 345 rad/sec. This suggests we should have designed our lead network to

place the phase lead at this frequency. So we redesign the lead network to provide

60◦ of phase lead at 600 rad/sec. The loop function obtained using the redesigned

lead network is now

L(s) =

(
2

10

)
Klead1(s)a(s)

=
2

10

(
13.93s+ 2239

s+ 2239

)
a(s)

The Bode plot for the resulting loop function is shown in Fig. 11. What we see here

is that we have a good positive phase margin of 57.3◦ at a gain crossover frequency
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of 618 rad/sec. The disturbance rejection requirement is still satisfied, but we still

violate the tracking objective.
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FIGURE 11. Bode plot of voltage regulator’s loop function

with reduced proportional gain, Kp = 2/10, and redesigned

lead compensator, Klead1(s) =
13.93s+2239
s+2239

We can improve tracking performance through a lag network that is placed a

decade below the gain crossover frequency (800 rad/sec). This lag network will

need to provide an additional 20 dB of gain at frequencies below 0.1 rad/sec. Both

conditions are satisfied by a lag network whose zero is at 8 rad/sec and whose pole

is at 0.8 rad/sec. The loop function now becomes

L(s) =
2

10
Klead1(s)Klag(s)a(s)

=
2

10

(
13.93s+ 2239

s+ 2239

)(
s+ 8

s+ 0.8

)
a(s)

The Bode plot for this lead-lag compensated loop function is shown in Fig. 12.

This figure shows that the tracking and disturbance rejection objectives are met.

The phase margin is now 56.8◦ at 618 rad/sec. So this loop shape satisfies the

tracking, rejection, and stability objectives.

The last requirement is that we settle quickly with a 20% overshoot. Loop-

shaping can indirectly effect these transient metrics through the phase margin. A

larger margin will result in smaller overshoot and the settling time can be reduced
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FIGURE 12. Bode plot of voltage regulator’s loop func-

tion with reduced proportional gain, Kp = 2/10, re-

designed lead-lag compensator redesigned lead compen-

sator, Klead1(s) = 13.93s+2239
s+2239

, and lag compensator,

Klag(s) =
s+8
s+0.8

by increasing the gain crossover frequency. Fig. 13 shows the step response for

the closed loop system. We see that the overshoot condition is satisfied, and so we

are lucky in the sense that we don’t have to do any redesign to try and meet the

transient response requirements.
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FIGURE 13. Closed loop step response of final design
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7. State Space Modeling of LTI Systems

Pole placement and frequency response methods are often used in the design of

SISO control systems, but they are difficult to use when the LTI system has mul-

tiple inputs and multiple outputs (MIMO). MIMO LTI control systems are better

designed using state space models of the system. A state space realization is a con-

crete representation of an LTI system G formed from the following set of equations

ẋ(t) = Ax(t) +Bw(t)

y(t) = Cx(t) +Dw(t)

The signal x : R → Rn is an internal signals called the system’s state. The input

is the signal w : R → Rm and the output is y : R → Rp. The other objects

(A,B,C,D) are real valued matrices of appropriate dimensions. Such state space

realizations are often written in a packed matrix notation

G
s
=

[
A B

C D

]

Note that if we know the initial state, x(0) = x0, then if we take the Laplace

transform of the above equations we obtain

sX(s)− x(0) = AX(s) +BW (s)

Y (s) = CX(s) +DW (s)

We can then solve the first equation for X(s) to obtain

X(s) = (sI−A)−1(BW (s) + x(0))

Inserting this expression into the second state equation yields,

Y (s) = C(sI−A)−1BW (s) +C(sI−A)−1x(0)

= G(s)W (s) +G0(s)x0

The first term is the product of the transfer function, G(s), with the Laplace trans-

form of the input W (s). This term represents the system’s zero-state or forced

response to an external input w. The second term multiplies G0 with the Laplace

transform of an impulse δ(t)x0 applied at time 0. This term therefore represents the
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zero-input or natural response of the system with respect to non-zero initial condi-

tions. What we have just shown is that any state space realization G
s
=

[
A B

C D

]
has the transfer function

G(s) = C(sI−A)−1B+D

Unlike our earlier characterization of a SISO system’s transfer function, we can

see that for MIMO system’s, the transfer function G(s) will be a matrix of rational

functions. The ijth component of that matrix being a transfer function from the

jth input to the ith output of the system, assuming all other inputs are zero.

Every state space realization has a unique transfer function. However each

transfer function may have an infinite number of possible state space realizations.

In particular, given a transfer function G(s), let us assume that it has a state space

realization

G
s
=

[
A B

C D

]

Let Q be any nonsingular square matrix with the same dimensions as A. This

means there exists a matrix Q−1 such that Q−1Q = I. If x ∈ Rn is the state

vector for G, we can create new ”state, z = Qx by passing x through the linear

transformation Q. This would also mean that x = Q−1z and if we take the time

derivative of x we get

ẋ = Ax+Bw

= AQ−1z +Bw

= Q−1ż

the last two equations can be rewritten as

ż = QAQ−1z +QBw

Note also that

y = Cx+Dw

= CQ−1z +Dw
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This gives rise to the following state space realization of the z-system

ż = QAQ−1z +QBw

y = CQ−1z +Dw

We claim that the state space realization

[
A B

C D

]
has the same transfer fucn-

tion as the realization

[
QAQ−1 QB

CQ−1 D

]
. This assertion can be directly verified

by computing the transfer function for both realizations and using the fact that

Q−1Q = I. Note that since this is true for any nonsingular Q we chose, so we

have an infinite number of realizations associated with a given transfer function.

These realizations are indistinguishable from each other on the basis of the sys-

tem’s input/output behavior, but different realizations may be more convenient to

work with from an analytical standpoint. Such realizations are said to be canonical

and several such important realizations are discussed in linear systems textbooks.

Commonly used canonical realizations are the “companion” forms, modal forms,

and balanced realizations. The companion matrix realizations are notable because

of their close relationship to the controllability and observability of the given real-

ization. Modal realizations where the A matrix is in Jordan form are useful because

of their numerical stability and their clear identification of the fundamental modes

of the system. Balanced realizations are important because of the role they play

in model reduction. We are assuming that the reader is already somewhat familiar

with some of these canonical realizations. In the next section, we discuss how they

are used in developing observer-based control laws from the system’s state-space

realizations.

8. State Feedback

Consider the LTI system

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

We say this realization can have its eigenvalues arbitrarily assigned by state feed-

back if for any nth order polynomial, αd(s), there is a matrix F such that the
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eigenvalues of A + BF are the roots of the polynomial equation, αd(s) = 0. In

other words there is a state feedback law,

u(t) = Fx(t)

such that when this is applied to our system we obtain the closed-loop system

ẋ(t) = (A+BF)x(t)

y(t) = Cx(t)

A necessary and sufficient condition for the existence of this F is that the original

system (A,B) is controllable. Note that we often do not need full state assignment

of the system’s closed loop poles, since the main requirement may be for stability.

In this case, we say that (A,B) is stabilizable if and only if all of its uncontrollable

eigenvalues already have negative real parts. In this case, a necessary and sufficient

condition for a stabilizing F is that (A,B) is stabilizable.

In many application, one does not have direct access to the full state. In this

case, we would like to find a way to estimate the full state x, from the available

observed outputs, y. Such a system is called an observer. A classical observer

known as the Luenberger observer has the following form. It uses the outputs y(t)

and inputs u(t) to generate an estimate x̂ of the system’s true state assuming this

state is generated by a known LTI system realization

ẋ(t) = Ax(t) +B1w(t) +B2u(t)

y(t) = Cx(t) +D1w(t) +D2u(t)

In this case w is a disturbance input that is generally not known and u is a con-

trol input that we do know. We assume that the state space realization G
s
=[

A B1 B2

C D1 D2

]
is known. The associated Luenberger observer then generates

an estimate x̂ that satisfies the following state equations

˙̂x(t) = Ax̂(t) +B2u(t) + L(y(t)− ŷ(t))

ŷ(t) = Cx̂(t) +D2u(t)

where L is a matrix of observer gains. We choose these gains to ensure that the

state estimation error x̃(t) = x(t) − x̂(t) asymptotically goes to zero in the ab-

sence of any external disturbance, w and remains ”small” when w is a bounded

disturbance.
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To see when a ”stable” observer exists, we write out the state equations for the

state estimation error x̂.

˙̃x(t) = ẋ(t)− ˙̂x(t)

= Ax(t) +B1w(t) +B2u(t)

−Ax̂(t)−B2u(t)− L(Cx(t) +D1w(t) +D2u(t)−Cx̂−D2u)

= (A− LC)x̃(t) + (B1 + LD1)w(t)

A necessary and sufficient condition for the existence of observer gains, L, that

arbitrarily assign the eigenvalues of A− LC is that the pair (A,C) is observable.

If all we require is that the observer’s eigenvalues are stable, then we require that all

unobservable eigenvalues of (A,C) have negative real parts, or rather that (A,C)

is detectable.

9. Observer-based Controllers

An observer based controller is a feedback control system that uses a Luenberger

observer to estimate the inaccessible system states and then uses those state esti-

mates to compute the control signal that is re-injected back into the plant. We take

the plant, P, to have state equations

ẋ(t) = Ax(t) +B1w(t) +B2u(t)

z(t) = C1x(t) +D12u(t)

y(t) = C2x(t) +D21w

which in packed matrix form is P s
=


A B1 B2

C1 0 D12

C2 D21 0

. The first output z is a

virtual signal measuring how well the system is ”performing”. If we are thinking

in terms of a regulation problem, then z might be the tracking error and the control

effort. The other output y is the output signal used by an observer to generate a

state estimate x̂. The input w is a disturbance and the input u is the ”control” law

that satisfies

u(t) = Fx̂
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where F is chosen so the eigenvalues of A+B2F have negative real parts and the

state estimate satisfies

˙̂x(t) = Ax̂(t) +B2u+ L(y(t)−C2x̂)

where L is chosen so that A− LC2 is Hurwitz.

We can view the closed-loop equations as the feedback combination of the plant

P with a dynamic controller K that has x̂ as its states, takes y as its input and

generates the output u. The state equations for the controller, therefore are

˙̂x = Ax̂+B2u+ L(y −C2x̂)

= (A+B2F− LC2)x̂+ Ly

u = Fx

In packed matrix form the controller’s state space realization becomes

K
s
=

[
A+B2F− LC2 L

F 0

]

P

FIGURE 14. Observer-based Control System’s LFT
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The feedback connection is portrayed in Fig. 1 as a linear fractional transfor-

mation (LFT). The transfer function for the original plant P can be written as

P(s) =

[
C1

C2

]
(sI−A)−1

[
B1 B2

]
+

[
0 D12

D21 0

]

=

[
C1(sI−A)−1B1 C1(sI−A)−1B2 +D12

C2(sI−A)−1B1 +D21 C2(sI−A)−1B2

]

=

[
P11(s) P12(s)

P21(s) P22(s)

]
With a slight abuse of notation, we can now write out the relationship between the

inputs w and u and z and y as

z = P11(s)w +P12(s)u

y = P21(s)w +P22(s)u

Since the controller is also an LTI system, it has a transfer function

K(s) = F(sI−A−B2F+ LC2)
−1L

and we further know that u = K(s)y. So if we substitute this back into the equation

above we get

z = P11w +P12Ky

y = P21w +P22Ky

Solving the second equation for y yields

y = (I−P22K)−1P21w

provided the inverse exists. Taking this last relation and putting it into the first

equation gives the transfer funtion for our closed loop observer-based control sys-

tem

z =
[
P11 +P12K(I−P22K)−1P21

]
w

def
= Fℓ(P,K)w

We refer to Fℓ(P,K) as a lower linear fractional transformation formed from the

plant P and the controller K. This LFT is said to be internally stable if for any

bounded input w we have that the internal signals u and y are also bounded (with

respect to an assumed signal norm).
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With regard to this closed-loop representation as an LFT, we now pose the con-

troller synthesis problem as an optimization problem of the form

minimize ∥Fℓ(P,K)∥
with respect to K

subject to Fℓ(P,K) being internally stable

where ∥Fℓ(P,K)∥ is the induced gain of the system. Ifw is a white noise input and

the norm of output z is in L2, then this is called the H2 optimal controller. If the

input and output are both L2 signals then this is called theH∞ optimal controller.

10. Summary

This chapter reviewed classical methods taught in undergraduate control courses

[Ogata (2009)] for the design of stabilizing feedback controllers. The chapter first

considered pole-placement methods and then discussed a frequency-domain de-

sign method called loopshaping. Our coverage of loopshaping is similar to that

found in Rohrs et al. (1992), Doyle et al. (2013), and Astrom and Murray (2010)

all of which might be seen as providing a more mature view of frequency-domain

design than is found in the older texts. Loopshaping provides considerable insight

into what constitutes a ”good” feedback control for a SISO plant. Surprisingly,

loopshaping insights are also valuable in selecting weights for modern MIMO ro-

bust control methodologies such as the H∞ controllers discussed in chapter 3.

The chapter closed with a discussion of state feedback methods for MIMO linear

systems. Much of that discussion is drawn from linear systems theory textbooks

such as Antsaklis and Michel (2006). Our treatment, however, reframes much of

that discussion in terms modern MIMO feedback control texts such as Zhou et al.

(1996) in which controller synthesis is viewed as an optimization problem subject

to internal stability conditions. The next chapter takes a deeper look at the ”optimal

control” problems for general classes of nonlinear systems.

11. Appendix: Bode Plots and the Nyquist Criterion

There are two ways of graphically representing the information in a system’s,

G(s), frequency response; the Bode plot and the Nyquist plot.
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• Bode plots graph 20 log10 |G(jω)| (units of decibels (dB)) and arg(G(jω))

versus log10 ω. This first plot is called the gain-magnitude plot and the

second is called the phase plot of the system. Bode plots are useful be-

cause one can readily sketch these plots for rational transfer functions

and use them to help design stabilizing feedback control systems.

• Nyquist plots graph Re(G(jω)) versus Im(G(jω)). These plots are ex-

tremely useful in certifying whether or not a closed-loop system has any

unstable poles as well as characterizing how close a given feedback sys-

tem is to being unstable.

This appendix reviews methods for sketching asymptotic approximations to a Bode

plots. It then reviews how Bode plots and Nyquist plots are used to evaluate the

asymptotic stability of closed-loop systems.

Sketching Bode Plots: Bode plots are most easily generated using software func-

tions such as MATLAB’s bode function. For example, the following script gener-

ates the Bode plot for transfer function G(s) = 160(s+1)
s(s2+s+16)

.

s = tf(’s’)

G = 160*(s+1)/(s*(sˆ2+s+16)

bode(G)

grid on

whose resulting plot is shown in Fig. 15. The solid blue line shows the Bode plot

generated by the bode command. The dashed black line shows the Bode plot that

was hand sketched using the guidelines discussed below.

Consider the transfer function

G(s) =
K(1 + T1s)

s(1 + Tas)(1 + 2 η
ωn
s+ s2

ω2
n
)

This transfer function consists of several factor; a constant factor K, a pole at the

origin, a simple pole/zero, and a complex pole pair. Let us determine the gain-

magnitude and phase plots for this transfer function and discuss how each of these

factors might be sketched by hand.
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FIGURE 15. Bode plot (computer generated and hand

sketched) for 160(s+1)
s(s2+s+16)

The gain magnitude of the transfer function is defined as

|G(jω)|dB = 20 log10 |G(jω)|

If we take logarithms on both sides and expand out the individual terms we see

|G(jω)|dB = 20 log10 |K|+ 20 log10 |1 + jωT1| − 20 log10 |jω|

−20 log10 |1 + jωTa| − 20 log10

∣∣∣∣1 + 2
jηω

ωn
− ω2

ω2
n

∣∣∣∣
and the phase can be expanded out as

argG(jω) = argK + arg (1 + jωT1)− arg jω

− arg(1 + jωTa)− arg

(
1 + 2

jηω

ωn
− ω2

ωn

2
)

Note that these expressions have 4 different types of factors; constant factors,

K, poles/zeros at the origin, simple poles/zeros, and complex pole/zero pairs. The

Bode plot is easily sketched by hand due to the additivity of the terms. In other

words, we first take a transfer function and factor the numerator and denominator

polynomials. The Bode plot for each factor can be sketched by hand using the
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methods described below and because of the additivity of the terms under the log-

arithm, we can graphically add the plots for these factors to obtain an approximate

Bode plot for the entire transfer function. Since controllers can also be seen as

adding additional factors into the Bode plot, this graphical procedure can be used

to easily identify candidate controller architectures in a rapid manner.

Constant Factors, K, have the following gain magnitude and phase

|K|dB = 20 log10K = constant

arg K =

{
0 K > 0

π K < 0

The Bode plot for this constant factor is easily drawn as shown on left side of

Fig. 16. The gain magnitude is a straight horizontal line that intersects the y-axis

at 20 log10K. The phase is also a straight horizontal line whose y-coordinate is

either 0 or −180◦ depending whether K is positive or negative, respectively.
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FIGURE 16. (left) K factor Bode plot - (middle) pole/zero

origin Bode Plot - (right) simple first order factor

Pole/zero at Origin 1
jω or jω. Let us first look at a pole at the origin.∣∣∣∣ 1jω

∣∣∣∣
dB

= −20 log10 |(jω)|

arg

(
1

jω

)
= −π

2
rad = −90◦
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Note that over a decade, when the frequency, ω, changes by a factor of 10, then the

gain magnitude decreases by 20 dB. So we say the gain magnitude has a roll-off of

20 dB/decade. The gain magnitude shown in the middle of Fig. 16 for this factor

(1/s) is therefore a straight line with a slope of−20 dB/decade that passes through

0 dB at ω = 1 rad/sec. The phase plot for the simple pole at the origin is a straight

horizontal line whose y-coordinate is −90◦. Fig. 16 also plots the Bode plot for a

zero at the origin (s). In this case the gain-magnitude plot becomes a straight line

that increases with a slope of 20 dB/decade and that passes through 0 dB at ω = 1

rad/sec. The phase plot for the zero at the origin is a horizontal line that intersects

the y-axis at +90◦.

Simple pole/zero: (1+jωT )±1 where T > 0 is a real constant. Let us consider the

simple zero first. In this case the factor is G(jω) = 1 + jωT . The gain magnitude

and phase are

|G(jω)|dB = 20 log10 |1 + jωT | = 20 log10
√

1 + ω2T 2

argG(jω) = arg(1 + jωT ) = tan−1 ωT

Let us first examine the asymptotic behavior of the gain-magnitude when ωT ≪ 1

(or rather ω ≪ 1
T ). In this case |G(jω)| ≈ 0 dB. This can be drawn as a horizon-

tal line for ω ≪ 1
T at 0 dB. At the other asymptotic end when ωT ≫ 1 we have

|G(jω)|dB ≈ 20 log10 ωT . This can be drawn as a straight line with a positive

slope of 20 dB/decade. If we draw both of these asymptotic lines, we see they

intersect at the frequency ωc = 1/T rad/sec. This is called the corner frequency of

the simple zero factor. These straight lines form the asymptotic approximation of

the simple zero factor’s gain-magnitude plot. The ”hand” drawn gain-magnitude

plot for this factor is shown on right side of Fig. 16. That plot also shows the gain

magnitude of the simple pole at 1/T . In this case, the asymptotic gain-magnitude

differs in that the gain-magnitude rolls off at −20 dB/decade after the corner fre-

quency 1/T .

Now let us examine the asymptotic behavior of the phase plot. When ω ≪ 1
T ,

the phase is nearly zero degrees. When ω = 1/T the phase is±45◦, with a positive

phase for the simple zero and a negative phase for the simple pole. Asymptotically

the phases of these factors go to ±90◦ for ω ≫ 1/T . The phase of the simple

factor therefore switches from 0◦ to ±90◦, with that switch starting around the
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corner frequency. In particular, that change begins about a decade below the corner

frequency and ends about a decade above the corner frequency. The left side of

Fig. 17 used these rules to sketch the phase of the simple first order factor.
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FIGURE 17. (left) Complex Factor Bode plot - (right)

Sketch of Complex Pole Bode Plot

Complex Poles:. Consider the transfer function

G(s) =
ω2
n

s2 + 2ζωns+ ω2
n

where ωn and ζ are parameters. The frequency response function then becomes

G(jω) =
1(

1−
(
ω
ωn

)2)
− j2ζ

(
ω
ωn

)
Evaluating the gain-magnitude and phase of G(jω) yields

20 log10 |G(jω)| = −20 log10

√√√√(1− ( ω

ωn

)2
)2

+ 4ζ2
(
ω

ωn

)2

≈

 0 dB ω/ωn ≪ 1

−40 log10
(
ω
ωn

)
ω/ωn ≫ 1

argG(jω) = − tan−1

(
2ζ

ωn
ω

(
1−

(
ω

ωn

)2
))

The second line for the gain magnitude is the asymptotic approximation of the

factor’s gain magnitude ω ≪ ωn and ω ≫ ωn. The frequency ωn corresponds to

a corner frequency and we see that the gain-magnitude can again be drawn using

straight line approximations in these asymptotic regions.
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The left side of Fig. 17 shows the Bode plot for this complex factor for a range

of damping ratios ζ. In these plots ωn = 1. As ζ decreases below 0.7, we see

a resonant peak form around ωn. The gain magnitude plot shows that this peak

increases as ζ gets smaller and in the limit when ζ = 0 this peak is infinite. One

the phase plots we see the phase start at 0◦ and then switch to −180◦. That switch

occurs around the corner frequency ωn, but the speed of that transition is a function

of the damping ratio. For large damping ratios (ζ > .7) the phase transition starts a

decade below the corner frequency and ends a decade above the corner frequency.

For damping ratios on the order of 0.05 or 0.01 we see an abrupt switch occur so

for small damping ratios we ”sketch” the phase as an instantaneous shift occurring

at ωn. The right side of Fig. 17 shows the sketched Bode plots for the case where

ζ = 0.01 and ζ = 0.7. We can actually estimate the size of the resonant peak using

approximation 1
2ζ , which is shown in the figure. For ζ greater than .5 or .7 we don’t

put in the resonant peak.

Nyquist Criterion: The Nyquist criterion is used to assess the stability of the

closed loop system in Fig. 18 using the Nyquist plot of the open loop plant. The

criterion is based on a well-known theorem from complex analysis known as the

principle of the argument.

_

+
w(t) y(t)

G(s)

Re(z) Re(z)

Im(z) Im(z)

FIGURE 18. Nyquist Contour
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Consider a function of a complex variable, L : C → C that is a rational func-

tion. Now consider a simple closed contour in the complex plane defined by the

union of two types of contour segments

(1) s = jω for −R < ω < R

(2) s = Rejϕ for −π/2 ≤ ϕ ≤ π/2

where R is large. This contour is denoted as CN and is shown on the left hand side

of Fig. 18. We refer to CN as a Nyquist contour and we assume R is large enough

so it encloses all removable poles and zeros of L(s). We pass the Nyquist contour

through the loop function to generate the new contour, L(CN ) that is shown on the

right hand side of Fig. 18. This contour is actually the Nyquist plot of L(s). If we

let

Z = number of finite zeros of L encircled by CN

P = number of finite poles of L encircled by CN

The Principle of the Argument states that L(CN ) encircles the origin (Z−P )-times

in the same direction as CN provided L has no zeros or poles on CN .

The Principle of the Argument can be used to assess the closed loop stability of

the closed loop map

T(s) =
L(s)

1 + L(s)
=

n(s)/d(s)

1 + (n(s)/d(s)
=

n(s)

n(s) + d(s)

where the open loop map L(s) = n(s)
d(s) and n(s), d(s) are polynomials in s. This

closed loop map corresponds to the feedback system shown in Fig. 18 where L(s)

is the loop function. Note that L and 1+L have the same denominator polynomials

so the poles of L and 1 + L are the same. The zeros of L are the roots of n(s) and

the zeros of 1 + L are the zeros of n(s) + d(s). Therefore the poles of the closed

loop map, T(s) are the zeros of 1+L(s) and so the closed loop map, T(s) is stable

if and only if 1 + L(s) has no non-minimum phase zeros.
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So let’s consider the Nyquist plot, L(CN ) of the loop function and with regard

to this plot let

N0 = number of encirclements that L makes of the origin

Z0 = number of zeros of L encircled by CN

P0 = number of poles of L encircled by CN

Z−1 = number of zeros of 1 + L encircled by CN

P−1 = number of poles of 1 + L encircled by CN

N−1 = number of encirclements that 1 + L makes of origin

= number of encirclements that L makes of (−1, 0)

The loop function is stable if and only if P0 = 0. Since the poles of the closed loop

map, T(s), are the roots of n(s)+ d(s) (also the zeros of 1+L(s)) we can deduce

the closed loop map is stable if and only if Z−1 = 0.

By the principle of the argument, the number of Nyquist plot will make the

number of encirclements of the origin satisfy N0 = Z0 − P0. In a similar way the

number of encirclements of (−1, 0) will satisfyN−1 = Z−1−P−1. So if we know

how many non-minimum phase zeros the loop function has (i.e. we know Z0) then

we can conclude that the number of poles encircled by the Nyquist contour (i.e.

the unstable poles) will satisfy

P0 = Z0 −N0

Because L and 1 + L have the same finite poles, we also know P−1 = P0. This

implies that the number of zeros encircled by 1 + L (i.e. the poles of the closed

loop map) will be

Z−1 = N−1 + P−1 = N−1 + P0 = N−1 + Z0 −N0.

Closed loop stability requires Z−1 = 0, so we can conclude that 0 = N−1 + P0 or

rather that

N−1 = −P0

In other words for the closed loop system to be stable, the Nyquist plot for L(s)

must encircle (−1, 0) as many times as the number of RHP (non-minimum phase)

poles of L(s) and these encirclements must be in the clockwise (CW) direction.

Note that if we already know L is minimum phase and stable, then Z0 = 0 and
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P0 = 0 = P−1 and we have N−1 = Z−1. In other words for this special case of

loop function (stable and minimum phase) the closed loop system is stable if the

Nyquist plot of L(s) has no encirclements of (−1, 0). This therefore provides a

graphical way of using the loop function’s Nyquist plot to determine the stability

of the closed loop map, T(s).

_

+
w(t) y(t)

L(s)

Nyquist plot of stable min-phase L(s) 

Re(z)

Im(z)

-1

G.M.
phase
crossover
point

gain
crossover
point

FIGURE 19. Definition of Gain/Phase Margin from Nyquist

plot

Gain/Phase Margin: We can use the loop function’s Nyquist plot to characterize

how close the closed loop system is to being unstable. To do this we first define

the following points on the Nyquist plot as shown in Fig. 19. We define the phase

crossover point as that point at which the Nyquist plot crosses the negative real

axis. The phase crossover frequency, ωc, is the frequency where the Nyquist plot

crosses the negative real axis (i.e. the frequency when the phase equals 180◦). We

define the Gain Margin as

G.M. = 20 log10
1

L(jωc)

which is measured in units of decibels. Note that if L(s) is minimum phase we can

identify four different cases

(1) If there is no phase crossover point then G.M. =∞.

(2) If a phase crossover point occurs between 0 and−1, then the gain margin

is positive

(3) If a phase crossover occurs at −1 then the gain margin is zero
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(4) If the phase crossover occurs beween −∞ and −1 then the gain margin

is negative

These observations imply that the gain margin is the amount of gain that can be

added to the loop gain, L(s) of a stable closed loop system which just causes the

closed loop system to be unstable. In particular, this means that for stable min-

phase loop functions the gain margin has to be positive to ensure the closed loop

system is stable. If the closed loop system is stable, then the gain margin is how

much we can raise the loop function’s gain before we cause the closed-loop system

to be unstable.

The gain margin, however, is not the only way we can perturb the open loop

function L(s). We can also introduce a pure phase variation to L(s) that may result

in a change in Nyquist plot’s number of encirclements of (−1, 0). To formally

define this phase margin, we first introduce the gain crossover point as that point on

the loop function’s Nyquist plot where the gain magnitude equals one (i.e. where

the Nyquist plot intersects a unit circle centered at the origin). This gain crossover

point is shown in Fig. 19. The gain crossover frequency, ωg is the frequency when

|L(ωg)| = 1. We define the phase margin, ϕm, of the loop function as

ϕm = arg(L(jωg))− 180◦

If L is a stable minimum phase system, then adding ϕm extra phase to the loop

function at ωg will force the Nyquist plot to encircle (−1, 0) thereby changing the

number of encirclements and causing the closed loop system to be unstable. Phase

margin, therefore, may be seen as the additional phase (or lag) that can be added to

the loop function that makes the closed loop system unstable.

We can also read the gain and phase margins off of the Bode plot of the loop

function. Let us consider the Bode plot for

L(s) =
20

s(s2 + 10s+ 100)

But rather than using bode we use the command margin to plot the Bode plot.

The resulting plot is shown in Fig. 20.
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FIGURE 20. Gain/Phase Margin from Bode Plot



CHAPTER 2

Optimal Control

The prior chapter concluded with a formulation of controller design as an opti-

mization problem. We refer to this as optimal control. This basic problem is posed

within the following framework where Ĉ[0, T ] is the linear space of piecewise

continuous functions over time interval [0, T ].

• Dynamical Control System is modeled as an initial value problem

ẋ(t) = f(t, x, u), x(t0) = x0

where x : [0, T ) → Rn is the state, u; [0, T ) → Rm is the control, t

is time, and T is a desired final time (deadline). We assume that the

differential equation admits unique causal solutions for t ≥ t0 once the

initial condition x0 has been fixed.

• Target Set, Ω ⊂ Rn is a set of states that must be reached by the specified

final time T .

• Admissible Control is the set of piecewise continuous functions, u ∈
Ĉ[0, T ], that takes values in a known set U ⊂ Rm.

• Cost Functional is a functional J : Ĉ[0, T ] → R whose value J [u] for

a given u ∈ Ĉ[0, T ] is the ”cost” incurred by the system when using

the control input u. We assume that the cost functional is additive in the

sense that

J [u[0,T ]] = J [u[0,t]] + J [u[t,T ]]

for all t ∈ [0, T ].

Within this framework the optimal control problem is to find u∗ ∈ Ĉ[0, T ] such

that J [u∗] ≤ J [u] for all u ∈ Ĉ[0, T ]. This is a constrained optimization problem

to be solved over an infinite dimensional linear space, Ĉ[0, T ].

63
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The remainder of this chapter provides a quick tour of the fundamental con-

cepts in optimal control over a finite horizon. We first start by reviewing necessary

conditions for optimality of finite dimensional problems. We then extend these nec-

essary conditions to infinite dimensional problems and obtain the Euler-Lagrange

equations used in the classical Calculus of Variations (CoV). We then examine

necessary conditions for optimal controls based on this variational calculus. These

methods are sometimes used to numerically solve finite horizon optimal control

problems used in a popular method known as model predictive control. We then

look at an important approach to optimal control known as dynamic programming.

We will show how dynamic programming is used to derive the linear quadratic

regulator (LQR) and how it is used in the optimal control of Markov Decision

Processes (MDP).

1. Mathematical Programming

This section reviews basic methods from mathematical programming over finite

and infinite dimensional linear spaces. The main problem is of the form

minimize: f(x) objective

with respect to: x decision variable

subject to: g(x) ≤ 0 inequality constraints

h(x) = 0 equality constraints

x ∈ D domain of f

(5)

For finite dimensional mathematical programs we take f : D → R, g : D → Rm,

and h : D → Rp to be functions taking values in a finite dimensional linear space

and we require domain, D ⊂ Rn, to either be compact or convex. After review-

ing necessary conditions for optimal solutions of finite dimensional mathematical

programs we will explore similar conditions for infinite dimensional optimization.

1.1. Finite Dimensional Mathematical Programs: For the moment let us

confine our attention to finite dimensional mathematical programs [Bazaraa et al.

(2006)] . This means the constraints in equation (5) use functions g : Rn → Rm

and h : Rn → Rp. A vector x ∈ D that satisfies all of these constraints (g(x) ≤ 0

and h(x) = 0) is called a feasible solution and the set of all feasible solutions is
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called the feasible region. The basic mathematical problem is to find a feasible

vector x∗ ∈ D such that f(x∗) ≤ f(x) for all feasible x ∈ D.

We first consider the unconstrained problem where there are no inequality or

equality constraints to be satisfied. This unconstrained problem takes the form

minimize: f(x)

subject to: x ∈ D

where D ⊂ Rn is now the feasible region. A point x∗ ∈ D is a strict global

minimum if f(x) > f(x∗) for all x ∈ D where x ̸= x∗. A point x∗ ∈ D is a strict

local minimum of f on D if there exists an ϵ > 0 such that f(x) > f(x∗) for all

x ∈ Nϵ(x
∗) ∩D where Nϵ(x

∗) is an open neighborhood of x∗ of radius ϵ

Nϵ(x
∗) = {x ∈ Rn : |x− x∗| < ϵ}

Note that an optimal solution may not always exist. Figure 1 shows three situa-

tions where a solution may fail to exist for the unconstrained problem. In the first

case (a), the domain D is an open interval (a, b). The infimum of f(x) is at the

left hand boundary point b, but since b is not in the domain it is not a solution. The

second case (b) shows discontinuous f . This function is continuous from the right

hand side at point c. The infimum of f is attained as we approach c from the left.

But since f is right continuous the actual value of f(c) is greater than this infimum

and so the problem does not have a solution. The last case (c) shows an f that is

unbounded from below and so again the solution does not exist.

(a) (b) (c)

FIGURE 1. Three cases where a mathematical programming

problem minx∈D f(x) has no solution
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Given the fact that it is relatively easy to formulate mathematical programs that

have no solution, we need to find conditions that can be used to verify if a so-

lution actually exists. Necessary conditions are conditions that must be satisfied

by a solution whereas sufficient conditions imply a solution exists. We will present

necessary and sufficient conditions for optimal solutions of unconstrained and con-

strained mathematical programs. The necessary and sufficient conditions are often

used to find solutions to the mathematical program.

We first state conditions for solutions of the unconstrained problem

min
x∈D

f(x)

These statements will place various restrictions on f (continuous, differentiable,

convex). We denote the gradient of f at x ∈ D as

∇f(x) =
[
∂f(x)

∂x

]T
=
[

f(x)
∂x1

· · · f(x)
∂xn

]
If f is twice differentiable we denote the Hessian of f at x ∈ D as

H(x) =


∂2f(x)
∂x1∂x1

· · · ∂2f(x)
∂x1∂xn

...
. . .

...
∂2f(x)
∂xn∂x1

· · · ∂2f(x)
∂xn∂xn


A set C ⊂ Rn is convex if for all x, y ∈ C the points z = λx+ (1− λ)y lie in C

for all λ. ∈ [0, 1]. A function f : C → Rn is convex if and only if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all x, y ∈ C and all λ ∈ [0, 1].

The main conditions for solutions of the unconstrained mathematical program

are enumerated below without proof.

(1) Assume that f is continuous on D and D is a compact set, then there

exists x∗ ∈ D such that f(x∗) = min
x∈D

f(x)

(2) Assume that f is differentiable, if x∗ is a local minimum then∇f(x∗) =
0.

(3) Assume f is twice differentiable, if x∗ is a local minimum then∇f(x∗) =
0 and H(x∗) is positive semidefinite.
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(4) Suppose f is differentiable at x∗ and is convex on Rn. If ∇f(x∗) = 0

then x∗ is a global minimizer of f on Rn.

(5) Suppose f is twice differentiable at x∗. If ∇f(x∗) = 0 and H(x∗) is

positive definite, then x∗ is a local minimizer of f

The first condition states that having f continuous and D compact is sufficient

for the existence of an optimal solution. A set is compact [Rudin (1964)] if ev-

ery infinite sequence in D has a convergent subsequence. When D is a subset

of Rn, then requiring D to be compact simply means it is a closed and bounded

set. Conditions two and three are necessary conditions for optimality with con-

dition three being somewhat ”tighter” due to its requirement that the Hessian is

positive semidefinite. The last two results are sufficient conditions for an optimal

solution. Strengthening the necessary condition into a sufficient condition requires

additional restrictions on the problem, either that D and f are convex or that the

Hessian of f is positive definite.

When the underling mathematical program has inequality constraints g(x) ≤ 0

or equality constraints h(x) = 0 we need to augment the gradient conditions for

optimality. This augmentation essentially tries to turn the constrained problem into

an unconstrained problem.

We now present the Karush-Kuhn-Tucker (KKT) conditions for the optimal so-

lution of a constrained mathematical program. As before we present this result

without formal proof since its development is usually taught in mathematical pro-

gramming courses [Bazaraa et al. (2006)].

minimize: f(x)

subject to: gi(x) ≤ 0, for i = 1, . . . ,m

hi(x) = 0, for i = 1, . . . , p

x ∈ D

where D is a nonempty open set in Rn, f : Rn → R, gi : Rn → R ( i = 1, . . . , p),

and hi : Rn → R (i = 1, . . . , q) are continuously differentiable functions.

Consider a point x ∈ Rn and let let the set of active inequality constraints at x

be denoted as

A = {i ∈ {1, . . . , p} : gi(x) = 0}
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If ∇gi(x) for i ∈ A and ∇hi(x) for i = 1, 2, . . . , p are linearly independent then

the feasible point x is said to be regular).

If x∗ is a local minimum of f that satisfies the constraints and is a regular point,

then there exist q unique vectors v∗ ∈ Rq and λ∗ ∈ Rp such that

∇f(x∗) +∇g(x∗)T v∗ +∇h(x∗)Tλ∗ = 0

v∗ ≥ 0

g(x∗) ≤ 0

h(x∗) = 0

(v∗)Tg(x∗) = 0

The preceding conditions are called KKT necessary conditions for x∗ to be a local

minimum of f subject to the inequality and equality constraints. We refer to the

additional variables vi (i = 1, . . . , p) and λi (i = 1, . . . , q) as Lagrange multipliers.

Example: Consider the following mathematical program

minimize: x21 + x22

subject to: x21 + x22 − 4 ≤ 0

−x1 ≤ 0

−x2 ≤ 0

x1 + 2x2 − 2 = 0

In this case we have f(x) = x21 + x22, h(x) = x1 + 2x2 − 2 and

g(x) =

 x21 + x22 − 4

−x1
−x2


The gradients of the functions are

∇f(x) =

[
2x1

2x2

]
, ∇g(x) =

 2x1 2x2

−1 0

0 −1

 , ∇h(x) =
[
1 2

]
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So the first KKT condition is[
0

0

]
= ∇f(x) +∇g(x)T v +∇h(x)Tλ

=

[
2x1

2x2

]
+

[
2x1 −1 0

2x2 0 −1

] v1

v2

v3

+

[
1

2

]
λ

=

[
2x1(1 + v1)− v2 + λ

2x2(1 + v1)− v3 + 2λ

]
The second KKT condition requires

0 = vT g(x)

=
[
v1 v2 v3

] x21 + x22 − 4

−x1
−x2


= v1(x

2
1 + x22 − 4)− x1v2 − x2v3

and the last KKT requires v1, v2, v3 ≥ 0.

Let us make a convenient choice for vi that assumes v1, v2v3 = 0. This is

essentially considering the case when x is in the interior of the feasible region

(namely none of the inequality constraints are active). The second and third KKT

conditions are clearly satisfied and the first KKT condition becomes

0 = 2x1 + λ

0 = 2x2 + 2λ
⇒ 0 =

[
2 0 1

0 2 2

] x1

x2

λ


We also need x∗ to satisfy the equality constraint x1 + 2x2 − 2 = 0, which gives a

third equation for x∗. Appending this to the linear algebraic equation formed from

the KKT condition gives 0

0

2

 =

 2 0 1

0 2 2

1 2 0


 x1

x2

λ

 ⇒

 x∗1

x∗2

λ∗

 =

 2/5

4/5

−4/5


and so we see x∗ =

[
2/5

4/5

]
.
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Fig. 2 shows this optimization problem. The figure shows the level curves of

the objective function, f , and the linear equality constraint h(x). Note that x∗ lies

within the feasible region so considering the case where all inequality constraints

was warranted. If that had not been the case, we would have had to select v to

consider the various active cases. We also need x∗ to be regular. This occurs if

∇gi(x∗) are linearly independent for the active constraints i ∈ A(x∗). Since x∗ is

in the interior, the point x∗ is already regular.

equality constraint

objective function

inequality constraint 1

inequality constraint 2

inequality constraint 3

local minimizer

FIGURE 2. Example of mathematical program with equality

and inequality constraints

1.2. Unconstrained Infinite Dimensional Optimization: The main neces-

sary condition for unconstrained finite dimensional optimization problems was that

the gradient, ∇J , of the cost function vanish at the optimal point. Optimal con-

trol problems are solved over infinite dimensional linear spaces and so we need

to extend our finite dimensional necessary conditions to the infinite dimensional

problem.

We will be working in the function space Ck([a, b],Rn) which is the linear

space of k-times continuously differentiable functions from [a, b] ∈ R to Rn. We

will equip this function space with a norm. The most commonly used norms are

the 0-norm for x ∈ Ck are

∥x∥0 = max
τ∈[a,b]

|x(τ)|
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or the 1-norm

∥x∥1 = max
τ∈[a,b]

|x(τ)|+ max
τ∈[a,b]

|x′(τ)|

where x′ is the first derivative of x.

Now let L be a linear space of functions equipped with the norm ∥ · ∥. Let A

be a subset of L and let J [·] : L → R be a real-valued functional defined on A.

A function x∗ ∈ A is a local minimum of J over A if there exists ϵ > 0 such

that for all x ∈ A with ∥x∗ − x∥ < ϵ we have J [x∗] ≤ J [x]. We are interested

in determining necessary conditions for the local minimizer of functional J . This

is an unconstrained problem since we merely require x ∈ A ⊂ L. We want to

obtain necessary conditions that are similar to those we had for finite dimensional

problems, but to do that we first have to define what we mean by the derivative of

a functional.

Consider functional J : L → R and for a given y ∈ L we define its first

variation (derivative) as the functional δJ |y [·] : L → R such that for all η ∈ L
and any ϵ > 0 we have

J [y + ϵη] = J [y] + δJ |y [η]ϵ+ o(ϵ)

with lim
ϵ→0

o(ϵ)

ϵ
= 0. This first variation is sometimes called the Gateaux derivative

of J

δJ |y [η] = lim
ϵ→0

J [y + ϵη]− J [y]
ϵ

The following theorem gives a necessary condition for y∗ ∈ L to be a local mini-

mum of the cost functional J .

THEOREM 1. Let A ⊂ L and let y∗ ∈ L be a local minimum of the functional

J : A→ R, then for all perturbations η ∈ L such that y∗ + ϵη remains in A for ϵ

sufficiently small (an admissible perturbation) we have δJ |y∗ [η] = 0.

Proof: This proof relies on the fact for a fixed y and η we can define a real-valued

function g : R→ R such that

g(ϵ) = J [y + ϵη]
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For these fixed functions, the first variation then becomes

δJ |y [η] = g′(0)

and so we can generate a first order Taylor series expansion

g(ϵ) = g(0) + g′(0)ϵ+ o(ϵ)

Let us suppose that g′(0) ̸= 0, then since o(ϵ) is a little-o function there must exist

ϵ > 0 such that |o(ϵ)| < |g′(0)ϵ| whenever |ϵ| < ϵ. For these values we see that

g(ϵ)− g(0) < g′(0)ϵ+ |g′(0)ϵ|

If we choose ϵ to have the opposite sign of g′(0) so that g(ϵ) < g(0), then this

would imply y∗ is not a local minimum, thereby generating a contradiction to our

assumption that g′(0) ̸= 0. So necessarily when y∗ is a local minimizer we must

also have g′(0) = 0. ♢

2. Calculus of Variations

The Calculus of Variations provides a well known characterization of a functional’s

minimizer in terms of a set of differential equations known as the Euler-Lagrange

equations. In this framework, the functional J is an integral of a function called the

Lagrangian. The approach has deep connections with classical mechanics [Gold-

stein (1959)] which also uses Euler-Lagrange equations to determine the equations

of motion for mechanical systems. This section considers the the Calculus of Vari-

ations (CoV) Free and Fixed Endpoint problems.

2.1. Free Endpoint Problem: Consider a function L : R× R× R→ R and

define the functional

J [y] =

∫ b

a
L(x, y(x), y′(x))dx

where y is some function in C1([a, b],R). We refer to L as the Lagrangian or

running cost. The free endpoint problem is to find y ∈ C1[a, b] that minimizes

J [y] subject to the fixed initial constraint, y(a) = y0, where the terminal constraint

y(b) is free to vary for a fixed terminal time b.

We can also define a fixed endpoint problem by simply requiring that y(b) = y1

with y1 being fixed. The difference between the fixed and free endpoint problems
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FIGURE 3. (left) fixed endpoint problem - (right) free end-

point problem

is shown in Fig. 3. The left figure plots the minimizer y∗(x) for a fixed endpoint

problem and admissible perturbations (dashed), y(x) = y∗(x) + ϵη(x), of that

minimizer. What we can see here is that the perturbation η ∈ L at the two boundary

points is fixed, η(a) = η(b) = 0. The right figure plots the minimizer, y∗, for the

free endpoint problem with its admissible perturbations (dashed). What you can

see here is that for the free endpoint problem the perturbation at a still vanishes

η(a) = 0, but that the perturbation at b, η(b), is free to move along the vertical line.

From the prior section we know that a necessary condition for optimality is that

the first variation of the cost functional vanishes. So we first compute an expression

for the first variation. For our choice of the cost functional we can find its first

variation from a Taylor expansion about y. We fix y ∈ L and introduce a fixed

perturbation η ∈ L that we dilate with the scalar ϵ ∈ R. This means that J [y + ϵη]

can be written as

J [y + ϵη] = J [y] + δJ |y [η]ϵ+ o(ϵ)

=

∫ b

a
L(x, y(x) + ϵη(x), y′(x) + ϵη′(x))dx

(6)

where y′ and η′ are the first derivatives of y and η, respectively. A first order Taylor

series expansion of the Lagrangian in equation (6) may be written as

J [y + ϵη] =

∫ b

a

(
L(x, y, y′) + Ly(x, y, y

′)ϵη

+Ly′(x, y, y
′)ϵη′ + o(ϵ)

)
dx(7)
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Matching ϵ terms in equations (6) and (7) allows us to pull out the following ex-

pression for the first variation of J

δJ |y [η] =
∫ b

a

(
Ly(x, y, y

′)η + Ly′(x, y, y
′)η′
)
dx(8)

The second term in equation (8) is a function of η′ and we can remove this depen-

dency on η′ by integrating by parts.

Recall that integration by parts means for two functions u and v we have∫
udv = uv − v

∫
du

In this case, let u = Ly′ and dv = dη. Integrating the differential yields v =

η. Differentiating u yields du =
d

dx
Ly′dx. Inserting these expression into the

integration by parts formula gives∫ b

a
Ly′(x, y, y

′)η′dx = Ly′(x, y, y
′)η
∣∣b
a
−
∫ b

a
η
d

dx
Ly′(x, y, y

′)dx

which allows us to write the first variation at y for any admissible perturbation, η,

as

δJ |y [η] =

∫ b

a

(
Ly(x, y, y

′)− d

dx
Ly′(x, y, y

′)

)
ηdx+ Ly′(x, y, y

′)η
∣∣b
a

(9)

For the free endpoint problem we require η(a) = 0 but η(b) is not necessarily

zero. For y to be a local minimizer we require for any admissible perturbation that

δJ |y [η] = 0 for all admissible η. Since admissible perturbations require η(a) = 0,

setting equation (9) to zero yields

0 =

∫ b

a

(
Ly(x, y, y

′)− d

dx
Ly′(x, y, y

′)

)
ηdx

+Ly′(b, y(b), y
′(b))η(b)

(10)

when y is a local minimizer.

Equation (10) must hold for all admissible perturbations. While η(b) is free, it

is certainly possible that η(b) could be zero. So for equation (10) to be satisfied for

this admissible perturbation we require∫ b

a

(
Ly(x, y, y

′)− d

dx
Ly′(x, y, y

′)

)
ηdx
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By the Fundamental Lemma of the Calculus of Variations [Liberzon (2012)], this

will occur when

Ly(x, y(x), y
′(x)) =

d

dx
Ly′(x, y(x), y

′(x))(11)

This is our first necessary condition for optimality and it is called the Euler-Lagrange

equation.

For admissible perturbations where η(b) is not zero, then we would also require

the last term in equation (9) to vanish. This will occur if

Ly′(b, y(b), y
′(b)) = 0(12)

This is the second necessary condition a local minimizer of the free endpoint prob-

lem needs to satisfy and it is known as a transversality condition. The preceding

discussion may be summarized in the following theorem that characterizes the lo-

cal minimizer for the free endpoint problem.

THEOREM 2. Consider the problem of minimizing

J [y] =

∫ b

a
L(x, y(x), y′(x))dx

on the set D =
{
(y, b) ∈ C1[a, T ]× [a, T ]

}
with y(b) free and L : R × Rn ×

Rn → R being C1. Suppose that y∗ is a local solution, then y∗ satisfies the Euler

Lagrange equation

Ly(x, y(x), y
′(x))− d

dx
Ly′(x, y(x), y

′(x)) = 0

for all x ∈ [a, b] and the transversality condition

Ly′(b, y(b), y
′(b)) = 0

Example: Let us find a parameterized curve y ∈ C1 that has the shortest arc

length. The differential arc length is ds =
√
dy2 + dx2 and so the functional we

want to minimize is

J [y] =

∫ b

a

√
1 + (y′(x))2dx

with Lagrangian L(y, y′) =
√

1 + (y′)2. We are solving the free endpoint prob-

lem over the interval [a, b] so y(a) = y0 and y(b) is free to vary. Our minimizer
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must satisfy two conditions; the Euler-Lagrange equation and the transversality

condition. The Euler-Lagrange equation can be written as

∂L

∂y
= 0 =

d

dx

∂L

∂y′
=

d

dx

(
y′√

1 + (y′)2

)

This implies that
y′(x)√

1 + (y′(x))2
is constant which also means that y′(x) is con-

stant as well. Integrating y′ therefore yields the following family of solutions

y∗(x) = k1x+ k2

where k1 and k2 are real valued parameters we need to determine. In particular

we know that y∗(a) = y0 which implies k2 = y0. The other parameter, k1, is

determine from the transversality condition

L′
y(b, y(b), y

′(b)) =
y′(b)√

1 + (y′(b))2
= 0

which is satisfies when y′(b) = 0. We therefore know that the slope of our line

is 0, which means k1 = 0. So our local minimizer is the straight horizontal line

y∗(x) = y0.

2.2. Fixed Endpoint Problem with Constraints: The fixed endpoint prob-

lem seeks a function y ∈ C1[a, b] that minimizes a functional J subject to the

constraint that y(a) = y0 and y(b) = y1 with y0 and y1 being fixed. We are going

to augment the fixed endpoint problem with a path constraint. There are two types

of constraints we consider; integral and non-integral constraints.

Fixed Endpoint Problem with Integral Constraints: We are going to augment

the fixed endpoint problem with an integral constraint of the form

C[y] =

∫ b

a
M(x, y(x), y′(x))dx = C0(13)

where C : C0 → R is a continuous constraint functional, M is a C1 function, and

C0 is a real constant. This means that the local minimizer, y∗, minimizes J subject

to C[y∗] = C0.

Our development of the necessary conditions for the local minimizer will be

based on heuristic arguments using the Lagrange multipliers we introduced when

solving finite-dimensional mathematical programs with equality constraints. A
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more rigorous development requires a more sophisticated approach to the problem

that is covered in many textbooks on the Calculus of Variations [Liberzon (2012)],

but which is beyond the scope of what I want to cover in this book.

Consider a feasible solution y ∈ L and consider an admissible perturbation of

the form y + ϵη where η is in C1 and ϵ ∈ R. Since we are augmenting the fixed

endpoint problem, we still require η(a) = η(b) = 0 for any admissible perturbation

η. We will still need the first variation of J to satisfy δJ |y = 0 for any admissible

η. So we require

0 =

∫ b

a

(
Ly(x, y, y

′)− d

dx
Ly′(x, y, y

′)

)
ηdx

where we’ve dropped the transversality condition since η(b) = 0. To be admissible,

however, the perturbed curve y+ ϵη most also satisfy the integral constraint so that

C[y + ϵη] = C0

and since C[·] is an integral constraint, the necessary condition for this to be satis-

fied is that its first variation also vanish with η(a) = η(b) = 0. So in a similar way

to our earlier derivation of the first variation of J we have

0 = δC|y [η]

=

∫ b

a

(
My(x, y, y

′)− d

dx
My′(x, y, y

′)

)
ηdx

for all admissible perturbations η.

This is similar to the constrained finite-dimensional mathematical programs

with equality constraints that we described above. This suggests that solving our

problem is equivalent to finding a Lagrange multiplier λ ∈ R such that(
Ly −

d

dx
Ly′

)
+ λ

(
My −

d

dx
My′

)
= 0

for all x ∈ [a, b]. We will find it convenient to define an augmented Lagrangian of

the form

L(x, y, y′, λ) = L(x, y, y′) + λM(x, y, y′)

and the preceding equation becomes

Ly(x, y, y
′, λ) =

d

dx
Ly′(x, y, y

′, λ)
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which is again an Euler-Lagrange equation, but this time for the augmented La-

grangian, L which must be solved for y and λ.

The preceding discussion leading up to this theorem is heuristic in nature. It

ignores a number of important technical issues that a more careful derivation of the

theorem would require. In the first place we did not formally justify our use of La-

grange multipliers. The infinite dimensional nature of the problem requires differ-

ent arguments than the earlier KKT conditions used in finite dimensional problems.

In particular, our earlier use of Lagrange multipliers required the notion of a regu-

lar point. A rigorous justification for using such multipliers will require something

similar to the regular point condition.

Example: We now consider a problem that looks for an arc, y(x) from a to b

where y(a) = y(b) = 0 that minimizes the area under the curve, y(x), subject to

an integral constraint that fixed the arc’s length to a constant C0. This classical

problem is also known as Dido’s problem. In this case our cost functional becomes

J [y] =

∫ b

a
y(x)dx

So L(x) = y(x) and the constraint functional is

C[y] =

∫ b

a

√
1 + (y′)2dx = C0

so that M(y′) =
√
1 + (y′)2. This is a fixed endpoint problem since y(a) =

y(b) = 0. For this problem we let C0 = 1, a = 0, and b = 1/2. The augmented

Lagrangian then becomes

L(y, y′, λ) = y + λ
√
1 + (y′)2

and the associated partial derivatives are

Ly =
∂

∂y

(
y + λ

√
1 + (y′)2

)
= 1

Ly′ =
∂

∂y′

(
y + λ

√
1 + (y′)2

)
=

λy′√
1 + (y′)2

The Euler-Lagrange equation for L then becomes

1 =
d

dx

(
λy′√

1 + (y′)2

)
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Integrating this derivative gives

λy′√
1 + (y′)2

= x+K

where K is a constant of integration. Solving for y′ then yields the ordinary differ-

ential equation

dy

dx
=

λ(x+K)√
λ2 + (x+K)2

for x ∈ [0, 1/2]. Integrating this differential equation gives

y(x) =

∫ x

0

λ(z +K)√
λ2 + (z +K)2

dz = λ
√
λ2 + (z +K)2

∣∣∣x
0

= λ
(√

λ2 + (x+K)2 −
√
λ2 +K2

)
With the boundary conditions y(0) = y(1/2) = 0, we find K = −1/4 and the

solution is then

y(x) = λ
(√

λ2 + (x− 1/4)2 −
√
λ2 + 1/16

)
which is the equation for a half circle.

Fixed Endpoint with Non-integral Constraints: Suppose we have an equality

constraint that must hold pointwise

M(x, y(x), y′(x)) = 0

for all x ∈ [a, b]. Let y be a test curve and note that the first-order necessary

conditions for optimality are similar to those for integral constraints. The main

difference is that now the Lagrange multiplier is a function of x. In other words

the Euler Lagrange equation holds for the augmented Lagrangian

L(x, y, y′, λ) = L(x, y, y′) + λ∗(x)M(x, y, y′)

where λ∗ : [a, b]→ R.

The earlier integral constraint was global in the sense that it applied to the entire

test curve, y. The non-integral constraint, on the other hand, is local since it applies

at each point in the interval [a, b]. This means that for each x ∈ [a, b] there should

be a Lagrange multiplier, so that λ∗ is a function of x ∈ [a, b]. So here when we
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consider the optimization of an integral of the augmented Lagrangian we are trying

to minimize ∫ b

a
L(x, y, y′)dx+

∫ b

a
λ(x)M(x, y, y′)dx

over y and λ.

3. Variational Method for Optimal Control

The preceding section showed how the Calculus of Variations can be used to

minimize the functional

J [y] =

∫ b

a
L(x, y(x), y′(x))dx

over a family of spatial curves, y(x), subject to constraints. We can also view these

curves as functions of time, t ∈ R so that y(x) becomes y(t). The derivative dy
dx

now becomes the velocity vector ẏ = dy
dt and we treat it as the decision variable

that we call the control. So in this case, we seek a control u = ẏ that minimizes the

cost functional J [y] subject to (y, ẏ) satisfying a differential equation of the form

M(t, y(t), ẏ(t)) = 0, y(a) = y0

This clearly has the same structure as the Calculus of Variations problem we con-

sidered in the preceding section, but because the decision variable ẏ is treated as

a ”control” input, it becomes an optimal control problem. This section shows how

the Calculus of Variations is used to solve such optimal control problems.

We now want to minimize

J [u] =

∫ tf

t0

L(t, x(t), u(t))dt+K(x(tf ))

subject to the constraints

ẋ(t) = f(t, x(t), u(t)), x(t0) = x0

with fixed time points t0 < tf . We assume L and f are continuous in t and have

continuous derivatives in x and u. The Lagrangian, L, in the cost functional is

also called the problem’s running cost and the function K is called the problem’s

terminal cost. The optimal control minimizes the total running cost with a terminal

penalty K(x(tf )) that is applied at the fixed terminal time tf . This optimal con-

trol must satisfy the differential equation constraint ẋ = f(t, x, u) in a point-wise
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manner and so it is similar to the non-integral constraint problems we discussed

in the preceding section. In that section we saw the original constrained problem

was equivalent to an unconstrained problem in which the Lagrangian was aug-

mented by the equality constraint having Lagrange multipliers that are functions.

We will also refer to these Lagrange multipliers as costates and denote them as

p : [t0, tf ]→ Rn. The augmented cost functional then becomes

Ja[u, p] =

∫ tf

t0

[
L(t, x(t), u(t)) + pT (t) (ẋ(t)− f(t, x(t), u(t)))

]
dt+K(x(tf ))

The costate function p plays the same role as the Lagrange multiplier did in the

finite dimensional optimization problem with equality constraints.

To solve this problem, we will find it convenient to introduce a function called

the Hamiltonian

H(t, x, u, p) = pT (t)f(t, x, u)− L(t, x, u)

This allows us to rewrite the cost functional in terms of the Hamiltonian

J [u] =

∫ tf

t0

[
pT ẋ−H(t, x, u, p)

]
dt+K(x(tf ))(14)

and to find necessary conditions for optimality we compute the first variation of

this form of the cost functional at a local minimizing solution u∗.

Equation 14 has three distinct terms and so our expression for the first variation,

δJ |u∗ [η], of J with respect to the minimizer u∗ will also have three terms. Let

ξ ∈ C1 denote an admissible perturbation of the control u∗. This means

u(t) = u∗(t) + αξ(t)

This perturbation in u will generate an admissible perturbation, η, of the state so

that

x(t) = x∗(t) + αη(t) + o(α)

The state perturbation η depends on the control perturbation ξ through a differential

equation. In particular, we can see from our equation for x(t) that the derivative of
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x with respect to α will be xα(t, 0) = η(t). So the derivative of η is

η̇(t) = xαt(t, 0) = xtα(t, 0) =
d

dα

∣∣∣∣
α=0

ẋ(t, α)

=
d

dα

∣∣∣∣
α=0

f(t, x(t, α), u∗ + αξ(t))

= fx(t, x(t, 0, u
∗(t))xα(t, 0) + fu(t, x(t, 0), u

∗(t))ξ(t)

= fx(t, x(t, 0), u
∗(t))η(t) + fu(t, x

∗(t), u∗(t))ξ(t)

= fx|∗ η + fu|∗ ξ

= A∗η +B∗ξ

We used the notation fx|∗ to denote the partial derivative of f evaluated along

the optimal trajectory x∗. Note, however that fx and fu are time varying linear

operators. So the state perturbation η is generated by the control perturbation ξ

through the linear time-varying differential equation given above.

This variation in the state and control is the basis for computing the first vari-

ation of the cost functional J . From equation (14) we see that J consists of three

terms, so we will compute the variation of each term separately and then combine

them. The first variation of the third term in equation (14) will be

K(x(tf ))−K(x∗(tf )) = K(x∗(tf ) + αη(tf ) + o(α))−K(x∗(tf ))

= K(x∗(tf )) + ⟨Kx(x
∗(tf )), αη(tf )⟩+ o(α)−K(x∗(tf ))

≈ ⟨Kx(x
∗(tf )), αη(tf )⟩

The first variation of the second term in equation (14) is obtained by integrating

the variation in the Hamiltonian. In particular, we can see that

H(t, x, u, p)−H(t, x∗, u∗, p) = H(t, x∗ + αη + o(α), u∗ + αξ, p)−H(t, x∗, u∗, p)

≈ ⟨Hx(t, x
∗, u∗, p, αη⟩+ ⟨Hu(t, x

∗, u∗, p), αξ⟩

The variation in the first term of (14) will take the form∫ tf

t0

⟨p(t), ẋ∗(t)⟩dt = ⟨p(t), x(t)− x∗(t)⟩|tft0 −
∫ tf

t0

⟨ṗ, x(t)− x∗(t)⟩dt

≈ ⟨p(tf ), αη(tf )⟩ −
∫ tf

t0

⟨ṗ(t), αη(t)⟩dt
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Summing the last three expressions yields the following formula for δJ ,

δJ |u∗ [ξ] = −
∫ tf

t0

(⟨ṗ+Hx(t, x
∗, u∗, p), η⟩+ ⟨Hu(t, x

∗, u∗, p), ξ⟩) dt

+⟨Kx(x
∗(tf ) + p(tf ), η(tf )⟩

where the state perturbation, η, is related to the control perturbation ξ through the

time-varying differential equation

η̇(t) = A∗(t)η(t)−B∗(t)ξ(t), η(t0) = 0

Our usual first order necessary condition at the local minimizer u∗ requires

δJ |u∗ [ξ] = 0. This should hold for any p(t) we choose. So we will find it con-

venient to select a p(t) which greatly simplifies the problem. In particular, let’s

assume that p(t) satisfies

ṗ(t) = −Hx(t, x
∗(t), u∗(t), p(t)), p(tf ) = −Kx(x

∗(tf ))

We will denote this particular choice for p (aka co-state) as p∗. With this choice,

the first variation of J in equation (15) simplifies to

δJ |u∗ [ξ] = −
∫ tf

t0

⟨Hu|∗ , ξ⟩dt = 0

where H|∗ = H(t, x∗, u∗, p∗). From the fundamental lemma of the calculus of

variations we know this means

Hu(t, x
∗(t), u∗(t), p∗(t)) = 0

for all t ∈ [t0, tf ]. In light of our definition for the Hamiltonian we can rewrite our

control system and the differential equation for p∗ as

ẋ∗ = Hp|∗
ṗ∗ = − Hx|∗

We now have a complete characterization of the necessary conditions for this ”op-

timal control problem” which is summarized in the following theorem

THEOREM 3. Consider the problem of minimizing

J [u] =

∫ tf

t0

L(t, x(t), u(t))dt+K(x(tf ))

subject to

ẋ(t) = f(t, x(t), u(t)), x(t0) = x0
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by selection a control u ∈ C[t0, tf ] assuming t0 < tf . Assume L and f are

continuous in t and C1 in x and u. Assume K is C1 in x. If u∗ ∈ C[t0, tf ] is

a local minimizer and x∗ ∈ C1[t0, tf ] denotes the state trajectory generated by

u∗, then there is a vector function p∗ ∈ C1[t0, tf ] such that the triple (u∗, x∗, p∗)

satisfies

ẋ(t) = f(t, x(t), u(t)), x(t0) = x0

ṗ(t) = −Lx(t, x(t), u(t))− (fx)
T p(t), p(t1) = −Kx(x(tf ))

0 = Lu(t, x, u) + (fu)
T p(t)

for all t ∈ [t0, tf ].

Remark: The optimality conditions in the above theorem consist of m alge-

braic equation (for u ∈ Rm) and 2n ordinary differential equations with boundary

conditions. There are 2n + m unknowns (x, u, and p) that must be determined

from the equations in the theorem.

One issue we have with this problem formulation is that the n boundary condi-

tions for the state equation ẋ = f(t, x, u) are specified at the initial time t0 while

the boundary conditions for the co-state equation ṗ = −Lx − (fx)
T p(t) are spec-

ified at the terminal time tf . Such ODE’s are called two point boundary value

problems (TPBVP) and their solution can be difficult to find.

Example: Consider the problem of minimizing

J [u] =

∫ 1

0

(
1

2
u2(t)− x(t)

)
dt

subject to

ẋ(t) = 2(1− u(t)), x(0) = 1

The Hamiltonian is

H(x, u, p) =
1

2
u2 − x+ 2p(1− u)

and the two differential equations we need x∗ and p∗ to satisfy are

ẋ∗(t) = Hp = 2(1− u∗), x∗(0) = 1

ṗ∗(t) = −Hx = 1, p∗(1) = 0
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The co-state’s differential equation implies

p∗(t) = t− 1

and from the last condition in the theorem using this p∗ we get

0 = Lu + fup
∗ = u∗ + (−2)p∗

which implies the optimal control is

u∗(t) = 2(t− 1)

for all t ∈ [0, 1].

The preceding discussion showed how the variational methods in the calculus

of variations give rise to equations whose satisfaction is necessary for the local

minimizer. There are, however, significant limitations to the method we used to

derive this result. The first difficulty is our assumption that H is differentiable.

This would also mean that f is differentiable and there are numerous optimal con-

trol problems where f is discontinuous. We assumed that the control perturbations

αξ(t) were small (i.e. α is small). This is overly restrictive because this neglects

”bang-bang” solutions where the control switches back and forth between extreme

values in U . These issues greatly limit the utility of the variational method in

solving optimal control problems. A more general framework that draws on some

nonstandard techniques can address these issues. It is known as Pontryagin’s max-

imum principle (PMP) [Liberzon (2012)]. PMP actually shows that the basic idea

of using co-states can still be used to find the optimal control, though the necessary

conditions are a bit different and will not be covered in this course.

4. Numerical Methods for Optimal Control

Optimal control problems are often solved using numerical methods [Rao (2009)].

This is particularly true in model predictive control (aka receding horizon control).

Receding horizon control (RHC) [Mayne and Michalska (1988)] seeks to optimally

control a system

ẋ(t) = f(t, x(t), u(t)), x(t0) = x0
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in a manner that minimizes an infinite horizon cost functional

J [u] =

∫ ∞

t0

L(t, x(t), u(t))dt

subject to inequality constraints on the state and control. RHC solves this problem

by solving the simpler finite horizon problem over the finite horizon of length T

with cost functional

JT [u] =

∫ t0+T

t0

L(t, x(t), u(t))dt+K(x(t0 + T ))

The resulting control, uT : [t0, t0+T ]→ Rm, is used over a shorter time interval of

duration ∆ < T . Then at time t0 +∆, we reset the initial time to this current time

and then re-solve the finite horizon problem again. A key issue in the use of RHC

methods is the stability of the resulting control. But this problem is addressed

through the appropriate selection of the terminal cost K. A key to the practical

use of this method, however, is the ability to numerically solve the finite horizon

control problem, which is the topic to be covered below.

There are two types of numerical methods for optimal control; direct and indi-

rect solution methods. Direct solution methods find the local minimizer by con-

structing a sequence of solutions that converge to that minimum. Indirect solution

methods solve the problem by numerically solving the necessary conditions for

optimality. In many of these methods, one needs to compute the values of the

functionals subject to differential equation constraints and one needs to compute

the functional’s gradient. So we first review methods for evaluating functionals and

their gradients.

Numerical Evaluation of Functional and its Gradient: Let us first consider the

functional

J [u] =

∫ tf

t0

L(t, x, u)dt+K(x(tf ))(15)

This version of the functional is used in the traditional Bolza formulation of the op-

timal control problem. We are going to show that this Bolza form can be simplified

to a form known as the Mayer formulation which is more convenient for numerical

solution.
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We reduce the Bolza problem to a Mayer problem by first noting that the termi-

nal cost into the integral can be written as

K(x(tf )) = K(x(t0)) +

∫ tf

t0

d

dt
K(x(t))dt

= K(x(t0)) +

∫ tf

t0

⟨Kx(x(t)), f(t, x, u)⟩dt

The first term is constant and can be neglected since it has no impact on the opti-

mization. The second term obviously can be folded into the first term of equation

(15) to obtain a new Lagrangian. This would mean that

J [u] =

∫ tf

t0

L(t, x, u)dt

When we define our optimal control problem using this functional we obtain the

Lagrange formulation of the problem. But let us introduce a new variable ϕ such

that

ϕ̇(t) = L(t, x(t), u(t)), ϕ(t0) = 0

This would imply that the the integral term in the above functional can be written

is

J [u] =

∫ tf

t0

L(t, x, u)dt = ϕ(tf )

In other words, our cost functional is simply a function of the terminal time tf . If

we use this form of the functional for the optimal control problem we obtain the

Mayer formulation. The key point is that all of these forms are equivalent to each

other so we can use the simpler one for the purposes of numerical convenience. In

our case, we will start from the Mayer formulation.

In our case, the control, u, is what we are trying to find. So if we are given a set

of basis functions {ubi(t)}Ni=1, then u can be written as

u =

N∑
i=1

θiubi(t)

In this case the Mayer problem’s functional is now parameterized with respect to

the real vector θ

J [u] = J(θ) = ϕ(x(tf ), θ)
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where the state satisfies

ẋ(t) = f(t, x, θ)

where x(t0) = h(θ) and t ∈ [t0, tf ]. Our problem is to compute the value of

J(θ) as well at its gradient ∇J(θ). Evaluating the functional requires that we

first numerical solve the initial value problem. We then present three methods for

computing∇J(θ).

Evaluating the functional for a given parameter vector θ requires that we com-

pute x(tf ) that satisfies ẋ = f(t, x, θ) with initial value x(t0) = h(θ). This is

an initial value problem that we solve by first discretizing time with respect to a

fixed step size h. This means that we compute a discrete time approximation of the

state trajectory. A popular method for computing this trajectory is the Runge-Kutta

(RK) method. The RK method is implemented in Matlab’s ode function and can

be used to numerical solve the IVP with a variety of properties.

The simplest way of determining ∇J(θ) uses finite difference approximations

of the form

∇θjJ(θ) ≈
J(θ1, . . . , θj + δθj , . . . θM )− J(θ)

δθj

for each j = 1, 2, . . . ,M where δθj is chosen perturbation of the parameter θj . A

major limitation of this approach is its accuracy.

An alternative approach to address this accuracy problem is based on a sensi-

tivity method. Consider the initial value problem for a given parameter θ

ẋ(t; θ) = f(t, x(t; θ), θ), x(t0; θ) = h(θ)

The first order state sensitivity function measures the sensitivity of the state with

regard to parameter perturbations. In particular, xθj (t; θ) for j = 1, 2, . . . ,M is a

function of time that is the partial derivative of the state with respect to parameter

θj . This state sensitivity function satisfies the differential equation

ẋθj (t; θ) = fx(t, x(t; θ), θ)xθj (t; θ) + fθj (t, x(t; θ), θ)

xθj (t0; θ) = hθj (θ)

The preceding equations are called the sensitivity equation with respect to param-

eter θj . They are, in general, linear differential equations that we can integrate
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forward to get the terminal state sensitivity xθ(tf ). Once the sensitivity functions

are known at time tf , and since the Mayer function ϕ is C1, the gradient,∇θjJ(θ)
can be computed as

∇θjϕ(x(tf ), θ) = Jx(x(tf ; θ), θ)
Txθj (tf , θ) + ϕθj (x(tf ; θ), θ)

for each j = 1, 2, . . . ,M .

This leads to the following procedure for calculating both the value and the

gradient of J at θ as follows:

• state and sensitivity numerical integration: t0 → tf

ẋ(t) = f(t, x(t); θ) x(t0) = h(θ)

ẋθ1(t) = fx(t, x(t), θ)xθ1(t) + fθ1(t, x(t), θ), xθ1(t0) = hθ1(θ)
...

...

ẋθM (t) = fx(t, x(t), θ)xθM (t) + fθM (t, x(t); θ), xθM (t0) = hθM (θ)

• Functional and Gradient Evaluation:

J(θ) = ϕ(x(tf ), θ)

∇θ1J(θ) = ϕ(x(tf ), θ)
Txθ1(tf ) + ϕθ1(x(tf ), θ)

...

∇θMJ(θ) = ϕx(x(tf ), θ)
TxθM (tf ) + ϕthetaM (x(tf ), θ)

Note that the state and sensitivity equations are solved simultaneously so that

local error control can be performed on both the state and state sensitivity vari-

ables. The size of this state/sensitivity system grown as (n + 1)M , which can be

computationally intractable if both n and M are large. Methods have been devel-

oped to address these issues and there are a number of codes available for forward

sensitivity analysis of IVPs.

Indirect Methods: Indirect methods use iterative procedures based on succes-

sive linearization to find a solution to a system of necessary optimality conditions

(NOCs). A nominal solution is chosen that satisfies part of the NOCs, then this

nominal solution is modified by successive linearization to meet the remaining

NOCs. One approach for doing this are the indirect shooting methods which we

describe below.
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Consider a problem to find u∗ ∈ C1[to, T ] and t∗f ∈ [t0, T ) to

minimize: J [u, tf ] =
∫ tf
t0
L(t, x, u)dt+ ϕ(tf , x(tf ))

subject to: ẋ(t) = f(t, x(t), u(t)), x(t0) = x0

ψi(tf , x(tf )) = 0, k = 1, 2, . . . , nψ

If this problem has a solution (u∗, t∗f ), then there must exist u∗, x∗, λ∗, ν∗, and t∗f
that satisfy the Euler-Lagrange equations

ẋ∗(t) = Hλ(t, x
∗(t), u∗(t), λ∗(t)), x∗(t0) = x0

λ̇∗(t) = −Hx(t, x
∗(t), u∗(t), λ∗(t)), λ∗(t∗f ) = Φx(t

∗
f , x

∗(t∗f ))

0 = Hu(t, x(t), u(t), λ(t))

for all t ∈ [t0, t
∗
f ] along with the transversal conditions

ψ(t∗f , x
∗(t∗f )) = 0

Φt(t
∗
f , x(t

∗
f )) +H(t∗f , x

∗(t∗f ), u
∗(t∗f ), λ

∗(t∗f )) = 0

with Φ = ϕ+ (ν∗)Tψ and H = L+ (λ∗)T f .

Observe that if the costate values λ∗(t0), the Lagrange multipliers ν∗, and the

terminal time t∗f were known, the Euler-Lagrange equations could be integrated

forward in time. So the idea of indirect shooting is to guess the values of the initial

costate, Lagrange multipliers, and terminal time and then iteratively improve these

estimates to satisfy the adjoint terminal conditions and the transversal conditions.

In other words one wants to find (λ∗(t0), ν
∗, t∗f ) such that

b(λ∗(t0), ν
∗, t∗f ) =

 λ∗ + ϕx + (ν∗)Tϕx

ψ

L+ (λ∗)T f + ϕt + ν∗ϕt


t=t∗f

= 0

This can be done using a Newton-Raphson type algorithm.

Direct Method: Direct methods discretize the control problem and then apply

mathematical programming codes to the resulting finite-dimensional optimization

problem. These methods use only control and/or state variables as decision vari-

ables and dispense completely with the costate.
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One direct method is known as the sequential method. We consider the follow-

ing optimal control problem to illustrate its use

minimize: J [u] =
∫ tf
t0
L(t, x(t), u(t), θ)dt+ ϕ(x(tf , θ))

with respect to: u∗ ∈ Ĉ1[t0, tf ], θ∗ ∈ Rnθ

subject to: ẋ(t) = f(t, x(t), u(t), θ), x(t0) = h(θ)

ψj(x(tf ), θ) = 0, j = 1, . . . , nψ

κj(x(tf ), θ) ≤ 0, j = 1, . . . , nκ

gj(t, x(t), u(t), θ) ≤ 0, j = 1, . . . , ng

u(t) ∈ [u, u], v ∈ [v, v]

In direct sequential methods, the control variables u are parameterized by a finite

set of parameters and the optimization is carried out in the parameter space. A

convenient way to parameterize the controls is by subdividing the optimization

horizon, [t0, tf ] into ns ≥ 1 control stages

t0 < t1 < t2 < · · · < tns = tf

and using low-order polynomials, ũ(t, ω) on each interval with coefficient vector

ω so that

u(t) = ũk(t, ωk), for tk−1 ≤ t ≤ tk

with ωk being the parameters for that subinterval. In practice, Lagrange polyno-

mials are used to approximate the controls so in stage k the jth control variable

is

uj(t) = ũkj (t, ω
k) =

M∑
i=0

ωkijϕ
(M)
i (τ (k)), t ∈ [tk−1, tk]

where τ (k) =
t−tk−1

tk−tk−1
∈ [0, 1] denotes a normalized time in stage k and ϕ(M)

i (·)
denotes the Lagrange polynomial of order M

ϕ
(M)
i (τ) =


1 if M = 0
M∏

q=0,q ̸=i

τ − τq
τi − τq

if M ≥ 1
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With this parameterization of the controls, the original problem is transformed into

a finite dimensional optimization problem

minimize:
∑ns

k=1

∫ tk
tk−1

L(t, x(t), ũ(t, ωk), θ)dt+ ϕ(x(tns), θ)

subject to: ẋ(t) = f(t, x(t), ũ(t, ωk), θ), t ∈ [tk−1, tk], k = 1, . . . , ns

x(t0) = h(θ)

ψ(x(tns), θ) = 0

κ(x(tns), θ) ≤ 0

g(t, x(t), ũ(t, ωk), θ) ≤ 0, t ∈ [tk−1, tk], k = 1, . . . , ns

ωk ∈ [ω, ω] , θ ∈ [θ, θ]

where the decision variables are the parameters (ω1, . . . , ωns , θ).

5. Dynamic Programming

The preceding sections examined the variational approach to optimal control. This

section examines an alternative approach to the problem called dynamic program-

ming. Dynamic programming uses a value function, V : R × X → R, whose

values V (x, t) equal the optimal cost if the system started in state x at time instant

t. The state space is denoted as X and in our following discussion it may either

be Rn, Zn, or event a finite discrete set. The resulting value function allows us to

identify sufficient conditions for optimality and more importantly the optimal con-

trols take the form of a state feedback law. Equations for the Value Function are

derived from a principle of optimality that is extremely general so it can be used

for deterministic, discrete-time, and discrete-event systems. For continuous-time

systems the Value function is the solution to a partial differential equation known

as the Hamilton-Jacobi-Bellman (HJB) equation.

5.1. Generalized Principle of Optimality: Let X and U be linear space

called the state and control space, respectively. Let G be a group1 with a strong

order relation, <, such that for all s, t ∈ G, one of the following relations always

holds: s < t, t < s, or s = t (aka trichotomy law). Let X denote all functions

x : G → X and U denote all functions u : G → U . Let U[s,t] and X[s,t] denote

1A group is a mathematical system (X,+) with a binary operation of addition that

satisfies certain properties.
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the restriction of X and U to functions whose domain is [s, t]. The group, G, rep-

resents time, but because of the generality of our framework, the results apply to

discrete-time and continuous-time systems.

Consider a doubly indexed family of operators for indices s, t ∈ G

Φts : X × U[s,t] → X

and define any ordered pair (t0, x0) ∈ G × X as an event. The state trajectory

generated by u ∈ U[t0,tf ] for event (t0, x0) under system Φts is the function x :

[t0, tf ]→ X such that

x(t) = Φt,t0(x0 |u)

for all t0 ≤ t ≤ tf . Clearly Φ is what we think of as a transition operator for

the system. If G = Z (the set of integers), then the system is discrete time. If

G = R, the system is continuous-time. The spaces X and U can either be subsets

of a Euclidean space, or they can be finite sets (discrete). In some cases we can

equip X and U with a probability measure so they become probability spaces and

our system becomes a Markov process.

Let us now introduce a payoff/penalty functional

J : U[t0,tf ] ×G×G×X → R

such that J [u | t0, tf , x0] is the payoff/penalty received by system Φs,t using u ∈
U[t0,tf ]. Given a control u ∈ U[t0,tf ] let x be the state trajectory generated by

Φtf ,t0 under u. We assume there exists a function M : X → R and functional

Q : U[t0,tf ] × G × G × X → R such that the total payoff (reward) for any

u ∈ U[t0,tf ] with x generated under u is

J [u | t0, tf , x0] =M(x(tf )) +Q[u | t0, tf , x0]

We also assume that Q is additive over time so that for all s ∈ [t0, tf ] we have

Q[u | t0, tf , x0] = Q[u | t0, s, x0] +Q[u | s, tf , x0]

One obvious choice for Q would be the integral functionals we considered in our

calculus of variation problems

Q[u | t0, tf , x0] =
∫ tf

t0

L(x(τ), u(τ))dτ
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Given the 2 parameter group of system transition operators, Φs,t, and a payoff

functional J , the value function is a function V : G×X → R such that

V (t, x) = inf
u∈U[t,tf ]

J [u | t, tf , x]

If the infimum is achieved by some u∗ ∈ U[t,tf ] then u∗ is the optimal control.

Note that u∗ is a function of the event (t, x). But since we determine V for

all possible events, we can see that u∗ is actually a function of time t and the

state x. In other words, having the value function allows us to identify a state-

feedback control law, rather than an open-loop control signal as was done with

the variational methods. The following theorem characterizes the behavior of the

value function under any admissible control using a recursive relationship. This

recursion essentially says that the Value function at event (t0, x) is bounded above

by the sum of the value function at (s,Φs,t0(x : u[t0,s)) and the running cost

Q[u[t0,s) : t0, s, x] incurred in going from (t0, x) to (s,Φs,t0(x : u[t0,s)).

THEOREM 4. Let s, t0, tf ∈ G be such that t0 ≤ s ≤ tf . For any admissible

control, we have

V (t0, x) ≤ Q
[
u[t0,s) : t0, s, x

]
+ V (s,Φs,t0(x : u[t0,s]))

Proof: Assume s, t0, tf ∈ G and u ∈ U[t0,tf ] are given. For any ϵ > 0 there exists

a control v ∈ U[s,tf ) such that

J [v : s, tf ,Φs,t0(x : u[t0,s)) < Vs(Φs,t0(x : u[t0,s)) + ϵ

Now let uϵ ∈ U[t0,tf ] be a control obtained by concatenating u[t0,s)] with v so that

uϵ(t) =

{
u(t) t0 ≤ t < s

v s ≤ t ≤ tf

From the definition of the value function V (t0, x) we have

V (t0, x) ≤ J [uϵ : t0, tf , x]

= Q[u[t0,s) : t0, s, x] + J [v : s, tf ,Φs,t0(x : u[t0,s))]

wich implies that

V (t0, x) ≤ Q
[
u[t0,s] : t0, s, x

]
+ V (s,Φs,t0(x : u[t0,s])) + ϵ

In the limit as ϵ→ 0 we obtain the theorem’s conclusion. ♢
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The recursion relationship given in the preceding theorem is necessarily satis-

fied with equality by the optimal control u∗. This equation is also known as the

principle of optimality. Because we have proven it with regard to very general

assumptions on the state/control sets and the time set, G, we refer to it as a ”gen-

eralized” principle of optimality [Fleming and Rishel (1972)].

THEOREM 5. Let the initial time t0 and the final time tf be given. If the value

function is achieved by u∗ ∈ U[t0,tf ] then for any s ∈ [t0, tf ] we have

V (t0, x) = Q
[
u∗[t0,s] : t0, s, x

]
+ V (s,Φs,t0(x : u∗[t0,s]))

Proof: Let u∗ be optimal for event (t0, x). By the additivity of Q we rewrite

V (t0, x) as

V (t0, x) = min
u∈U[t0,tf ]

J [u : t0, tf , x] = J [u∗ : t0, tf , x]

= min
u∈U[t0,tf ]

[M(x(tf )) +Q [u : t0, tf , x]]

= min
u∈U[t0,tf ]

{
M(x(tf )) +Q [u : t0, s, x] +Q

[
u : s, tf ,Φs,t0(x : u[t0,s])

]}
= min

u∈U

{
Q [u : t0, s, x] + J

[
u[s,tf ] : s, tf ,Φs,t0(x : u[t0,s])

]}
Assume there exists another control û[s,tf ] such that

J [û[s,tf ] : tf ,Φs,t0(x : u[t0,s])] ≤ J [u
∗
[s,tf ]

: s, tf ,Φs,t0(x : u[t0,s])]

Then we can construct v ∈ U[t0,tf ] such that

v(t) =

{
u∗(t) for t ∈ [t0, s)

û(t) for t ∈ [s, tf ]

for which

V (t0, x) ≥ J [v : t0, tf , x]

which would violate the optimality of u∗, thereby generating a contradiction. ♢

The following theorem provides conditions under which our recursive equation

for the value function becomes sufficient for optimality. This result is also known

as the verification theorem since it verifies the optimality of a given control.

THEOREM 6. Assume V̂ : [t0, tf ]×X → R is any function such that
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• for all s and t with t0 ≤ t ≤ s ≤ tf and all x ∈ X we have

V̂ (t, x) ≤ Q
[
u[t,s] : t, s, x

]
+ V̂ (s,Φs,t(x : u[t,s]))

for all admissible u[t,s]
• For all s and t with t0 ≤ t ≤ s ≤ tf and all x ∈ X , there exists some

control u∗[t0,tf ] such that

V̂ (t, x) = Q
[
u∗[t,s] : t, s, x

]
+ V̂ (s,Φs,t(s : u

∗
[t,s]))

• and V̂ (tf , x) =M(x) for all x ∈ X

Then the value function V (t, x) is achieved by u∗ ∈ U[t0,tf ] and V (t, x) = V̂ (t, x).

Proof:. Fix any t ∈ [t0, tf ] and x ∈ X . Consider a particular case of the first

condition (s = tf ) and use the third condition to deduce that for any u ∈ U[t,tf ]
that

V̂ (t, x) ≤ Q [u : t, tf , x] +M(Φtf ,t(x : u))

By the second condition there is some u∗ ∈ U[t0,tf ] such that

V̂ (t, x) = Q [u∗ : t, s, x] + V̂ (s,Φs,t(x : u∗[t,s]))

= Q [u∗ : t, s, x] +M(Φtf ,t(x : u∗))

From the definition of the value function we obtain

V (t, x) ≤ J [u∗ : t, tf , x]

= M(Φtf ,t(x : u∗)) +Q[u∗ : t, tf , x]

= V̂ (t, x)

So this shows that V (t, x) ≤ V̂ (t, x). We also know that for any ϵ > 0 there exists

uϵ ∈ U[t0,tf ] such that

V (t, x) + ϵ > J [uϵ : t, tf , x]

= M(Φtf ,t(x : uϵ)) +Q[uϵ : t, tf , x]

≥ V̂ (t, x)
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Since this holds for all ϵ > 0 we can conclude V (t, x) ≥ V̂ (t, x). So we know that

V (t, x) = V̂ (t, x) with

V (t, x) = min
u

{
Q[u : t, tf , x] +M(Φtf ,t(x : u))

}
= Q [u∗ : t, tf , x] +M(Φtf ,t(x : u∗))

So that the value function is achieved by u∗. ♢

5.2. Hamilton-Jacobi-Bellman Equation: This subsection applies the prin-

ciple of optimality to continuous-time systems. The main result is a local char-

acterization of the principle that takes the form of a partial differential equation

known as the Hamilton-Jacobi-Bellman (HJB) equation.

So consider the continuous time system

ẋ(t) = f(x(t), u(t)), x(t0) = x0

If x : [t0, tf ]→ Rn is a solution to this IVP, then we know it can be written as

x(t) = Φ0,t(x0 : u)

We are interested in finding the optimal control, u∗, that minimizes the cost func-

tional

J [u : t0, tf , x0] =

∫ tf

t0

L(x(τ), u(τ))dτ +M(x(tf ))

subject to x being the state trajectory generated by the system under u.

We first develop necessary conditions for optimality for an infinitesimal vari-

ation of the value function. In particular, the principle of optimality says that for

each optimal control u∗ starting from event (t, x) the following relation holds

V (t, x) =

∫ s

t
L(x(τ), u(τ))dτ + V (s, x(s))

for all s > t. If the value function is differentiable then clearly

dV (s, x(s))

ds
=
∂V

∂s
+
∂V

∂x
ẋ+ o(·)

which implies that

∂V (t, x)

∂t
= −L(x(t), u∗(t))− ∂V (t, x)

∂x
f(x(t), u∗(t))
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Along arbitrary state trajectories (not necessarily generated by the optimal u∗), our

earlier theorems say the value function satisfies

∂V (t, x)

∂t
≥ −L(x(t), u(t))− ∂V (t, x)

∂x
f(x, u)

Note that only the value of the control at time t appears in these formulae. If the

value function is achieved and if the functions are ”smooth enough” then the value

function will satisfy

−∂V
∂t

= min
u∈U

{
L(x(t), u) +

∂V (t, x(t))

∂x
f(x(t), u)

}
with the value function V at time tf being

V (tf , x) =M(x)

The preceding observations can be summarized in the following theorem.

THEOREM 7. HJB Theorem: Assume the value function V is a C1 function of

variables (x, t). Then V satisfies the equation

−∂V
∂t

(x, t) = min
u∈U

{
∂V

∂x
(t, x)f(x, u) + L(x(t), u(t))

}
for all x ∈ Rn and 0 ≤ t < T with terminal condition

V (x, tf ) =M(x)

One interesting aspect of the HJB equation is that it generates state feedback

controllers in a very natural way. This construction takes two steps

(1) Solve the HJB equation for all (x, t) events. In other words determine

the value function

(2) For each point x ∈ Rn and each time t define a function k : Rn×R→ U

that takes values

k(x, t) = argmin
u∈U

{
L(x, u) +

∂V (t, x)

∂x
f(x, u)

}
The control u = k(x, t) generated in this way will achieve the value function and

therefore be optimal.
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5.3. Linear Quadratic Regulator: One of the best known examples illustrat-

ing the use of the HJB equation is the derivation of the linear quadratic regulator

(LQR). In our linear systems lecture notes we derived the LQR control law using

a completing the square argument. But this derivation assumed the controller was

a state feedback controller. Using the HJB equation, we can prove the stronger

result that shows the state feedback control law is indeed the ”optimal” law under

all possible controllers. Consider the linear system

ẋ(t) = Ax(t) +Bu(t), x(0) = x0

and a quadratic cost functional

J [u] =

∫ T

0
(xTQx+ uTRu)dt+ xT (T )Mx(T )

where Q, M, and R are positive definite matrices. We will solve this problem

using the HJB equation. In this case the Lagrangian is

L(x, u) = xTQx+ uTRu

and the system’s f function is

f(x, u) = Ax+Bu

The terminal cost is

M(x(T )) = xT (T )Mx(T )

The associated HJB equation for this problem is

−∂V
∂t

= min
u∈Rm

{
xTQx+ uTRu+

∂V

∂x
(Ax+Bu)

}
Since this is a convex problem we see the optimal control must satisfy

0 =
∂

∂u

{
xTQx+ uTBu+

∂V

∂x
(Ax+Bu)

}
= 2Ru+BT ∂V

∂x

Solving for u, we find the optimal control is

u∗(t) = −1

2
R−1BT ∂V (t, x∗(t))

∂x
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We now need to determine the value function. Since the Lagrangian is quadratic

we will assume that the value function is also quadratic with the form

V (t, x) = xTP(t)x

where P : [0, T ]→ Rn×n is a symmetric matrix valued function of time. Note that

∂V (t, x)

∂x
= 2P(t)x

Putting this back into our previous equation yields

−xT Ṗ(t)x = xT (ATP(t) +P(t)A+Q−P(t)BR−1BTP(t))x

with boundary condition

V (T, x) = xTP(T )x = xTMx

Since these two equations must hold for all x we can conclude that P(t) is the

solution to the following matrix differential Riccati equation

−Ṗ(t) = ATP(t) +P(t)A+Q−P(t)BR−1BTP(t), P(T ) = M

Note that the boundary conditions for the ODE are at the terminal time, T . Solving

this terminal value problem would give P(t) and the optimal control then takes the

form

u∗(t) = −R−1BTP(t)x(t)

Note that this is a state-feedback controller whose gains are time-varying. Be-

cause we were solving the finite horizon problem over [0, T ], the gains will tend to

get larger as the system approaches the terminal time. We can also consider what

happens as the final time T goes to infinity. In this case, one can prove that the

matrix-valued function of time, P(t), converges to a constant matrix, P. Since this

matrix is constant, we know Ṗ = 0 and so the matrix satisfies a matrix Riccati

equation of the form

0 = ATP+PA+Q−PBR−1BTP

This equation is nonlinear in the decision variable P, but there are well known

transformations that turn it into a linear function of P that can then be solved by

conventional methods. We refer to this infinite horizon LQR controller as a steady-

state LQR control law.
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6. Stochastic Dynamic Programming

The previous derivation of the LQR assumed that the system state is fully available

to the controller and that it is not corrupted by noise. This section considers the

optimality of the control when the state is disturbed by a random process. Dynamic

programming can still be applied to such systems through a stochastic version of

the Hamilton-Jacobi Bellman equation. This section uses that stochastic HJB to

solve the stochastic version of the linear quadratic regulator problem. The stochas-

tic HJB is a stochastic differential equation (SDE) and so we first need to review

basic results regarding stochastic differential equations.

Stochastic Differential Equations: Let xt be a random process where t ∈ [s, t]

and consider the following partition of [s, t],

s = t0 < t1 < t2 < · · · < tn = t

We refer to the random process formed by

xt1 − xt0 , xt2 − xt1 , · · · ,xtn − xtn−1

as increments, ∆xi of xt. We say that xt has independent increments if for any

finite partition, ∆xi are statistically independent. We say the increments are sta-

tionary if xt+w − xt has the same distribution for every t.

A stochastic process {xt}t≥0 is called a Brownian motion or Wiener process if

• x0 = 0

• {xt}t≥0 has stationary and independent increments,

• for all t > 0, xt is normally distributed with mean 0 and variance c2t.

To discuss stochastic differential equations, we need to develop a calculus for

stochastic processes. One such calculus is the Ito calculus [Gikhman and Sko-

rokhod (1972)] based on the Ito stochastic integral. Let us introduce a partition

0 < t1 < t2 < · · · < tn = t and define x̂(t) = x(ti) for t ∈ [ti, ti+1]. Define the

integral ∫ t

0
x̂dw =

n∑
i=1

x(ti)(w(ti+1)− w(ti))
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where w is a standard Brownian motion. We let x̂n(t) be a sequence of random

variables such that

lim
n→∞

∫ t

0
(x− x̂n)2 dw = 0

with probability one. This means that
∫ t

0
x̂n(t)dw converges with probability 1 to

a limit that we denote as
∫
xdw. We call this limit the Ito stochastic integral.

So let us consider a random process {xt}t≥0 such that for arbitrary t1 and t2

xt2 − xt1 =

∫ t2

t1

m(t)dt+

∫ t2

t1

σdw

where m and σ are functions of time, t. The first integral is a standard (Riemann

or Lebesgue) integral and the second integral is the Ito stochastic integral we de-

fined above. This integral expression is sometimes called a stochastic differential

equation and is often written in the more suggestive form,

dx = m(t)dt+ σ(t)dw

So when discussing the optimal control for a stochastic system, we will assume that

the system can be represented as a stochastic differential equation. In particular,

this means the original differential equation is driven by a Brownian motion.

Remark: Engineers are more acquainted with differential equations driven by

white noise processes. We cannot really use this approach for continuous-time

systems because the probability measure is not well defined over an uncountable

set (i.e. the real line, time). This is why we use the notion of ”increments” and

Brownian motions to formally describe how ”random noise” drives a differential

equation.

Stochastic Bellman Equation: Let us define the following performance measure

for the stochastic control problem

J [u] = E
{∫ T

t
L(x(τ), u(τ))dτ +m(x(T )) | xt = x

}
We assume that T is fixed and that L and m have the same properties they have in

the deterministic LQR problem. The optimal stochastic control problem looks for a
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control u that minimizes J (the expected value of the cost) subject to the constraint

that the state xτ satisfy the stochastic differential equation

dx = f(x, u, t)dt+G(x, u, t)dw

where dw is a Wiener increment with covariance matrix W (t)dt.

With regard to the above problem it is possible to develop a stochastic version

of the principle of optimality. This stochastic optimality problem states that if

u∗(τ) is optimal over the interval [t, T ], conditioned on the initial state x(t), then

u∗(τ) is necessarily optimal over the subinterval [t + ∆t, T ] for any ∆t such that

T − t ≥ ∆t > 0. As before we use this optimality principle to develop a stochastic

version of the Hamilton-Jacobi Bellman equation.

Recall that the value function, V ∗, is

V ∗(t, x) = min
u

E
{∫ t+∆t

t
Ldτ + E

{(∫ T

t+∆t
Ldτ +m(x(T ))

)
| x(t+∆t)

}
| x(t)

}
which is the average cost incurred by a system described by the above SDE using

the ”optimal” control. The stochastic optimality principle allows us to express V ∗

in a recursive manner

V ∗(t, x) = min
u

E
{∫ t+∆t

t
Ldτ + V ∗(x(t+∆t), t+∆t) | x(t)

}
(16)

where x(t+∆t) is a random vector given by x(t+∆t) = x+∆x with ∆x being

a stochastic increment approximated as

∆x = f∆t+G∆w

We use a Taylor series expansion of V ∗ about (t, x) and because the covariance of

a Wiener process is linear in ∆t, we keep the quadratic terms of that expansion.

This means that

V ∗(t+∆x, t+∆t) = V ∗(t, x) +
∂V ∗

∂t
∆t

+

[
∂V ∗

∂t

]T
∆x+

1

2
(∆x)TH(∆x)
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where H is the Hessian of V ∗. Inserting this expression for V ∗(t + ∆x, t + ∆t)

into equation (16) gives

V ∗(t, x) = min
u(t)

E
{
L(x, u, t)∆t+ V ∗(t, x) +

∂V ∗

∂t
∆t

+

[
∂V ∗

∂x

]T
∆x+

1

2
(∆x)TH(∆x) |x

}
Using the fact that ∆w is zero mean, ∆x = f∆t+G∆w, and the fact that xTHx =

trace(HxxT ) we can rewrite the above expression for V ∗(t, x) as

−∂V
∗

∂t
= min

u

{
L(x, u, t) +

[
∂V ∗

∂x

]T
f(x, u) +

1

2
trace

(
HGWGT

)}
with boundary condition V ∗(T, x) = m(x). This last equation is the stochastic

Hamilton-Jacobi Bellman equation. Note that if there is no disturbance (i.e. W =

0) then this reverts to the deterministic HJB equation.

Stochastic LQR with additive disturbances: Consider the cost functional

J [u] = E
{∫ T

t
(xTQx+ uTRu)dτ + xT (T )Mx(T ) | x

}
where

dx = (Ax+Bu)dt+Gdw

where w is a standard Brownian motion with covariance Wdt. The minimization

step in the stochastic HJB minimizes

uTRu+

[
∂V ∗

∂x

]T
Bu

since these are the only terms involving u. Note that these are precisely the same

terms that were minimized in the deterministic case. So we can say the optimal

control is

u∗ = −1

2
R−1BT ∂V

∗

∂x

We then need to solve for V ∗. In the deterministic case, we assumed V ∗ =

xTP(t)x, but this won’t work in the stochastic case. A more appropriate candi-

date for the value function is

V ∗ = xTP(t)x+ c(t)
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where we now need to determine P and c. If substitute this into the stochastic HJB

equation using our control, we get

−xT Ṗx− ċ = xT (ATP+PA+Q−PBR−1BTP)x+ trace(PGWGT )

If the coefficients powers of x are equated we finally get

−Ṗ = ATP+PA+Q−PBR−1BTP

−ċ = trace(PGWGT )

with boundary conditions P(T ) = M and c(T ) = 0. So the optimal control

becomes

u∗(t) = −R−1BTP(t)x(t)

where P(t) is given as the solution of the differential Riccati equation.

Note that the optimal control for this stochastic problem is identical to that for

the deterministic case. In other words, the optimal control for the stochastic LQR

is identical to what happens when W = 0. While the control law is the same, the

optimal cost is not the same due to the additional c term. The integration of the ċ

equation gives

c(t) =

∫ T

t
trace

(
P(τ)GWGT

)
dτ

where Wdt is the covariance matrix for the Brownian increment dw. So the opti-

mal cost has an additional term reflecting the fact due to the state’s random walk

induced by the Brownian motion.

7. Optimal Control of Markov Decision Processes

Markov Decision Processes (MDPs) play an important role in a popular trial-

by-error learning method known as Reinforcement Learning [Sutton and Barto

(2018)]. An MDP consists of a decision maker (agent) itneracting with an ex-

ternal environment. That interaction may be viewed as seen in Fig. 4. Our problem

is to determine the agent’s action policy, π, that maximizes the expected total dis-

counted reward that the agent receives during its interaction with the environment.

We formally define the MDP as a tuple, (S,A, p, r, S0, SK) where S is a finite

set of environmental states andA is a finite set of agent actions. We denote the state
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FIGURE 4. MDP models an agent’s interaction with an ex-

ternal environment

at time instant k ∈ Z as sk and the action at time k as ak. The sets S0, SK ⊂ S

are called the initial and terminal state sets. The map p : S × A → P(S) maps

the current state action pair (sk, ak) ∈ S × A onto the next state, sk+1, through a

conditional probability distribution function

p(y |x, a) = Pr {sk+1 = y | sk = x,ak = a}

This conditional distribution defines the dynamics of the MDP. The other map,

r : S × A × S → R maps the current state-action-next-state triple, (sk, ak, sk+1)

onto a numerical reward rk+1 ∈ R.

The agent and environment interact over a sequence of time steps, k = 0, 1, 2, 3, . . ..

The environmental state at time 0 is in the initial state S0. At each time instant, k,

the agent selects an action ak using a policy, π : S → P(A). The policy randomly

uses the current state, sk, to select the current action, ak, by sampling from the pol-

icy distribution, π(ak | sk = s). The set of all admissible policies will be denoted as

Π. The environment takes the agent’s selected action and returns the environment’s

next state sk+1 ∼ p(· | sk, ak) and the next reward rk+1 = r(sk, ak, sk+1). This

interaction therefore generates a sequence, {(sk, ak, rk+1)}K−1
k=0 , of state-action-

reward triples that we sometimes refer to as the agent’s trajectory. This sequence

has a random stopping time K that occurs when the system state trajectory first

enters the terminal set, SK .

Our problem is to find an action policy π : S → P(A) that maximizes the

expected total discounted reward that the agent receives over a trajectory through

the environment. The total reward under a given policy may be written as a function

V π : S → R that maps the initial state s that the agent started in and whose value

V π(s) is the expected total discounted reward received by the agent for using π



7. OPTIMAL CONTROL OF MARKOV DECISION PROCESSES 107

until it reaches the terminal set SK . The expectation is taken over all possible

trajectories that were randomly generated under π for the given initial state s. This

means the value at s under π can be written as

V π(s) = Eπ
{
K−1∑
k=0

γkr(sk, π(sk), sk+1) | s0 = s

}
whereK is the stopping time when the state enters the terminal set, SK for the first

time and γ ∈ (0, 1) is a discount factor.

We seek a policy, π∗ : , S → P(A) such that

V π∗
(s) ≥ V π(s)

for all s ∈ S and over all possible policies, π ∈ Π. For simplicity, we refer to the

optimal value function as V ∗, rather than V π∗
.

Finding the optimal policy, π∗, can be done using the generalized principle of

optimality through a discrete time version of the Bellman equation

V π(s) =
∑
a∈A

π(a|s)
∑
s′∈S

p(s′|s, a)
(
r(s, a, s′) + γV π(s′)

)
This equation provides the basis for developing recursive algorithms that are used

to algorithmically compute V ∗(s).

Directly finding π∗ from V ∗(s) is difficult to do. It is more convenient to find

the policy, π∗ from the state-action value function Qπ : S × A → R. The state

action function under π takes the value Qπ(s, a) and it is the expected total reward

received by the agent after it takes action a while in state s. Since it is a value

function it too satisfies a discrete-time Bellman equation of the form

Qπ(s, a) =
∑
s′∈S

p(s′|s, a)
(
r(s, a, s′) + γmax

a∈A
Qπ(s′, a)

)
The optimal Q-function is then

Q∗(s, a) = max
π∈Π

Qπ(s, a)

Because a ∼ π(a|s) we can readily see that the optimal action policy when the

current state is s will be

π∗(s) = argmax
a

Q∗(s, a)
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If the environment’s dynamics are completely known, then the Bellman equa-

tion is a system of simultaneous linear equations where the number of unknowns

equals the cardinality of the state space S. Directly solving this system of linear

equations will be difficult if the cardinality of S is high (usually the case). So one

usually uses successive approximation methods to find the value function. In par-

ticular, a sequence
{
V̂ π
ℓ (s)

}∞

ℓ=0
of functions, V̂ π

ℓ : S → R is generated whose

components are approximations of the true value function V π under the given pol-

icy π. These approximations are computed through the recursion

V̂ π
ℓ+1(s) = Eπ

{
r(sk, π(sk), sk+1) + γV̂ π

ℓ (sk+1) | sk = s
}

=
∑
a

π(a|s)
∑
s′∈S

p(s′ | s, a)
(
r(s, a, s′) + γV̂ π

ℓ (s
′)
)

The actual value function, V π, is a fixed point for the recursive update. One can

prove that if the discount factor is between 0 and 1 then this recursion converges

to the policy’s value function V π. This algorithm is known as iterative policy

evaluation.

Once we use this policy to compute V π for a given policy π0 we need to perturb

the policy to find a better one. So let us assume that for some state s that instead

of picking the action π0(s), we pick an alternative action a ̸= π0(s). After that

we simply continue using the original policy π0. This is sometimes referred to as a

needle perturbation of the policy. The state-action value function from s under this

perturbed policy would be

Qπ0(s, a) = Eπ
{
r(s, a, s′) + γV π0(s′)

}
=

∑
s′∈S

p(s′ | s, a)
{
r(s, a, s′) + γV π0(s′)

}

The key thing is whether this is greater than or less than V π0(s). Clearly we can

use the above equation to computeQπ0(s, a) when the policy is perturbed at time k

by using when the policy is perturbed at time k by using a instead of π0(s). Since

there are a finite number of actions, we compute this value for each a and come

up with an improved policy that uses an a that maximizes Qπ(s, a). So we end up
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with a greedy policy of the form

π1(s) = argmax
a

Qπ0(s, a)

= argmax
a

∑
s′∈S

p(s′ | s, a)
{
r(s, a, s′) + γV π0(s′)

}
Once a policy has been improved using V π0 to obtain π1, we recompute V π1 and

improve it again to obtain a better π2. We therefore generate a sequence of mono-

tonically improving policies and value functions.

π0
eval→ V π0 improve→ π1

eval→ V π1 improve→ · · · improve→ π∗
eval→ V ∗(17)

Because a finite MDP only has a finite number policies, this process must con-

verge to an optimal policy and an optimal value function after a finite number of

recursions. This search strategy for the optimal policy is called the Policy iteration.

Note that the policy iteration is not often used because the evaluation step re-

quires that we converge to the value function V π before proceeding to the improve-

ment step. In practice, one does not need to do this. In particular another algorithm

called the Value Iteration simply executes a single update step of the iterative pol-

icy evaluation and then executes the improvement step. The Value Iteration also

converges when the discount factor γ ∈ (0, 1) and in practice it converges much

more quickly than the Policy Iteration [Puterman (1994)].

FIGURE 5. Frozen Lake Environment

The following example illustrates the Value Iteration on a benchmark MDP

known as the Frozen Lake Environment shown in Fig. 5. This figure shows a

discrete state space S = {0, 1, 2, . . . , 15} as a 4 by 4 grid of squares representing
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locations on a frozen lake. Each grid element is classified as either a ”START”

state (S), a ”FROZEN” state (F), a ”HOLE” state (H), or a ”GOAL” state (G). An

episode starts with the agent in the S state. The agent selects one of 4 actions

that move NORTH (3), EAST (2), SOUTH (1), or WEST (0). Because the ice is

slippery, the next state the agent moves to after selecting its action is random. So for

instance, if the agent selects action 3 (NORTH), then it moves to the grid element

directly above it and the two states to the east and west with equal probability of

1/3. Similar outcomes occur for the other selected actions, thereby defining the

state transition kernel p(s′ | s, a). If the next state is a H (hole) or G (goal) state

then the episode is over. The reward received by the agent is 1 if the next state is

the goal (G) state and is zero otherwise. So this is an MDP problem with delayed

rewards in the sense that the agent only gets rewarded if it reaches the goal. There

is no ”penalty” for falling in a hole and ending the episode early.

I’m going to use a Python script to implement the Value Iteration. The Frozen

Lake environment is a toy environment for Reinforcement Learning algorithms

discussed in chapter 6 and so we will embed our Value Iteration algorithm within

a script implementing that the Frozen Lake environment as a Python class object

import random

import numpy as np

from frozen_lake import FrozenLakeEnv

env = FrozenLake(render_mode = "ansi")

The following script define a function implementing the value iteration for the

state-action function, Q, and value function V .

def value_iteration(env, gamma, maxiter, tol):

Q = np.zeros((env.observation_space.n,env.action_space.n))

V = np.zeros(env.observation_space.n)

for iter in range(maxiter):

V_new = np.copy(V)

for s in range(env.observation_space.n):

for a in range(env.action_space.n):

Q[s][a] = sum([prob*(r+gamma*V_new[s_])

for prob, s_, r, _ in env.P[s][a]])

V[s] = max(Q[s,:])

policy = np.zeros(env.observation_space.n)

for s in range(env.obserbation_space.n):
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policy[s] = np.argmax(np.array(Q[s,:]))

if (np.sum(np.fabs(V_new-V))<=tol):

break

return Q, V, policy

What this function returns is the optimal value function and the optimal policy.

These are listed below as matrices representing the state space

V ∗ =


0.069 0.061 0.074 0.056

0.092 0.112

0.145 0.247 0.300

0.380 0.639 G

 , π∗ =


W(0) N(3) W(0) N(3)

W(0) W(0)

N(3) S(1) N(0)

E(2) S(1)


We can use the Frozen Lake Environment to ”simulate” the use of this optimal

policy over many episodes and use then take the average of the total reward as the

success rate of the policy.

The value or policy iteration both assume we already know the environment’s

dynamics, p(s′|s, a), and reward function r(s, a, s′). In many applications these

functions are not known. Reinforcement learning is a set of algorithms that use the

sequence of agent interactions with the environment to ”learn” an optimal action

policy. Most of the RL algorithms rely on recursive algorithms based on the Bell-

man equation to learn an action policy. These algorithms use data from computer

simulations modeling agent/environment interactions to drive the recursive learn-

ing algorithms. One of the main open research issues regarding RL involves the

safe transfer of action policies learned in a virtual simulation environment to the

real world environment.

success_rate = 0

for episode in range(num_episodes):

s = env.reset()[0]

done = False

while not done:

a = np.argmax(Q[s])

s , reward, done, trunc,info = env.step(a)

if done:

success+rate += reward/num_episodes

break
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In this case we see a success rate of about 82%. So our policy does not always

reach the goal, which is to be expected since the state transition kernel always has

a finite chance of making a move that has the agent fall in a ”hole”.

8. Summary

This chapter reviewed fundamental results regarding the optimal control of dynam-

ical systems over a finite horizon. One of this chapter’s main results was a vari-

ational approach for deriving necessary conditions for the optimal control, known

as the Calculus of Variations. Our discussion of the Calculus of Variations follows

Liberzon (2012), a recent textbook. The variational approach to optimal control

generates necessary conditions that an optimal open-loop control law must follow.

In practice, we can solve this problem numerically and such numerical solutions

form a widely used approach to control known as model predictive control (reced-

ing horizon control) [Alessio and Bemporad (2009)]. Sufficient conditions for the

optimal control can be obtained using dynamic programming [Bertsekas (1995)].

Our discussion of dynamic programming’s Bellman equation follows the more gen-

eral treatment in Fleming and Rishel (1972) with the development of the stochastic

HJB equation following [Dorato et al. (1994)]. Two important features of dynamic

programming are first that it shows that state-feedback laws are the optimal con-

trol laws, but more importantly it is an extremely general framework that can be

used for continuous-time, discrete-time, and discrete-event systems. We demon-

strate this versatility by showing how the Bellman equation is used to form the

HJB equation for deterministic and stochastic continuous-time systems and then

using the same framework to obtain optimal controls for stochastic discrete-event

systems (Markov Decision Processes) [Puterman (1994)]. This last application to

MDP’s has been extremely popular in recent years due to the popularity of Rein-

forcement Learning [Sutton and Barto (2018)] in learning-based control systems.

This chapter’s focus on optimal control shows that the problem can be formally de-

veloped for extremely general classes of dynamical systems. Enforcing optimality,

however, has often led to control systems whose performance is extremely sensitive

to uncertainty in the system dynamics. These optimal methods take advantage of

our prior knowledge of the system dynamics and if that knowledge is not accurate
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then the resulting ”optimal” solutions may perform poorly in the ”real-life” sys-

tem. This requires us to consider how we can recast these optimization problems

to ensure some degree of robustness to model uncertainty. The following chapters

investigate this question, first with regard to linear time-invariant systems and then

for nonlinear affine systems.





CHAPTER 3

Robust Linear Control -H2/H∞ methods

This chapter discusses optimal control of LTI systems of the form

ẋ(t) = Ax + B1w + B2u

z(t) = C1x + D12u

y(t) = C2x + D21w

(18)

This system has two inputs; an exogenous disturbance, w, and a control input, u.

The system also has two outputs; a virtual penalty signal, z, characterizing the

system’s performance and an observation, y, that is accessible by the controller.

The exogenous disturbance, w, introduces a degree of uncertainty into the system

and we want our control system’s performance to be robust to that uncertainty.

In addition to this, we will also assume that there is some uncertainty regarding

the system matrices A, B, C, and D. So again we want our controlled system’s

performance to also be robust to this model uncertainty. This chapter, therefore, is

concerned with the robust optimal control of LTI systems.

Chapter 1 already showed that we can use an observer-based controller for an

LTI system. An observer-based controller uses a Luenberger observer to estimate

the system’s states and then uses a state feedback control law on those state esti-

mates to control the original plant. The resulting control system takes the form of

the linear fractional transformation, Fℓ(P,K), shown in Fig. 1 in which the plant

P and controller K have state space realizations

P
s
=


A B1 B2

C1 0 D12

C2 D21 0

 , K
s
=

[
A+B2F− LC2 L

F 0

]

where F are the state feedback gains and L are the observer gains. The control

system shown in Fig. 1 is often called a generalized regulator because a number

115
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of real-life feedback systems can be put into this canonical form in which the con-

troller K is selected to regulate the output z with respect to bounded variations of

the input w.

FIGURE 1. LFT for Generalized Regulator

The basic optimal control problem of interest to us is

minimize: ∥Fℓ(P,K)∥
with respect to K

subject to: Fℓ(P,K) being internally stable

where ∥Fℓ(P,K)∥ is the induced gain of the closed loop LFT from input w to out-

put z. While this is formulated as an optimization problem, this chapter will show

how one can ”fold” in prior bounds on model uncertainty to ensure the optimal con-

troller’s performance is robust to this model uncertainty. In this case, robustness

means that for plants within the uncertainty set, one can guarantee closed stabil-

ity and a measure of control system performance. The optimization methods rely

on extensions of traditional LQG controllers where instead of select controls that

may be viewed as extending an optimization with respect to the H2 norm of the

closed loop operator to the H∞ norm. For this reason, the robust control methods

presented in this chapter are referred to asH∞ control.



1. LINEAR QUADRATIC GAUSSIAN (LQG) AND H2 CONTROL 117

The remainder of this chapter is organized as follows. We first examine LQG

controllers as a special case ofH2 controllers. The LQG controller is an observer-

based controller (section 9, chapter 1) whose state feedback gains, F, are the LQR

gains derived in the dynamic programming section 5 of chapter 2 and whose ob-

server is a steady-state Kalman filter. We then demonstrate that LQG control sys-

tems lack robustness to model uncertainty. To address this robustness issue, We

present sufficient conditions for a control system to have robust stability and robust

performance. We then show how these conditions can be folded into a generalized

regulator problem for unstructured multiplicative uncertainties and structured pa-

rameter uncertainties. Both of these formulations lead to a generalized regulator

problem that seeks to minimize the H∞ norm of the generalized regulator. We

show how those controllers are synthesized and introduce MATLAB computational

tools that can be used to find theseH∞ controllers.

1. Linear Quadratic Gaussian (LQG) andH2 Control

The linear quadratic Gaussian (LQG) control system is an observer-based control

system whose state gain matrix F is the gain matrix used in an LQR control system

and whose observer gain matrix L is the gain matrix for a steady-state Kalman

filter. It is a special case of the H2 optimal controller that minimizes the H2 norm

of a generalized regulator driven by white noise processes with an output consisting

of the plant’s state and applied control. The LQR gain matrix was already discussed

in chapter 2. The following subsections develop the steady-state Kalman filter

using duality arguments, derive the LQG controller, and show how it is related to

the more generalH2 controller.

1.1. Steady-State Kalman Filter: The steady state Kalman filter is a Luen-

berger observer that minimizes the mean squared state estimation error for an LTI

system, G, with state equations

ẋ = Ax+Bw

y = Cx+ v

where w and v are i.i.d. normally distributed white noise processes with unit vari-

ance and zero mean. In particular, the filter may be seen as an input/output operator,
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F : L2e → L2e that maps the output measurement signal, y ∈ L2e, from the plant

G onto a state estimate x̂ ∈ L2e. The performance of this observer is measured by

the mean squared estimation error (MSEE)

lim
T→∞

E
{
1

T

∫ T

0
|x(τ)− x̂(τ)|2dτ

}
Our objective is to find an observer, F, that generates estimates x̂ = F[y] that

minimizes this MSEE.

We will solve this problem by augmenting the plant’s state equations so it can

be viewed as a two-port system with two inputs, the noise vectors

[
w

v

]
and the

state estimate x̂, and two outputs, the state estimation error, x̃ = x − x̂, and the

observed output y. The augmented plant’s, P, state equations are, therefore

ẋ = Ax+
[
B 0

] [ w

v

]
x̃ = Ix− Ix̂

y = Cx+ Iv

In packed matrix form the augmented plant’s state space realization becomes

P
s
=


A

[
B 0

]
0

I
[
0 0

]
−I

C
[
0 I

]
0


The Kalman filter, F : L2e → L2e, is then a linear time invariant system that maps

the observed output y onto the state estimate x̂ = F[y]. We now interconnect

the augmented plant, P, and filter F to form the linear fractional transformation,

Fℓ(P,F), shown in Fig. 2. This LFT maps the noise inputs

[
w

v

]
onto the state

estimation error x̃ and our objective is to find a linear filtering system, F, that

minimizes the expected value of the squared estimation error. The resulting F is

what we call the steady-state Kalman filter.

The Kalman filter equations are traditionally derived using stochastic arguments

if we treat w and v as random processes [Kailath (1976)]. Rather than doing this,
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FIGURE 2. Augmenting Plant so its output is state estima-

tion error

we will use duality arguments to derive the Kalman filter, since this approach al-

lows us to make use of our earlier LQR control results. The adjoint of the aug-

mented plant LFT, Fℓ(P,F) is

[Fℓ(P,F)]∗ = Fℓ(P∗,F∗)

This adjoint is also an LFT as shown in Fig. 3. Since we already have a realization

for P in packed matrix form, we can write down a realization for the adjoint P∗


−ṗ[
w

v

]
x̂

 =


AT I CT[
BT

0

] [
0

0

] [
0

I

]
0 −I 0



p

x̃

y



where p is the adjoint system’s state.

FIGURE 3. Adjoint of observer LFT
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We substitute τ = −t to reverse the direction of time and the first two equations

of the adjoint’ realization become

ṗ = AT p+ x̃+CT y[
w

v

]
=

[
BT p

y

]
with noise input x̃ and controllable input y. We will now consider the problem of

finding a control input y to the adjoint that minimizes the L2 norm of the adjoint’s

output. In other words seek an input, y, that minimizes

lim
T→∞

E
{
1

T

∫ T

0
(wTw + vtv)dt

}
= lim

T→∞
E
{
1

T

∫ T

0
(pTBBT p+ yT y)dt

}
It should be apparent that this is the cost functional for a stochastic LQR problem

and so we can deduce that the optimal y that solves our problem has the form

y = −CPp

where P is a symmetric positive definite matrix that satisfies

0 = PAT +AP−PCTCP+BBT

Inserting this back into the equations for the adjoint system yields

−ṗ = (−AT −CTCP)p− x̃

y = −CPp

which is the state space realization for the adjoint system from x̃ to y. If we then

take the adjoint of this system, we obtain the realization

x̂ = (A−PCTC)x̂+PCT y

= Ax̂+PCT (y −Cx̂)

which shows the optimal observer gain L = PCT where P satisfies the preceding

algebraic Riccati equation. This observer is what we call the steady-state Kalman

filter. The preceding discussion may be summarized in the following theorem.

THEOREM 8. Consider the system

ẋ = Ax+Bw

y = Cx+ v
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where w and v are zero mean, unit variance white noise processes. Then the fol-

lowing steady-state Kalman filter

˙̂x = Ax̂− LKF(y −Cx̂)

minimizes the expected L2 norm of the state estimation error x̃ = x− x̂

lim
T→∞

E
{
1

T

∫ T

0
(wT (τ)w(τ)− vT (τ)v(τ))dτ

}
where

LKF = PCT

where P is a symmetric positive definite matrix satisfying the algebraic Riccati

equation

0 = PAT +AP−PCTCP+BBT

The preceding Kalman gain equations were developed assuming the process

noise w and measurement noise, v were both independent white noise processes

with unit variance. If w and v are white noise processes with covariance matrices

W and V, respectively then we can simply rescale w and v to show the steady

state Kalman gains are

LKF = PCTV−1

where P now satisfies the algebraic Riccati equation

0 = PAT +AP−PCTV−1CP+BWBT

Discrete time Kalman Filter: The preceding discussion derived the equations for

the continuous-time steady state Kalman filter. In practice, however, the Kalman

filter is usually implemented with a computer as the discrete Kalman Filter (DKF)

algorithm. The derivation of DKF is customarily done using stochastic arguments

[Kailath (1976)] since these arguments are easier for discrete-time and this makes

it easier to develop a time-varying Kalman filter. Rather than deriving these equa-

tions, I’ll simply present them since I am more interested in how we ”use” this
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Kalman filter, rather than its formal derivation. We assume the system state equa-

tions are of the form

x(k) = A(k − 1)x(k − 1) + w(k − 1)

y(k) = C(k)x(k) + v(k)

where w(k) is a zero mean white noise process representing process noise with

a covariance W and v(k) is a zero mean white noise process representing sensor

measurement noise. with covariance V. Note here that our system is time-varying

so we need to present the equations for the time-varying version of the Kalman

filter. The time-varying DKF is typically implemented in two-stages that I refer to

as the blooming and pruning stages, respectively.

Immediately after time instant k−1, the information available to the filter is the

current state estimate x̂+(k−1) and with error covariance P+(k−1). The bloom-

ing stage takes that information and “propagates” it through the state transition

matrix A(k) to just before the next time instant k. We refer to this as blooming

because propagating through A(k) will typically increase the uncertainty in the

state’s true value. The bloomed state estimate and error covariances prior to time

k are denoted as x̂−(k) and P−(k), respectively. One can readily show that these

two quantities satisfy

x̂(k) = A(k − 1)x̂+(k − 1)

P−(k) = A(k − 1)P+(k − 1)AT (k − 1) +W

where x̂−(k) and P−(k) represent the information available to the filter just prior

to the updated provided by the kth measurement, y(k).

The action of this update, y(k), is to prune away the uncertainty that bloomed

under propagation of the estimate through the state equations. The pruned state

estimate and error covariance at time instant k are denoted as x+(k) and P+(k),

respectively. These equations can be shown to satisfy

x̂+(k) = x̂−(k) + L(k)(y(k)−C(k)x̂−(k))

P+(k) = (I− L(k)C(k))P−(k)

L(k) = P−(k)CT (k)(C(k)P−(k)CT (k) +V)−1

where L(k) is called the Kalman Gain.
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1.2. LQG and H2 Controllers: LQG (Linear Quadratic Gaussian) control

systems are observer-based control systems where the state feedback gains are

LQR control gains and whose observer gains are those of a Kalman filter. The

LQG controller is a special case of the H2 optimal controller. This subsection

shows that the LQG controller is optimal in the sense of minimizing the H2 norm

of the LFT representing the closed loop system. We then discuss how it is a special

case of theH2 controller and discuss a well-known example illustrating its lack of

robustness to modeling error.

We start by considering the following plant

ẋ = Ax+B1w +B2u

z =

[
C1x

D12u

]
y = C2x+D21v

(19)

where w and v are independent white noise processes with covariance matrices

W and V, respectively. We assume that (A,C2) is detectable and (A,B2) is

stabilizable. We further assume that D12 has full column rank and D21 has full

row rank. In packed matrix form this system’s realization is therefore

P
s
=


A

[
B1 0

]
B2[

C1

0

] [
0 0

0 0

] [
0

D12

]
C2

[
0 D21

]
0


The LQG controller, KLQG is an LTI system with internal state x̂. The system

takes the measurement y as an input and generates the output u according to the

equation

u = Fx̂

where F is the LQR gain

F = −(DT
12D12)

−1BT
2 S(20)

where S = ST > 0 satisfies the LQR algebraic Riccati equation

0 = ATS+ SA+CT
1 C1 + SB(DT

12D12)
−1BTS(21)
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The internal state, x̂, of the controller satisfies the following ODE

˙̂x = Ax̂+B2u+ L(y −C2x̂)

= (A+B2F− LC2)x̂+ Ly

where

L = −PCT
2 (D21VDT

21)
−1(22)

and P satisfies the Kalman algebraic Riccati equation

0 = PAT +AP−PCT
2 (D21VDT

21)
−1C2P+B1WBT

1(23)

These control gains are simply the LQR control gains that minimize the cost

functional

J [u] =

∫ ∞

0

{
xTCT

1 C1x+ uTDT
12D12u

}
dτ(24)

Note that our original plant in equations (19) was augmented with the output

z =

[
C1x

D12u

]
From this we see that the cost functional in equation (24) may also be written as

J [u] =

∫ ∞

0
zT zdτ = ∥z∥2L2

which is simply the energy in the virtual signal z.

The observer gains in equation (22) are the steady state Kalman filter gains that

minimize the mean squared estimation error

E
{∫ ∞

0
x̃T x̃dτ

}
= E

{
∥x− x̂∥2L2

}
for the controlled plant being driven by process noise with covariance matrix W

and measurement noise with covariance D21VDT
21.

Taken together we therefore see that the controlled system may be viewed as the

LFT combination of the two-port plant in equation (19) with the LQG controller

KLQG
s
=

[
A+B2F− LC2 L

F 0

]

This LFT maps the noise inputs

[
w

v

]
onto the energy signal z.
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We now demonstrate that this LQG controller actually minimizes the cost func-

tional

JLQG[u] = E
{∫ ∞

0
zT zdτ

}
by introducing a similarity transformation on the state space[

x̂

x̃

]
=

[
0 I

I −I

][
x

x̂

]
The state estimation error, x̃ = x− x̂ satisfies

˙̃x = ẋ− ˙̂x

= A(x̂+ x̃) +B1 +B2Fx̂

−(A+B2F− LC2)x̂− L(C2(x̂+ x̃) +D21v)

= ALx̃+
[
B1 −LD21

] [ w

v

]
where AL = A−LC2. The state estimate equation (22) must now be rewritten in

terms of these new states, x̃ and x̂, to get

˙̂x = (A+B2F− LC2)x̂+ L(C2(x̂+ x̃) +D21v)

= (A+B2F)x̂+ LC2x̃+ LD21v

= AF x̂+ LC2x̃+ LD21v(25)

where AF = A+B2F. Taken together we then get the closed-loop state equations[
˙̃x

˙̂x

]
=

[
AL 0

LC2 AF

][
x̃

x̂

]
+

[
B1 −LD21

0 LD21

][
w

v

]
(26)

The system equation (26) forms an LTI system driven by the white noise process[
w

v

]
. Now consider the cost

∫ ∞

0
E

{[
x̃

x̂

] [
x̃T x̂T

]}
dτ =

[
Σ11 Σ12

Σ21 Σ22

]
Note that Σ11 is the integrated mean squared error for the estimator. We know

that the Kalman filter minimizes traceΣ11. We also know that the estimate x̂ is a

minimum mean squared estimate and so by the stochastic orthogonality principle

we have Σ12 =

∫ ∞

0
E
{
x̃x̂T

}
dτ is zero. The random process x̂ is generated
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by equation (25) which is a linear stochastic differential equation driven by white

noise processes v and x̃. This means we can use the stochastic version of the HJB

equation to deduce that the LQR control gain F from equation (20) minimizes

J [u] = E
{∫ ∞

0

(
x̂TCT

1 C1x̂+ uTDT
12D12u

)
dτ

}
where u = Fx̂. Because xTx = trace(xxT ) we can rewrite this functional as

J [u] =

∫ ∞

0

[
trace

(
CT

1 E
{
x̂x̂T

}
C1

)
+ trace

(
DT

12F
TE
{
x̂x̂T

}
FD12

)]
dτ

= trace
(
CT

1 Σ22C1

)
+ trace

(
DT

12F
TΣ22FD12

)
This last equation is our expression for the cost attained using an LQR controller

We can now look at what is done with the LQG controller. We again evaluate

J [u], but this time we get

J [u] = E
{∫ ∞

0

(
xTCT

1 C1x+ uTDT
12D12u

)
dτ

}
= E

{
∥C1x∥2L2

+ ∥D12Fx̂∥2L2

}
= CE

{
trace (x̂+ x̃)(x̂+ x̃)T

}
C1 +DT

12F
TΣ22FD12(27)

= CT
1 Σ11C1 +CT

1 Σ22C1 +DT
12F

TΣ22FD12(28)

In equation (28) we see that the first is minimized by our choice of the Kalman

observer gains and the second two terms are minimized by our choice for the LQR

controller gains. We can therefore conclude that the quadratic cost functional is

indeed minimized by the LQG’s choice of gains.

Note we could have also written the LQG cost functional as

J [u] = E
{
∥z∥2L2

}
where z is the virtual output signal in the plant equations (19). Since the input

to this system is a white noise process, one can show that selecting a control that

minimizes the output’s L2 norm assuming the input is white noise is equivalent to

minimizing the H2 norm of the closed-loop system’s transfer function. For this

reason we can see that LQG control is a special case ofH2 optimal controller.
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1.3. Robustness of LQG Controllers: LQG controllers are often used in

practice due to the simplicity with which one can synthesize the controller. It

is important to note, however, that these controllers are inherently ”sensitive” to

modeling error. LQG control systems, in other words, do not exhibit robust perfor-

mance/stability with respect to model uncertainty.

This lack of robustness was illustrated in a well known example [Doyle (1978)].

That example considered a single-input single output system with state space real-

ization

P
s
=



[
1 1

0 1

] [ √
σ 0
√
σ 0

] [
0

1

]
[ √

q
√
q

0 0

] [
0 0

0 0

] [
0

1

]
[
1 0

] [
0 1

]
0


where σ and q are non-negative system parameters. It can be shown that the solu-

tions to the LQR and Kalman gains are

F = −α
[
1 1

]
, L = −β

[
1

1

]

where α = 2+
√
4 + q and β = 2+

√
4 + σ. Suppose the controller for our system

is a gain perturbed version of the LQG controller. In other words, the control input

is u = (1 + δ)KLQG[y] where δ is the gain perturbation. It can be shown that the

closed loop system matrix Acl becomes

Acl =


1 1 0 0

0 1 −δα −δα
β 0 1− β 1

β 0 −β − α 1− α


The stability of this perturbed closed-loop system can be determined from the char-

acteristic polynomial of Acl. In particular, let us assume that this characteristic

polynomial has the form

det(sI−Acl) = s4 + a3s
3 + a2s

2 + a1s+ a0

and that when δ = 0 all of the roots of the characteristic equation are stable. To

ensure stability it is essential that a0 > 0. But if we were to expand out the
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det(sI−Acl) one would find that

a0 = 1− δαβ

So the perturbation that destabilizes the closed loop system would be

δu >
1

αβ

The constants α and β are, essentially, the LQR and Kalman filter gains, respec-

tively, so we can make the lower bound on the destabilizing perturbation, δu, arbi-

trarily close to zero by making these gains large enough.

Note that a commonly used heuristic in reducing a system’s sensitivity function

is to increase the penalty matrix Q in the LQG cost functional, thereby giving a

larger LQR gain. Another common heuristic is to assume a larger level of process

noise than there actually is to improve the LQG control system’s sensitivity to

modeling error. Namely, we are treating the unknown modeling uncertainty as

additional process noise. This tends to increase the size of the Kalman filter gains.

So both strategies will increase the LQR gain, α, and the Kalman gain, β in the

above example. In other words, we can make the controlled system’s stability

arbitrarily sensitive to modeling error by simply trying to improve performance by

increasing the controller gains. For this example the LQG control system’s stability

is inherently not robust to arbitrarily small modeling error. This sensitivity of LQG

and H2 control to model uncertainty was recognized very early on [Doyle (1978)]

and stimulated a great deal of research into robust optimal control methods. The

remainder of this chapter focuses on how H∞ control systems were developed to

address this robustness issue.

2. Multiplicative Model for Model Uncertainty

To develop a systematic framework for addressing robustness, we first need to in-

troduce methods for modeling that uncertainty. We are, in particular, concerned

with modeling uncertainty, namely when the actual system’s plant, G, is not ex-

actly the same as the nominal plant, G0, that was used in designing the controller.

Our problem is to determine bounds on how large the difference between the actual

and nominal plant can be to ensure robust stability and robust performance.
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While there are several frameworks for plant uncertainty (additive, multiplica-

tive, coprime factor, structured, and unstructured), this section focuses on unstruc-

tured multiplicative uncertainty models since we will use it below in our study of

H∞ control. A multiplicative uncertainty model assumes the model uncertainty

enters in a multiplicative manner (i.e. in series with the nominal plant) as shown

on the left side of Fig. 4. In particular if we let G0(s) denote the transfer function

matrix of the nominal plant. Then the actual plant is an element of an uncertainty

set that was characterize by the ordered pair (G0,W∆). This model set is explic-

itly shown below

G(s) ∈ {(I+W∆∆)G0 : ∥∆∥H∞ ≤ 1}(29)

The system ∆(s) is a stable minimum phase rational transfer function (akaRH∞)

representing an unknown perturbation to the model. The system W∆ is a ”weight-

ing” system that is also stable and minimum phase rational transfer function in

RH∞. We assume the uncertainty ∆(s), though unknown, has an H∞ norm less

than or equal to one. The system W∆ is a ”weighting” system that is also stable

and minimum phase rational transfer function inRH∞.

FIGURE 4. (left) Unstructured Multiplicative Uncertainty

Model (right) one parameter control system with uncertain

plant

We are interested in studying the robust stability and robust performance of

the control loop on the right side of Fig. 4 where the plant G(s) is drawn from

the uncertainty set in equation (29). Our uncertainty set is characterized by the

ordered pair (G0(s),W∆(s)) where G0 is the nominal plant at the center of the

set and W∆ characterizes the size of that set. By robust stability we mean that the

closed loop system formed from any plant in the uncertainty set is internally stable

(i.e. u and e remain bounded for all inputs, r and w). By robust performance, we

mean that the performance bound ∥WpS∥H∞
≤ 1 for all closed loop sensitivity

functions S formed from any plant G(s) in the uncertainty set with Wp being a
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known RH∞ weighting system acting as a frequency-dependent specification on

closed-loop performance.

2.1. Robust Stability: We want to obtain sufficient conditions for the robust

stability of an uncertain one parameter control system with multiplicative uncer-

tainty set (G0,W∆). These conditions will be bounds on the size of the nominal

loop function L0(s) = G0K where K is the controller. We will present a ”naive”

approach for deriving this bound.

Internal stability requires that the internal signals, e and u, remain bounded for

all bounded inputs, r and w. This will be the case provided the transfer function

matrix from

[
r

w

]
to

[
e

u

]
is BIBO stable.

[
e

u

]
=

[
S(s) G(s)S(s)

K(s)S(s) T(s)

][
r

w

]
where G is a multiplicative uncertainty of the nominal plant, K is the controller,

and L(s) = G(s)K(s), S(s) = (I + L(s))−1, T(s) = L(s)S(s) are the loop

function, sensitivity, and complementary sensitivity function, respectively, of the

uncertain control system. We assume that the nominal closed loop system has

internal stability. We can show this means

det(I+G0(jω)K(jω)) ̸= 0

for any real ω. Let us assume there is a perturbation ∆ that makes the system

marginally stable. This means there is some frequency ω0 for which

0 = det {I+ (I+W∆∆)G0K(jω0)}(30)

We can rewrite this as

0 = det {I+G0K(jω0) +W∆∆G0K(jω0)}

= det
{[

(I+W∆∆G0K(I+G0K)−1(I+G0K)
]
(jω0)

}
= det

{[
I+W∆∆L0(I+ L0)

−1
]
(jω0)

}
× det {[I+ L0](jω0)}(31)

Since the nominal loop is internally stable, we know the second term on the right

hand side of equation (31) is not zero. So the above product can only be zero if

0 = det
{[
I+W∆∆L0(I+ L0)

−1
]
(jω0)

}
(32)



2. MULTIPLICATIVE MODEL FOR MODEL UNCERTAINTY 131

We will use equation (32) to see how big W∆∆ can be before we lose internal

stability.

To get this bound we make use of the singular values of a matrix. Let ΩQ denote

the set of all complex valued matrices, R, such that det {Q+R} = 0 for a known

complex valued matrix, Q. One can show that

min
R∈ΩQ

σ(R) = σ(Q)(33)

where σ(R) and σ(Q) are the largest and smallest singular values of matrices R

and Q, respectively. We can think of R as a perturbation to the nonsingular matrix

Q. What equation (33) asserts is that the smallest R, as measured by its largest

singular value, that causes R + Q to become singular is equal to the minimum

singular value of Q. In other words, this relation characterizes how close Q is to

becoming singular.

We use equation (33) to see how close an internally stable nominal closed loop

system is to being unstable. Let R = Wp∆L0(I+L0)
−1(jω0) and we let Q = I.

Equation (33) then shows

min
R∈ΩI

σ
{[
W∆∆L0(I+ L0)

−1
]
(jω0)

}
= σ(I) = 1(34)

So we can conclude that if

σ
{[
W∆∆L0(I+ L0)

−1
]
(jω0)

}
< 1(35)

for all ω, then the perturbed closed loop system will be internally stable.

Equation (35) can be made more useful by invoking the sub-multiplicative prop-

erty of maximum singular values. In particular this property ensures that for all ω

σ
{[
W∆∆L0(I+ L0)

−1
]
(jω)

}
≤ σ {W∆∆(jω)} × σ

{[
L0(I+ L0)

−1
]
(jω)

}
= σ {W∆∆(jω0)} × σ {T0(jω)}

≤ σ {W∆(jω)} × σ {T0(jω)}(36)

where we used the fact that the complementary sensitivity is T0 = L0(I + L0)
−1

and we used the fact that σ(∆(jω)) ≤ 1. Inserting this relation into equation (35)

implies that if the following is true

σ (W∆(jω)) <
1

σ(T0(jω))
(37)
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then condition (35) must also hold. This last relation (37) places an upper bound on

the weighting system, W∆, which is a frequency dependent level of uncertainty on

the plant. This relation says that to ensure internal stability the perturbed system’s

uncertainty must be less than the reciprocal of the gain of the nominal system’s

complementary sensitivity function. This form of the condition is more useful to

us because it is posed in terms of the nominal complementary sensitivity, T0.

TheH∞ gain of a transfer function matrix G(s), is

∥G∥H∞ = sup
ω∈R

σ (G(jω))

With this we see that our sufficient condition for internal stability becomes a bound

on theH∞ norm of the weighted complementary sensitivity function. Namely

∥W∆T0∥H∞
< 1(38)

Since it is relatively easy to compute the H∞ norm of a transfer function, this

bound is relatively easy to verify. So if our selection of K ensures the above in-

equality holds for the nominal complementary sensitivity function then we are as-

sured the perturbed (uncertain) closed loop system with uncertainty set (G0,W∆)

will also be internally stable. In other words, our multiplicatively perturbed system

has robust stability.

The preceding argument relied on the condition

det
{[
I+W∆∆L0(I+ L0)

−1
]
(jω)

}
= 0

for some ω. This requires ∆ be a rational function which may not be the case

if our uncertainty arises from neglected nonlinear dynamics in the physical plant.

So, in general, the preceding argument does not provide a compelling proof that

the given bound is indeed sufficient for robust stability of real-life systems with

uncertainty. Nonetheless this bound still holds for the more realistic case and we

can prove that bound using a well known theorem from nonlinear systems analysis

called the small gain theorem. We will examine the small gain theorem in chapter

4 when begin our study of nonlinear control systems. But for now we can provide

the following theorem for robust stability of multiplicatively perturbed systems.
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THEOREM 9. Consider the multiplicatively perturbed uncertain control system

in Fig. 4 with uncertainty set (G0,W∆). Let K be an internally stabilizing con-

troller for the nominal control system. If ∥W∆T0∥H∞ < 1 then the closed loop

system is internally stable for all perturbed plants in the uncertainty set

2.2. Robust Performance: Stability is a binary measure of control system

performance. But in designing good control systems, it is also important that we

determine a more quantitive measure of the performance level achieved by the sys-

tem. As discussed in chapter 1, control system performance (such as tracking error)

may be characterized by the induced gain of the weighted closed loop sensitivity,

WpS . So obviously if our nominal closed system has achieved a desired level of

performance

∥WpS0∥H∞
≤ 1

then our multiplicatively perturbed system has robust performance if it too achieves

the same performance level,

∥WpS∥H∞
≤ 1

Our objective is to find bounds on the nominal sensitivity functions that ensure

robust performance for a control system with unstructured multiplicative uncer-

tainties.

We again consider the closed loop system in Fig. 4 with an uncertainty set,

(W∆,G0). For a plant, G, in this uncertainty set, we are interested in enforcing

a desired level of tracking error performance with respect to an RH∞ weighting

system, Wp. In other words, we want to ensure that

∥WpS∥H∞
< 1(39)

for any closed loop system whose plant lies in the uncertainty set, (G0,W∆). As

usual we assume the nominal closed loop system is internally stable so the given

controller K ensures the nominal sensitivity function S0 = (I+L0)
−1 is internally

stable.
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A useful relationship between the uncertain and nominal sensitivity functions

can be derived as follows. Note that

S = (I+ (I+W∆∆)G0K)−1

= (I+G0K+W∆∆G0K)−1

We factor the return difference, I +G0K, in the same way we did for our robust

stability analysis to get

S =
[
(I+W∆∆L0(I+ L0)

−1(I+ L0)
]−1

= (I+ L0)
−1(I+W∆∆L0(I+ L0)

−1)−1

= S0 (I+W∆∆L0S0)
−1(40)

We will now use the preceding equation (40) to find bounds that ensure robust

performance.

Let us start with a candidate bound on S0 and T0 and demonstrate that this

bound enforces robust performance on the perturbed plant. Our candidate bound

requires

1 > σ(Wp(jω))σ(S0(jω)) + σ(W∆(jω))σ(T0(jω))(41)

for all ω. This bound in equation (41) can be rewritten as

σ(Wp(jω))σ(S0(jω)) < 1− σ(W(jω))σ(T0(jω))

Because σ(∆(jω)) < 1 for all ω we can rewrite the above inequality as

σ(Wp(jω))σ(S0(jω)) < 1− σ(W∆(jω))σ(T0(jω))

< 1− σ(W∆∆L0S0)

= σ(I+W∆∆L0S0(jω))

for all ω This last inequality holds if and only if

1 > σ(Wp(jω))σ(S0(jω))σ((I+W∆∆L0S0(jω))
−1)

> σ(Wp(jω)S0(jω)(I+W∆∆L0S0(jω))
−1)

> σ(WpS(jω))

where the last line comes from the relationship between S and S0 in equation (40).

This last inequality is, of course, the performance specification in equation (39). So
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we have just established that the condition in equation (41) is sufficient to ensure

robust performance.

Note that if this sufficient condition in equation (41) holds, then so too does

1 > σ(Wp(jω))σ(S0(jω)) > σ(WpS0(jω))

1 > σ(W∆(jω))σ(T0(jω)) > σ(WT0(jω))

for all ω. This is the same as anH∞ bound on the weighted sensitivity functions

∥WpS0∥H∞ < 1, ∥W∆T0∥H∞ < 1(42)

The first inequality means that the ”nominal” system satisfies the performance

specification. We refer to this as nominal performance (NP). The second inequality

is the robust stability (RS) condition we derived in the preceding subsection. So

we have just shown that if we enforce robust performance (RP) using equation (41)

then we also ensure the performance of the nominal system (not surprising) and the

robust stability of the perturbed system (again not surprising). In view of the above

discussion it should be apparent that the robust performance condition in equation

(41) may be cast, alternatively, as

∥WpS0∥H∞
+ ∥W∆T0∥H∞

< 1(43)

3. Generalized Regulator Problem

The main problem we want to address concerns the one-parameter control system

on the left side of Fig 5. In particular, we wanted to design a controller, K, so

our control system has robust performance (i.e. ∥WpS∥H∞ < 1) with respect to

a performance specification, Wp, on the sensitivity function, S, for any plant in

the uncertainty set, (G0,W∆). We saw that if the controller was chosen so the

nominal sensitivity functions satisfied equation (42) then our closed loop system

would have robust performance and robust stability. The issue now is how does

one go about finding such a controller, K?

Our approach involves reframing the controller synthesis problem as an opti-

mization problem posed with respect to a ”canonical” feedback system known as

the generalized regulator shown on the right side of Fig¿ 5. We then pose the search

for K as an optimization problem that minimizes the H∞ norm of the generalized



136 3. ROBUST LINEAR CONTROL - H2/H∞ METHODS

regulator with respect to controller K subject to internal stability. The utility of this

approach is that any feedback control system can be recast as a generalized regu-

lator, so that finding a single method for solving the generalized regulator problem

will allow us to solve a wide range of control problems. This section reviews the

generalized regulator, demonstrates how a one-parameter control system can be

transformed into a generalized regulator, and then formally poses the generalized

regulator problem.

+

_

+ +r e

d

uK(s) G(s)

w

yu

z

P(s)

K(s)

(a) (b)

FIGURE 5. (a) traditional one parameter control system (b)

Generalized regulator

The generalized regulator block diagram is shown on the right side of Fig. 5.

The generalized regulator is the feedback interconnection of an augmented plant,

P(s), and a controller K(s). The augmented plant’s inputs are grouped into two

categories; disturbances, w, and controls, u. The difference between these cate-

gories is that a disturbance is exogenous to the feedback system and the controls

are generated internally by the controller. The augmented plant’s outputs are also

grouped into two categories; penalties, z, and observations, y. The difference be-

tween these output categories is that a penalty, z, is a virtual signal that may not

actually be observable from outside the feedback system, whereas the observations,

y, are accessible and are used by the controller to generate the control signal u.

Since the augmented plant, P(s), maps inputs (w and u) onto outputs (z and

y), it will be convenient to partition the transfer function matrix into blocks

P(s) =

[
P11(s) P12(s)

P21(s) P22(s)

]
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that conform to the input/output signal categories. In particular, this means that we

may express the closed loop system (with a slight abuse of notation) as

z = P11w +P12u

y = P21w +P22u

u = Ky

This interconnection is shown graphically in Fig. 5 as the generalized regulator. In

particular, if w is an exogenous disturbance and z is a penalty signal whose size at

time t signifies how ”poorly” the system is performing at that time instant, then the

control objective is to select K so the norm of z due to w is as small as possible.

In other words, we want a controller that minimizes the control system’s sensitivity

to the disturbance. We know this can also be posed in terms of minimizing the

induced gain of the generalized regulator.

To characterize this sensitivity, it will be necessary to get an explicit expression

for the closed loop map from w to z. Let y and u be treated as internal signals and

note that

y = P21w +P22u = P21w +P22Ky

Solving for y yields

y = (I−P22K)−1P21w

Insert this expression for y back into our equation for z gives the desired feedback

map

z =
[
P11 +P12K(I−P22K)−1P21

]
w

def≡ Fℓ(P,K)

The expression for Fℓ(P,K) is called a lower linear fractional transformation or

LFT. LFT’s are canonical representations for feedback maps and may be seen as a

matrix generalization of a bilinear function.

We now want to see how a particular control system might be transformed into

a generalized regulator. We consider the one-parameter control system in Fig. 5

and proceed to pull out the controller from this system and then redraw the block

diagram so it conforms to the interconnection of an augmented plant, P, and the

controller K that we pulled out. Figure 6 shows the resulting change in the block
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diagram. In this case the generalized regulator’s disturbance inputs are w =

[
d

r

]

and the control input is u. The penalty output z =

[
u

e

]
and the observation

output is y = e is the tracking error, e. We can identify the blocks of the augmented

plant by simply tracking the signal flow from inputs to outputs in the block diagram

in Fig. 6 to see that

P(s) =

[
P11 P12

P21 P22

]
=


0 0 I

−G I −G
−G I −G


thereby finding for an expression for the augmented plant in terms of the original

control loops plant, G(s).

+

_

+ +r e

y

d

u

K(s)

G(s)
{w

}u
e z

yout

P(s)

FIGURE 6. Generalized Regulator for unity gain feedback

system on left side of Fig. 5

Our control objective is to minimize the sensitivity of the penalty output sig-

nal z =

[
u

e

]
. Note that if this involves minimizing the L2 norm of z, then it

corresponds to minimizing

∥z∥2L2
=

∫ ∞

0
zT zdτ =

∫ ∞

0
(eT e+ uTu)dτ

which is the standard quadratic cost functional we studied in chapter 2. If we know

Fℓ(P,K) is input/output stable then for any input signal w with a bounded L2
norm we know z will also have a bounded L2 norm. We also know

∥z∥L2 ≤ ∥Fℓ(P,K)∥L2−ind ∥w∥L2

So we can minimize the energy in the penalty signal, z, by simply minimizing the

L2-induced gain of the LFT,Fℓ(P,K). Of course if this map is stable and rational,
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then

∥Fℓ(P,K)∥L2−ind = sup
α>0

sup
ω
σ(Fℓ(P(α+ jω),K(α+ jω))

def≡ ∥Fℓ(P,K)∥H∞

So the problem of finding a controller K that minimizes the energy in the penalty

signal z is recast as an optimization problem over the system space

minimize: ∥Fℓ(P,K)∥H∞

with respect to: K

subject to: Internal Stability

The resulting controller is anH∞ control law and provides the basis for developing

control systems that are ”optimal” with respect to the penalty signal’s energy and

”robust” with respect to modeling uncertainty, thereby addressing the robustness is-

sues of the classical LQG controller. We will look at two examples illustrating how

real-life robust control problems can be posed as generalized regulator problems.

We then discuss how this optimization problem is solved and introduce MATLAB

toolkits often used in synthesizingH∞ controllers.

4. Mixed Sensitivity Problem

The mixed sensitivity problem formulates a generalized regulator problem whose

solution, K, is the controller for a one parameter control system (Fig. 5) with a

tracking error specification Wp and a plant with an unstructured multiplicative un-

certainty, (G0,W∆). For this one parameter control system we know the tracking

performance requirement is

∥WpS∥H∞ < 1

for any sensitivity function, S = (I + GK)−1 for a plant in the uncertainty set

(G0,W∆). We know this condition will be satisfied if inequality (43) holds for

the nominal sensitivities. In particular, if we design K so that∥∥∥∥∥
[

WpS0

W∆T0

]∥∥∥∥∥
H∞

<
1

2

then this implies inequality (43)

∥WpS0∥H∞ + ∥W∆T0∥H∞ < 1
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for any uncertain plant in the uncertainty set, thereby guaranteeing the robust per-

formance of the uncertain closed loop system. Since S0 and T0 are both closed-

loop maps for the one-parameter control systems, this suggests we should draw

the generalized regulator so these two sensitivity functions map to the generalized

regulator’s penalty outputs. This approach to formulating the generalized regulator

problem is called the mixed sensitivity problem.

K(s)
r(t) e(t) u(t)

_
+

G  (s)0

K(s)

r(t) e(t)

yu(t)_
+

G  (s)0

u

w

⎬

⎫

⎭

z

FIGURE 7. (left) nominal unity gain feedback system (right)

Generalized Regulator for Mixed Sensitivity Problem

Let us consider the one-parameter control system for the nominal plant and

redraw it as shown in Fig. 7. Our problem is then to find K such that∥∥∥∥∥∥∥
 WpS0

WuKS0

W∆T0


∥∥∥∥∥∥∥
H∞

≤ 1

where Wu is another RH∞ system that is a frequency dependent weight on the

control effort, u. This is again a mixed-sensitivity problem but now we must also

constrain the gain of an additional nominal sensitivity function KS0 that character-

izes the control effort used to enforce the nominal performance and robust stability

requirements.

It is customary to solve the mixed sensitivity problem by first recasting the

transfer function matrix

 WpS0

WuKS0

W∆T0

 as a generalized regulator, Fℓ(P,K). This

is done by pulling out the controller from the nominal closed-loop system and

weighting the internal signals e, u, and the plant’s output with theRH∞ weighting

systems. The generalized regulator for the mixed sensitivity problem is shown in
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Fig. 7. The augmented plant for this regulator can be shown to be

P(s) =


Wp −WpG0

0 Wu

0 W∆G0

I −G0



It can be shown (tedious algebra) that the augmented plant P given above has

the state space realization

P(s)
s
=


A B1 B2

C1 D11 D12

C2 D21 D22



=



AG 0 0 0 0 BG

−BpCG Ap 0 0 Bp −BpDG

0 0 Au 0 0 Bu

B∆CG 0 0 A∆ 0 B∆DG

−DpCG Cp 0 0 Dp −DpDG

0 0 Cu 0 0 Du

D∆CG 0 0 C∆ 0 D∆DG

−CG 0 0 0 I −DG


where

G0
s
=

[
AG BG

CG DG

]
, Wp

s
=

[
Ap Bp

Cp Dp

]
,

Wu
s
=

[
Au Bu

Cu Du

]
, W∆

s
=

[
A∆ B∆

C∆ D∆

]

With the preceding characterization of the mixed sensitivity problem’s aug-

mented plant, P, we can now formalize the statement of the controller synthesis

problem. Essentially, this is to find an internally stabilizing controller K that min-

imizes ∥Fℓ(P,K)∥H∞ . The minimum that we achieve represents the optimalH∞

controller for the mixed sensitivity problem.
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5. Structured Uncertainty Problem

The mixed sensitivity problem assumes the plant had an unstructured multiplica-

tive uncertainty. In many applications, however, we have some knowledge about

the nature of the uncertainties. In a state-based model for instance, we may know

the uncertainties are due to a specific model parameter. For such systems, it makes

more sense to use a structured uncertainty model. Remember that H∞ control is

essentially an “old man’s” strategy for hedging against risk. One designs a con-

troller for the “worst-case” uncertainty. If we can structure the uncertainty, then it

may be possible to hedge less.

Let us assume the nominal open-loop plant has a state-space realization of the

form  ẋ

z

y

 =


A0 B1 B2

C1 D11 D12

C2 D21 D22


 x

w

u


We assume our uncertainty in the actual process is a result of a structured and

additive perturbation of the nominal system matrix, A0. In particular this means

there are matrices M ∈ Rn×ℓ1 and N ∈ Rn×ℓ2 such that the perturbed system, P,

has the state space realization

P
s
=


A0 −M∆NT B1 B2

C1 D11 D12

C2 D21 D22


where ∆ ∈ Rℓ1×ℓ2 is a real valued matrix whose matrix norm |∆| ≤ 1.

Remark: The uncertainty matrix ∆ is a real-valued matrix rather than a matrix

of transfer functions. This means the uncertainty captures perturbations to the

parameters of the nominal plant’s state space realization. The unstructured model

works well when the information we have regarding plant uncertainty comes from

experimental measurements of the open-loop plant’s frequency response. In many

highly engineered systems, however, we have a state space realization developed

from first principle modeling of the system. In the structured case the uncertainty

matrix ∆ captures our uncertainties in the physical value of the coefficients in this

first principle model.
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We now rewrite the uncertain open loop augmented plant, P, as an LFT in

which the uncertainty matrix ∆ has been pulled out. In particular, pulling out ∆

means we treat it as a constant gain system that is coupled to the plant through the

M and N matrices. This “pulling-out” procedure creates a new input and output

for the nominal plant that we denote as w̃ and z̃, respectively. The new objective

signal, z̃, for the augmented plant is

z̃ =
[
NT 0 0 0

]

x

w̃

w

u


and the new disturbance signal, w̃, enters the augmented plant as

ẋ = A0x+Mw̃ +B1w +B2u

where

w̃ = ∆z̃

So the LFT for our uncertain plant, P, can be written as the feedback interconnec-

tion of a nominal plant, P0, with the uncertainty terms in ∆.


ẋ

z̃

z

y

 =


A0 M B1 B2

NT 0 0 0

C1 0 0 0

C2 0 0 0



x

w̃

w

u


w̃ = ∆z̃

Note that the feedback block, ∆, reinjects the disturbance into the plant through

w̃, rather than u. So this is not the lower LFT we used earlier in formulating the

generalized regulator. In particular, it is an upper LFT as shown in Fig. 8(a).

We now attach a controller to the upper LFT representing the uncertain system.

This results in the controlled system (generalized regulator) shown in Fig 8(b) with
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(a) upper LFT for plant with
structured uncertainty

(b) generalized regulator for plant
with structure uncertainty

0 0

0

FIGURE 8. (left) upper LFT for open loop plant with struc-

tured uncertainty (right) generalized regulator for system

with structured uncertainty

equations

 z̃

z

y

 =

 P11 P12 P13

P21 P22 P23

P31 P32 P33


 w̃

w

u


w̃ = ∆z̃

u = K[y]

where we have conformally partitioned the nominal open loop plant P0 with re-

spect to the three types of inputs (w̃, w, and u) and outputs (z̃, z, and y).

From Fig. 8(b), one can see that there is a two-port system T0 with inputs w̃

and w and outputs z̃ and z that can be written as a 2 by 2 block of systems

T0 = Fℓ(P0,K)

=

[
T11 T12

T21 T22

]

=

[
P11 −P13K(I+P33K)−1P31 P12 −P13K(I+P33K)−1P32

P21 −P23K(I+P33K)−1P31 P22 −P23K(I+P33K)−1P32

]
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If we then connect the ∆ block to T0 we obtain the following closed-loop map for

the uncertain system

Tzw = T22 −T21∆(I+T11∆)−1T12

:= Fu(T0,∆)

= Fu(Fℓ(P0,K),∆)

Our objective is then to find the controller K such that ∥Fu(T0,∆)∥H∞ ≤ 1 for

all |∆| ≤ 1, since this controller would ensure the performance achieved by all

uncertain closed-loop maps.

To find such a controller, let[
z̃

z

]
=

[
T11 T12

T21 T22

][
w̃

w

]

Note that if ∥T0∥H∞ ≤ 1 then

∥z̃∥2L2
− ∥w̃∥2L2

≤ ∥w∥2L2
− ∥z∥2L2

Since w̃ = ∆z̃ and |∆| < 1, we can easily see that

∥w̃∥2L2
≤ ∥z̃∥2L2

and this, in turn implies that

∥z∥2L2
≤ ∥w∥2L2

This relationship, of course means that ∥Fu(T0,∆)∥H∞ ≤ 1. In other words,

if we can design K so that ∥T0∥H∞ ≤ 1, then for the set of uncertainty where

|∆| ≤ 1, we immediately know the uncertain closed-loop system Fu(T,∆) also

has an H∞ norm less than one. In other words, the controlled system has robust

performance. Again note that our robust performance problem has been cast in

terms of a generalized regulator problem. Since T0 = Fℓ(P0,K), this means that

to achieve robust performance with respect to structured additive perturbations

of the state-space model, we need to find an internally stabilizing K such that

∥Fℓ(P0,K)∥H∞ ≤ 1. This is the same type of problem we discussed before with

the unstructured uncertainty model. The difference rests with what the nominal

plant P0 is.
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6. Full InformationH∞ Problem

The preceding two sections showed how to formulate robust control problem in

terms of minimizing the H∞ norm of a generalized regulator. The next three sec-

tions examine how this minimization is done. The derivation of the H∞ optimal

controller is done in much the same way we established the optimality of the LQG

controller. We first pose a problem in which all of the states are accessible to the

controller and then show how the output problem can be seen as adding an ob-

server to the controller that estimates the states from the observation. For the H∞

control, this first step is called the Full-Information (FI) H∞ generalized regula-

tor problem. The second step involves finding a solution to an output estimation

(OE) problem which when combined with the FI controller yields a solution to the

output feedback (OF )H∞ generalized regulator problem. This section confines its

attention to the full-information problem. The OE and OF problems are covered in

the next two sections.

Consider an augmented plant in the closed-loop map Fℓ(PFI,K) where PFI is

called the full information (FI) plant with the state space equations

ẋ = Ax+B1w +B2u

z = Cx+D12u

y =

[
y1

y2

]
=

[
I

0

]
x+

[
0

I

]
w

The following theorem provides conditions used in determine a controller that

achieves a specified level, γ, of control system performance.

THEOREM 10. H∞ FI Controller: Consider closed loop map Fℓ(PFI ,K)

where PFI is the full information augmented plant with state space realization

PFI
s
=


A B1 B2

C 0 D12[
I

0

] [
0

I

] [
0

0

]
(44)

where n is the state dimension, m is the dimension of the measurement y, and q is

the dimension of the control input u. We assume that
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(1) (A,B2) is stabilizable and (C2,A) is detectable.

(2) Matrix D12 has full column rank.

(3) The following conditions hold for all real ω

rank

[
A− jωI B2

C1 D12

]
= n+m

rank

 A− jωI B1[
I

0

] [
0

I

]  = n+ q

If there exists a symmetric positive semidefinite matrix X that satisfies the fol-

lowing algebraic Riccati equation

XA+ATX−X
(
B2B

T
2 − γ−2B1B

T
1

)
X+CT

1 C1 = 0(45)

then the control u = −BT
2 Xx(t) internally stabilizes the closed-loop system while

enforcing the performance constraint ∥Fℓ(PFI,K)∥H∞ < γ.

There are three assumptions in this theorem that need to be commented on.

• (A,B2) is stabilizable and (C2,A) is detectable

This assumption is necessary and sufficient for the existence of internally

stabilizing controllers. These conditions essentially says the uncontrol-

lable and unobservable poles of the system can be arbitrarily placed.

• Matrix D12 has full column rank and matrix D21 has full row rank

This assumption is necessary for a well-posed control problem that does

not allow the controller to exert arbitrarily large controls in achieving

the tracking requirement. We refer to such unbounded controls as being

singular. If these conditions are not satisfied in the original problem,

then one can modify the system matrices so they do hold. In some cases,

this is done through proper selection of weighting matrices.
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• The following conditions hold for all real ω

rank

[
A− jωI B2

C1 D12

]
= n+m

rank

 A− jωI B1[
I

0

] [
0

I

]  = n+ q

This condition is only sufficient for a solution to exist. In particular these

conditions are needed to ensure that certain algebraic Riccati equations

have stabilizing solutions. Essentially these conditions are equivalent to

requiring that the plant has no poles on the imaginary axis. Details on

why these conditions exist will be found in Zhou et al. (1996) which has

a self-contained chapter on the algebraic Riccati equation.

Proof: A key lemma used in proving this theorem is the Kalman-Yakubovich-

Popov (KYP) lemma. This classical result states a state-space realization has an

H∞ norm less than a specified constant γ if and only if there exists a symmetric

positive definite matrix that satisfies the so-called H∞ algebraic Riccati equation.

The KYP lemma is stated and proven in this chapter’s appendix section .

Let us apply the control u = −BT
2 Xx to our closed loop system and obtain the

following state space equations

ẋ = (A−B2B
T
2 )Xx+B1w

z =

[
C1

−D12B
T
1 X

]
x

for the closed-loop system. To verify that this system is asymptotically stable, we

add and subtract XB2B
T
2 X to the Riccati equation (45) and rearrange the resulting

terms to obtain

0 = XA+ATX−X(B2B
T
2 − γ−2B1B

T
1 )X+CT

1 C1

+X(B2B
T
2 −B2B2B

T
2 )X

= X(A−B2B
T
2 X) + (A−B2B

T
2 X)TX

+γ−2XB1B
T
1 X+XB2B

T
2 X+CT

1 C1
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Since X ≥ 0, we know from linear systems theory that every unstable mode of

A −B2B
T
2 X is unobservable through

[
−γ−1XB1 XB2 CT

1

]T
. Let (λ, x)

be an unstable mode of A−B2B
T
2 X, then we know that

(A−B2B
T
2 X)x = λx

XB1x = 0

XB2x = 0

C1x = 0

We use these preceding relations to see that

(A− (B2B
T
2 − γ−2B1B

T
1 )X)x = (A− (B2B

T
2 X)x = λx

which implies that (λ, x) is also a mode of A− (B2B
T
2 −γ−2B1B

T
1 )X. The issue

we have is that we know this matrix is Hurwitz, so (λ, x) cannot be an unstable

and unobservable. So we can conclude that all modes of A −B2B
T
2 X are stable

and observable. In other words, the control is stabilizing.

Since A−B2B
T
2 X is Hurwitz, we know from the KYP lemma that ∥Fℓ(PFI ,K)∥H∞ <

γ if and only if there exists an P that satisfies the algebraic Riccati equation

X(A−B2B
T
2 P) + (A−B2B

T
2 P)TX+ γ−2XB1B

T
2 X+PB2B

T
2 +CT

1 C1 = 0

with (A−B2B
T
2 P− γ−2B1B

T
1 X) being Hurwitz. Clearly X = P provides such

a solution and so we can conclude that ∥Fℓ(PFI ,K)∥H∞ < γ. ♢

Remark: The controller K is a full-state feedback controller and F∞ = −BT
2 X

may be seen as a set of feedback gains.

Remark: The need for the theorem’s first assumption regarding stabilizability

and detectability is clearly necessary since these assumptions ensure the unstable

poles of the system can be arbitrarily placed.

Remark: The theorem’s second assumption on the rank condition for D12 is

needed to ensure that the objective signal z has enough of the control input so

that penalizing the control effort does not allow unbounded controls. This then

becomes a necessary condition for internal stability.



150 3. ROBUST LINEAR CONTROL - H2/H∞ METHODS

Remark: The rank conditions in the theorem’s third assumption are required to

ensure that a stabilizing symmetric positive definite solution of the H∞ algebraic

Riccati equation exists.

7. Output EstimationH∞ Problems

This section considers two special generalized regulator problems known as the

disturbance feedforward (DF) and output estimation (OE) problems. The DF prob-

lem has a state space realization of the form

PDF
s
=


A B1 B2

C1 D11 D12

C2 I 0

(46)

This DF plant’s output takes the form of y = C2x + w. The exogenous dis-

turbance, w, is passed directly through to the plant’s measured output, hence the

name disturbance feedforward. The OE problem has the state space realization

POE
s
=


A B1 B2

C1 D11 I

C2 D21 0

(47)

This problem takes its name from the fact that it is used to synthesize a state ob-

server. The following theorem asserts that the OE and DF problems are algebraic

duals of each other.

THEOREM 11. The controller KDF internally stabilizes the DF plant in equa-

tion (46) if and only if KT
DF internally stabilizes an associated OE plant in equa-

tion (47).

Proof: Note that

[Fℓ(P,K)]T = Fℓ(PT ,KT )
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This implies that K internally stabilizes P if and only if KT internally stabilizes

PT . So assume KDF internally stabilizes the DF plant

PDF
s
=


A B1 B2

C1 D11 D12

C2 I 0



From the previous statement this means that KT
DF internally stabilizes the dual

system PT
DF

PT
DF

s
=


AT CT

1 CT
2

BT
1 DT

11 I

BT
2 DT

12 0



which has the same form as the OE plant in equation (47). So KT
DF internally

stabilizes an associated OE problem. It is in this sense that we say the DF and OE

are algebraic duals of each other. ♢

Up to this point we have introduced three special regulator problems; FI, DF,

and OE. The preceding theorem established the DF and OE problems are algebraic

duals of each other. The following theorem asserts that the FI and DF problems are

equivalent in the sense that

(1) A controller used to internally stabilize one problem can be used to inter-

nally stabilize the other problem.

(2) and both LFT’s are the same.

This equivalence is formally stated and proven below.

THEOREM 12. Assume A −B1C2 is Hurwitz (i.e. the system’s equilibrium is

asymptotically stable), then (1) KDF internally stabilizes PDF in equation (46) if

and only if KDF

[
C2 I

]
internally stabilizes PFI in equation (44).



152 3. ROBUST LINEAR CONTROL - H2/H∞ METHODS

(2) If KFI internally stabilizes PFI then KDF = Fℓ(P̂DF ,KFI) internally sta-

bilizes PDF where

P̂DF
s
=


A−B1C2 B1 B2

0 0 I[
I

−C2

] [
0

I

] [
0

0

]


and

Fℓ(PFI ,KFI) = Fℓ(PDF ,Fℓ(P̂DF ))

Proof: Note that

PDF =

[
I 0 0

0 C2 I

]
PFI

This is obtained through a straightforward computation. We may use this to redraw

the LFT for the DF problem as shown in Fig. 9. In this drawing we shift the matrix[
C2 I

]
from the ”plant” side to the ”controller” side of the LFT.

FIGURE 9. Transformation between DF and FI problems

From the far right hand side diagram in Fig. 9 we see that the controller in the

LFT is now
[
C2 I

]
KDF . This allows us to conclude that

Fℓ(PDF ,KDF ) = Fℓ(PFI ,
[
C2 I

]
KDF )

which completes the proof for the theorem’s first assertion.

We now turn to prove the second assertion. This proof is more involved but

again involves redrawing the LFTs. Let us examine the star product of PDF and

P̂DF . The star product is a common way of interconnecting to two-port plants

to obtain another two-port plant as shown in Fig. 10. The star product is usually

written as Cℓ(PDF , P̂DF ).
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DFP  

ˆ
DFP  

w 

ẑ  

u 

z 

y 

ŷ  

FIGURE 10. Star Product, Cℓ(PDF , P̂DF ) of PDF and P̂DF

Let x denote the state of PDF and x̂ denote the state of P̂DF . The state equa-

tions for this star product may therefore be written as

dx

dt
= Ax+B1w +B2ẑ

dx̂

dt
= (A−B1C2) x̂+B1y +B2u

z = C2x+D11w +D12ẑ

ẑ = u

y = C2x+ w

ŷ =

[
ŷ1

ŷ2

]
=

[
x̂

−C2x̂+ y

]

Let us define the error signal e = x − x̂ and transform the above state equations

from (x, x̂) to (x, e). The state equation for e is

de

dt
=

dx

dt
− dx̂

dt
= Ax+B1w +B2u− (A−B1C2)x̂−B1C2x−B1w −B2u

= (A−B1C2)e
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So the complete set of newly transformed state equations is

dx

dt
= Ax+B1w +B2u

de

dt
= (A−B1C2)e

z = C1x+D11w +D12u

ŷ =

[
x̂

−C2x̂+ y

]
=

[
x− e

C2e+ w

]

By assumption, A−B1C2 is Hurwitz so that e→ 0 as t→∞. We may therefore

eliminate this state from the state space realization to obtain

Cℓ(PDF , P̂DF )
s
=


A B1 B2

C1 D11 D12

I 0 0

0 I 0


This is clearly the FI plant defined in equation (44). So if we now attach KFI to

the start product Cℓ(PDF , P̂DF ) we obtain

Fℓ(PFI ,KFI) = Fℓ
(
Cℓ(PDF , P̂DF ),KFI

)
= Fℓ

(
PDF ,Fℓ

(
P̂DF ,KFI

))
which completes the proof of the theorem’s second assertion. ♢

We many now summarize the relationships between the three simplified prob-

lems (FI, DF, and OE). Since the DF and OE problems are dual, we can use a

solution for the DF problem to obtain the OE controller. Moreover, because the

FI and DF problems are equivalent, we can use a solution for the FI problem to

obtain the DF controller. It should therefore be apparent that all three problems

can be solved by determining the solution to the appropriate full-information (FI)

problem. The next section shows that a simplified form of the full-information

(FI) problem can be recast as a pair of FI and OE problems; namely a full-state

feedback controller and an optimalH∞ observer.
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8. Simplified Output FeedbackH∞ Problem

A simplified version of the output feedback (OF) problem has the form

POF
s
=


A B1 B2

C1 0 D12

C2 D21 0


where

CT
1 D12 = 0, B1D

T
21 = 0

D21D
T
21 = I, DT

12D12 = I

We seek an internally stabilizing control K that minimizes ∥Fℓ(POF ,K)∥H∞ .

Remark: The simplified problem is posed this way because it is easier to estab-

lish the structure of the solution (state-feedback control and observer) with these

assumptions in place. If these assumptions do not hold, it is always possible to

transform the plant to the simplified form; though that transformation is a bit in-

volved and beyond the scope of this class. See Zhou et al. (1996) for details on

the relaxation of the simplified OF problem’s assumptions. Note that we will later

being using computational toolboxes in MATLAB to solve for the H∞ controller.

In these toolboxes, that transformation to the simplified form is done within the

functions used to compute the controller.

The simplified H∞ OF controller is obtained by decoupling the output feed-

back problem into a full information and output estimation problem. The resulting

controller’s state space realization is given in the following theorem.

THEOREM 13. Consider the simplified output feedback problem with

POF
s
=


A B1 B2

C1 0 D12

C2 D21 0


with

CT
1 D12 = 0, B1D

T
21 = 0

D21D
T
21 = I, DT

12D12 = I

and where n is the state dimension, m is the dimension of the measurement y, and

q is the dimension of the control input u. We further assume that
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(1) (A,B2) is stabilizable and (C2,A) is detectable.

(2) Matrix D12 has full column rank and D21 has full row rank.

(3) The following conditions hold for all real ω

rank

[
A− jωI B2

C1 D12

]
= n+m

rank

[
A− jωI B1

C2 D21

]
= n+ q

Then the simplified output feedbackH∞ problem’s controller takes the form

KOF
s
=

[
A∞ L∞

−F∞ 0

]

where

A∞ = A+ γ−2B1B
T
2 X− ZCT

2 C2 −B2B
T
2 X

L∞ = −ZCT
2

F∞ = −BT
2 X

0 = XA+ATX−X(B2B
T
2 − γ−2B1B

T
1 )X+CT

1 C1

0 = YAT +AY −Y(CT
2 C2 − γ−2CT

1 C2)Y +B1B
T
1

Z = Y(I− γ−2XY)−1

when ρ(XY) < 1.

Remark: This theorem has the usual three conditions required for the existence

of a stabilizing controller. The theorem also places additional restrictions on the

augmented plant in terms of the orthogonality conditions,

CT
1 D12 = 0, B1D

T
21 = 0

D21D
T
21 = I, DT

12D12 = I

and that D11 = 0 and D22 = 0. These assumptions are made to simplify the proof.

A key point that is not covered here is that any augmented plant can be transformed

to this simplified form. See Zhou et al. (1996) for details on how this is done.
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Remark: This controller still has the observer-based control structure of the

H2 controller. This can be verified by rewriting the state equations as

˙̂x = A∞x̂+ L∞y

= Ax̂+B1(γ
−2BT

1 Xx̂) +B2u+ L∞(C2x̂− y)

with u = F∞x̂. This has the general form of a full information feedback controller

whose output is perturbed by the measurement output error C2x̂ − y and another

term γ−2B1Xx̂ which may be interpreted as a worst case disturbance for a related

FI problem. Similarly L∞ is the optimal filter gain for estimating the optimal FI

control input u in the presence of the worst case disturbance. We can think of this

as anH∞ filter.

Proof: In view of the preceding discussion, we make the following change of

variables in the control loop.

ũ = u+BT
2 Xx

w̃ = w − γ−2BT
1 Xx

These new variables, ũ and w̃, represent the disturbances away from the optimal

control u∗ = −BT
2 Xx and the worst case disturbance w∗ = γ−2BT

1 Xx

 P̂  

tmpP  

w 

*v u u=  

u 

z 

*r w w=  

y  

P  

w 

u  

 

z 

y  

 

K  

K  

FIGURE 11. Loop transformation for reducing OF problem

We can then restructure the closed loop system using these new internal vari-

ables as shown in Fig. 11. This transformation shows that we can view the original
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plant P as the star product of P̂ and Ptmp where

P̂
s
=


A+B2F∞ B1 B2

C1 +D12F∞ 0 D12

−γ−2BT
1 X I 0



Ptmp
s
=


A+ γ−2B1B

T
1 X B1 B2

−F∞ 0 I

C2 D21 0


From this figure it is apparent that

Fℓ(POF ,K) = Fℓ

(
P̂,Fℓ(Ptmp,K)

)
and we see that the objective signal generated by P̂ is z = (C1+D12F∞)x+D12u.

We can show that P̂ is inner which means that

∥Fℓ(P,K)∥H∞ < γ ⇔ ∥Fℓ(Ptmp,K)∥H∞ < γ

Note, however, that Ptmp is an output estimation (OE) system. So we can imme-

diately write down its controller K.

K
s
=

[
Atmp + L∞C2 +B2F∞ L∞

−F∞ 0

]
where Atmp = A + γ−2B1B

T
1 X, L∞ = −ZCT

2 , and Z satisfies the algebraic

Riccati equation

0 = AtmpZ+ ZAT
tmp − Z(CT

2 C2 − γ−2FT∞F∞)Z+B1B
T
1

This Riccati equation is cumbersome to work with because F∞ = −BT
2 X is

included in it and because X is a solution to the FI Riccati equation. In other words,

unlike the case for ourH2 problem, the two Riccati equations are coupled. We can

still introduce a type of separation for the H∞ OF controller by introducing the

new matrix Y that satisfies

Y = Z(I+ γ−2XZ)−1

It can be shown through a straightforward computation that Y satisfies the OE

algebraic Riccati equation

0 = AY +YAT +B1B
T
1 −Y(CT

2 C2 − γ−2CT
1 C1)Y
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Note that if Y is invertible, then we can show that Z satisfies the Riccati equation

for the OF problem.

There is, however, a small snag here because we are dealing with inverses. We

must ensure that they actually exist. In particular, we need to recognize that only

if ρ(XY) < 1, then the matrix I − γ−2XY will be nonsingular. If this condition

does not hold then we cannot define Z according to the above equation. This means

that we indeed have a separation principle for theH∞ controller, but only if we can

ensure that ρ(XY) < 1. This then completes the proof. ♢.

9. Computational Tools forH∞ Controller Synthesis

There are a several methods that can be used to find an internally stabilizing con-

troller that minimizes the H∞ norm of a generalized regulator. The output feed-

back theorem 13 characterized the FI controller gains and the estimator gains in

terms of solutions to two H∞ algebraic Riccati equations. But this was for the

simplified problem. So computing a solution to a real-life problem requires us first

to 1) find the augmented plant, 2) transform the resulting regulator to its simplified

form, 3) solve the Riccati equations to find the gains, 4) transform our solution

back to the original problem (not the simplified problem), and 5) verify that the

solution actually works well. This is usually too tedious to do by hand and so

computational tools have been built to automate much of the computation needed

in finding an H∞ controller. This section reviews the functions in MATLAB (ver-

sion 2018a) and uses them to solve mixed sensitivity problems and a well known

structured uncertainty problem known as the ACC (American Control Conference)

benchmark problem [Wie and Bernstein (1992)].

9.1. Mixed Sensitivity Problem - simple example: This subsection describes

a simple mixed sensitivity problem that is used primarily to introduce the MAT-

LAB functions used to determine the controller. Let us consider a mixed sensitivity

problem associated with the feedback system shown in Fig. 5(a) where

G0(s) =

[
4
s+4 0

4s(3s+16)
(s+4)(s+8)

8(s−200)
s+8

]
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The specifications for the mixed sensitivity problem are defined with respect the

following weighting systems

Wp(s) =
s+ 100

2s
I, Wu(s) = 0.0001I, W∆(s) =

10−3s+ 1

2(10−6s+ 1)
I

where I is a 2 by 2 identity matrix. The problem is to find an internally stabilizing

controller K such that ∥∥∥∥∥∥∥
 WpS0

WuKS0

W∆T0


∥∥∥∥∥∥∥
H∞

≤ 2

since we know this will ensure the robust performance condition

∥WpS∥H∞ ≤ 1

is satisfied for all uncertain plants that satisfy the unstructured multiplicative un-

certainty model,

G ∈ {(I+W∆(s)∆(s))G0(s) : ∥∆∥H∞ ≤ 1}

We will use the MATLAB functions provided in its Robust Control Toolbox to

solve this problem. An early reference for these functions is provided in Balas

et al. (2008). But MATLAB has updated the toolbox since the publication of Balas

et al. (2008) and so I’ll be using the toolbox functions as they appear in version

2018a of MATLAB. The documentation for these functions can be found through

MATLAB’s on-line reference.

MATLAB is useful because it provides a number of tools that automate the

computationally tedious steps of the formulating the mixed sensitivity problem, as

well as providing a function that transforms the generalized regulator to its simpli-

fied form and then carrying the computations outlined in theorem 13.

MATLAB creates data objects that represent the LTI dynamical systems. This

makes it relatively easy to write the script declaring the systems in our example

problem. For instance the following script will create the data objects representing

the system G0, Wp, Wu and W∆.

s = zpk(’s’);

G0 = [4/(s+4) 0;...

4*s*(3*s+16)/((s+4)*(s+8)) 8*(s-200)/(s+8)];



9. COMPUTATIONAL TOOLS FOR H∞ CONTROLLER SYNTHESIS 161

Wp = (s+100)/(2*s)*eye(2,2);

Wu = 1.e-10*eye(2,2);

Wd = (s*1e-3+1)/(2*(s*1e-6+1))*eye(2,2);

MATLAB’s robust control tool box creates the the augmented plant, P, with

the following function call

P = augw(G0,Wp,Wu,Wd);

The computation of the controller and the associated sensitivity function is done

by the following

gamlower = 2; gamupper = 1.e10;

[K,CL,GAM,info] = hinfsyn(P,...

’GMIN’,gamlower,’GMAX’,gamupper,...

’DISPLAY’,’on’,’METHOD’,’ric’);

The main function is hinfsyn which computesH∞ controller, K, for the aug-

mented plant, P with the minimal cost of the controller being GAM and where CL

is closed-loop map Fℓ(P,K).

The computation that hinfsyn is a bit different than what is outlined in theo-

rem 13. This theorem only provides a sufficient condition for a controller to meet

the requirement ∥Fℓ(P,K)∥H∞ < γ. In this regard, the theorem describes an

algorithmic oracle which asserts that there is a controller K which meets the γ

constraint and tells us one such controller that meets the condition. The parameter

γ is something we have to choose in theorem 13.

The MATLAB function hinfsyn embeds this oracle test in theorem 13 in a

bisection search for the smallest γ for which an internally stabilizing controller

exists. It does this by first specifying an upper bound, GMAX, and a lower bound,

GMIN over which we want to search for the minimum γ. In our case, we want that

minimum value to be 2. So in the function call above, we specify the lower bound

as 2 and the upper bound as something big (1010). The next option given in the

hinfsyn function call is DISPLAY which we set to ’on’ so the function tells

us what it is doing. The last option in the command is METHOD which specifies

the method used to find the controller. Since theorem 13 characterizes the control
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in terms of a solution to two Riccati equations, this option flag is therefore set to

’ric’.

Remark: The Riccati method for synthesizingH∞ controller was used because

it more clearly shows the relationship betweenH∞ control and the LQG controller.

Another well known method for finding the controller is based on the use of lin-

ear matrix inequalities (LMI) Gahinet and Apkarian (1994). An LMI is an affine

matrix-valued function of the form

F(x) = F0 +
m∑
i=1

xiFi > 0

where x ∈ Rm is a decision vector and Fi = FTi ∈ Rn×n are symmetric matrices

for i = 0, 1, 2 . . . , n. An important aspect of the LMI is that it defines a convex

set so that the problem of finding a vector x given the matrix {Fi}ni=0 such that

F(x) > 0 is a convex optimization problem. Since we now have polynomial time

algorithms for solving such optimization problems, if one can reformulate your

problem into an LMI, then we can verify if the inequality is satisfied even when

the problem is very large. The basis for using LMI’s to solve theH∞ control prob-

lem rests with the Schur complement theorem which establishes the equivalence

between a quadratic form consisting of matrices and an LMI. One can select the

solution method in hinfsyn by setting the keyword METHOD to ’lmi’. In re-

ality, the computational cost of the LMI method may not be that different from

solving a Riccati equation using the invariant embedding method. One potential

benefit of using LMI methods is that they allow one to specify constraints on the

poles of the controller which can help constrain the transient response of the sys-

tem.

For the output generated by the preceding commands is

>> mixed_problem

[a b1;c2 d21] does not have full row rank at s=0

which indicates that we could not find a controller because one of the assumptions

in theorem 13 is not satisfied. It is easy to verify that the stabilizability/detectability

condition on the augmented plant is satisfied. We can also show that the second
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condition is satisfied on the control weight Wu. The third condition, however,

requires that the augmented plant have no poles on the jω-axis and this is pre-

cisely what the error message returned by the function tells us. Re-inspecting the

problem, we see that this condition is violated by the performance weight

Wp(s) =
s+ 100

2s
I

which clearly has a pole at the origin. We propose fixing this problem by modifying

the performance weight to

Wp(s) =
s+ 100

2s+ ϵ
I

where ϵ is something small, i.e. ϵ = 0.0001. This modification moves the poles of

Wp(s) off of the imaginary axis so the conditions allowing the Riccati equations

to have a stabilizing solution will be satisfied. If we now re-run the script after

redeclaring

Wp = (s+100)/(2*s+0.0001)*eye(2,2);

then we get the following output

>> mixed_problem_updated

Test bounds: 2.0000 < gamma <= 67108864.0000

gamma hamx_eig xinf_eig hamy_eig yinf_eig nrho_xy p/f

6.711e+07 3.8e+00 -1.6e-03# 5.0e-05 -1.6e-28 0.0000 f

Gamma max, 67108864.0000, is too small !!

Test bounds: 2.0000 < gamma <= 2.0067

gamma hamx_eig xinf_eig hamy_eig yinf_eig nrho_xy p/f

2.007 4.0e+00 -5.7e-08 1.1e-05 0.0e+00 0.0000 p

2.003 4.0e+00 -5.3e-08 1.1e-05 0.0e+00 0.0000 p

Gamma value achieved: 2.0033

The first 5 lines of the output says that the function readjusted the upper bound

for the γ interval from [2, 1010] to [2, 2.0067]. The next few lines of output describe

the steps taken by the bisection search, eventually finding that value for γ of 2.0033

that satisfies the termination conditions of the bisection search. The controller

computed by the function is in the data object K and the closed-loop map is in CL.
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Let us now see how well the controller generated by the mixed sensitivity ap-

proach works. The easiest way of evaluating the controller’s performance is to

check the step response of the nominal closed-loop system Fℓ(P,K) since these

represent the weighted tracking errors.

t = 0:.001:0.08;

[y,t] = step(CL,t);

figure(10);

for i=1:2;

for j=1:2;

subplot(2,2,2*(i-1)+j)

plot(t,y(:,i,j),’linewidth’,2);

end;

end;

The resulting step response is shown in Fig. 12(a) which shows what we would

expect for this system.
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FIGURE 12. (a) step responses for solution to first mixed

sensitivity problem (b) loop function and weights used to

check robust performance condition

The step responses, however, do not say much about how robust this system

is to modeling uncertainty. In particular, we recall that we can use bounds on the

singular values of the nominal loop function L0(s) = G0(s)K(s) to determine

how well we meet the robust performance requirement that ∥WpS∥H∞ ≤ 1. In

particular, we know that if

σ(L0(jω)) > σ(Wp(jω)) for ω where σ(L0(jω)) > 1

σ(L0(jω)) < σ(W−1
∆ (jω)) for ω where σ(L0(jω)) < 1
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The first condition is the low-frequency tracking requirement and the second condi-

tion represents the robust stability requirement. These conditions represent natural

extensions of the loopshaping concepts we derived earlier for uncertain scalar sys-

tems. The difference is that now the loop gains and gains of the weighting systems

are characterized in terms of their minimum and maximum singular values since

they are MIMO systems. Fig. 12(b) shows the gain magnitude of the nominal

loop’s singular values (solid blue lines) against the singular values of the weights

Wp and W−1
∆ . This plot clearly shows that the loop function constraints ensuring

robust performance are satisfied, so indeed the controller should solve this particu-

lar robust performance problem.

Note that the low frequency region is given by ω less than 100 rad/sec and the

high frequency region is given by ω greater than 2000 rad/sec. As can be seen the

low frequency performance constraint is satisfied exactly, but the high frequency

robust stability constraint is satisfied with some margin to spare. In other words

over the high frequency region σ(L0(jω)) is about 20 dB below the σ(W−1
∆ (jω)).

This suggests that our system has robust stability, but it also suggests that we may

be able to improve overall system performance on the low frequency end without

compromising the robust stability condition.

9.2. HIMAT Design Problem: This subsection presents another example in

which the H∞ mixed sensitivity problem is used to enforce robust performance.

The control problem posed here is drawn from a real-life system known as the

HIMAT vehicle. This vehicle was a scaled remotely piloted vehicle (RPV) of an

advanced fighter that was flight tested in the late 1970’s. The actual HIMAT ve-

hicle is currently on display in the Smithsonian National Aerospace Museum in

Washington D.C.. A picture of that exhibit is shown in Fig. 13.

This problem considers the longitudinal dynamics of the airplane. These dy-

namics are assumed to be uncoupled from the lateral-directional dynamics. The

state vector consists of the vehicle’s rigid body variables:

(1) δv - perturbations along the velocity vector,

(2) α - angle of attack,

(3) q - pitch rate,
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FIGURE 13. HIMAT vehicle at Smithsonian National

Aerospace Museum

(4) θ - pitch angle

The control inputs are the elevon (δe) and the canard δc angles. The variables to be

measured are the angle of attack α and the pitch angle θ. A linearized state-space

realization (based on MATLAB example) for the plane’s longitudinal dynamics is

G0
s
=



−.027 −36.6 −18.9 −32 3.25 −.76 0 0

0 −1.9 .98 0 −.17 0 0 0

.012 11.7 −2.6 0 −31.6 22.4 0 0

0 0 1 0 0 0 0 0

0 0 0 0 −30 0 30 0

0 0 0 0 0 −30 0 30

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0


An unstructured multiplicative uncertainty model for this aircraft is

G = G0(I+W∆∆)

where the uncertainty’s weighting system is

W∆(s) =

[
20(s+25)
s+1000 0

0 20(s+25)
s+1000

]
Such an uncertainty bound is assumed to have been obtained from exhaustive em-

pirical testing of the aircraft.
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The performance of the closed loop system will be evaluated by the output sen-

sitivity function. In particular, we assume the following performance specification

σ(S(jω))Wp(jω) ≤ 1

for all ω and the performance weighting function is

Wp(s) =

[
0.5(s+β)
s+1.5 0

0 0.5(s+β)
s+1.5

]
where β is a constant that we’ll specify in a second. Such a performance weight

indicates that at low frequencies (frequencies below β) the closed loop system

should reject disturbances at the output by a factor of 20β/3. At high frequencies,

the performance gets less stringent. The parameter β, therefore, characterizes some

important qualitative properties of the closed loop system. The larger β, the better

this system’s performance will be. How large can we make β and still preserve

robust performance? To answer this question, we begin by writing a MATLAB

script to declare the dynamical systems for the plant and weighting systems.

A = [

-2.27e-02 -3.66e+01 -1.89e+01 -3.20e+01 3.25e+00 -7.6e-01;

0 -1.9e+00 9.8e-01 0 -1.7e-01 0;

1.2e-02 1.17e+01 -2.6e+00 0 -3.16e+01 2.24e+01;

0 0 1.0000e+00 0 0 0;

0 0 0 0 -3.0000e+01 0;

0 0 0 0 0 -3.0000e+01];

B = [0 0; 0 0;

0 0; 0 0;

30 0; 0 30];

C = [0 1 0 0 0 0;

0 0 0 1 0 0];

D = [0 0;

0 0];

G0 = ss(A,B,C,D);

s = zpk(’s’); % Laplace variable s

beta =10;

Wp = 0.5*(s+beta)/(s+1.5);

Wu = 0.0001*eye(2,2);

Wd = 20*(s+25)/(s+1000);

We then use augw and hinfsyn to determine the controller using the follow-

ing commands
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P = augw(G0,Wp,Wu,Wd);

gamlower = 0;gamupper = 1.e10;

[K1,CL1,GAM1,info] = hinfsyn(P,...

GMIN’,gamlower,’GMAX’,gamupper,...

’DISPLAY’,’on’,’METHOD’,’ric’);

if (GAM1>2)

tstring = sprintf(’GAM1= %f2.1, NO robust performance\n’,GAM1);

disp(tstring);

end;

We’ve set the upper and lower limits on the γ-interval to be 0 and 1010 respec-

tively. In calling this, the function hinfsyn will return with the smallest value of

gamma for which we can find a stabilizing controller. If γ ≤ 2, then we should

satisfy the robust performance constraints, otherwise the system is not robustly

stable. The output generated by the above script is as follows

>> himat_problem

Resetting value of Gamma min based on D_11, D_12, D_21 terms

Test bounds: 0.5000 < gamma <= 1.1304

gamma hamx_eig xinf_eig hamy_eig yinf_eig nrho_xy p/f

1.130 2.2e-02 1.1e-10 2.5e-01 -5.9e-17 0.0288 p

0.815 2.2e-02 1.1e-10 2.5e-01 -2.1e-17 0.1055 p

0.658 2.2e-02 1.1e-10 2.5e-01 -7.1e-19 0.5366 p

0.579 2.2e-02 -1.8e+05# 2.5e-01 -1.7e-16 37.4705# f

0.618 2.2e-02 1.1e-10 2.5e-01 -3.2e-17 1.3724# f

0.638 2.2e-02 1.1e-10 2.5e-01 -2.0e-16 0.8009 p

0.628 2.2e-02 1.1e-10 2.5e-01 -1.5e-18 1.0243# f

Gamma value achieved: 0.6379

which shows that the minimum γ for which we were able to obtain a stabilizing

controller when β = 10 is 0.6379. Since this is less than 2 the system has robust

performance.

We check this design by plotting the step response and plotting the gain magni-

tude of the loop function using the script

L1 = G0*K1;

I = eye(size(L1));
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(a) step response HIMAT (β=10)
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FIGURE 14. (a) step response of HIMAT system when β =

10 (b) loop function of HIMAT when β = 10

S1 = feedback(I,L1); % S=inv(I+L1);

T1 = I-S1;

figure;

[y,t] = step(T1,t);

for i=1:2;

for j=1:2;

subplot(2,2,2*(i-1)+j)

plot(t,y(:,i,j),’linewidth’,2);

grid on;

end;

end;

figure;

w = logspace(-2,5,1000);

[svL,w1]= sigma(L1,w);

[svWp,w2]=sigma(Wp/2,w(w<2));

[svWdi,w3] = sigma(1/Wd,w(w>100));

semilogx(w1,20*log10(svL),’b’,’linewidth’,2);

hold on;

semilogx(w2,20*log10(svWp),’r--’,’linewidth’,2);

semilogx(w3,20*log10(svWdi),’r--’,’linewidth’,2);

grid on;

The step response is shown in Fig. 14 where the response y2 due to w2 has

a settling time of about 5 seconds. Because γ is much less than 2, we expect

the robust performance constraint to be satisfied with some margin to spare. The

singular values of the loop function, G0K, the weights Wp/2 and W−1
∆ are sown
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in Fig. 14(b). This plot clearly shows the low and high frequency constraints are

satisfied with some margin to spare, thereby implying robust performance.

Note that a step response time of about 5 seconds is a bit slow for a fighter.

So we try improving this by increasiing β, thereby increasing the low frequency

gain. If we rerun with β = 260 we get a much faster system. Fig. 15 shows the

step response, which if magnified indicates a rise time of 5 msec. We also see

from the singular value plots of the loop function and its weights in Fig. 15, that

the bounds are much more closely adhered to than they were when β was only

10. This suggests we are at the very limits of the breaking the robust performance

constraints.
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(a) step response HIMAT (β=260)

FIGURE 15. (a) step response of HIMAT system when β =

260 (b) loop function of HIMAT when β = 260

9.3. ACC Benchmark Problem: This subsection presents an example ofH∞

controller synthesis for a system with structured parametric uncertainties as de-

scribed in section 5. This example consider the two mass spring system shown in

Fig. 16. This system may be seen as a generic model of an uncertain dynamical

system with rigid body and one vibrational mode. It is assumed that the nominal

system has m1 = m2 = 1 with a spring constant k = 1. A control force and

disturbance act on body 1 and the position of body 2 is measured, thereby resulting

in a non-collocated control problem. This system can be represented in state space
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form as


ẋ1

ẋ2

ẋ3

ẋ4

 =


0 0 1 0

0 0 0 1

−k/m1 k/m1 0 0

k/m2 −k/m2 0 0



x1

x2

x3

x4

+


0

0

1/m1

0

 (u+ w)

y = x2

z = x2

where x1 and x2 are the positions of body 1 and 2, respectively; x3 and x4 are

the velocities of body 1 and 2 respectively; u is the control input acting on body 1;

y = x2 is the measured output available to the controller; w is the plant disturbance

acting on body 1; and z = y is our objective signal - namely the output to be

controlled. This particular system is a benchmark problem that was presented at

the American Control Conference (ACC) several years ago; so we refer to it as the

ACC benchmark problem [Wie and Bernstein (1992)].

u
w

m2m1

x1 y=z=x 2

k

FIGURE 16. ACC Benchmark Problem

The uncertainty in this system arises from the fact that the spring constant is

uncertain. In particular, we assume k ∈ [0.5, 1.5]. If we then let T(s) denote

the closed-loop transfer function from w to z for this “uncertain” system, then

the objective is to find the feedback controller K such that ∥T∥H∞ < γ with γ

being as small as possible. What is different about this problem from the mixed

sensitivity problem in the preceding examples is that the uncertainty is state-based

and so we follow the approach laid out in section 5 to formulate the generalized

regulator problem we need to solve.
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Following section 5, we start by identifying a nominal open-loop plant’s state

space realization  ẋ

z

y

 =


A0 B1 B2

C1 D11 D12

C2 D21 D22


 x

w

u


where, for this system, the matrices are

A0 =


0 0 1 0

0 0 0 1

−1 1 0 0

1 −1 0 0

 , B1 = B2 = B =


0

0

1

0


C1 = C2 = C =

[
0 1 0 0

]
, D =

[
D11 D12

D21 D22

]
=

[
0 0

0 0

]

The parametric uncertainty is only on the spring constant and it only impacts

the system matrix. So we perturb the system matrix as

A = A0 −M∆NT

=


0 0 1 0

0 0 0 1

−1 1 0 0

1 −1 0 0

−


0

0

−0.5
0.5

∆
[
−1 1 0 0

]

where |∆| ≤ 1. We can then rewrite the uncertain open loop plant, P, as an upper

LFT,

P = Fu(P0,∆)

formed from a nominal system, P0 with state equations
ẋ

z̃

z

y

 =


A0 M B B

NT 0 0 0

C 0 0 0

C 0 0 0



x

w̃

w

u


connected with the feedback system

w̃ = ∆z̃
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Section 5 showed that the H∞ norm of the lower LFT, Fℓ(P,K) formed from

the uncertain plant P and the controller K is equal to the H∞ norm of T0 =

Fℓ(P0,K). So this last generalized regulator is what we want to use in finding K.

The augmented plant, P0, in the ACC benchmark problem has the inputs

[
w̃

w

]

and u with outputs

[
z̃

z

]
and y. So the state space realization for this plant is

P
s
=


A0

[
M B

]
B[

NT

C

] [
0 0

0 0

] [
0

ϵ

]
C

[
0 ϵ

]
0


where ϵ is a small variable (0.001) used to ensure there is a penalty on the control

effort. The following script can now be used to compute theH∞ controller

A0 = [ 0 0 1 0; 0 0 0 1; -1 1 0 0; 1 -1 0 0];

M = [ 0; 0; .5; -.5];

N = [ -1; 1; 0 0];

B = [0 ; 0 ; 1 ; 0 ];

C = [0 1 0 0];

D = [0 0; 0 0];

eps = 1.e-3;

A = A0;

B1 = [M B];

B2 = B;

C1 = [N’ ; C];

C2 = C;

D11 = [0 0 ; 0 0];

D12 = [ 0 ; eps];

D21 = [0 eps];

D22 = 0;

P = ss(A,[B1 B2],[C1;C2],[D11 D12;D21 D22]);

gamlower = 0; gamupper = 1.e10;

nmeas=1;ncont=1;

[Kss,Tss,GAM,info] = hinfsyn(P,nmeas,ncont,...

’GMIN’,gamlower,’GMAX’,gamupper,...

’DISPLAY’,’on’,’METHOD’,’ric’);
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The output from this script for k = 1 is a controller whose state space realiza-

tion is

K
s
=



6.885 −4361 .997 −1.062 4351

.01207 −40.02 0 0.9902 39.97

−9035 −32600 −223.9 −79870 2176

1.413 −773.3 −.0005 −0.1883 771.2

−9045 −30440 −224.1 −79930 0


The impulse response for the controlled system was computed with ∆ = .5, 1, and

1.5. The results shown in Fig. 17 show that indeed this controller is indeed robustly

internally stabilizing the entire range of uncertain plants.
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FIGURE 17. Impulse Response for H∞ controlled ACC

Benchmark Problem

It is worthwhile to at least compare the difference of this to simply using an

LQG design for the nominal system and then seeing how it behaves when k is

perturbed. The controller seeks to minimize

J [u] =

∫ ∞

0

{
xTQx+ uTRu

}
dt

where Q = I4×4 and R = 1. assuming a process noise covariance, W = I4×4

and V = 1. The following script was used to compute the impulse response for
the LQG controlled system.

Q = eye(4,4); R=1;

W= eye(4,4); V=1;

A0 = [0 0 1 0; 0 0 0 1; -1 1 0 0; 1 -1 0 0];

B = [0; 0; 1 ; 0];

C = [0 1 0 0];
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D = 0;

QWV = [W zeros(size(B)); zeros(size(C)) V];

QXU = [Q zeros(size(B)); zeros(size(C)) R];

Klqg = lqg(ss(A0,B,C,D),QXU,QWV);

for del=-1:1:1;

A = A0 + M*del*N’;

Gss = ss(A,B,C,0);

Tlqg = feedback(Gss,-Klqg);

pole(Tlqg)

figure(11);

subplot(1,3,del+2);

t = 0:.01:20;

[y,t]=impulse(Tlqg,t)

plot(t,y,’linewidth’,2);

tstring = sprintf(’k=%f’, 1+.5*del);

title(tstring);

grid on;

end

The output of this script is shown in Fig. 18. Note that for k = 0.5, the system

is unstable and for k = 1.5 the system is highly oscillatory. In other words, the

LQG controller is definitely not robust to the parametric variations in the spring

constant, whereas theH∞ controller certainly is.

It may be possible to adjust the matricesQ,R,W , and V in such a way to make

the response when k = 1 approach that of theH∞ controlled system in Fig. 17, but

that adjustment is not obvious. This is in fact one of the chief issues one might have

with regard to the LQG controller formulation is the “arbitrary” nature of selecting

weighting matrices. In the context of the H∞ formulation, the basis for selecting

the weighting systems is much clearer.
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FIGURE 18. Impulse Response for LQG Controlled ACC

Benchmark Problem

10. Summary

This chapter discussed methods used to design robust optimal controllers for con-

tinuous time LTI systems. We posed the design problem in terms of minimizing the

H2 or H∞ norm of the closed-loop transfer function for a generalized regulator.

The generalized regulator is a ”canonical” form of a feedback control system that

can be used to represent a wide range of actual control systems. We saw that theH2

optimal controller was essentially the LQG controller consisting of an LQR gain

matrix with a steady-state Kalman filter. We demonstrated that this ”optimal” con-

trol law is not robust to model uncertainty [Doyle (1978)] and so formulated ways

of characterizing model uncertainty in a way that can then be used in designing op-

timal controllers whose performance and stability are ”robust” to bounded model

uncertainty. We showed that this robust optimal control problem could be posed

in terms of minimizing the H∞ norm of a suitably chosen generalized regulator.

We presented computational tools from MATLAB that can be used to synthesize

the controller and provided several example illustrating its use. Our discussion of

the LQG and H2 controllers was strongly influenced by [Dorato et al. (1994)] and

[Green and Limebeer (2012)]. The formulation of the generalized regulator will

be found in Green and Limebeer (2012), Zhou et al. (1996), or Sanchez-Pena and

Sznaier (1998). Our development of the H∞ controller using the FI, OE, and OF

subproblems follows the development in Sanchez-Pena and Sznaier (1998).
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11. Appendix: KYP Lemma

The bounded real and Kalman-Yakubovich-Popov (KYP) lemmas provide neces-

sary and sufficient conditions ∥G∥H∞ < gamma. In the bounded real lemma,

this test is a condition on the eigenvalues of a specially formed matrix. This par-

ticular test can then be used as an algorithmic oracle who declares whether or not

the norm of G is less than a specified γ. This oracle is the basis for an efficient

algorithmic approach for estimating the H∞ norm of a rational transfer function

matrix, G(s), through a bisection search strategy.

The KYP lemma recasts the bounded real condition in terms of an algebraic

Riccati equation (ARE). This condition is more useful in synthesizing H∞ con-

trollers for the generalized regulator problem. Because the KYP lemma develops

an ARE characterization of the H∞ controller, it provides a basis for more clearly

seeing the similarities and differences betweenH2 (LQG) controllers and the more

robustH∞ controllers.

THEOREM 14. [Bounded Real Lemma] Let γ > 0 and assume G s
=

[
A B

C D

]
.

Assume A has no eigenvalues on the jω axis. Then ∥G∥H∞ < γ if and only if

σ(D) < γ and the matrix

H =

[
A+BR−1DTC BR−1BT

−CT (I+DR−1DT )C −(A+BR−1DTC)T

]
(48)

where R = γ2I −DTD has no eigenvalues on the jω-axis.

Proof: note that

∥D∥ = σ(G(j∞)) ≤ sup
ω

(σ(G(jω))) < γ

This implies that if ∥D∥ = σ(D) > γ, then it is impossible for ∥G∥H∞ to be less

than γ.

So let us assume ∥D∥ < γ for the remainder of this proof. We now recall that

singular values measure how close a non-singular matrix is to being singular. In

particular supω σ(G(jω)) < γ if and only if

sup
ω
σ(G∗(jω)G(jω)) < γ2I
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which holds if and only if the matrix γ2I−G∗(jω)G(jω) is nonsingular for all ω.

Now consider the dynamical system with transfer function matrix

Φ(s) = (γ2I−G∗(s)G(s))−1

In view of our preceding condition ∥G∥H∞ < γ if and only if Φ(s) has no poles

on the imaginary axis. For if such a pole exists, say at jω0, then

Φ−1(jω0) = 0 = γ2I−G∗(jω0)G(jω0)

which contradicts our assumption that Φ−1(jω) is nonsingular for all ω.

The next thing we note is that Φ(s) has the state space realization

Φ(s)
s
=

 H

[
BR−1

−CTDR−1

]
[
R−1DTC R−1BT

]
R−1


where H is the matrix in equation (48). This matrix is often called a Hamiltonian

matrix.

So assume that H has an eigenvalue on the imaginary axis (say at jω0), then

there exists x0 =

[
x1

x2

]
̸= 0 such that (jω0I − H)x0 = 0. If this eigenvalue

corresponds to a controllable/observable mode of Φ(s), then Φ(s) has a pole on

the imaginary axis and ∥G∥H∞ cannot be less than γ.

So if ∥G∥H∞ < γ, then jω0 must be either an uncontrollable or unobservable

mode of Φ(s). We will show that this case cannot occur. So let’s assume jω0 is an

unobservable mode of Φ(s). The Popov-Bellman Hautus (PBH) observability test

requires the matrix[
λI−H

[
R−1DTC R−1BT

] ]
have full row rank for all λ if the system is observable. So if jω0 is an unobservable

mode, however, then there exists x0 =

[
x1

x2

]
̸= 0 such that

[
λI−H

[
R−1DTC R−1BT

] ]
x0 = 0
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which can only happen if

Hx0 = jω0x0

0 =
[
R−1DTC R−1BT

]
x0

These equations, however, may be expanded out to

(jω0I−A)x1 = 0

(jω0I+AT )x2 = −CTCx1

DTCx1 +BTx2 = 0

Since A is assumed to have no eigenvalues on the imaginary axis, we know that

(jω0I − A)x1 = 0 implies x1 = 0. Inserting x1 = 0 into the second equation

yields, (jω0I + AT )x2 = 0. Again AT has no eigenvalues on the imaginary

axis and so x2 must be zero. This contradicts, however, our earlier assertion that

x0 ̸= 0.

Similarly, we can treat the case where we assume jω0 is an uncontrollable mode

of Φ(s). The application of the PBH test for controllability generates a contradic-

tion and we must therefore conclude that Φ(s) can have no poles on the jω axis

if and only if the Hamiltonian matrix H has no eigenvalues on the imaginary axis

and this completes the proof. ♢

THEOREM 15. [KYP Lemma] Suppose G(s) = D+C(sI−A)−1)B with A

being Hurwitz. Let R = γ2I −DTD, then ∥G∥H∞ < γ if and only if ∥D∥ < γ

and there exists P = PT ≥ 0 satisfying the algebraic Riccati equation

P(A+BR−1DTC) + (A+BR−1DTC)TP+PBR−1BTP+CT (I−DR−1DT )C = 0

such that A+BR−1(DTDTC+BTP) is Hurwitz.

Proof: We prove this lemma by showing that the solution to the Riccati equation is

equivalent to the condition in the bounded real lemma that requires the Hamiltonian

matrix

H =

[
A+BR−1DTC BR−1BT

−CT (I+DR−1DT )C −(A+BR−1DTC)T

]
=

[
H11 H12

H21 H22

]
has no eigenvalues on the jω axis. Once this is established then the KYP lemma

follows from the bounded real lemma.
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Let us first assume the existence of an internally stabilizing solution to the Ric-

cati equation in the Bounded Real Lemma. In other words, P, satisfies the Riccati

equation where

A = A+BR−1(DTC+BTP)

is Hurwitz. A similarity transformation shows that[
I 0

−P I

]
H

[
I 0

P I

]
=

[
A BR−1BT

0 −AT

]

Because A is Hurwitz, we know −AT will be the system matrix for an unstable

system, which means that H can have no eigenvalues on the imaginary axis.

Since H is Hamiltonian, one can show the eigenvalues are symmetric with re-

spect to the imaginary axis. By assumption, none of these eigenvalues are on the

jω axis so H has exactly n eigenvalues with strictly negative real parts. Let Λ be

a Hurwitz matrix whose eigenvalues are the stable eigenvalues of H. Then we can

find matrices X1 and X2 such that

H

[
X1

X2

]
=

[
X1

X2

]
Λ,(49)

The matrix

[
X1

X2

]
is a 2n × n matrix with full column rank in which n is the

dimension of Λ.

This matrix X =

[
X1

X2

]
satisfies the equation XTJX where J =

[
0 −I
I 0

]
.

So by the property of Hamiltonians that JH is symmetric we see that the righthand

side of the above equation is zero. So we can see that

0 = (XTJX)Λ+ΛT (XTJX)

By assumption the eigenvalues of Λ all have negative real parts, so the preceding

linear matrix equation implies that XTJX = 0. If we expand this last equation

out, we see this is equivalent to XT
1 X2 = XT

2 X1. We will need to use this identity

below.

X1 is nonsingular: We will now prove that X1 is nonsingular. We will do this

through contradiction so assume that X1 is singular. This means there exists z ̸= 0
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such that X1z = 0. From equation 49, we can expand the first block to see that

(A+BR−1DTC)X1 +BR−1BTX2 = X1Λ(50)

Premultiplying by XT
2 yields,

XT
2

(
A+BR−1DTC

)
X1 +XT

2 BR−1BTX2 = XT
2 X1Λ = XT

1 X2Λ

The last equality holds because XT
1 X2 = XT

2 X1. We now pre and post-multiply

the last equation by z to obtain

BT
2 X2z = 0

Post-multiplying equation 50 by z and using the preceding equation implies that

X1Λz = 0

We can repeat this argument to show that

X1z = 0 ⇒

[
X1

BTX2

]
Λkz = 0

for k = 0, 1, 2, · · · . This last relationship implies that

(
Λ,

[
X1

BTX2

])
is not

observable. Consequently by the Popov-Bellman-Hautus (PBH) observability test,

there exits y ̸= 0 and λ such that Λ− λI
X1

BTX2

 y = 0(51)

Note that Re(λ) < 0 because Λ is asymptotically stable.

We know from the second block of equation 49 that

−CT (I+DR−1DT )CX1 − (AT +CTDR−1BT )X2 = X2Λ

Multiplying by y we get −ATX2y = λX2y, which we may rearrange to obtain

(λI +AT )X2y = 0. Because A is asymptotically stable and Re(λ) < 0, we can

see that λI + AT is nonsingular and therefore X2y = 0. From equation 51, we

know that X1y = 0. We’ve just shown that X2y = 0. These two equations con-

tradict the full rank property of

[
X1

X2

]
. From this contraction we must conclude

that X1 is nonsingular.



182 3. ROBUST LINEAR CONTROL - H2/H∞ METHODS

Verify the Riccati Equation Let P = X2X
−1
1 . From our earlier intermediate

result, we know that X1X2 = XT
2 X1. So we can see that X2X

−1
1 = (XT

1 )
−1XT

2 ,

which means that P is symmetric.

Our intermediate result also showed that XTJX = 0, so we can conclude that

XTJHX = XTJXΛ = 0

We can therefore see that

0 = (XT
1 )

−1XTJHXX−1
1

=
[
P −I

] [ H11 H12

H21 H22

][
I

P

]
= PH11 −H21 +PH12P−H22P

Because of the Hamiltonian property, we know that H22 = −HT
11, so the last

equation can be rewritten as

0 = PH11 +HT
11P+PH12P−H21

Substituting in for the Hamiltonian block matrices, we obtain the algebraic Riccati

equation,

P(A+BR−1DTC) + (A+BR−1DTC)TP+PBR−1BTP+CT (I−DR−1DT )C = 0

So our choice for P clearly satisfies theH∞ Riccati equation.

The solution is stablizing: We now establish that the solution to the Riccati

equation is stabilizing. In other words, we will show that A+BR−1(DTC+BTP)

is asymptotically stable. A straightforward computation shows that

H11 +H12P =
[
I 0

]
HXX−1

1

=
[
I 0

]
XΛX−1

1

= X1ΛX−1
1

which implies that

A+BR−1(DTC+BTP) = X1ΛX−1
1

Since Λ is a stable matrix and X1 is a nonsingular matrix, we know that A +

BR−1(DTC+BTP) is asymptotically stable.
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The solution is symmetric: Let P = X2X
−1
1 . From our earlier intermediate

result, we know that X1X2 = XT
2 X1. So we can see that X2X

−1
1 = (XT

1 )
−1XT

2 ,

which means that P is symmetric.

The solution is positive definite: To show that P ≥ 0, rewrite the Riccati

equation as

PA+ATP+ (DTC+BTP)TR−1(DTC+BTP) +CTC = 0

This equation, along with the fact that A is stable and R−1 > 0 implies that P ≥ 0

since P would then be the observability gramian of

(
A,

[
C

R−1/2(DTC+BTP)

])
.

♢





CHAPTER 4

Stability Concepts for Nonlinear Control Systems

Chapters 1 and 3 confined their attention to the design of stabilizing control laws

for linear time-invariant systems. But most systems are not linear, they are nonlin-

ear. While we can still view the system as a causal operator between linear signal

spaces, that operator may not satisfy the principle of superposition. In many cases,

using a linear approximation to this nonlinear operator based on a Taylor series ex-

pansion about a specified equilibrium point may be used to develop controllers that

stabilize that equilibrium. This is particularly true when the equilibrium is hyper-

bolic (i.e. the linearization’s A matrix has no eigenvalues with zero real parts). But

even in this case, the neighborhood about which the linearization is useful may be

too small for practical applications. We therefore need to move beyond the meth-

ods in chapters 1 and 3 and develop practical frameworks for controlling nonlinear

systems. We will focus on the stabilization of a nonlinear system about a desired

operating point. To develop such controllers, this chapter introduces several stabil-

ity concepts that are used in designing nonlinear control systems.

The remainder of this chapter is organized around four stability concepts; Lya-

punov stability, input-to-state stability (ISS), Lp-stability, and passivity. These four

concepts provide the fundamental tools that have been previously used for nonlin-

ear control. We review the fundamentals of Lyapunov stability, which was covered

in detail in the linear systems theory class. So the most relevant new concepts

will concern input-to-state stability, Lp stability, and passivity. This chapter first

presents sufficient conditions certifying these stability concepts. But we will also

need to examine the relationship between these stability concepts. Of great impor-

tance to us will be whether these stability properties are preserved under system

interconnections; in particular feedback interconnections and cascade interconnec-

tions.

185
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1. Lyapunov Stability

Consider a dynamical system characterized by a differential equation

ẋ(t) = f(x(t))

where f : D → Rn is locally Lipschitz on an open connected domain, D ⊂ Rn.

For this system, we say a state x∗ ∈ D is an equilibrium point if f(x∗) = 0. If the

equilibrium x∗ ̸= 0, then one can introduce a change of coordinates so that in the

new coordinate frame the system’s equilibrium is at the origin. Stating many of the

results regarding Lyapunov stability are simplified if we don’t need to carry along

x∗ notationally through the derivation. So it is customary to assume the origin is

the equilibrium point and we will do so in this chapter unless otherwise stated.

We say the equilibrium x∗ = 0 is stable in the sense of Lyapunov if for all ϵ > 0

there exists δ > 0 such that if |x(0)| < δ then |x(t)| < ϵ for all t ≥ 0. We say

the equilibrium is unstable if it is not Lyapunov stable. We say the equilibrium

is asymptotically stable if it is stable and x(t) → 0 as t → ∞ for all x(0) in a

neighborhood of the origin.

1.1. Basic Lyapunov Stability Theorems: A sufficient condition for an equi-

librium to be stable or asymptotically stable is the existence of a positive definite

function known as the Lyapunov function. This is stated in the following theorem

without proof (we prove this in linear systems theory course)

THEOREM 16. Lyapunov’s Direct Method: Let 0 be the equilibrium point for

the system ẋ(t) = f(x(t)) where f : D → Rn is locally Lipschitz on the con-

nected open set D ⊂ Rn. If there exists a C1 function V : D → R such that

• V is positive definite (V (0) = 0 and V (x) > 0 for all x ∈ D − {0})

• V̇ (x) =
∂V (x)

∂x
f(x) is negative semidefinite (V̇ (x) ≤ 0 for all x ∈ D)

then x = 0 is stable in the sense of Lyapunov. Furthermore if one can show that

V̇ (x) is negative definite (V̇ (0) = 0 and V̇ (x) < 0 for all x ∈ D − {0}), then the

equilibrium is asymptotically stable.
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AC1 function, V : D → Rn that satisfies the conditions in theorem 16 is called

a Lyapunov function. We can think of it as a certificate for Lyapunov stability since

the existence of such a function is sufficient to “certify” that the origin is Lyapunov

stable.

As defined above, Lyapunov stability is a local property of the equilibrium since

it only holds for x(0) in a neighborhood of the origin. If we can assure that this

property holds for all x(0) then the property is said to be global. Note that even if

there is a positive definite V for which V̇ < 0 for all x ∈ Rn, this will not nec-

essarily certify the equilibrium is “globally” asymptotically stable. The following

example shows why this might occur

Consider the dynamical system

ẋ1 = f1(x1, x2) = −
6x1

(1 + x21)
2
+ 2x2

ẋ2 = f2(x1, x2) = −2
x1 + x2
(1 + x21)

2

One can readily verify that a “candidate” Lyapunov function

V (x) =
x21

1 + x21
+ x22

has V̇ < 0 for all x ∈ Rn, and so the origin is asymptotically stable for x(0) in a

“neighborhood” of the origin, but not all of R2. To see this consider a hyperbola in

R2

x2 =
2

x1 −
√
2

One can show that the ratio of the two vectors fields along the hyperbola, f2f1 will

always be greater than the slope of the hyperbola’s tangents. So if x(0) starts in the

“divergent” region shown in Fig. 1, we can see that there is no way for a point in

this divergent region to cross the hyperbola and so the equilibrium is not globally

asymptotically stable.

The reason for this issue can be readily seen if we return to our definition.

Lyapunov stability requires that for any ϵ > 0 there exists a δ > 0 such that

|x(0)| < δ implies |x(t)| < ϵ for all t ≥ 0. The problem is that δ is a function of ϵ

and the particular pathology that might take place is that as ϵ → 0, we might find

δ(ϵ)→ δ <∞ converging to a constant that is finite. The resulting neighborhood
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FIGURE 1. Example where V̇ (x) < 0 for all x but the origin

is not globally asymptotically stable

Nδ(0) is an inner approximation to the set of all states that converge asymptotically

to the equilibrium. That set is called the equilibrium’s region of attraction (RoA).

This observation also suggests a simple way out of our dilemma. In particular,

if we select a candidate Lyapunov function that is positive definite and radially

unbounded in the sense that V (x)→∞ as |x| → ∞, then we can certify the origin

is globally asymptotically stable. This is the assertion in the following theorem

which is again presented without proof.

THEOREM 17. Barbashin-Krasovskii Theorem: Let x = 0 be an equilibrium

for ẋ = f(x) where f is locally Lipschitz. Let V : Rn → R be a radially un-

bounded positive definite C1 function such that V̇ (x) < 0 for all x ̸= 0. Then the

origin of the system is globally asymptotically stable.

As mentioned above, it is customary to “linearize” a nonlinear system about its

equilibrium point and use that linearization as a basis for control system design.

The justification for this approach is known as Lyapunov’s Indirect method.

THEOREM 18. Lyapunov’s Indirect Method:. Let ẋ = Ax be the Taylor jet

linearization of the nonlinear system ẋ = f(x) about the equilibrium point x∗ = 0.

Let {λi}ni=1 denote the eigenvalues of matrix A. If Re(λi) < 0 for all i = 1, . . . , n,

then the nonlinear system’s equilibrium is asymptotically stable. If there exists at

least one i such that Re(λi) > 0 then the origin is unstable.
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Proving the stability part of this theorem is interesting enough to discuss. Find-

ing Lyapunov functions is, in general, difficult to do. So what we often do is select

a Lyapunov function for a system that is close to the one we’re interested in and

use that as a candidate Lyapunov function. We know the Taylor linearization of the

nonlinear system is ”close” to the nonlinear system because

f(x) = Ax+ g(x)

where g(x) is a little-o remainder term, i.e. lim
x→0

|g(x)|
|x|

= 0, then let us try using a

Lyapunov function for the linear system ẋ = Ax as a candidate Lyapunov function

for ẋ = f(x). A Lyapunov function for ẋ = Ax will be V (x) = xTPx where

P = PT > 0 satisfies the Lyapunov equation

ATP+PA+Q = 0(52)

for some Q = QT > 0. We now compute V̇ with respect to the nonlinear system’s

f(x) = Ax+ g(x) to get

V̇ = xTPf(x) + fT (x)Px

= xT (PA+ATP)x+ 2xTPg(x)

= −xTQx+ 2xTPg(x)

The first term is negative definite and the second term is indefinite. But we know

that g is little-o so there exists r > 0 such that for any γ > 0 we have

|g(x)| < γ|x|

when |x| < r. This means that for x with |x| < r we have

V̇ < −xTQx+ 2γ ∥P∥ |x|2

< −(λ(Q)− 2γ ∥P∥)|x|2

where λ(Q) is the minimum eigenvalue of Q. So if we choose γ <
λ(Q)

2 ∥P∥
then

we can certify V̇ < 0 for |x| < r which establishes the asymptotic stability of the

origin provided A is Hurwitz.

Remark: We can summarize the three main findings of the Indirect Method

below
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• If the equilibrium of the linearization is asymptotically stable, then the

origin of the original nonlinear system is also locally asymptotically sta-

ble.

• If the linearization has any eigenvalue with a positive real part, then the

origin of the nonlinear system is unstable.

• If the linearization of the nonlinear system has eigenvalues with non-

positive real parts and there is at least one eigenvalue with a zero real

part, then nothing can be concluded about the asymptotic stability of the

equilibrium.

. There is, therefore, a hole in our linearization’s ability to deduce the asymptotic

stability properties of nonlinear systems. In particular, we require the linearization

not have a center eigensubspace.

1.2. Advanced Lyapunov Stability Theorems: The direct method only es-

tablished the equilibrium’s asymptotic stability if V̇ was negative definite. It is

often easier to certify that V̇ is negative semidefinite, in which case we cannot use

the direct method. The invariance principle provides a tool that allows us to infer

that trajectories of the system are ”attracted” to an invariant set when V̇ is only

negative semidefinite. Given the system ẋ = f(x), where f : D → Rn is Lips-

chitz, we say a set M ⊂ D is attracting if for any x(0) /∈ M , we have x(t) → M

as t → ∞. The condition we need to ensure this occurs is that the trajectories of

ẋ = f(x) are confined to a compact invariant set. Compactness is a useful topo-

logical property in which a subset K ⊂ Rn is compact if it is closed and bounded.

The set is forward invariant if for any x(0) ∈ S we have x(t) ∈ S for all t ≥ 0 un-

der the state equation ẋ = f(x). The following theorem, known as the Invariance

Principle, formally states this result

THEOREM 19. Invariance Principle: Consider the system ẋ = f(x) where

f : D → Rn is locally Lipschitz on D ⊂ Rn. Let K ⊂ D be a compact invariant

set with respect to f and V : D → R be a C1 function such that V̇ (x) ≤ 0 on K.

Let M be the largest forward invariant set in E = {x ∈ K : V̇ (x) = 0}, then M

is attracting for all trajectories starting in K.
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Note that V need not be positive definite since the trajectories are confined to a

compact set. This theorem also relaxes the requirement that V̇ is negative definite.

So it greatly relaxes the sufficient conditions found in Lyapunov’s direct method.

When the invariant set of interest is the equilibrium, then this theorem essentially

proves asymptotic stability of the equilibrium

THEOREM 20. Asymptotic Stability - invariance theorem: Let x = 0 be an

equilibrium point for ẋ = f(x) where f : D → Rn is locally Lipschitz onD ⊂ Rn.

Let V : D → R be a C1 positive definite function on D containing x = 0 such

that V̇ (x) ≤ 0 on D. If the origin, {0}, is the largest invariant set in the set

{x ∈ D : V̇ (x) = 0}, then the origin is asymptotically stable.

Example: Consider the system

ẋ1 = x2

ẋ2 = −g(x1)− h(x2)

where g and h are Lipschitz such that g(0) = h(0) = 0, yg(y) > 0 and yh(y) > 0.

We can think of this as a mechanical system in which x2 is velocity, x1 is position.

The equilibrium for this system is clearly the origin and we consider a candidate

Lyapunov function

V (x) =

∫ x1

0
g(y)dy +

1

2
x22

where the first term on the left may be seen as potential energy and the second term

is kinetic energy. V is clearly positive definite and its directional derivative is

V̇ (x) = g(x1)x2 + x2(−g(x1)− h(x2))

= −x2h(x2) ≤ 0

So V̇ is only negative semidefinite. We will take set E to be

E = {x : V̇ (x) = 0} = {x : x2 = 0}

If we let x(t) be any trajectory starting in E, then this implies that ẋ1(0) = 0 =

x2(0) = 0 which means x1(t) is constant for all time. But if x1(t) ̸= 0, then

ẋ2(t) = −g(x1(t))− h(x2(t)) ̸= 0
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which would force x(t) to leave the set E, unless x1(0) were also zero. So we can

conclude that the origin is the largest invariant set in E and so the origin must be

asymptotically stable.

Example:. Consider the Lyapunov equation

ATP+PA = −CTC

associated with the linear system

ẋ = Ax(t)

y = Cx(t)

where C does not have full rank. This means xTCTCx is only positive semidefi-

nite. Let V (x) = xTPx where P = PT > 0. Note that V̇ (x) = −xTCTC ≤ 0

So V̇ is only negative semidefinite and we cannot use the direct method to infer

stability.

We can, however, try using the invariance principle. Consider the set where

V̇ = 0 and note that is also the set

E = {x : Cx = 0}

This system’s output would then be

y(t) = Cx(t) = CeAtx0

which would be identically zero (i.e. remains in E) if and only if (A,C) is an

observable pair and x0 = 0. So the only trajectory that can remain in E for all

time is the one that starts in the origin. We can therefore conclude that under the

additional assumption that (A,C) is an observable pair, the largest invariant set in

E is the origin and so by the invariance principle is attracting. In other words, the

origin is asymptotically stable.

The preceding results have only been sufficient conditions for Lyapunov sta-

bility. When the system is linear one can prove that the existence of a Lyapunov

function is also necessary for stability. Results of this type are known as converse

theorems. They are important in the design of control systems, because if we re-

quire our control system to be stable, it would have to have a Lyapunov function

and that condition often helps us to determine what the controller should be. In
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addition to linear systems, it is possible to establish converse theorems for cer-

tain classes of nonlinear systems. The following theorem establishes a converse

theorem for systems (linear or nonlinear) whose origin have uniform asymptotic

stability (UAS).

In stating this theorem we need to consider class K and KL functions. In par-

ticular a continuous function α : R → R is class K if and only if α(0) = 0 and

α is strictly increasing. We say a function is class K∞ if it is class K and radially

unbounded. A continuous function β : R× R→ R is class KL if

• for any fixed s, β(r, s) is class K,

• for any fixed r, β(r, s) is a decreasing function such that β(r, s) → 0 as

s→∞.

Basic properties of class K and class KL functions are itemized below without

formal proof.

• if α ∈ K over [0, a), then α−1 ∈ K over [0, α(a)).

• If α ∈ K∞ then α−1 ∈ K∞.

• If α1, α2 ∈ K, then α1 ◦ α2 ∈ K
• If α1, α2 ∈ K and β ∈ KL then α1(β(α2(r), s)) ∈ KL.

One particularly useful result is the class K Comparison Principle. This princi-

ple states that if α ∈ K, then the differential equation, ẏ = −α(y), with initial

condition y(0) = y0 has a unique solution y(t) = σ(y0, t) where σ is class KL.

With this background on class K and KL functions, we can now state the UAS

converse theorem. The proof of this result is somewhat sophisticated and so the

proof is not presented below.

THEOREM 21. UAS - Converse Theorem: Let x(t) = 0 be the equilibrium of

ẋ = f(t, x) where f is continuously differentiable on D = {x ∈ Rn : |x| < r}
and the Jacobian matrix of f is uniformly bounded in t. Let β : R × R → R be a

class KL function and assume there exists r0 > 0 such that for any|x(t0)| < r we

have such that

|x(t)| ≤ β(|x(t0)|, t− t0)
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for all t ≥ t0 > 0. Then there is a continuously differentiable function V : R ×
Rn → R and class K functions α, α, α, and ω such that

α(|x|) ≤ V (t, x) ≤ α(|x|)
V̇ (x) ≤ −α(|x|)∥∥∥∂V (x)
∂x

∥∥∥ ≤ ω(|x|)
2. Input-to-State Stability (ISS)

Lyapunov stability is a property of unforced (i.e. homogeneous) dynamical sys-

tems. Real-life systems, of course, are subject to forcing from the external envi-

ronment and if we want to regulate their sensitivity to that environment we need

a control input. So we will need to consider extensions of the Lyapunov stability

concept to forced (i.e. inhomogeneous) dynamical systems. This section intro-

duces two related state-based stability concepts for forced systems; uniform ulti-

mate boundedness and input-to-state stability.

2.1. Uniform Ultimate Boundedness: Consider a dynamical system with a

state-dependent forcing term,

ẋ(t) = f(x) + g(t, x)
def≡ F (t, x)

with f(0) = 0 and g(t, 0) ̸= 0. So the unforced system, ẋ = f(x), has an

equilibrium at the origin, but when we perturb it with a state-dependent disturbance

g(t, x), that equilibrium disappears. Since there is no longer an ”equilibrium” for

the perturbed system, ẋ = F (t, x), the state will not asymptotically approach the

origin. Rather the best we can hope for is that the state remains bounded in a

sufficiently small neighborhood of the origin. Systems that exhibit this property

are said to be uniformly ultimately bounded or UUB.

Formally we define UUB as follows. The system ẋ = F (t, x) is said to be UUB

if there exists c > 0 such that for all a < c there are real positive constants b and T

such that

if |x(t0)| < a then |x(t)| ≤ b for all t ≥ t0 + T(53)

Fig.2 is a graphical interpretation of this concept. The figure shows that any tra-

jectory originating in a ball Nc(0) will enter and remain within a closed ball Nb(0)
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within a finite time T . The radius, b, of that target neighborhood is independent of

the initial time, so the property holds in a “uniform” manner. So all trajectories are

ultimately convergent to a uniformly bounded set about the origin. The size of that

neighborhood, b, is called the ultimate bound.

N (0)c

N (0)b

T

b

c

-c

-b

0

time (t)

FIGURE 2. Uniform Ultimate Boundedness

The following theorem characterizes how the ultimate bound, b, varies as a

function of the non-vanishing perturbation, g(t, x). It is useful because it provides

a Lyapunov-like sufficient condition for UUB that we will use later when we study

input-to-state stability (ISS).

THEOREM 22. UUB Theorem: Consider the system ẋ = F (t, x) where F :

[0,∞) × D → Rn is piecewise continuous in t and locally Lipschitz in x. Let

V : [0,∞)×D → R be C1 such that for all t,

α(|x|) ≤ V (t, x) ≤ α(|x|)

V̇ ≤ −α(|x|), for all |x| ≥ µ > 0

where µ > 0 and the functions α, α, and α are class K. Then there exists a

class KL function β and a finite time T > 0 such that solutions for the system

ẋ(t) = F (t, x) satisfy

|x(t)| ≤ β(|x(t0)|, t− t0), for all t0 ≤ t < T

x(t) ∈
{
x ∈ Rn : |x| ≤ α−1(α(µ))

}
, for all t > T

Proof:. This theorem’s proof relies on the properties of classK and classKL func-

tions that we itemized above. We already know from the theorem’s assumptions
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that V̇ is negative for x outside the closed ball Bµ(0) = {x : |x| ≤ µ}. For

notational convenience let η = α(µ) and define the set

Ωt,η = {x : V (t, x) < η}

Note that Bµ(0) ⊂ Ωt,η so that V̇ is negative outside of Ωt,η. For any state outside

of Ωt,η we have

V̇ ≤ −α(|x|) ≤ −α(α−1(V ))

Since α ◦ α is class K we know from the class K comparison principle that there

exists a class KL function, σ, such that

V (t, x(t) ≤ σ(V (t0, x(t0)), t− t0)

for all x(t) outside of Ωt,η. Since σ is class KL we know V (t, x(t)) is decreasing

until it eventually enters the set Ωt,η. Let t0 + T be the time when this occurs.

From the assumed bounds on V (t, x) and V̇ , we can deduce that for t0 ≤ t <

t0 + T that

α(|x|) ≤ V (t, x) ≤ σ(α(|x(t0)|), t− t0)

Applying α−1 to both sides of the inequality yields

|x(t)| ≤ α−1(σ(α(|x(t0)|), t− t0))

for all t0 ≤ t0 + T . So from above listed properties for comparison functions we

can say the right hand side of the above inequality is class KL.

Finally, we know that once x(t) enters Ωt,η it remains there because V̇ < 0 for

all x outside of the set. For t > t0 + T , we know V (t, x(t)) < η and using our

assumed bounds on V we get

|x| ≤ α(V (t, x)) ≤ α−1(η) ≤ α−1(α(µ))

which is the theorem’s ultimate bound. ♢

2.2. ISS-Lyapunov Functions: The UUB concept shows how Lyapunov-like

functions can be used to characterize whether the long-term behavior of a system

is ultimately bounded. This idea was formalized into a stability concept for forced
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systems known as input-to-state stability or ISS. In particular, we now consider the

system

ẋ(t) = f(x(t), w(t))

where w is an exogenous disturbance and f(0, 0) = 0. So the origin of the un-

forced system is an equilibrium point. We assume that w is a bounded piecewise

continuous function of time. This system is said to be input-to-state stable or ISS

if there exists a class KL function β and a class K∞ function γ such that for any

initial state x(0) = x0 ∈ Rn the corresponding state trajectory, x : R≥0 → Rn, for

any w ∈ L∞ satisfies the inequality

|x(t)| ≤ β(|x0|, t) + γ(∥w∥L∞)(54)

for all t ≥ 0.

Since β > 0 and γ > 0, one can readily see that

max(β, γ) ≤ β + γ ≤ 2max(β, γ)

So an alternative and equivalent characterization of ISS is that the state trajectory

satisfy

|x(t)| ≤ max (β(|x0|, t), γ(∥w∥L∞))(55)

Through these lectures we will use both ISS definitions interchangeably.

Fig. 3 provides a graphical view of what the condition in equation (55) means.

In particular, it says there are two terms; one that bounds the initial transient decay

of the system by a class KL function and an ultimate bound that is a function of

the amplitude of the disturbance, w. To be ISS means that any trajectory lies below

the maximum of these two bounding functions.

There is a strong similarity between the ISS and UUB concepts. This suggests

that one can probably develop a Lyapunov-like certificate for ISS as is stated and

proven below.

THEOREM 23. ISS Lyapunov Function: If there exists a C1 function V :

Rn → R with class K∞ functions α, α, and α and class K function ρ such that

α(|x|) ≤ V (x) ≤ α(|x|)

V̇ ≤ −α(|x|), for |x| > ρ(∥w∥L∞)
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FIGURE 3. Input-to-State Stability (ISS)

then the system is ISS. A function V that satisfies the above conditions is called

an ISS-Lyapunov function.

Proof: The UUB theorem implies there exists a KL function β and T ≥ 0 such

that

|x(t)| ≤ β(|x0|, t)

for 0 ≤ t < T and the ultimate bound is

|x(t)| ≤ α−1(α(r))

for T > t where r = ρ(∥w∥L∞). Note that γ = α−1 ◦ α ◦ ρ is class K by our

earlier facts about comparison functions and so

|x(t)| ≤ max(β(|x0|, t), γ(∥w∥L∞)) ≤ β(|x0|, t) + γ(∥w∥L∞)

which establishes the system is ISS. ♢

There is a useful alternative test in which the Lyapunov-like function V satisfies

a dissipative inequality. In some applications, this second characterization of the

ISS-Lyapunov function is easier to certify.

THEOREM 24. ISS Lyapunov Function - dissipative form:. Consider the

system ẋ = f(x,w) where f is Lipschitz andw ∈ L∞. AC1 function V : Rn → R
is an ISS-Lyapunov function for this system if and only if there exist K∞ functions
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α, α, α and class K function γ such that

α(|x|) ≤ V (x) ≤ α(|x|)

V̇ ≤ −α(|x|) + γ(|w|)

for all x ∈ Rn and all w ∈ Rm.

3. Lp Stability:

Lyapunov stability and input-to-state stability are all defined with respect to an

equilibrium at the origin. Lyapunov stability is concerned with whether the state

of the unforced system can be kept arbitrarily close to the origin. ISS is concerned

with measuring how far away from the origin the state can get when the system is

forced by an exogenous disturbance. We also know, however, that we can define

stability in terms of the input/output behavior of the system, without any reference

to the system’s internal states. In particular, we say a forced system is input/output

stable if all bounded inputs to the system result in a bounded output. Bounded,

in this case, means that the input and output signals have finite norms and so with

this stability concept, the system is viewed as an operator (potentially nonlinear)

between the input and output signal spaces. This section formally develops the no-

tion of Lp stability, an input/output stability concept where the input/output signal

spaces have been augmented with an Lp norm.

Rather than think of the system, G, as a map between two Lp spaces, we define

it as an operator between two extended Lp spaces. In particular, Lpe is the space

of all functions, w, such that the truncation of w for any finite time T

wT (t) =

{
w(t) for t ≤ T
0 otherwise

is in Lp. We say this space is ”extended” because it contains all signals in Lp
as well as unbounded signals whose truncations to a finite time interval [0, T ) are

bounded. For such systems, we say G is Lp stable if and only if there exists a class

K function, α : R→ R and a non-negative constant, β, such that

∥G[w]T ∥Lp
≤ α(∥wT ∥Lp) + β(56)

for any w ∈ Lpe and T ≥ 0. We refer to the constant β as a bias and α as a gain

function.
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Note that in many cases we can bound the action of the gain function, α by a

linear function of the inputs norm. This allows us to refine our stability concept

to that of finite-gain Lp stability. In particular, we say that G : Lpe → Lpe is

finite-gain Lp stable if there exists a γ > 0 such that

∥G[w]T ∥Lp ≤ γ∥wT ∥Lp + β

Note that this definition can be refined further by introducing the notion of the

operator’s Lp-induced gain

∥G∥Lp

def
= inf

{
γ : ∥(G[w])T ∥Lp ≤ γ∥wT ∥Lp + β, for all w ∈ Lp and T ≥ 0

}
There are formulae that can be used to estimate the L2 and L∞ induced gain of

LTI systems. If the operator is a nonlinear map, we can use the Hamilton-Jacobi

inequality (HJI) to bound the operator’s L2-induced gain.

THEOREM 25. Hamilton-Jacobi Inequality: Consider the time-invariant sys-

tem

ẋ = f(x) + g(x)w

y = h(x)

with f(0) = 0 and h(0) = 0. Let γ be a positive constant and suppose there exists

a C1 positive semi-definite function V : Rn → R such that

∂V

∂x
f(x) +

1

2γ2
∂V

∂x
g(x)gT (x)

(
∂V

∂x

)T
+

1

2
hT (x)h(x) ≤ 0(57)

Then the system is finite gain L2 stable with a gain less than or equal to γ.

Proof: We prove this using a completing the square argument on V̇ . This means

V̇ =
∂V

∂x
f +

∂V

∂x
gw

= −1

2
γ2

∣∣∣∣∣w − 1

γ2
gT
[
∂V

∂x

]T ∣∣∣∣∣
2

+
∂V

∂x
f +

1

2γ2
∂V

∂x
g(x)gT (x)

[
∂V

∂x

]T
+

1

2
γ2|w|2

The theorem’s assumption means that

∂V

∂x
f +

1

2γ2
∂V

∂x
ggT

[
∂V

∂x

]T
< −1

2
hT (x)h(x)
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Inserting this into our expression for V̇ and using the fact that y = h(x) gives

V̇ =
∂V

∂x
f +

∂V

∂x
gw

≤ 1

2
γ2|w|2 − 1

2
|y|2 − 1

2
γ

∣∣∣∣∣u− 1

γ2
gT
[
∂V

∂x

]T ∣∣∣∣∣
2

≤ 1

2
γ2|w|2 − 1

2
|y|2

Note that this allows us to infer that

V (x(T ))− V (x0) ≤
1

2
γ2
∫ T

0
|w(t)|2dt− 1

2

∫ T

0
|y(t)|2dt

Since V (x(T )) ≥ 0 this implies∫ T

0
|y(t)|2dt ≤ γ2

∫ T

0
|w(t)|2dt+ 2V (x0)

Taking the square root of both sides and using the fact that
√
a2 + b2 ≤ a+b when

a, b ≥ 0, we can conclude

∥yT ∥L2 ≤ γ∥wT ∥L2 +
√
2V (x0)

which means the system is finite gain L2 stable. ♢

4. Dissipative and Passive Systems

Dissipativity and Passivity are stability-like concepts for input/output systems. These

concepts rely on the physical intuition that systems which dissipate ”energy” are

inherently stable. This is useful since we know what the kinetic and potential en-

ergy functions are for a mechanical/electrical systems and so it is relatively easy

to determine a useful Lyapunov-like ”storage function” to certify if a system is

passive.

To provide a concrete interpretation of passivity, let us consider the electrical

network shown on the left side of Fig. 4 where u : R → R is an applied voltage

and y : R → R is the current injected into the circuit. We view this circuit as a

dynamical system whose input is u (the applied voltage) and whose output is y (the

injected current). The instantaneous power, p : R → R injected into the network

is given by p(t) = u(t)y(t). If p(t) ≥ 0, then the convention is that energy is being

absorbed by or delivered to the network. If p(t) < 0,then the network is acting as
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an energy source and is delivering power to the attached source. The circuit is said

to be passive if the rate of change of the energy stored within the system is less

than the power delivered to the network.

1

2

3

FIGURE 4. RLC Circuit

The specific RLC circuit in Fig. 4 provides a more concrete example of the

passivity concept. In this circuit the current through the inductor is i2 and the

voltage across the capacitor is vc. Since the inductor and capacitor are the only

energy storage devices in the circuit, we treat i2 and vc as state variables that we

denote as x1 and x2, respectively. With these conventions the state equations for

the circuit become

Lẋ1 = u− h2(x1)− x2

Cẋ2 = x1 − h3(x2)

y = h1(u) + x1

where h1 : R → R is a nonlinear admittance function for the current through the

nonlinear resistorR1, h2 is the nonlinear impedance function for the voltage across

the resistor R2, and h3 is the nonlinear admittance function for the current across

resistor R3.

The electrical energy stored within this circuit is

V (x) =
1

2
Lx21 +

1

2
Cx22

namely, the energy stored in both the inductor and the capacitor. Our preceding

“heuristic” notion of passivity requires the total energy injected into the system

by the source be greater than what is actually stored in the system. That injected
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energy is the integral of the instantaneous power and so passivity requires∫ t

0
u(s)y(s)ds ≥ V (x(t))− V (x(0))

The energy V : R2 → R that we just defined above is called a storage function and

it represents how much energy is stored in the system.

If V is a C1 function, then this above relation is equivalent to V̇ (x(t)) ≤
u(t)y(t) thereby providing a “differential” characterization of system passivity.

For the particular network in Fig. 4 we can see that

V̇ = Lx1ẋ1 + Cx2ẋ2

= x1(u− h2(x1)− x2) + x2(x1 − h3(x2))

= x1(u− h2(x2))− x2h3(x2)

= (x1 + h1(u))u− (uh1(u) + x1h2(x1) + x2h3(x2))

= uy − positive definite term ≤ uy

This last inequality implies that V̇ ≤ uy where uy is the instantaneous power

injected into the circuit from the source. Based on the preceding heuristic notion

of passivity we can therefore assert that this is a passive circuit.

The notion of “passivity” seen in the example can be generalized as the notion

of dissipativity. Consider a dynamical system of the form

ẋ = f(x, u)

y = h(x, u)
(58)

where f(0, 0) = 0, h(0, 0) = 0 with state x ∈ Rn, input u ∈ Rm, and output

y ∈ Rp. Associated with this system we define a function r : Rm × Rp → R
called the supply rate. The system is dissipative with respect to supply rate r(u, y)

if there exists a function V : Rn → R with V (x) ≥ 0 such that

V (x(t))− V (x(0)) ≤
∫ t

0
r(u(s), y(s))ds

for all t ≥ 0. The function V is called a storage function and if V is smooth

enough then we can recast the preceding integral as a dissipative inequality of the

form V̇ (x(t)) ≤ r(u(t), y(t)). Passivity is a special case of dissipativity in which

the supply rate is r(u, y) = uT y. In our following discussion we’ll confine our
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attention to passivity with the understanding that all of our results also apply to

dissipative systems with minor tweaks.

5. Relationship Between Stability Concepts

We have introduced a number of stability concepts that are often used in the design

of nonlinear controllers. It is important for us to understand how these stability con-

cepts are related to each other. This section states (without proof) several theorems

relating Lyapunov stability to ISS, Lp stability, and passivity. The first theorem

below asserts that a system with an exponentially (Lyapunov) stable equilibrium is

in fact finite-gain Lp stable.

THEOREM 26. Exponential Stability implies Lp stability: Consider the state-

based input-output system ẋ(t) = f(x,w) with y(t) = h(x,w) where the origin

is an exponentially stable equilibrium of the unforced system ẋ = f(x, 0). Assume

there exist positive constants L, r, r2, η1, and η2 such that

|f(x,w)− f(x, 0)| ≤ L[w]

|h(x,w)| ≤ η1|x|+ η2|w|

for all |x| < r and |w| < rw. If there exists a C1 function V : Rn → R and

non-negative constants c1, c2, c3 and c4 such that

c1|x|2 ≤ V (x) ≤ c2|x|2

V̇ (x, 0) ≤ −c3|x|2∥∥∥∥∂V∂x
∥∥∥∥ ≤ c4|x|

then the system is finite gain Lp-stable.

We can also relate input-to-state stability and Lp stability. This is done in the

following theorem which is also stated without proof.

THEOREM 27. ISS implies L∞ stability: Consider the input-output system

ẋ = f(t, x, w), x(0) = x0

y(t) = h(t, x, w)
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where the origin, x = 0, is an exponentially stable equilibrium of ẋ = f(t, x, 0).

Let f be piecewise continuous in t and locally Lipschitz in x and w. Let h be

piecewise continuous in t and continuous in x and w. Suppose ẋ = f(t, x, w)

is locally ISS and assume there exist class K functions α1, α2 and a non-negative

constant η3 such that

|h(t, x, w)| ≤ α1(|x|) + α2(|w|) + η3

Then there is a constant k1 > 0 such that for all initial conditions with |x0| < k1,

the system is L∞-stable.

One of the basic issues we must address is the relationship between passivity

and Lyapunov stability. In general, passivity does not imply Lyapunov stability.

The reason for this is that the storage function V is only required to be positive

semi-definite, not positive definite. This means that in the presence of an unobserv-

able part of the system, one can still have the origin unstable, and yet the system

will be passive. For passivity to imply Lyapunov stability, we need to impose de-

tectability conditions that limit the ability of the unobservable parts of the system

becoming unstable.

We now examine when passivity implies Lyapunov stability. As discussed ear-

lier, because the storage function is only positive semidefinite, we need to enforce

detectability assumptions that ensure the unobservable part of the system remains

stable. These detectability conditions are known as zero-state detectability (ZSD)

and zero-state observability, both of which are defined in the following paragraph.

Now consider the systemGwith zero input so that ẋ = f(x, 0) and y = h(x, 0)

and let Z ⊂ Rn be the largest invariant set contained in {x ∈ Rn : h(x, 0) = 0}.
We say that G is zero-state detectable if x = 0 is asymptotically stable whenever

x0 ∈ Z. In other words, any other perturbation of the origin confined to Z will

asymptotically converge to the origin. If the Z = {0}, then we say G is zero

state observable (ZSO). The ZSD property is essential for the stability of a passive

system’s equilibrium. This fact is stated in the following theorem. The proof relies

on the invariance principle.

THEOREM 28. (Passivity and Stability) Let the system G in equations (58) be

passive with a C1 storage function V .
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• If V is positive definite then the origin of G when u = 0 is Lyapunov

stable.

• If G is ZSD and V is positive semidefinite, then the equilibrium 0 of G

with u = 0 is Lyapunov stable.

• Furthermore if there is no direct throughput of u in y = h(x, u), then the

feedback u = −ky for any k > 0 ensures the origin is asymptotically

stable if and only if G is ZSD.

There are a couple of things to remark about theorem 28. The first is that the

ZSD property plays a pivotal role in assuring that passivity implies Lyapunov sta-

bility. The second thing to notice is that if we have the ZSD property, then we

can only assure the origin is asymptotically stable if we apply output feedback

−ky about the system. So feedback is critical in establishing asymptotic stability

of passive systems, but moreover, this feedback is high-gain feedback that only

uses the system output. This has the potential of greatly simplifying the feedback

controller design.

Example: Consider the following system

ẋ1 = x2

ẋ2 = −ax31 − kx2 + u

y = x2

where a, k > 0. Let us consider the following storage function

V (x) =
1

4
ax41 +

1

2
x22

This is clearly PD, so let us compute its directional derivative

V̇ = ax31x2 + x2(−ax31 − kx2 + u)

= −ky2 + uy ≤ uy

So this system is passive and because V > 0, we know the origin is Lyapunov

stable. We can actually go one step further and assert that it is asymptotically stable

in the following way. Note that V̇ = (u − ky)y where we can think of −ky as a

feedback control input. Since k > 0, this would mean the origin is asymptotically

stable provided it is ZSD. In particular, this system is ZSO so if we consider the

set of states when y(t) ≡ 0 for all time, we can readily see this is true if and only
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if x2(t) ≡ 0 for all time. But this would mean that ẋ2 = −ax31 when u = 0, which

would mean x1(t) ≡ 0 for all time, and so this system is ZSO because the only

state that generates an zero output trajectory (y(t) = 0) is the the state trajectory

x(t) = 0.

6. Stability of Feedback Interconnections:

One of the most useful aspects of an input-output system is that they can be inter-

connected. The output of one system can be used as the input to another system to

form a larger system with more desirable properties. This section reviews results

that determine when a feedback interconnection satisfies an input-output stability

concept such as ISS, Lp stability, or passivity. These results are important for they

provide the foundation for constructive approaches to nonlinear control system de-

sign [Sepulchre et al. (2012)].

We first investigate input-to-state stability (ISS) of a feedback interconnection

of two ISS systems [Jiang et al. (1994)]. Fig. 5 shows the interconnection of two

ISS systems

ẋ1 = f1(x1, x2), x1(0) = x10

ẋ2 = f2(x1, x2, u), x2(0) = x20
(59)

where x2 is the input to the first system with vector field f1 and (x1, u) are the

inputs to the second system with vector field f2. The initial conditions for the first

and second system are x10 and x20, respectively. The following theorem presented

without proof is due to Jiang et al. (1994). It asserts that the feedback intercon-

nect of two ISS stable systems is also ISS provided the composition of their gain

functions γ1 ◦ γ2 is contractive.

x2

u

x1 G

G

1

2

Σ

Σ

+

+

+

_

w1

w2y2

y1u1

u2

FIGURE 5. (left) Feedback Interconnection of ISS Systems

(right) Feedback Interconnection of Lp stable systems
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THEOREM 29. (ISS Small Gain Theorem) Consider the interconnected system

in equation (59) where f1(0, 0) = 0 and f2(0, 0, 0) = 0. Assume that the first

system is ISS with respect to input x2 so that when x2 ∈ L∞, there exist class KL
function β1 and class K function γ1 such that

|x1(t)| ≤ max {β1(|x10|, t), γ1(∥x2∥L∞)}

Assume that the second system is ISS with respect to inputs x1 and u so that for

any x1, u ∈ L∞ there exist class KL function β2 and class K functions γ2 and γu
such that

|x2(t)| ≤ max {β2(|x20|, t), γ2(∥x1∥L∞ , γu(∥u∥L∞)}

If for all r > 0, we can verify that γ1(γ2(r)) < r, then the interconnected system

is ISS with respect to input u.

Example: Let us consider the following system

ẋ1 = −x31 + x1x2

ẋ2 = ax21 − x2 + u

where a is a real parameter. We can regard this as the feedback interconnection of

two scalar systems. For the upper system

ẋ1 = f1(x1, x2) = −x31 + x1x2

we view x1 as the state and x2 as the input. Consider the ISS-certificate

V (x1) =
1

2
x21

and its directional derivative with respect to the upper system is

V̇ =
∂V

∂x2
f1(x1, x2) ≤ −|x1|4 + |x1|2|x2|

So choose 0 < θ < 1 and redistribute the negative definite term to obtain

V̇ ≤ −(1− θ)|x1|4 − θ|x1|4 + |x1|2|x2|

For x1 such that

(1− θ)|x1|2 ≥ |x2|

we can see that

V̇ ≤ −α(|x1(t)|)
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where α(r) = θr4, which is clearly a class K∞ function. So V̇ ≤ −α(|x|) when

|x1| ≥ ρ(|x2|) =
√

|x2|
1−θ which shows that f1 is ISS with respect to x2.

For the lower system

ẋ2 = f2(x1, x2, u) = ax21 − x2 + u

we let x2 be the state and (x1, u) be the inputs. The candidate ISS-certificate will

be V (x2) =
1
2x

2
2 whose directional derivative with respect to f2 is

V̇ =
∂V

∂x2
f2(x1, x2, u) ≤ |x2|(|a||x1|2 − |x2|+ |u|)

Again select 0 < θ < 1 and redistribute the negative definite term to rewrite V̇ as

V̇ = −(1− θ)|x2|2 − θ|x2|2 + (a|x1|2 + |u|)|x2|

So if x2 satisfies

(1− θ)|x2| ≥ |a||x1|2 + |u|

then we can conclude V̇ ≤ −α(|x2|) where α(r) = θr2 is also K∞. In particular

this means that if

|x2| ≥ max{γ2(|x1|), γu(|u|)}

where γ2(r) =
2|a|r2
1−θ and γu(r) = 2r

1−θ , then V̇ ≤ −α(|x2|). This is sufficient to

show that the lower system is ISS with respect to x1 and u.

So we now have the gains for the two ISS systems. The gain of the upper system

is γ1(r) =
√

r
1−θ . The gain for the lower system is γ2 =

2|a|r2
1−θ . We now check the

small gain condition in theorem 29 to obtain

γ2(γ1(r)) =
2|a|
1− θ

r

1− θ
=

2|a|r
(1− θ)2

which if |a| < 1
2 shows that γ2(γ1(r)) < r and so for this range of a the small gain

condition is satisfied and we can conclude the full system is ISS.

We now turn to a similar small gain result that holds for the feedback intercon-

nection of a pair of Lp stable systems. The system under consideration is shown in

Fig. 5 where there are two systems G1 : Lpe → Lpe and G2 : Lpe → Lpe. The Lp
small gain theorem is similar to the ISS small gain theorem in that the Lp stability

of the interconnected system is guaranteed if the product of the Lp gains of the

subsystems is less than one. The proof of this theorem uses a different technique
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than was used for the ISS small gain theorem. The proof relies on an application

of the Banach contraction mapping principle

THEOREM 30. Contraction Mapping Principle: Let X be a Banach space

and let G : X → X be a contraction mapping. This means there is 0 ≤ γ < 1

such that

∥G[x]−G[y]∥ ≤ γ∥x− y∥

Then there exists a unique element x∗ ∈ X such that x∗ = G[x∗].

One may prove the contraction mapping principle by showing that the recursive

equation

xk+1 = G[xk]

generates a Cauchy sequence of functions when 0 < γ < 1. In Banach spaces all

Cauchy sequences converge to a unique element of the space, so the result follows

easily from standard methods in real analysis [Rudin (1964)]. The Lp small gain

uses this fact to establish the existence of an internal signal for the loop which has

to belong to Lp.

THEOREM 31. (Lp Small Gain Theorem) Consider the interconnection shown

in Fig. 5 of two systems G1 : Lpe → Lpe and G2 : Lpe → Lpe where both

subsystems are finite gain Lp stable. This means, therefore, that there exist non-

negative constants γ1, β1, γ2, and β2 such that

∥y1T ∥Lp ≤ γ1∥u1T ∥Lp + β1

∥y1T ∥Lp ≤ γ2∥u2T ∥Lp + β2

for any T > 0. Then the interconnected system is finite gain Lp-stable if γ1γ2 < 1.

Proof: Consider the operator S2 : Lpe → Lpe defined by the equation

S2[u2T ] = w2T + (G1[w1T + (G2[u2T ])T ])T



6. STABILITY OF FEEDBACK INTERCONNECTIONS: 211

Consider two Lp signals u2T and û2T and examine the Lp norm of the difference

between S2[u2T ] and S2[û2T ]. This consideration yields,

∥S2[u2T ]− S2[û2T ]∥Lp
= ∥G1[w1T + (G2[u2T ])T ]−G1[w1T + (G2[û2T ])T ]∥Lp

≤ γ1∥G2[u2T ]−G2[û2T ]∥Lp + β1

≤ γ1γ2∥u2T − û2T ∥Lp + β1 + β2

By assumption γ1γ2 < 1, so that S2 is a contraction mapping and we can infer the

existence of a unique Lpe function u2 such that u2 = S2[u2]. A similar argument

establishes the existence of a unique u1 ∈ Lpe that satisfies

u1 = S1[u1] = w1 +G2[w2 +G1[u1]]

Since the loop in Fig. 5 is well-posed (i.e. the internal signals, u1 and u2, exist

in Lpe), we can now look at the Lp norm of the internal signals. Since G1 and G2

are finite gain Lp stable, we can see for u1 that

∥u1T ∥Lp ≤ ∥w1T ∥Lp + ∥(G2[u2T ])T ∥Lp

≤ ∥w1T ∥Lp + γ2∥u2T ∥Lp + β2

≤ ∥w1T ∥Lp + γ2(∥w2T ∥Lp + γ1∥u1T ∥Lp + β1) + β2

= γ1γ2∥w1T ∥Lp + (∥u1T ∥Lp + γ2∥w2T ∥Lp + β2 + γ2β1)

solving for ∥u1T ∥Lp in the above inequality yields,

∥u1T ∥Lp ≤
1

1− γ1γ2
(
∥w1t∥Lp + γ2∥w2T ∥Lp + β2 + γ2β1

)
and a similar argument shows that

∥u2T ∥Lp ≤
1

1− γ1γ2
(
∥w2T ∥Lp + γ1∥w1T ∥Lp + β1 + γ2β2

)
which means the Lp norm of both signals is finite and so the interconnected system

is finite gain Lp stable. ♢

An important application of the small gain theorem is seen in the study of ro-

bust stability conditions for LTI systems. Recall that from chapter 3 we developed

a robust stability condition for a multiplicatively perturbed one-parameter feedback

system that relied on the perturbation ∆ being in RH∞. Clearly in most physi-

cal applications that uncertainty may arise from neglected dynamics that are most

probably not linear, so the proof could not be used. But the small gain theorem
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does not require ∆ to be linear. Working in this way we can re-derive the robust

stability condition from chapter 3 by simply requiring that the composition of the

uncertainty and the closed loop map is contractive.

Passivity Theorem for Feedback Interconnections: We now turn to study the

passivity of feedback interconnects. This result differs significantly from the prior

small-gain results in that it asserts that any feedback interconnect of passive sys-

tems is again passive. In particular, we see that passivity is preserved under feed-

back interconnections. This is useful in studying large complex networked dynam-

ical systems [Moylan and Hill (1978)] that consist solely of feedback interactions.

It suggests that if you have a large-scale passive system, then the feedback inter-

connection of the large-scale system with another passive system does not destroy

the passivity of the larger system. This result, therefore, provides a modular way

to build passive networked systems of arbitrarily large scale.

G

G
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2

Σ
+

_

u1

u 2y2

y1r y

FIGURE 6. Feedback Interconnection of Passive Systems

THEOREM 32. (Passivity of Feedback Interaconnects) Consider the feedback

connection shown in Fig. 6 of two systems G1 and G2 with state equations,

ẋi = fi(xi, ei)

yi = hi(xi, ei)

for i = 1, 2 where e1 = u1 − y2 and e2 = u2 + y1. If systems G1 and G2 are

passive, then the feedback connection is also passive.

Proof: Let V1 and V2 be storage functions forG1 andG2, respectively. Since these

systems are passive, we know

V̇i ≤ eTi yi

Let V = V1 + V2 and from our feedback connections we see that

eT1 y1 + eT2 y2 = (u1 − y2)T y2 + (u2 + y1)
T y2

= uT1 y1 + uT2 y2
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This implies that

uT y = uT1 y1 + uT2 y2 ≥ V̇1 + V̇2 = V̇

and so the feedback system is also passive. ♢

One of the reasons we are interested in the feedback connection being passive

is that it can be used to determine if the connection is L2-stable. The following

theorem shows how we can use theorem 32 to establish the L2 stability of two

interconnected passive systems.

THEOREM 33. (L2-stability of Passive Feedback Systems) Consider the feed-

back connection in Fig. 6 where G1 and G2 are two passive systems with storage

functions V1 and V2, respectively such that

eTi yi ≥ V̇i + ϵie
T
i ei + δiy

T
i yi

for i = 1, 2. Then the feedback system is finite gain L2 stable if ϵ1 + δ2 > 0 and

ϵ2 + δ1 > 0.

Proof: Let V = V1 + V2 and note that we can rewrite V̇ as

V̇ = V̇1 + V̇2

≤ −yT
[

(ϵ2 + δ1)I 0

0 (ϵ1 + δ2)I

]
y − uT

[
ϵ1I 0

0 ϵ2I

]
+ uT

[
I 2ϵ1I

−2ϵ2I I

]

Let a = min{ϵ2+δ1, ϵ1+δ2}, b =

∥∥∥∥∥
[

I 2ϵ1I

−2ϵ1I I

]∥∥∥∥∥ ≥ 0, and c =

∥∥∥∥∥
[
ϵ1I 0

0 ϵ2I

]∥∥∥∥∥ ≥
0, then

V̇ ≤ −a|y|2 + b|u||y|+ c|u|2

= − 1

2a
(b|u| − a|y|)2 + b2

2a
|u|2 − a

2
|y|2 + c|u|2

≤ k2

2a
|u|2 − a

2
|y|2

where k2 = b2 + 2ac. Integrating over [0, T ] and using the vector hat V (x) ≥ 0,

we obtain

∥yT ∥L2 ≤
k

a
∥uT ∥L2 +

√
2V (x(0)/a

which establishes that the feedback interconnection is finite gain L2 stable with a

gain less than k
a and a bias of

√
2V (x(0))/a. ♢
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Example: Consider the feedback connection

G1 :

{
ẋ = f(x) + g(x)e1

y1 = h(x)

G2 : y2 = ke2

with k > 0. Suppose a positive definite V : Rn → R exists such that

∂V

∂x
f(x) ≤ 0

and

∂V

∂x
g(x) = hT (x)

This means that the directional derivative of V is

V̇ =
∂V

∂x
f(x) +

∂V

∂x
g(x)e1 ≤ yT1 e1

which means that G1 is passive. The second system is memoryless and so it too is

passive. Now note that

eT2 y2 = keT2 e2 = γkeT2 e2 +
1− γ
k

yT2 y2

So the conditions in theorem 33 are satisfied with ϵ1 = δ1 = 0, ϵ2 = γk and

δ2 = 1−γ
k . So by the preceding theorem, this means the entire interconnected

system is finite gain L2 stable.

We now consider the feedback interconnection of two passive systems when

the external input u = 0. In this case we want to know whether the resulting

interconnection is asymptotically stable. The following theorem provides such

conditions.

THEOREM 34. Consider the feedback connection of two time-invariant dynam-

ical systems where u = 0. The origin is asymptotically stable if

• both feedback components are strictly passive or

• both feedback components are output strictly passive and zero state ob-

servable.

Proof: Let V1 and V2 be the storage functions for G1 and G2, respectively. Let

V (x) = V1(x1) + V2(x2) be a candidate Lyapunov function for the closed loop
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system. In the first case,

V̇ ≤ uT y − ψ1(x1)− ψ2(x2) = −ψ1(x1)− ψ2(x2)

with u = 0 where ψ1 and ψ2 are positive definite functions. This is sufficient to

establish that the origin is asymptotically stable. In the second case,

V̇ ≤ −yT1 ρ1(y1)− yT2 ρ2(y2)

where yTi ρi(yi) > 0 for i = 1, 2 and all yi ̸= 0. Here V̇ is only negative semi-

definite and V̇ = 0 implies y = 0. To use the Invariance principle, we need to show

that y(t) = 0 for all t implies x(t) = 0. Note that y2(t) = 0 implies e1(t) = 0

and the zero-state observability of G1 implies that if y1(t) = 0, then x1(t) = 0. A

similar argument applies for G2 and so the origin must be asymptotically stable by

the Invariance principle. ♢

The proof uses the idea that the sum of the storage functions for the feedback

components can be used as a candidate Lyapunov function for the feedback con-

nection. The preceding analysis is restrictive in the sense that for V̇ = V̇1+V̇2 < 0,

we require both V̇1 ≤ 0 and V̇2 ≤ 0. This is not necessary. One term, V̇1, for in-

stance could be positive as long as V̇2 is sufficiently negative that the sum of both

is negative. This idea is exploited in the following examples.

Example: Consider the feedback connection

G1 :


ẋ1 = x2

ẋ2 = −ax31 − kx2 + e1

y1 = x2

G2 :


ẋ3 = x4

ẋ4 = −bx3 − x34 + e2

y2 = x4

where a,b, and k are positive constants. Let V1 = a
4x

4
1+

1
2x

2
2 as the storage function

for H1. we obtain

V̇1 = ax31x2 − ax31x2 − kx22 + x2e1 = −ky21 + y1e1

So H1 is output strictly passive. With e1 = 0, we have

y1(t) ≡ 0⇔ x2(t) ≡ 0⇒ x1(t) ≡ 0

which shows thatH1 is zero-state observable. Using V2 = b
2x

2
3+

1
2x

2
4 as the storage

function for H2, we obtain

V̇2 = bx3x4 − bx3x4 − x44 + x4e2 = −y42 + y2e2
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So H2 is strictly output passive and with e)2, we have

y2(t) ≡ 0⇔ x4(t) ≡ 0⇒ x3(t) ≡ 0

which shows H2 is zero-state observable. Thus by the second case in the above

theorem, and the fact that V1 and V2 are radially unbounded, we conclude that the

origin is globally asymptotically stable.

7. Stability of Cascade Interconnections

Based on the definitions for the various input-output stability concepts, it should

be apparent that the parallel composition of two stable systems will preserve that

stability. At first glance, one might also think that the cascade (series) connection

of any two stable systems will also preserve stability, but this is not always true as

can be demonstrated in the following example.

Example: Consider the cascaded system where the driving systemG1 in Fig. 7 has

the state space realization

ξ̇1 = ξ2

ξ̇2 = −γ2ξ1 − 2γξ2 + u

y1 = ξ2

(60)

and the driven system, G2, has the state space realization

η̇ = −1
2(1− y1)η

3

y = η
(61)

Note that the driving system is a linear system and where γ > 0. The question is

whether the origin of this cascaded system is asymptotically stable.

u yy1

G1 G2

FIGURE 7. Cascade Connection of Two Input-Output Sys-

tems
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The above system is a cascaded system in which the driving system when u = 0

is a linear system of the form[
ξ̇1

ξ̇2

]
=

[
0 1

−γ2 −2γ

][
ξ1

ξ2

]

The state transition matrix for this linear system is

Φ(t) =

[
(1 + γt)e−γt te−γt

−γ2te−γt (1− γt)e−γt

]

Note that the (2, 1) element has a γ2 term so that for large enough γ, this term may

have an extremely large peak. In particular if we let the initial condition for G1 be

ξ1(0) = 1 and ξ2(0) = 0, then ξ2(t) = −γ2te−γt whose plot is shown on the left

side of Fig. 8 for γ = 10. Note that we see a large negative excursion in ξ2 before

it returns to 0. This phenomena is referred to as peaking [Sussmann and Kokotovic

(1991)].

time, t
0 1 2 3 4 5
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time, t

FIGURE 8. Peaking in the driving system triggers a finite

escape in the driven system- (left) The state of the driving

system, ξ, over 5 seconds - (right) The state of the driven

system showing a finite escape at 0.755 sec.

While ξ2 is negative, we see that η(t) will be increasing. In fact if we insert our

closed form expression for ξ2(t) into the differential equation for G2, we get

η̇ = −1

2
(1− γ2te−γt)η3
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This ODE is separable and we can therefore integrate it to obtain the following

η2(t) =
η20

1 + η20(t+ (1 + γt)e−γt − 1)

Note that the denominator may go to zero for a finite t. This would mean that

η(t) becomes unbounded at a finite time. The specific parameters chosen for Fig. 8

exhibit this finite escape time at t ≈ 0.755. The right hand pane of the figure shows

this finite escape.

What this example shows is that even though both cascaded systems are asymp-

totically stable when there is no input, the cascade combination of these “stable”

systems is unstable. Note that both of these systems are passive, and so clearly, the

cascade combination of the two passive systems may not necessarily lead to a sta-

ble system. The question is whether the other stability concepts we’ve introduced

(ISS and Lp-stability) also suffer from the same problem. It is relatively easy to

show that cascades of ISS or Lp stable systems will preserve the underlying sta-

bility concept. This is one important way in which these other stability concepts

differ from passivity.

Finally, it is important to say something about why such cascaded systems are

of interest to us. In particular, one important way of synthesizing controllers for

nonlinear systems is through a feedback linearization process to be introduced in

chapter 5. This linearization automatically generates a cascade of linear systems.

Clearly, for this case the stability or stabilizability of such cascades will be an

important theme in the development of nonlinear control systems. The fact that the

cascade of two Lp-stable system will again be Lp is formalized in the following

theorem.

THEOREM 35. Consider the cascade connection of a driving systemG1 : Lpe →
Lpe and a driven system G2 : Lpe → Lp. If G1 and G2 are both finite gain Lp
stable then the cascaded system G2G1 is also finite gain Lp stable.

Proof: Since G1 and G2 are both finite gain Lp stable there exist positive con-

stants γ1, γ2, β1, and β2 such that for all T > 0

∥y1T ∥Lp ≤ γ1∥u1T ∥Lp + β1

∥y2T ∥Lp ≤ γ2∥u2T ∥Lp + β2
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Since the output of system G1 is driving the input to system G2, we can rewrite the

second inequality as

∥y2T ∥Lp ≤ γ2
(
γ1∥u1T ∥Lp + β1

)
+ β2

= γ2γ1∥u1T ∥Lp + (γ2β1 + β2)

which shows that the cascaded system is finite-gain Lp stable with a gain of γ2γ1
and a bias of γ2 + β1 + β2. ♢

A similar result an be established with the cascade in Fig. 7 consists of two

input-to-state stable (ISS) systems. This result is stated in the following theorem

without formal proof.

THEOREM 36. (Cascade of ISS Systems) Consider the cascaded

ẋ = f(x, z)

ż = g(z, u)

where f(0, 0) = 0, g(0, 0) = 0 with f and g being locally Lipschitz. Suppose that

the upper (driven) system is ISS with respect to input z. Suppose that the lower

(driving) system is ISS with respect to input u. Then the cascaded system is ISS

with respect to input u.

Let us return to our peaking system and re-examine the driving and driven sys-

tem with regard to Lp-stability, ISS stability, and passivity. The simulation result

in Fig. 8 show that the driven system in equation (61) is not Lp and is not ISS. This

is true because the input to the driven system is ξ and the simulation establishes

the existence of an input ξ with finite Lp norm such that the driven system’s out-

put becomes unbounded. So clearly we cannot apply theorems 35 or 36. In fact,

this example shows that ensuring the two systems are ISS or Lp stable are critical

conditions that when violated can lead to unstable cascades.

If we examine the driving and driven system, with regard, to passivity, we see

that the driving system in equation (60) is a linear system whose A matrix is Hur-

witz. This is sufficient to establish that the driving linear system is strictly passive.

If we examine the driven system, let us consider the storage function

V (η) =
1

2
η2
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and if we compute its directional derivative with respect to the driven system, we

obtain

V̇ = η(−1

2
(1− u)η3) = −1

2
(1− u)η4 = −1

2
η4 +

1

2
uη4

If we define the supply rate function r(u, η) = 1
2uη

4, then clearly

r(u, η) ≤ V̇ + ψ(η)

where ψ(r) = 1
2r

4 is positive definite. We can therefore conclude that the driven

system is also strictly dissipative. In this regard, both systems are strictly dissipa-

tive and so both are asymptotically stable when the input is zero. However, our

simulation results show that the cascade is not asymptotically stable and so estab-

lishing the dissipative nature of each subsystem is not sufficient to assure the stable

or dissipative nature of the whole.

8. Computational Methods for Stability Certificates

Lyapunov’s direct method certifies the asymptotic stability of a system’s equilib-

rium by checking if there exists a function V : Rn → R that is positive definite,

V (x) > 0, with negative definite directional derivative, −V̇ (x) > 0. The direct

method, however, provides little guidance on how to ”find” such certificates. One

method for finding a Lyapunov function is to start with a function that is already

known to be a stability certificate for a closely related system, introducing a param-

eterization of that function, and then searching for the parameters which establish

this ”candidate” function is indeed a Lyapunov function. That search can be con-

ducted computationally as part of an optimization problem that seeks to minimize

some measure of the parameter’s ”cost” over a feasible set for which V > 0 and

−V̇ > 0. This means that we have transformed the analysis problem into a com-

putational problem. In recent years, the advances in numerical methods for convex

optimization now make it possible to numerically find such Lyapunov functions.

One of the main roadblocks we face in developing such a computational ap-

proach is that the problem of deciding whether a multi-variate function, V , is pos-

itive semidefinite is undecidable. If we restrict our attention to V that are polyno-

mial, then the search becomes NP-hard. So at the outset, our problem of certifying
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whether a candidate Lyapunov function is a stability certificate appears to be com-

putationally intractable. One may get around this issue by relaxing the Lyapunov

conditions to a criterion that is only sufficient for positivity and yet is computation-

ally easy to verify. The particular relaxation we consider search for certificates, V ,

that are sum-of-squares or SOS polynomials.

Let R[x] denote the set of all polynomials with indeterminate variables x =

{x1, . . . , xn} with real valued coefficients. If a polynomial V ∈ R[x] is positive

semidefinite, then an obvious necessary condition is that its degree is even. A sim-

ple sufficient condition for V to be positive semidefinite, therefore, is the existence

of an SOS decomposition of the form

V (x) =
∑
i

v2i (x)

where vi ∈ R[x] for all i = 1, 2, . . . ,m. If we can find an SOS decomposition,

then one can conclude that V is positive semidefinite. The obvious questions are

1) how conservative is this SOS decomposition and 2) how easy is it to find such

decomposition? The first question is known as Hilbert’s 17th problem Reznick

(2000). In particular, it can be shown that the SOS and non-negative polynomials

are equivalent for polynomials of one variable, quadratic polynomials and quartic

polynomials in two variables Parrilo (2003).

To answer the second question regarding finding SOS decompositions, let us

consider a polynomial V ∈ R[x] of degree 2d and let us assume it can be written

as a quadratic form in all monomials of degree less than equal d given by the

different products of the x variables. In particular, this means we can write

V (x) = vTQv, vT =
[
1, x1, x2, . . . , xn, x1x2, . . . , x

d
n

]
(62)

where Q is a constant matrix. The length of the monomial vector, v, is

(
n+ d

d

)
.

If the matrix Q is positive semidefinite, then V (x) has an SOS decomposition and

so is nonnegative. Note that the matrix Q is not unique and so Q may be PSD for

some representations and not for others. By expanding out the right hand side of

equation (62) and matching coefficients of x, one can readily show that the set of

matrices that satisfy equation (62) will form an affine variety of a linear subspace

(in the space of symmetric matrices). If the intersection of this affine subspace
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with the positive semidefinite matrix cone is nonempty, then the function V is

guaranteed to be SOS and so is also nonnegative.

As an example, consider a function V of the form

V (x, y) = 2x4 + 2x3y − x2y2 + 5y4(63)

If we take vT =
[
x2, y2, xy

]
, then V may be written as a quadratic form,

V (x, y) =

 x2

y2

xy


T  q11 q12 q13

q12 q22 q23

q13 q23 q33


 x2

y2

xy


= q11x

4 + q22y
4 + (q33 + 2q12)x

2y2 + 2q13x
3y + 2q23xy

3

If we then equate coefficients, we obtain the following system of linear equations



2

5

−1
2

0


=



1 0 0 0 0 0

0 5 0 0 0 0

0 0 1 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2





q11

q22

q33

q12

q13

q23


The set of all solutions to this system of linear inequalities can be readily shown to

be [
q11 q22 q33 q12 q13 q23

]
=
[
2 5 −1− 2λ λ 1 0

]
where λ ∈ R is any real value and so our expression for V take the form,

V (x, y) = vT

 2 λ 1

λ 5 0

1 0 −1− 2λ

 v = vTQ(λ)v = vT (Q0 + λQ1)v(64)

where Q0 =

 2 0 1

0 5 0

1 0 −1

 and Q1 =

 0 1 0

1 0 0

0 0 −2

. To see if V has an SOS

decomposition, we need to find λ such that Q(λ) = Q0 + λQ1 is a positive semi-

definite matrix. Note that this takes the form of a nonstrict linear matrix inequality

or LMI.
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The “standard form” for a “strict” linear matrix inequality (LMI) is an affine

matrix-valued function of the form,

Q(λ) = Q0 +
m∑
i=1

λiQi > 0

where λ ∈ Rm are decision variables and Qi = QT
i ∈ Rn×n are symmetric

matrices for i = 1, 2, . . . ,m. The LMI feasibility problem is given symmetric

matrices, {Qi}mi=1, determine where there exists a vector λ ∈ Rm such that the

LMI Q(λ) > 0. We’ve stated the strict version of this problem. The nonstrict

version requires us to verify that Q(λ) ≥ 0 which is actually the form of the

problem we gave in our example.

The LMI feasibility problem is one of those matrix problems which are compu-

tationally tractable. This problem is efficiently solved using “interior-point” tech-

niques that revolutionized the solution of linear programs back in the mid 1980’s

Adler et al. (1989). The development of interior-point solvers for strict LMI prob-

lems appeared in the early 1990’s Gahinet et al. (1994). These solvers are re-

cursive algorithms with polynomial time-complexity. Surprisingly, the number of

recursions is relatively constant with respect to the number of problem decision

variables, which makes these methods extremely efficient. Algorithms that solve

the nonstrict LMI problems are sometimes called semidefinite programs Vanden-

berghe and Boyd (1996). Freely available SDP solvers such as SDPT3 began to

appear around 2000 Toh et al. (1999).

One of the main issues in using such SDP solvers is that their user interfaces

are not in a form that is easy to use directly. This has led to the development of a

number of toolkits that essentially translate LMI expressions that are in the form

of matrix inequalities, into the standard form that the solvers then work with. One

of the first widely used toolkits that was developed specifically for SOS program-

ming was SOSTOOLS Prajna et al. (2002). The interface for SOSTOOLS can be

somewhat clumsy to work with and so a more recent interface toolkit known as

YALMIP Lofberg (2004) has been gaining widespread acceptance across the com-

munity. The examples that we show below use YALMIP as the interface to the

SDP solver.
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We will now use YALMIP to see if the polynomial in equation (63) has an SOS

decomposition. Recall that this involves finding a real λ such that Q(λ) in equation

(64) is positive semidefinite. We start by declaring the state variables and forming

the polynomial we want to check,

x = sdpvar(1,1); y = sdpvar(1,1);

V = (2*xˆ4)+(2*xˆ3*y)-(xˆ2*yˆ2)+(5*yˆ4);

We then form the vector of monomials, v, in equation (62) and then con-

struct the quadratic form, vTQv. The command monolist constructs a

list of all monomials with degree less than 2. For this problem that means

vT =
[
1 x y x2 xy y2

]
(65)

You could have also specified a specific list of monomials.

v = monolist([x y],degree(V)/2);

Q = sdpvar(length(v));

V_sos = v’*Q*v;

We then form the set of SOS constraints that are passed on to the solver.
These constraints require Q to be PSD and the coefficients of the SOS poly-
nomial to match the coefficients of the specified V . Once this is done we
can call the SOS solver that computes the SOS decomposition of V (if it
exists). Since we did not formally declare any SOS-type constraint, we use
the solver optimize which returns the desired answer (if it exists) in the
matrix Q.

F = [coefficients(V-V_sos,[x y])==0, Q>=0];

sol=optimize(F);

if sol.problem==0

value(Q);

end
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The diagnostics from optimize are contained in the structure sol and

if member sol.problem is zero, then the SDP solver was able to find a

positive semidefinite matrix Q that satisfied the problem’s constraints. For

this particular example that matrix is

Q =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 2 1 −1.4476
0 0 0 1 1.8952 0

0 0 0 −1.4476 0 5


which is defined with respect to the monomial ordering in equation (65).

The original ordering we used in defining our problem in equation (64)

had a monomial ordering of vT = [x2, y2, xy]. If we extract out these rows

and columns of the Q computed using YALMIP, then we obtain

Q(λ) =

 2 −1.4476 1

−1.4476 5 0

1 0 1.8952

 =

 2 λ 0

λ 5 0

1 0 −1− 2λ


YALMIP asserted that for λ = −1.4476, this Q(λ) is positive semidefinite.

This observation is verified by computing the eigenvalues of Q(−1.4476)
to find they ( 0.9633, 3.2922, and 5.6398) are all nonnegative. The SOS

decomposition can be obtained by taking the square root of LTL = Q, to

obtain

L =

 1.2927 −0.4202 0.3903

−0.4202 2.1957 0.0467

0.3903 0.0467 1.3193

⇒ V (x) =
3∑
i=1

vi(x)

= (1.2927x2 − 0.4202y2 − 0.3903xy)2

+(−0.4202x2 + 2.1957y2 + 0.0467xy)2

+(0.3903x2 + 0.0467y2 + 1.3193xy)2

= 2x4 + 2x3y − x2y2 + 5y4
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which verifies that V is SOS.

The preceding discussion steps through with YALMIP what we did in
forming the LMI Q(λ) = Q0 + λQ1. YALMIP also provides a more direct
way of doing this through the command sos that streamlines the task of
forming an SOS constraint and then using the command solvesos to
compute the decomposition and actually find the Q matrices. Alternatively,
one could use the command sosd to just return the SOS decomposition.

x = sdpvar(1,1); y = sdpvar(1,1);

V = (2*xˆ4)+(2*xˆ3*y)-(xˆ2*yˆ2)+(5*yˆ4);

F = sos(V);

[sol,u,Q,res] = solvesos(F);

if sol.problem==0

sdisplay(u{1})

value(Q{1})

v = sosd(F);

sdisplay(v)

end;

This returns a slightly different decomposition than we obtained doing the

long way, but it still forms an SOS decomposition for V , merely emphasiz-

ing the fact that these decompositions are not unique.

With the preceding introduction to using YALMIP in finding SOS de-

compositions, we now proceed to show how to use it in finding Lyapunov

functions for nonlinear dynamical systems. Consider the linear dynamical

system

ẋ1 = −ax1 + x2

ẋ2 = x1 − x2

We can check the stability of this system by looking at the eigenvalues of

A =

[
−a 1

1 −1

]
. These eigenvalues will all have nonpositive real parts
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for a ≥ 1. At a = 1, it has a zero eigenvalue and for a < 1, the system
is unstable. We will use this to check the calculation made by YALMIP.
As before, our YALMIP script starts by cleaning up the workspace and
declaring the state variables,

clear all;

yalmip(’clear’);

sdpvar x1 x2;

x = [x1 ; x2];

We then declare the vector field with a = 2,

a = 2;

f = [ -a*x1+x2; x1-x2];

We form the first SOS constraint that requires V ≥ 0. This constraint uses
sos to form the SOS constraint

P = sdpvar(length(x));

V = x’*P*x;

F = [P>=0]+[sos(V)];

We then form the second SOS constraint that requires −V̇ > 0. This con-
straint uses jacobian to symbolically compute the Jacobian of V . Note
that the actual constraint we are checking to be SOS is−V̇ −ϵ(x21+x22) ≥ 0.
The second part of this inequality forces −V̇ to be strictly positive definite
since the SDP solver only works with nonstrict inequality constraints.

negVdot = -jacobian(V,x)*f;

eps = 0.1;

F = F + [sos(negVdot-eps*(x’*eye(2,2)*x))];
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We then use solvesos to compute the SOS decomposition of these con-
straints. The function returns the solution status sol, a vector u of the
monomials, and the symmetric matrix Q associated with those monomials.
The returned vector u and Q are data structures that contain two members;
one for the first sos constraint on V and another for the second SOS con-
straint on V̇ . We’re interested in the first one. In particular if sol.problem
equals 0, then SDPT3 found a feasible solution and we can then display it

[sol,u,Q] = solvesos(F);

if sol.problem == 0

disp(’Constraints are SOS’);

sdisplay(u{1}’*Q{1}*u{1})

else

disp(’Constraints FAILED’);

end

The Lyapunov function returned from this has the form

V (x1, x2) = 5.2779x21 + 6.7222x22 + 2.8886x1x2

=

[
x1

x2

]T [
5.2779 1.443

1.443 6.722

][
x1

x2

]
= xTPx

We can readily check to see that P is indeed positive definite and symmetric

with real eigenvalues 4.3852 and 7.6148. We can also verify that it satisfies

the Lyapunov equation

ATP+PA =

[
−2 1

1 −1

][
5.2779 1.443

1.443 6.722

]
+

[
5.2779 1.443

1.443 6.722

][
−2 1

1 −1

]

=

[
−24 7.6671

7.6671 −7.6671

]

which has eigenvalues−27.0352 and−4.6320 and so is negative definite as

expected.
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To double check our answer, let us see what happens if we let a = 1,
so that the system has a zero eigenvalue. In this case, running the same
script yields problem.sol=1, which implies that SDPT3 could not find
an SOS decomposition. In particular, we fail to find a positive definite V
for this problem. If we relaxed the requirement for −V̇ > 0 and simply
required it to be V̇ ≥ 0, we would be able to get a solution. We can relax
this restriction by simply changing the SOS constraint on V̇ to

F = F + [sos(negVdot)];

With this change, SDPT3 does find a solution, but the resulting V (x) matrix

is now

V (x) = 5.7114x21 + 5.7114x22 + 1.6364x1x2 = xT

[
5.7114 1.6364

1.6364 5.7114

]
x

which is positive definite. But now when we look at the Lyapunov equation

we see that,

ATP+PA =

[
−1 1

1 −1

][
5.1174 0.8182

0.8182 5.7114

]
+

[
5.1174 0.8182

0.8182 5.7114

][
−1 1

1 −1

]

=

[
−9.7864 9.7864

9.7864 −9.7864

]
which has eigenvalues −19.5729 and 0. So this did not yield an asymptot-

ically stable system, as expected. The reason why our SOS decomposition

failed was because we were forcing −V̇ to be positive definite, not just

positive semidefinite.

9. Summary

This chapter reviewed advanced stability concepts used in characterizing

the behavior of systems that are driven by external inputs. In particular, this

chapter reviewed results regarding Lyapunov stability, input-to-state stabil-

ity, Lp-stability, and passivity. The basic concepts from Lyapunov stability
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that were covered in my Linear Systems Theory course were reviewed here

and we introduced advanced results regarding global Lyapunov stability and

the Invariance Theorem. We developed the notion of Input-to-state stability

as a formal extension of uniform ultimate boundedness. Our results on Lp
stability were also covered in Linear systems theory with advanced topics

on the Hamilton-Jacobi-Isaacs Inequality. This chapter also reviewed basic

results on the relationship between Lyapunov stability and passivity. Of par-

ticular importance in this chapter were results regarding whether these sta-

bility properties were preserved under feedback and cascade connections.

In particular, many of these stability concepts are preserved under feedback

connections if the interconnected systems satisfy a small gain condition or

if the systems were passive. Cascades of passive systems, however, do not

usually preserve passivity as was demonstrated using the peaking example.

This example will be important in our later study of constructive nonlin-

ear control schemes. Much of this material was drawn directly from Khalil

(2002). Some of the results on passive systems were drawn from Sepulchre

et al. (2012). The chapter closed by demonstrating how SOS-programming

can be used to search for Lyapunov functions. These methods are also use-

ful in establishing safety certificates and regions of attraction. The dis-

cussion presented here is drawn largely from Parrilo (2003) and Lofberg

(2004).



CHAPTER 5

Constructive Nonlinear Control Systems

Constructive nonlinear control is a sophisticated approach to nonlinear

control that was pioneered by Koktovic and his students at UCSB [Sepul-

chre et al. (2012)]. It is called ”constructive” because the controllers are

synthesized in a recursive manner from control Lyapunov functions (CLF)

[Sontag (1989)] that are constructed in a step by step manner using inte-

grator backstepping [Krstić and Kokotović (1996)] on a base scalar system.

That base scalar system is obtained through the normal form of an affine

nonlinear system that has been feedback linearized [Isidori (1995, 1999)].

Controller synthesis can be based directly on the CLF using well known

ISS formulations, or it can be based on the feedback passivation of the cas-

caded chain of integrators in the normal form. The chapter concludes by

illustrating this constructive synthesis on a well known benchmark known

as the TORA problem [Wan et al. (1996)].

1. Input-Ouptut Feedback Linearization

Traditionally, linearization of a nonlinear system is done through a Taylor

series approximation as seen in Lyapunov’s indirect method. This approxi-

mation is useful in a local neighborhood of the equilibrium provided it has

no center eigensubspace. One issue with this approach is that the size of

the ”neighborhood” may be too small to be of practical value. A different

approach to linearization works with nonlinear systems that are affine in the

control

ẋ(t) = f(x) + g(x)u

y = h(x)

231
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In this case, we can linearize the system through a transformation on the

input u such that with respect to the new input, v, the system’s input/output

map appears to be linear. This approach is known as input-output feed-

back linearization. It greatly enlarges the size of the region in which the

linearization holds, but it does tend to be sensitive to modeling uncertainty

and so has a robustness issue.

Consider a nonlinear scalar input/output system whose input u enters the

state equation in an “affine” manner

ẋ(t) = f(x(t)) + g(x(t))u(t)

y(t) = h(x(t))

with f(0) = 0 so that 0 is an equilibrium point of the unforced (i.e. u = 0)

system. For convenience, we introduce the following notation for the Lie

derivative of h with respect to f ,

Lfh(x)
def
=
∂h(x)

∂x
f(x)

Lie derivatives are sometimes called directional derivatives since they de-

scribe the rate of change in h along the trajectories generated by the vector

field f(x). This notation can be iterated upon so that

Lkfh(x)
def
=
∂Lk−1

f h(x)

∂x
f(x)

with L0
f (h(x))

def
=h(x). With this notation, let us compute the time derivative

of the output,

ẏ(t) = Lfh(x(t)) + Lgh(x(t))u(t)

Note that if Lgh(x) ̸= 0, then we can introduce an input variable transfor-

mation of the form

u(t) =
1

Lgh(x(t))
(v(t)− Lfh(x(t)))

which would give the following linear differential equation relating the new

input, v, to the output y

ẏ(t) = v(t)
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If Lgh(x) = 0, then we simply differentiate again and continue doing so

until u appears in the expression. This would mean that there is an integer

r > 0 such that

dry(t)

dtr
= y(r)(t) = Lrfh(x(t)) + LgL

r−1
f h(x(t))u(t)

and where LgLr−1
f h(x) ̸= 0. One could then use the feedback transforma-

tion

u(t) =
1

LgL
r−1
f h(x(t))

(v(t)− Lrfh(x(t)))

to obtain the linear input-output map

y(r)(t) = v(t)

This is a linear system consisting of a chain of r integrators. The value of r

for which LgLr−1
f h(x) ̸= 0 is called the relative degree of the system.

+

-

+

-

+

-

stator rotor

e

FIGURE 1. Field-controlled DC Motor

Example: Let us now present an example illustrating how this input-output

feedback linearization works. We consider a field-controlled DC motor

whose physical layout is shown in Fig. 1. The state equations associated

with the electrical part of this system are

ve = Le
die
dt

+Reie

va = La
dia
dt

+Raia + e

where e is the back EMF generated by the motor spinning at angular rate ω.

This EMF is proportional to the product of the stator current and the angular



234 5. CONSTRUCTIVE NONLINEAR CONTROL SYSTEMS

rate in which c is the proportionality constant.

e = cieω

The motor torque is T = θieia where ia is the current in the rotor and this

defines the mechanical part of the motor. If we let ve be the control input u,

the output y = ω and the states are x1 = ie (stator current), x2 = ia rotor

current, and x3 = ω. With these variable assignments we get the following

system of state equations

ẋ1 = −ax1 + u

ẋ2 = −bx2 + ρ− cx1x3

ẋ3 = θx1x2

where a = Re/Le, b = Ra/La, and ρ = va/La. The open loop system has

an equilibrium at x1 = 0, x2 = ρ/b, and a constant shaft speed setpoint

of ω0. The operating point for this system is therefore taken to be x∗ =[
0 ρ/b ω0

]T
.

Our system equation is in the form of ẋ = f(x) + g(x)u with y = h(x)

in which

h(x) = x3, f(x) =

 −ax1
−bx2 + ρ− cx1x3

θx1x2

 , g(x) =

 1

0

0


To find the I/O feedback linearizing control we take the output y and

begin differentiating by time until u appears. The first derivative of y yields,

ẏ = Lfh(x) + Lgh(x)u = ẋ3 = θx1x2

Since u does not appear in this expression, we know Lgh(x) = 0. We must

therefore differentiate one more time to get

ÿ = L2
fh(x) + LgLfh(x)u = θx1ẋ2 + θẋ1x2

= θx1(−bx2 + ρ− cx1x3) + θ(−ax1 + u)x2
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Since u appears in ÿ, we know the relative degree of this system is r = 2.

We now determine the I/O linearizing control u. From the prior discussion

we know this linearizing control will be u = 1
LgLfh(x)

(
v − L2

fh(x)
)
; so we

will need to compute the Lie derivatives L2
fh(x) and LgLfh(x).

We now compute the iterated Lie derivatives of h with respect to f and

g. These iterated Lie derivatives are

L0
fh = h(x) = x3

Lfh =
∂h

∂x
f(x) =

[
0 0 1

] −ax1
−bx2 + ρ− cx1x3

θx1x2

 = θx1x2

LgLfh =
∂Lfh

∂x
g(x) =

∂θx1x2
∂x

g(x) =
[
θx2 θx1 0

] 1

0

0

 = θx2

L2
fh(x) =

∂Lfh

∂x
f(x) =

∂θx1x2
∂x

f(x) =
[
θx2 θx1 0

] −ax1
−bx2 + ρ− cx1x3

θx1x2


= −(a+ b)θx1x2 + ρθx1 − cθx21x3

We therefore see that the I/O linearizing control is

u =
1

LgLfh(x)
(v − L2

fh(x))

=
v − (−(a+ b)θx1x2 + ρθx1 − cθx21x3)

θx2

= (a+ b)x1 + c
x21x3
x2
− ρx1

x2
+

v

θx2

We can verify the correctness of our control by substituting back into

the ÿ equation and seeing if this reduces to a chain of two integrators. In
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particular, this computation yields

ÿ = θx1ẋ2 + θẋ1x2

= θx1(−bx2 + ρ− cx1x3) + θ(−ax1 + u)x2

= −θ(a+ b)x1x− 2 + θρx2 − cθx21x3

+
[
θ(a+ b)x1x2 + cθx21x3 + θρx1 + v

]
= v

which indeed verifies that the proposed control linearizes the input-output

map from v to y.

It is important to note that we have a system with three states, but that

only two are actually observable at the output. This raises a question with

regard to the ”stability” of the third state variable. The following section

addresses this issue by introducing the normal form for a scalar affine sys-

tem which shows more clearly how the chain of integrators is related to the

unobservable dynamical states.

s Example - Tracking Control of a 2D Mobile Robot: We now present

a tracking example that will be used later with other robust nonlinear con-

trol methods. This section compares the performance of tracking controllers

based on Taylor Jet and I/O Feedback linearizations of the plant. The

“plant” is a two-wheeled robotic vehicle shown in Fig. 2. Let F denote

the force applied by both wheels along the body’s x-axis and let T denote

the torque developed by these wheels about the vehicle’s center of mass

which is located at point (x, y) in the plane. We introduce the control vec-

tor u(t) =

[
F (t)

T (t)

]
. The state variables of this system are the plant’s

center of mass, x and y, the angle of the body with respect to an inertial

reference, θ, the velocity of the vehicle in the direction of the body’s x-axis,

vx, and the angular rate, ω, of that body angle. With these conventions, the

system to be regulated and its equations of motion are shown in the middle

pane of Fig. 2.
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x

y

FIGURE 2. Two-wheeled Robot - (left) vehicle geometry -

(middle) equations of motion - (right) picture of system

We will examine two methods for determining the regulating controller,

both of which involve linearizing the original system equations. The first

approach uses a Taylor jet linearization for the system ẋ = f(x, u). This

linearization has the form

ẋ =

[
∂f

∂x
(x∗, 0)

]
(x− x∗) +

[
∂f

∂u
(x∗, 0)

]
u(66)

= A(x− x∗) +Bu

where x∗ is the operating point about which the Taylor jet is constructed.

Since A and B are real-valued matrices, this is a system that is commonly

studied in linear systems theory. This suggests that if one were to design a

state feedback controller matrix, K, such that the control signal u = K(x−
x∗) asymptotically stabilizes the linearized system about this equilibrium

point, then we should achieve adequate regulation of the nonlinear system.

The first step in developing such a state feedback control is to find the

linearization in equation (66) for our two-wheeled cart. We start by intro-

ducing the new tracking variables z1 = x − xd, z2 = y − yd, z3 = θ − θd,
z4 = vx − vd, and z5 = ω where (xd(t), yd(t)) is the trajectory we want our

vehicle to track in the plane, θd(t) is the direction of the desired trajectory’s

velocity vector, and vd(t) is the magnitude of that desired velocity vector.
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With this change of variables our system equations in Fig. 2 become
ż1

ż2

ż3

ż4

ż5

 =


(z4 + vd) cos(z3 + θd)− ẋd
(z4 + vd) sin(z3 + θd)− ẏd

z5 − θ̇d
−v̇d
0

+


0 0

0 0

0 0

1 0

0 1


[
u1

u2

]

= F (x) +G(x)u

Computing the Jacobian matrix for F yields the following linearized system

equation
ż1

ż2

ż3

ż4

ż5

 =


0 0 −vd sin(θd) cos(θd) 0

0 0 vd cos(θd) sin(θd) 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0




z1

z2

z3

z4

z5

+


0 0

0 0

0 0

1 0

0 1


[
u1

u2

]

= Az +Bu

We can then use any one of a number of methods to design stabilizing

controllers for this system. In particular, we’ll compute the linear quadratic

regulator (LQR) that finds the state gains, K, such that the controller u =

Kz minimizes the cost functional

J [u] =

∫ ∞

0

(zT z + uTu)dτ

This controller was simulated in the following MATLAB script (Fig. 3) with

the desired trajectory (xd(t), yd(t)) being defined by the following equa-

tions

ẋd(t) = 50 sin

(
2πt

50

)
, xd(0) = 0

ẏd(t) = 50 cos

(
4πt

50

)
, yd(0) = 0

The LQR control was recomputed at each time instant using the desired

reference trajectory states. The resulting vehicle trajectory for a vehicle

initially at rest at position (x0, y0) = (50, 0) is shown on the left hand side of
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Fig. 3. We indeed obtain tracking of the desired reference trajectory, though

the vehicle’s initial transient shows some significant oscillation while it is

picking up speed.

-400 -200 0 200 400 600 800
x

-200

-150

-100

-50

0

50

100

150

200

y

desired traj
vehicle traj

direction of
time

vehicle is lost

FIGURE 3. (left) trajectories for linearized control with

(x0, y0) = (50, 0) - (right) trajectories with (x0, y0) =

(55, 0).

An important limitation of the preceding linearization approach is that

the topological equivalence is only local (i.e. in a neighborhood of the

equilibrium point). This suggests that if we were to start the vehicle further

away from the desired reference trajectory then our control strategy might

fail. This indeed is the case for our system. In particular, if we change the

initial condition to (x0, y0) = (55, 0), then we obtain the system trajectory

shown on the right side of Fig 3. In this case, we see the vehicle simply spins

around close to its starting position while it is trying to gather sufficient

speed to catch up to the desired state trajectory. In this case the vehicle was

never able to track the desired reference trajectory.

The “local” nature of our control is an important limitation of the lin-

earization approach used above. One way of overcoming this limitation

is to base our controller on a feedback linearization of the plant, since we

know this allows a much larger operating region. In the feedback lineariza-

tion approach we will find it convenient to introduce a change of control
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variables in which

u1(t) = F (t) =

∫ t

0

v1(s)ds

u2(t) = T (t) = v2(t)

The original control, u1 = F , is then treated as another system state, thereby

extending the state vector of the original system. With this change of control

variable we obtain the following state equations for our cart,

d

dt



x

y

θ

vx

ω

F


=



vx cos θ

vx sin θ

ω

F

0

0


+



0 0

0 0

0 0

0 0

0 1

1 0


[
v1

v2

]

We now introduce a state transformation which is obtained by taking the

derivatives of the tracking error. This means that the first three states are

z1 = x− xd, z2 = ẋ− ẋd, z3 = ẍ− ẍd

and the second three states are obtained from the derivatives of the y com-

ponent,

z4 = y − yd, z5 = ẏ − ẏd, z6 = ÿ − ÿd

The differential equations for these components are then readily computed

as

ż1 = vx cos θ − ẋd = z2

ż2 = F cos θ − vxω sin θ − ẍd = z3

ż3 = v1 cos θ − vxv2 sin θ − (2Fω sin θ + vxω
2 cos θ)− ...

x d

ż4 = vx sin θ − ẏd = z5

ż5 = F sin θ + vxω cos θ − ÿd = z6

ż6 = v1 sin θ + vxv2 cos θ + (2Fω cos θ − vxω2 sin θ)− ...
y d
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These equations have the form of two chains of integrators driven by the

inputs into states z3 and z6. This means we can rewrite the above differential

equations in the following form,

ż1

ż2

ż3

ż4

ż5

ż6


=



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0





z1

z2

z3

z4

z5

z6


+



0 0

0 0

1 0

0 0

0 0

0 1


[
−(2Fω sin θ + vxω

2 cos θ)− ...
x d

2Fω cos θ − vxω2 sin θ − ...
y d

]

+

[
cos θ −vx sin θ
sin θ vx cos θ

][
v1

v2

]
ż = Az + E(α + ρv)

where A is the linear matrix representing the chain of integrators, α and ρ

are matrices whose components are functions of the original system states,

F , ω, θ, and vx. Note that if we select the control v to have the form

v = ρ−1

(
−α +

[ ...
x d
...
y d

]
+Kz

)
(67)

Then the resulting state equation is given by

ż = (A+ EK)z(68)

where

ET =

[
0 0 1 0 0 0

0 0 0 0 0 1

]

K =

[
k11 k12 k13 k14 k15 k16

k21 k22 k23 k24 k25 k26

]
The important thing to note here is that equation (68) is a linear differential

equation and so if we can select K so that A+EK is a Hurwitz matrix, then

we would have globally stabilized our vehicular system using the control in

equation (67).
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We can indeed check this out using a MATLAB simulation. The results

are shown in Fig. 4 for a vehicle at rest with initial positions (x0, y0) =

(50, 0) and (x0, y0) = (250, 250). These simulation results show conver-

gence to the desired trajectory in which the tracking error appears to be a

monotone decreasing function of time. The gains were not chosen, in this

case to be optimal, they were simply chosen to place all of the system’s

closed poles at (−1, 0). It would have been relatively easy to obtain bet-

ter performance by simply increasing these gain values. By showing the

response from both initial conditions, we demonstrate that the feedback lin-

earized control is indeed “global” in a manner that is far superior to the

“local” linear controller.

FIGURE 4. Feedback Linearized Controller

2. Normal Form for Scalar Affine Systems

The feedback transformation used in the preceding section can be seen as

introducing a nonlinear change of coordinates where the original states, x,

are transformed into a new state whose components are the output y and its

derivatives. The resulting realization is called the normal form for the scalar

affine system and it is often used in developing robust stabilizing controls.

One advantage of the normal form is that it clearly shows what parts of the

original system are unobservable from the output which is useful in trying

to develop constructive or passivity-based controllers.
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Let us consider a scalar input-output system of the form

ẋ = f(x) + g(x)u

y = h(x)

where about a point x0 ∈ Rn the system has a relative degree of r < n.

What we showed above is that if we simply differentiate the output r times,

we can then introduce a specific feedback linearizing transformation u =

k(x, v) such that the input-output map from v to y satisfies the rth order

differential equation y(r) = v, which is a linear map. This linear system has

r states, zi for i = 1, . . . , r, defined as

z1 = y

z2 = ẏ

...
...

zr = y(r−1)

and we will find it convenient to think of the map from the nonlinear system

states x into zi for i = 1, . . . , r as coordinate transformations. In other

words, there will be smooth functions Ti : Rn → R for i = 1, . . . , r such

that

z1 = T1(x), z2 = T2(x), . . . zr = Tr(x)

Let us now assume we can find n − r other functions, Tk for k = r +

1, . . . , n such that T : Rn → Rn

z = T (x) =


T1(x)

...

Tn(x)


is a diffeomorphism in a neighborhood of x0. This means that T is C1 and

T−1 is C1 and that any orbits of the x-system can be mapped smoothly into

the orbits of the z-system and vice versa. In other words, it would mean

that T is a nonlinear similarity transformation between the x-system states

and the z-system states that leaves the topological properties of the orbits
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unchanged. Simply stated this means that assessing stability of the x-system

can be done by looking at the z-system and vice versa.

Let us further assume that in addition to T being a local diffeomorphism

that we can choose Tr+1, . . . , Tn so that

∂Tk(x)

∂x
g(x0) := LgTk(x0) = 0(69)

for all k = r + 1, . . . , n. In fact, we can usually establish that this can be

done (i.e. T is both a diffeomorphism and satisfies the conditions in equa-

tion (69). In particular these conditions define a set of partial differential

equations that can be used to find the Tk. Such PDEs also require some

boundary conditions. In general, since we usually study stability with re-

spect to the system’s origin, this would mean that x0 = 0 and so we would

also usually want T (x0) = 0 as well.

Provided we can find such a T , then we can write the dynamics of the

z-system as

ż1 = z2

ż2 = z3
...

...

żr−1 = zr

żr = Lrfh(x) + LgL
r−1
f h(x)u

Since T is a diffeomorphism there exists T−1(z) = x so that

żr = Lrfh(T
−1(z)) + LgL

r−1
f h(T−1(z))u

which shows that żr is a function of the z state and for convenient we take

a(z) = LgL
r−1
f h(T−1(z)), b(z) = Lrf (T

−1(z))

so that the zr state equation is written as

żr = b(z) + a(z)u



2. NORMAL FORM FOR SCALAR AFFINE SYSTEMS 245

The state equation for zr+1 is then written as

żr+1 =
∂Tr+1(x)

∂x
(f(x) + g(x)u)

= LfTr+1(x) + LgTr+1(x)u

= LfTr+1(T
−1(z))

= qr+1(z)

where we used that orthogonality condition in equation (69) and the fact

that x = T−1(z). This shows that żr+1 is also a function of the system state

z. We can repeat this for the remaining states zk for k = r+2, . . . , n to see

that

żr+2 = qr+2(z)

...
...

żn = qn(z)

If we then choose the control transformation

u =
1

a(z)
(v − b(z))

we decouple the states z1, . . . , zr from the other states zr+1, . . . , zn and we

get the output map

żi = zi+1, (i = 1, . . . , r − 1)

żr = v

y = z1

It is more convenient to rewrite the state equations in a manner that sep-

arates out components z1, . . . , zr from zr+1, . . . , zn. In particular, define

z =

[
ξ

η

]
, where ξ =


z1
...

zr

 , and η =


zr+1

...

zn


With this notation we can rewrite the z-system equations as
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ξ̇ = Acξ +Bc (a(η, ξ)u+ b(η, ξ))

η̇ = q(η, ξ)

y = Ccξ

where

Ac =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
... . . . ...

0 0 0
... 0

 , Bc =


0
...

0

1

 , Cc =
[
1 0 · · · 0

]

The preceding realization is called the normal form for the scalar in-

put/output system ẋ = f(x) + g(x)u of relative degree r.

The normal form of an affine system provides the usual starting point in

the design of the constructive nonlinear controllers discussed in following

sections. The reason for this is because it separates out that part of the

nonlinear system whose algebraic structure is nearly linear from that part

which is not. Since the linear part is easily controlled, this allows us to

reduce the dimensionality of the harder nonlinear part. So the normal form

provides a way to reduce the nonlinear control problem’s size. Since it

provides an important starting point for design, we’ll find it convenient to

present a couple of examples showing how to convert an affine system to its

normal form.

Example 1: Consider the system

ẋ1 = −x1 + x2 − x3

ẋ2 = −x1x3 − x2 + u

ẋ3 = −x1 + u

y = x3
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This is an affine system where

f(x) =

 −x1 + x2 − x3
−x1x3 − x2
−x1

 , g(x) =

 0

1

1

 , h(x) = x3

We want to put this system in normal form about the origin, x0 = 0.

We first find the system’s relative degree by differentiating the output

y = x3,

ẏ = ẋ3 = −x1 + u

Since u appears after one differentiation of the output the relative degree

r = 1. This means that the first coordinate transformation is

z1 = T1(x) = x3

We now need to find T2(x) and T3(x) such that

T (x) =

 T1(x)

T2(x)

T3(x)

 is a diffeomorphism about x0 = 0

A sufficient condition for such a T is that the Jacobian

∂T

∂x
=


∂T1
∂x1

∂T1
∂x2

∂T1
∂x3

∂T2
∂x1

∂T2
∂x2

∂T2
∂x3

∂T3
∂x1

∂T3
∂x2

∂T3
∂x3


is nonsingular at x0. If this is the case then the inverse function theorem

says there is a smooth inverse T−1(x) in the neighborhood of x0 (i.e. T is a

diffeomorphism).
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We also would like T2 and T3 to satisfy an orthogonality condition with

respect to g(x). This means that

0 =
∂T2
∂x

g(x) =
[

∂T2
∂x1

∂T2
∂x2

∂T2
∂x3

] 0

1

1


=

∂T2
∂x2

+
∂T2
∂x3

and similarly for T3,

0 =
∂T3
∂x

g(x) =
[

∂T3
∂x1

∂T3
∂x2

∂T3
∂x3

] 0

1

1


=

∂T3
∂x2

+
∂T3
∂x3

The last condition we want is that T maps x0 = 0 (i.e. the origin) back

to the origin in z=coordinates. In other words, we want T (0) = 0 since

this means the equilibrium about which we are interested is preserved. This

is done because generic certificates for Lyapunov or input-to-state stability

are usually defined with respect to the origin.

Note that if we let

z2 = T2(x) = x1

z3 = T3(x) = x2 − x3

then we have the transformation,

T (x) =

 x3

x1

x2 − x3

 =

 z1

z2

z3


whose Jacobian is

∂T

∂x

∣∣∣∣
x=0

=

 0 0 1

1 0 0

0 1 −1


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This Jacobian is clearly nonsingular which means by the inverse function

theorem that T is a local diffeomorphism in a neighborhood around the

origin.

We can also check and see that if the orthogonality condition is satisfied,

∂T2
∂x

=
∂T2
∂x2

∣∣∣∣
x=0

+
∂T2
∂x3

∣∣∣∣
x=0

= 0 + 0 = 0

∂T3
∂x

=
∂T3
∂x3

∣∣∣∣
x=0

+
∂T3
∂x3

∣∣∣∣
x=0

= 1− 1 = 0

So the orthogonality condition is satisfied and T is a local diffeomophism.

We need the inverse map T−1 which is

T−1(z) =

 x1

x2

x3

 =

 0 1 0

1 0 1

1 0 0


 z1

z2

z3

 =

 z2

z1 + z3

z1


So the normal form is defined with respect to the variables ξ = z1 and

η =

[
z2

z3

]
=

[
η1

η2

]
. The dynamical equations for these variables are

ξ̇ = ẋ3 = −x1 + u

= η1 + u

η̇1 = ẋ1 = −x1 + x2 − x3

= −z2 + z1 + z3 − z1

= −z2 + z3

= −η1 + η2

η̇2 = ż3 = ẋ2 − ẋ3

= −x1x3 − x2 + u− (−x1 + u)

= x1 − x2 − x1x3

= z2 − (z1 + z3)− z2z1

= −z1 + z2 − z3 − z1z2

= −ξ + η1 − η2 − ξη1
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Combining these equations we see that the normal form for this affine sys-

tem is

ξ̇ = η1 + u

η̇1 = −η1 + η2

η̇2 = −ξ + η1 − η2 − ξη1

Example 2: The preceding example’s PDE’s were relatively easy to solve

because they were linear PDEs. Let us consider a more interesting example

where the PDE’s are no longer linear. Consider the system

ẋ1 = −x1 +
2 + x23
1 + x23

u

ẋ2 = x3

ẋ3 = x1x3 + u

y = x2

This system is affine in u where

f(x) =

 −x1x3

x1x3

 , g(x) =


2+x23
1+x23

0

1

 , h(x) = x2

We want to put this in normal form about x0 = 0.

We first determine the system’s relative degree. Taking the first deriva-

tive of the output y gives

ẏ = ẋ2 = x3

There is no u in this equation, so we differentiate one more time,

ÿ = ẋ3 = x1x3 + u
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The control, u, appears and so the relative degree r = 2. This means that

the first two coordinate transformations are

z1 = T1(x) = x2 = h(x)

z2 = T2(x) = x3 = Lfh(x)

We now need to find T3(x) so that

T (x) =

 T1(x)

T2(x)

T3(x)

 is a local diffeomorphism about x0 = 0

In other words we want the Jacobian of T to be nonsingular at 0 with the

additional requirement that T (0) = 0 and

LgT3(x) =
∂T3
∂x

g(x) = 0

The last condition (orthogonality) gives

0 = LgT3(x) =
[

∂T3
∂x1

∂T3
∂x2

∂T3
∂x3

]
2+x23
1+x23

0

1


=

∂T3
∂x1

2 + x23
1 + x23

+
∂T3
∂x3

Note that this is the PDE we need to solve to find T3, but it is definitely not

a linear PDE.

We can solve this PDE using the separation of variables technique. In

particular we assume

T3(x) = ln (P (x1)Q(x3))

where we now need to find the functions P and Q. For convenience let

P ′(x1) =
dP
dx1

and Q′(x3) =
dQ
dx3

. The partial derivatives for T3 can therefore
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be written as
∂T3
∂x1

=
1

PQ
P ′Q =

P ′

P

∂T3
∂x3

=
Q′

Q

If we insert this into the orthogonality PDE we get

Q′(x3)

Q(x3)

1 + x23
2 + x23

= −P
′(x1)

P (x1)
= K (constant)

This holds since the PDE relationship must hold for all x1 and x3. This

approach turns the PDE into a pair of ODE’s

dP

P
= −Kdx1, ⇒ lnP (x1) = −Kx1 +K2

where K2 is a constant of integration and

dQ

Q
= K

(
1 +

1

1 + x23

)
dx3, ⇒ lnQ(x3) = Kx3 +K tan−1 x3 +K3

and K3 is another constant of integration.

We choose K = 1 and K2 = K3 = 0 so that

T3(x) = lnP (x1) + lnQ(x3)

= −x1 + x3 + tan−1(x3)

Note that for this choice T3(0) = 0 (i.e. the origin is preserved as the

equilibrium in the z-system) and

∂T3
∂x

∣∣∣∣
0

=
[
−1 0 1 + 1

1+x23

]
x=0

=
[
−1 0 2

]
So the Jacobian of T at the origin is

∂T

∂x

∣∣∣∣
x=0

=

 0 1 0

0 0 1

−1 0 2


Which means the Jacobian of T about the origin is nonsingular and so by

the inverse function theorem T is a local diffeomorphism about the origin.
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So the coordinate transformation T is

 z1

z2

z3

 = T (x) =

 T1(x)

T2(x)

T3(x)

 =

 x2

x3

−x1 + x3 + tan−1 x3


We now try to find the inverse transform is

 x1

x2

x3

 = T−1(z) =

 T−1
1 (z)

T−1
2 (z)

T−1
3 (z)


Clearly

x2 = T−1
2 (z) = z1

x3 = T−1
3 (z) = z2

We also know

z3 = −x1 + x3 + tan−1 x3

= −x1 + z2 + tan−1 z2

which implies

x1 = −z3 + z2 + tan−1 z2

and so the inverse transform is

T−1(z) =

 −z3 + z2 + tan−1 z2

z1

z2

 =

 x1

x2

x3


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Now we write the normal form in terms of the variables ξ =

[
ξ1

ξ2

]
=[

z1

z2

]
and η = z3. The dynamical equations are

ξ̇1 = ξ2

ξ̇2 = ż2 = ẋ3 = x1x3 + u

= (−z3 + z2 + tan−1(z2))z2 + u

= (−η + ξ2 + tan−1(ξ2))ξ2 + u

Finally,

η̇ = ż3 = −ẋ1 + ẋ3 +
1

1 + x23
ẋ3

= x1 −
(
1 +

1

1 + x23

)
u+ x1x3 + u+

1

1 + x23
(x1x3 + u)

= x1 + x1x3

(
1 +

1

1 + x23

)
= x1

(
1 +

2 + x23
1 + x23

x3

)
=

(
−z3 + z2 + tan−1 z2

)(
1 +

2 + z22
1 + z22

z2

)
=

(
−η + ξ2 + tan−1 ξ2

)(
1 +

2 + ξ22
1 + ξ22

ξ2

)
y = x2 = ξ1

Putting it all together gives us

ξ̇1 = ξ2

ξ̇2 =
(
−η + ξ2 + tan−1 ξ2

)
ξ2 + u

η̇ = (−η + ξ2 + tan−1(ξ2))

(
1 +

2 + ξ22
1 + ξ22

ξ2

)
y = ξ1
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The normal form is usually where one starts in using constructive non-

linear methods to design controllers. The normal form allows us to use

our feedback linearizing transformation to decouple the z states directly

obtained by differentiating the output from the z states used to fill out the

diffeomorphism T ’s final n− r transformations. Note that that linear states

ξ are decoupled from the nonlinear states η, but the nonlinear states are

driven by ξ. A major part of our future work will be to determine under

what conditions the nonlinear part (also called the zero dynamics) is still

stable. Another useful part of this is that since the linear control part is

easily solved, it means that the harder nonlinear part is smaller (lower di-

mensionality). So the normal form provides a good basis for reducing the

complexity of the nonlinear controller synthesis problem. In the next sec-

tion we take closer look at the η-dynamics for this nonlinear part.

3. Zero Dynamics and Peaking

The normal form provides considerable insight into the structure of a scalar

affine system. In particular, if we choose the feedback control

u = − 1

a(η, ξ)
(b(η, ξ)− v)

then the subsystem η̇ = q(η, ξ) is disconnected from the ξ states and are

therefore unobservable from the output. In other words, the introduction of

the I/O linearizing control law decomposes the system states into observ-

able and unobservable states. This decomposition is shown more clearly in

Fig. 5 where the right side shows the system before the feedback lineariz-

ing transformation and the left side shows the system after the feedback

transformation.

Note that under the I/O feedback transformation the upper system on the

left of Fig. 5 is a linear system. If we select v = 0 and initialize all ξi = 0

for i = 1, . . . , r, then the output y(t) will be identically zero for all future

time. Since η is unobservable from y, we can therefore conclude that no
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v ξ

ξ

y

u

ξ

ξη

η

y

FIGURE 5. (right) normal form of scalar affine system (left)

normal form after I/O feedback linearization

matter what the lower system is doing, y will still be zero. It is customary,

therefore, to refer to the dynamical system

η̇ = q(0, η)

as the zero-dynamics of the affine system.

Let us now consider an example illustrating how one computes the nor-

mal form for a system and then go ahead and find its zero dynamics. Let us

consider the input-output system

ẋ =

 x3 − x32
−x2

x21 − x3

+

 0

−1
1

u
y = x1

We begin by differentiating the output to determine the system’s relative

degree.

Differentiating the output yields,

ẏ = x3 − x32
ÿ = x21 − x3 + 3x32 + (1 + 3x32)u

Since u appears in the output after the second differentiation, we know the

system has a relative degree r = 2. To determine the zero dynamics of this

system we must first transform it to its normal form.



3. ZERO DYNAMICS AND PEAKING 257

To obtain the normal form, we first take z1 = x1 = y and take

z2 = ż1 = ẏ = x3 − x32

So the first two coordinate transformations giving the observable states are

T1(x) = x1 = ξ1

T2(x) = x3 − x32 = ξ2

To determine the last coordinate transformation we solve for T3 and require

tht

0 = LgT3(x) =
∂T3
∂x

g(x)

=
[

∂T3
∂x1

∂T3
∂x2

∂T3
∂x3

] 0

−1
1


This last relation implies that T3 must satisfy the following partial differen-

tial equation

∂T3
∂x2

=
∂T3
∂x3

This is separable and one solution would be

T3(x) = x2 + x3

So the local normal form coordinates for this example are

ξ1 = z1 = x1

ξ2 = z2 = x3 − x32
η = z3 = x2 + x3
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The normal form equations (using T−1 to be put everything in terms of η or

ξ) will therefore be

ξ̇1 = ẋ1 = x3 − x32
= ξ2

ξ̇2 = ẋ3 − 3x22ẋ2

= x21 − x3 + u− 3x22(−x2 − u)

=
(
x21 + 3x32 − x3

)
+ (1 + 3x32)u

= b(ξ, η) + a(ξ, η)u

η̇ = ẋ2 + ẋ3

= −x2 − u+ x21 − x3 + u

= x21 − x2 − x3

= ξ21 − η

The zero dynamics at ξ = 0 are given by

η̇ = −η

so this system is minimum phase.

In studying the stability of this affine system, we must not only ensure

ξ → 0, but we must also make sure that η → 0 also. We select the control

input v to ensure the asymptotic stability of the ξ states. If we also want

η → 0, the temptation might be to suppose that the zero-dynamics are also

“stable”. Unfortunately, this may not always be true. From linear systems

we know that the cascade of stable linear systems will still be stable. But

the following section examines a particular nonlinear system where this is

not the case.

Peaking Phenomenon: Let us consider the cascade of two systems in

which the driving system is an asymptotically stable system of the form[
ξ̇1

ξ̇2

]
=

[
0 1

−γ2 −2γ

][
ξ1

ξ2

]
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with γ > 0. The driven system has the state space realization

η̇ = −1

2
(1 + ξ2)η

3

Note that when ξ2 = 0, then the driven system’s origin is also asymptoti-

cally stable. In other words, both the origin of both systems are “asymptot-

ically stable” in the sense of Lyapunov (i.e. the state asymptotically goes

to zero without external forcing). Fig. 6 shows the block diagram for this

system

driving system driven system

zero-dynamicslinearized I/O map

+

FIGURE 6. System exhibiting Peaking Phenomenon

In this example, we can think of the driving system as the linearized

I/O map after we’ve applied a control v to stabilize that map. The driven

system, of course, refers to the zero-dynamics. We know the driving system

is asymptotically stable. The question is whether the driven system is also

asymptotically stable when it is driven by the driving system?

To answer this question first note that the state transition matrix for the

driving system is

Φ(t) =

[
(1 + γt)e−γt te−γt

−γ2te−γt (1− γt)e−γt

]
Note that the (2, 1) element has a γ2 term so that for large enough γ, this

term may have an extremely large peak. In particular, if we let ξ1(0) = 1,

ξ2(0) = 0 with γ = 10, then the second state ξ2(t) = −γte−γt has the

behavior shown on the left of Fig. 7. There is a large negative excursion

in ξ2 before it asymptotically goes to zero. We refer to this phenomena as

peaking.



260 5. CONSTRUCTIVE NONLINEAR CONTROL SYSTEMS

time, t
0 1 2 3 4 5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0 0.2 0.4 0.6 0.8
0

5

10

15

20

25

30

35

40

45

time, t

FIGURE 7. Peaking in the driving system (left) triggers a

finite escape in the driven system (right)

While ξ2 is negative we see that η(t) will be increasing. In fact, if we in-

sert our closed form expression for ξ2(t) into the driven system’s differential

equation we get

η̇ = −1

2
(1 + γ2te−γt)η3

This ODE is separable and can therefore be integrated to get

η2(t) =
η2(0)

1 + η2(0)(t+ (1 + γt)e−γt − 1)

Note that the denominator in the above equation may go to zero for finite t.

So η(t) may become unbounded even though both the origin of the driving

and driven systems are asymptotically stable. In other words, the cascade is

not asymptotically stable.

This particular example shows that it is not enough for the zero-dynamics

to be asymptotically stable to ensure the stability of the entire system. In

particular, we will need both systems to be input-to-state stable or ISS.

From our results in chapter 4 we know that cascades of ISS stable systems

are still ISS.

There is another potential issue with this feedback linearization strategy.

In particular, it relies on the fact that we know a(ξ, η) and b(ξ, η) exactly so
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they can be cancelled out and replaced with a linear dynamic. In real-life,

of course, such cancellations are never exact and this means that the I/O

feedback linearized system may be more accurately written as

ξ̇1 = ξ2

ξ̇2 = ξ3
... =

...

ξ̇r−1 = ξr

ξ̇r = v + ϕT (ξ, η)θ(t)

η̇ = q(ξ, η)

where ϕ(ξ, η) is a vector of known monomials and θ(t) is a vector of time-

varying unknown parameters. In this case, the selection of v must be done

in a way that assures the robust stabilization of the upper ξ system in the

presence of the uncertain θ(t). The next chapter will investigate methods

for the robust stabilization of such nonlinear systems.

The preceding discussion showed that while feedback linearization pro-

vides a powerful new linearization method for designing feedback control

laws, it has the potential to be sensitive to peaking and inexact cancella-

tion of the original system’s nonlinearities. To deal with this issue we will

develop a constructive approach to nonlinear control based on the robust

stabilization of a scalar system and then showing how one can “backstep”

that control through the chain of integrators seen in the system’s normal

form.

4. Control Lyapunov Functions

Control Lyapunov functions are used in our constructive approach to syn-

thesizing nonlinear controllers. A control Lyapunov function (CLF) for a

system

ẋ(t) = f(x(t), u(t))
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is a C1 positive definite, radially unbounded function V : Rn → R such

that when x ̸= 0 we have

inf
u∈U

∂V (x)

∂x
f(x, u) < 0(70)

where U is a convex set of admissible values of the control variable, u.

In other words, a CLF is a candidate Lyapunov function whose directional

derivative can be forced to be negative definite by the choice of the control

values. Note that if f is continuous and there exists a continuous state

feedback, u = k(x), such that the origin is globally asymptotically stable

then the standard converse theorems imply that a CLF exists. If f is affine

in the control variable, then one can show that the existence of a CLF is

sufficeint for stabilizability via continuous state feedback. We can therefore

conclude that just as the existence of a Lyapunov function is necessary and

sufficient for the stability of a state-based system without inputs, so to is

the existence of a CLF necessary and sufficient for the stabilizability of

controlled systems in equation (70).

Example: Consider the second order system

ẋ1 = −x31 + x2ϕ(x1, x2)

ẋ2 = u+ ψ(x1, x2)

where ϕ and ψ are continuous functions and u takes values in U = R. The

function V (x1, x2) =
1
2
(x21 + x22) satisfies

inf
u∈U

∂V (x)

∂x
f(x, u) =

∫
u∈U

(
−x41 + x1x2ϕ(x1, x2) + x2u+ x2ψ(x1, x2)

)
=

{
−x41 if x2 = 0

−∞ if x2 ̸= 0

So we can conclude 1
2
|x|2 is a CLF of the system. This system is stabilizable

since the control input

u(x1, x2) = −x2 − ψ(x1, x2)− x1ϕ(x1, x2)

renders V̇ (x) < 0.
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Example: Suppose there exists a diffeomorphism, ξ = Φ(x) with Φ(0) =

0 which transforms the system in equation (70) into

ξ̇ = Acξ +Bc (a(ξ)u+ b(ξ))

where (A,B) is controllable and the functions a and b are continuous with

a being nonsingular for all ξ.. Let P be a symmetric positive definite matrix

satisfying

ATP+PA−PBBTP+ I = 0

Then the function, V (x) = Φ(x)PΦ(x) = ξTPξ satisfies

inf
u∈U

∂V (x)

∂x
f(x, u) = inf

uinU

[
ξT
(
ATP+PA

)
ξ + 2ξTPB(a(ξ)u+ b(ξ))

]
= inf

u∈U

[
−ξT ξ + ξTPB

(
BTPξ + 2(a(ξ)u+ b(ξ))

)]
=

{
−ξT ξ if ξTPB = 0

−∞ if ξTPB ̸= 0

So this V is a CLF for the system. As in the prior eample, we can also con-

clude that this system is globally asymptotically stabilizable. Note that we

have come to this conclusion without having to actually construct a feed-

back linearizing control. The existence of a CLF allows us to deduce stabi-

lizability without actually having to assume anything about the structure of

controller.

5. Robust Stabilization of Scalar Nonlinear Systems

One method for the robust stabilization of nonlinear systems in normal form

is the constructive method. The constructive method starts by robustly sta-

bilizing a “scalar” subsystem in the original system and then backsteps

that control through a chain of integrators to get a robust stabilizing con-

trol for the entire system. We say it is constructive because of its use of

the backstepping strategy. This section presents the basic result (nonlinear
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damping theorem) used to robustly stabilize a scalar system. The next sec-

tion presents backstepping strategies and illustrates their use on the 2D cart

tracking example we considered earlier.

Let us consider a scalar system of the form

ẋ = f(x) + g(x)
[
u+ ϕ(x)Tw(t)

]
where u is a scalar control input, w ∈ Rp is a disturbance input, x ∈ Rn,

is the system state, and ϕ(x) is a p-vector of known smooth nonlinear func-

tions. This system has a set of external disturbances, w, that are injected

through a set of nonlinear functions ϕi(x). The objective is to find a control

law u that renders the system input-to-state stable.

We start by assuming there exists a controller k0(x) that uniformly asymp-

totically stabilizes (UAS) the origin when the disturbance w = 0. Because

the controlled system is UAS, we can use one of the converse theorems to

assert there is a C1 positive definite function V : Rn → R and a positive

definite W : Rn → R such that

∂V

∂x
[f(x) + g(x)k0(x)] ≤ −W (x)

As we did when we studied the robust stability of LTI systems, we in-

vestigate how a perturbation of the nominally controlled system impacts the

stability of the closed-loop system. So let us compute the Lie derivative of

V with respect to the perturbed system ẋ = f + g(u+ ϕTw) to get

V̇ =
∂V

∂x
(f(x) + g(x)u) +

∂V

∂x
ϕT (x)w

We now introduce a control u of the form

u = k0(x)− k
∂V

∂x
g(x)|ϕ(x)|2
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where k > 0 and k0(x) is the stabilizing control for the undisturbed system.

If we insert this u into the above expression for V̇ , we get

V̇ =
∂V

∂x
(f(x) + g(x)k0(x))− k

(
∂V

∂x
g(x)

)2

|ϕ(x)|2 + ∂V

∂x
g(x)ϕT (x)w

≤ −W (x)− k
(
∂V

∂x
g(x)

)2

|ϕ(x)|2 +
∣∣∣∣∂V∂x g(x)

∣∣∣∣ |ϕ(x)| ∥w∥L∞

We now complete the square associated with the last two terms to get

V̇ ≤ −W (x)− k
(∣∣∣∣∂V∂x g(x)

∣∣∣∣ϕ(x)| − ∥w∥L∞

2k

)2

+
∥w|2L∞

4k

≤ −W (x) +
∥w∥2L∞

4k

We can therefore conclude that V̇ is negative when W (x) >
∥w∥2L∞

4k
. It can

be shown that there exists a class K∞ function γ such that γ(|x|) ≤ W (x)

when W is positive definite. Since a class K function is invertible and its

inverse is class K, we can conclude that

|x| ≥ γ−1
(

∥w∥2L∞
4k

)
implies that V̇ (x) < 0

From the ISS theorem, we know this means that the controlled system is ISS

with respect to w and that V is an ISS-Lyapunov function for the system.

The preceding control strategy is sometimes referred to as a nonlinear

damping control since the control augments the Lyapunov stabilizing con-

trol k0(x) whose additional damping dominates the disturbance. This par-

ticular approach to robustly stabilizing nonlinear systems is useful enough

to formalize as a theorem.

THEOREM 37. (Nonlinear Damping Theorem) Consider a system whose

state x ∈ Rn and control u ∈ R satisfy

ẋ = f(x) + g(x)
[
u+ ϕT (x)w(t)

]
where ϕ(x) is a (p × 1) vector of known smooth nonlinear functions and

w(t) is a p-vector of disturbance inputs that are in L∞. If there is a positive
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definite C1 function V : Rn → R and positive definite W : Rn → R such

that

V̇ =
∂V (x)

∂x
[f(x) + g(x)k0(x)] ≤ −W (x)

for some smooth k0 : Rn → R, then the control input

u = k0(x)− k
∂V

∂x
g(x)|ϕ(x)|2

for any k > 0 renders the closed-loop system ISS with respect to distur-

bance input w.

Let us introduce an example to illustrate how one might use these theo-

rems. Consider the 2-wheeled robot example in Fig. 2 that we want to track

a reference trajectory

ẋr = vr cos θr

ẏr = vr sin θr

θ̇r = ωr

where we’ve specified θr(t) and ωr(t).

We consider a disturbed version of this system in which there is a distur-

bance, w, on the vehicle’s turning rate, θ̇. The resulting equations of motion

for this system therefore are

ẋ = vx cos θ

ẏ = vx sin θ

θ̇ = ω + (θr − θ)2w

where vx and ω are treated as controls. The disturbance w enters the system

through the turning rate ω-equation and is proportional to the squared error

between the body angle and the reference trajectory.
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Rather than working directly with physical variables, we transform these

variables to measure the tracking error with respect to body coordinates. e1

e2

e3

 =

 cos θ sin θ 0

− sin θ cos θ 0

0 0 1


 xr − x
yr − y
θr − θ


The error dynamics for the systems can therefore be shown to be

ė1 = [− sin θ(xr − x) + cos θ(yr − y)]θ̇ + cos θẋr − cos θẋ+ sin θẏr − sin θẏ

= e2(ω + e23w) + vr(cos θ cos θr + sin θ sin θr)− cos θ(vx cos θ)− sin θ(vx sin θ)

= e2ω + vr cos e3 − vx + e2e
2
3w

ė2 = [− cos θ(xr − x)− sin θ(yr − y)] θ̇ − sin θẋr + sin θẋ+ cos θẏr − cos θẏ

= −e1(ω + e23w)− sin θ(vr cos θr) + cos θvr sin θr + sin θ(vx cos θ)− cos θ(vx sin θ)

= −e1ω + vr sin e3 − e1e23w

ė3 = θ̇r − θ̇ = ωr − ω − e23w

Putting these equations in a form that highlights the affine nature of the

system yields,

ė =

 ė1

ė2

ė3

 =

 vr cos e3 + e2ω − vx + e2e
2
3w

vr sin e3 − e1ω − e1e23w
ωr − ω



=

 vr cos e3

vr sin e3

ωr

+

 −1 e2

0 −e1
0 −1

([ vx

ω

]
+

[
0

e23

]
w

)

= f(e) + g1(e)vx + g2(e)(ω + e23ω)

where u =

[
vx

ω

]
is the control vector.

The preceding equations of motion are in the form needed to apply the

nonlinear damping theorem. To start, however, we first need to identify a

control that renders the origin of the error system asymptotically stable in
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the absence of a disturbance. Consider the following control

u =

[
k01(e)

k02(e)

]
=

[
vx

ω

]
=

[
vr cos e3 + k1e1

ωr + k2vre2 + k3vr sin e3

]
where k1, k2, and k3 are positive control gains. This control can be shown

to asymptotically stabilize the origin through the following candidate Lya-

punov function

V (e) =
k2
2
e21 +

k2
2
e22 + (1− cos e3)

in which |e3| < π
2
. Computing the Lie derivative of V with respect to the

undisturbed (i.e. w = 0) vector field yields,

V̇ = k2e1ė1 + k2e2ė2 + sin e3(ė3)

= k2e1(ωe2 − k1e1) + k2e2(−ωe1 + vr sin e3) + sin e3(−k2vre2 − k3vr sin e3)

= −k1k2e21 − k3vr sin2 e3

Notice that V̇ = 0 for all x where e1 = e3 = 0, but e2 can be anything.

So we can only use the direct Lyapunov theorem to infer Lyapunov stabil-

ity because V̇ is only negative semi-definite. It is still possible to deduce

asymptotic stability, but we will need to use the invariance principle.

To use this theorem in our preceding example, we first note that under

the proposed controls that the system equations are

ė =

 ωe2 − k1e1
−ωe1 + vr sin e3

−k2vre2 − k3vr sin e3


We note that the set

E =
{
e ∈ R3 : e1 = e3 = 0

}
Let us consider a point e ∈ E such that e2(0) ̸= 0. Then one may see that

ė1(0) = e2(0)ω and ė3(0) = −k2vre2(0)

since vr > 0, we see that ė3 ̸= 0 and so the state trajectory will not remain

in E. So the largest invariant set in E is the origin and so by the invariance
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theorem we know that the origin of this controlled system is asymptotically

stable.

Note that the system is not exactly what we described in the nonlinear

damping theorem for the control is u is a vector, rather than a scalar. In

reviewing the proof of this theorem, however, it should be apparent that be-

cause our disturbance only enters a single component of u that the original

proof can be slightly modified to account for this extra control. As a result, a

slight modification of the nonlinear damping theorem allows us to robustly

stabilize the disturbed system using the velocity control vx = k01(e) and the

turning control

ω = k02(e)− k
∂V

∂e
g2(e)|ϕ(e)|2

Since

∂V

∂e
g2(e) =

[
k2e1 k2e2 sin e3

] e2

−e1
−1

 = − sin e3

the turning control can therefore be written as

ω = k02(e) + ke43 sin e3

Let us now simulate the proposed control laws and see how well they

perform on the 2-d robot tracking problem. For completeness the script

used in this simulation is shown below. The stabilizing gains k1, k2, and

k3 are all chosen to be 1 and the gain, k, on the nonlinear damping term

is either 0 or 1 (i.e. damping is either “off” or “on”). The disturbance we

use in this simulation is a worst-case simulation that appears as a constant

torque of value −1. The reference trajectory was generated by velocity and

angle rates that followed vr(t) = 0.1 cos(t) + 0.2 and ωr(t) = 0.5 sin(t).

We ran two simulations. The first simulation was run over the time in-

terval [0, 2.75] with the nonlinear damping gain k = 0. This simulation,

therefore, corresponds to the controller that is known to stabilize the sys-

tem when there is not disturbance, but does not guarantee stability when
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there is a disturbance. If the disturbance w = 0, the origin of the error sys-

tem is indeed asymptotically stable. If, however, we let w = −1, then the

simulation results in Fig. 8 exhibit a finite escape time at about t = 2.75

seconds. The left hand plots on Fig. 8 indeed show that this finite escape

of e3 and show commanded turning rate ω beginning to spin the vehicle

around. The right hand plot reference trajectory and vehicle trajectory in

the position space, R2. This plot shows that eventually the vehicle stops

making forward progress because the system was not stable and therefore

began spinning around.
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FIGURE 8. Simulation Results for Disturbed Vehicle Track-

ing Problem using the Lyapunov stabilizing control vx =

k01(e) and ω = k02(e).

The whole point of the preceding discussion was to show that we can

stabilize this system in the presence of the constant disturbance by adding

a nonlinear damping term. In this case, we simulate the system with the

nonlinear damping gain k = 1. The simulation was run over the time in-

terval [0, 50] because we were able to avoid the finite escape that was seen

in the simulation from Fig. 8. The left hand plots of Fig. 9 indeed show

that the tracking errors e converge asymptotically to the origin and that the

control effort remains bounded as the system tracks the sinusoidal refer-

ence trajectory. The right hand plot of Fig. 9 shows that the vehicle’s actual

trajectory in position space R2 indeed asymptotically converges and tracks
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the reference trajectory for the system. This simulation example therefore

demonstrates that the nonlinear damping theorem achieves robust stabiliza-

tion in the presence of disturbances.
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FIGURE 9. Simulation Results for Disturbed Vehicle Track-

ing Problem using the Robustly stabilizing control vx =

k01(e) and ω = k02(e) + ke43 sin(e3).

6. Backstepping Control Strategies

The preceding section assumed that the 2-DOF vehicle could be controlled

by directly specifying the vehicle’s velocity, vx, and its turning rate ω. In

reality, however, these control inputs are forces and torques and this means

that the real system equations are of the form

ẋ = vx cos θ

ẏ = vx sin θ

θ̇ = ω + (θr − θ)2w

v̇ = F

ω̇ = T

where the actual control inputs are the applied force, F , and the torque T .

In this case we cannot use the control to directly dominate system nonlin-

earities and uncertainties.
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For such systems, we can employ a stabilization strategy known as back-

stepping. Under backstepping, we consider the system

ż = f(z) + g(z)ξ

ξ̇ = u
(71)

where u is the control and f(0) = 0. We’re interested in finding a state

feedback control that stabilizes the origin. We approach this problem by

viewing it as a cascade of two systems in which the driving system is an

integrator with state ξ and the driven system is the affine nonlinear system

ż = f(z) + g(z)ξ. The idea behind backstepping is to treat the state vari-

able ξ in the driven system as a virtual control. We determine a virtual

control to stabilize the driven system and then use the Lyapunov function

for that stabilized system to develop a composite Lyapunov function for the

entire system which serves as the basis for synthesizing the full system’s

controller.

Note that the preceding discussion revolved about asymptotic stabiliza-

tion of a system without external disturbances. But the backstepping con-

struction can also be extended to disturbed systems. In this case, however,

we use the backstepping procedure to develop an ISS Lyapunov function

from which one can synthesize a robustly stabilizing controller. In our 2-

DOF cart system, we will use this robust form of backstepping. But before

doing that we consider the somewhat simpler case in which backstepping is

used to simply stabilize the system in equation (71).

Let us therefore consider the system in equation (71). Suppose there is

a control ϕ : Rn → R that stabilizes the upper system about the origin. In

other words the origin of the system

ż = f(z) + g(z)ϕ(z)
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is asymptotically stable. We refer to ϕ as the virtual control for the upper

system. Suppose further that for this virtual control we know that the posi-

tive definite C1 function V : Rn → R is a Lyapunov function that satisfies

∂V (z)

∂z
(f(z) + g(z)ϕ(z)) ≤ −W (z)

where W : Rn → R is positive definite.

We want to find a way of generating the virtual control ϕ(z) from the

lower system’s control u such that the origin of the entire cascade is asymp-

totically stable. To do this we take rewrite the original system (71) as

ż = [f(z) + g(z)ϕ(z)] + g(z) [ξ − ϕ(z)]

ξ̇ = u

This equation treats ξ − ϕ(z) as the error between the actual input, ξ, and

the virtual control, ϕ(z), that we already know stabilizes the upper system.

Let us now introduce a change of variables to explicitly characterize this

control error

y = ξ − ϕ(z)(72)

and in terms of this new variable the original system (71) becomes

ż = [f(z) + g(z)ϕ(z)] + g(z)y

ẏ = u− ϕ̇(z)

= u− ∂ϕ(z)

∂z
[f(z) + g(z)ξ]

Let us now consider the following composite candidate Lyapunov func-

tion that is obtained by augmenting our original V (z) with the backstepping

variable y

Vc(z, ξ) = V (z) +
1

2
y2 = V (z) +

1

2
(ξ − ϕ(z))2
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The directional derivative of Vc is

V̇c =
∂V

∂z
[f(z) + g(z)ϕ(z)] +

∂V

∂z
g(z)y + yv

= −W (z) +
∂V

∂z
g(z)y + yv

where v = u− ϕ̇(z). The variable v may be thought of as a control variable

transformation. If we take the new control, v, to be

v = −∂V
∂z

g(z)− ky

where k > 0 then inserting this into our expression for V̇c yields,

V̇c ≤ −W (z)− ky2

which implies that under this particular control, the origin (z, y) = (0, 0)

for the cascaded system is asymptotically stable. Remember that we need

to transform v back to the orignal control variable u,

u = v + ϕ̇(z)

= −∂V
∂z

g(z)− k(ξ − ϕ(z)) + ∂ϕ(z)

∂z
(f(z) + g(z)ξ)

This result is important enough to formalize as a theorem

THEOREM 38. (Backstepping Theorem) Consider the system

ż = f(z) + g(z)ξ

ξ̇ = u

Let ϕ : Rn → R with ϕ(0) = 0 stabilze the origin of ż = f(z) + g(z)ϕ(z).

Let V : Rn → R be a C1 positive definite function such that

∂V

∂z
[f(z) + g(z)ϕ(z)] ≤ −W (z)

for some positive definite W : Rn → R. Then the feedback law

u =
∂ϕ(z)

∂z
[f(z) + g(z)ξ]− ∂V (z)

∂z
g(z)− k(ξ − ϕ(z))

for k > 0 stabilizes the origin of the original system.
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The backstepping procedure is illustrated in the following example. Con-

sider the system

ż = z2 − z3 + ξ

ξ̇ = u

The upper system is

ż = z2 − z3 + ξ

and we consider the virtual control

ϕ(z) = −z2 − z

and use the Lyapunov function V (z) = 1
2
z2 to show that the origin of the

upper system is asymptotically stable.

The backstepping change of variables is

y = ξ − ϕ(z) = ξ + z + z2

which transforms the full system to

ż = −z − z3 + y

ẏ = u+ (1 + 2z)(−z − z3 + y)

So we can directly use backstepping theorem, or simply use

Vc(z, y) =
1

2
z2 +

1

2
y2

as the control Lyapunov function. To find the control, we compute

V̇c = zż + yẏ

= z(−z − z3 + y) + y
(
u+ (1 + 2z)(−z − z3 + y)

)
= −z2 − z4

+y(u+ z + (1 + 2z)(−z − z3 + y))

Clearly just select u to cancel out the last two terms and introduce a y feed-

back,

u = −ky − z − (1 + 2z)(−z − z3 + y)
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which would simplify V̇c to

V̇c = −z2 − z4 − y2 < 0

thereby certifying the asymptotic stability of the full system.

We now apply the backstepping theorem to our earlier 2-DOF robotic

system. In our earlier work we derived a “robust stabilizing control”, but

because our backstepping theorem was developed for an asymptotically sta-

bilizing control, we will start from there. In that case the asymptotically

stabilizing control law assuming vx and ω are the control variables will be[
vx

ω

]
=

[
vr cos e3 + k1e1

ωr + k2vre2 + k3vr sin e3

]

This control had the associated Lyapunov function

V (e) =
k2
2
e21 +

k2
2
e22 + (1− cos e3)

The system we wish to control, however, has vx and ω as state variables

determined by the state equations v̇x = F and ω̇ = T where F and T are the

control inputs. So following the backstepping theorem, we treat our earlier

control as a ”virtual control

ϕ(e) =

[
vr cos e3 + k1e1

ωr + k2vre2 + k3vr sin e3

]

for the augmented system

ė = f(e) + g(e)ξ

ξ̇ = u

where

f(e) =

 vr cos e3

vr sin e3

ωr

 , g(e) =

 −1 e2

0 −e1
0 −1

 , ξ =

[
vx

ω

]
, u =

[
F

T

]
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From the backstepping theorem, we then know that the stabilizing control

will be

u =
∂ϕ(e)

∂e
[f(e) + g(e)ξ]−

[
∂V (e)

∂e
g(e)

]T
− kb(ξ − ϕ(e))

with kb > 0.

We simulated this backstepping control with the following script. This

nearly identical to the earlier script we used with the main exception being

the formulation of the backstepping control signal, u, and the extra two

states in the system equations.

This simulation tracked a “slower” reference trajectory and the results

are shown in Fig. 10. The plots on the left side show the time history for

the body tracking error and the control effort. As expected errors asymptot-

ically converge to zero. Though if the reference trajectory were oscillating

faster then the cart actually has some trouble tracking with zero error. The

right side shows the vehicle and reference position in R2, which also shows

that we are tracking the reference.
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FIGURE 10. simulation results for vehicle tracking using a

backstepping control

The preceding simulation was for a backstepping control based on a con-

trol that asymptotically stabilized the base system. It should be noted that

we could have also developed a backstepping theorem for the disturbed
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system with very little additional effort. The only difference being that we

would be working with ISS-Lyapunov functions and the nonlinear damp-

ing theorem. The associated backstepping under uncertainty result is stated

below in the following theorem.

THEOREM 39. (Backstepping under Uncertainty) Consider the system

ż = f(z) + g(z)u+ F0(z)w0

where u is a scalar control and F0(x) is a matrix of known smooth non-

linearities and w0 is a vector of uniformly bounded disturbances. Suppose

there exists a feedback control u = ϕ(z), C1 positive definite functions

V : Rn → R and W : Rn → R, and positive constant b > 0 such that

∂V (z)

∂z
[f(z) + g(z)ϕ(z) + F0(z)w0(t)] ≤ −W (z) + b

Then the control

u = c[ξ − ϕ(z)] + ∂ϕ(z)

∂z
[f(z) + g(z)ξ]− ∂V (z)

∂z
g(z)

−k(ξ − ϕ(z))

[
|F1(z, ξ)|2 +

∣∣∣∣∂ϕ(z)∂z
F0(z)

∣∣∣∣2
]

will ensure that z and ξ are globally uniformly bounded in the augmented

system

ż(t) = f(z) + g(z)ξ + F0(z)w0(t)

ξ̇(t) = u+ F1(z, ξ)w1(t)

where w1 is a uniformly bounded disturbance and F1(z, ξ) is a matrix of

known nonlinearities.

Proof: We use the backstepping variable

y = ξ − ϕ(z)

to rewrite the entire system as

ż = f(z) + g(z) [ϕ(z) + y] + F0(z)w0

ẏ = u+ F1(z, ξ)w1(t)−
∂ϕ(z)

∂z
[f(z) + g(z)ξ + F0(z)w0]
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We then consider the composite candidate ISS-Lyapunov function

Vc(z, ξ) = V (z) +
1

2
(ξ − ϕ(z))2 = V (z) +

1

2
y2

and compute its directional derivative to get

V̇c =
∂V (z)

∂z
(f(z) + g(z)ϕ(z) + F0(z)w0) +

∂V (z)

∂z
g(z)y

+y

[
u+ F1(z, ξ)w1 −

∂ϕ(z)

∂z
(f(z) + g(z)ξ + F0(z)w0)

]
=

∂V

∂z
(f(z) + g(z)ϕ(z) + F0(z)w0) + y

[
u− ∂ϕ(z)

∂z
(f(z) + g(z)ξ) +

∂V

∂z
g(z)

]
+y

[
F1(z, ξ)w1 −

∂ϕ(z)

∂z
F0(z)w0

]
≤ −W (z) + b− cy2 − ky2

[
|F1(z, ξ)|2 +

∣∣∣∣∂ϕ∂z F0(z)

∣∣∣∣2
]

+|y| |F1(z, ξ)|∥w1∥L∞ + |y|
∣∣∣∣∂ϕ∂z F0(z)

∣∣∣∣ ∥w0∥L∞

≤ −W (z)− cy2 + b+
∥w0∥2L∞

4k
+
∥w1∥2L∞

4k

which shows that Vc is an ISS-Lyapunov function for the combined system.

♢

Backstepping, as described above, pertains to a single integrator driving

another system. The method can be extended to longer chains of integra-

tors and even linear systems in a relatively straightforward manner. This is

done by exploiting the inherent modularity in the approach. Consider, for

example, the system

ż1 = z21 − z31 + z2

ż2 = ξ

ξ̇ = u

The driven system is a second order system that can be easily stabilized

through a virtual control

ϕ1(z1) = −z12− z1
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that cancels the quadratic nonlinearity and adds an additional negative linear

term. In this manner, one can assure the origin is exponential and so we can

use the Lyapunov function V1(z1) = z21/2 whose directional derivative,

V̇1 = z1ż1 = −z21 − z41 < 0

clearly certifies the origin of the z1 system is stable if z2 equals ϕ(z1).

To develop the backstepping control for this system driven by a chain of

two integrators, we first use our earlier backstepping procedure to develop

a backstepping control for the top two equations,

ż1 = z21 − z31 + z2

ż2 = ξ

where the virtual control used for ξ is

ϕ2(z1, z2) = −z1 + (−1 + 2z1)(z
2
1 − z31 + z2)− (z2 + z1 + z21)

The Lyapunov function for this combined system is

V2(z1, z2) =
1

2
z21 +

1

2
(z2 + z1 + z21)

2

We now perform a second backstep by first introducing the following change

of variables

y = ξ − ϕ2(z1, z2)

to obtain

ż1 = z21 − z31 + z2

ż2 = ϕ2(z1, z2) + y

ẏ = u− ∂ϕ2

∂z1
(z21 − z31 + z2)−

∂ϕ2

∂z2
(ϕ2 + y)

The control Lyapunov function constructed from V2 is

Vc(z1, z2, y) = V2(z1, z2) +
1

2
y2
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whose directional derivative is

V̇c =
∂V2
∂z1

(z21 − z31 + z2) +
∂V

∂z2
(y + ϕ2)

+y

[
u− ∂ϕ2

∂z1
(z21 − z31 + z2)−

∂ϕ2

∂z2
(y + ϕ2)

]
= −z21 − z41 − (z2 + z1 + z21)

2

+y

[
∂V2
∂z2
− ∂ϕ2

∂z1
(z21 − z31 + z2)−

∂ϕ2

∂z2
(y + ϕ2) + u

]
We then take u to cancel out the undesirable terms in the last line to obtain

u = −∂V2
∂z2

+
∂ϕ2

∂z1
(z21 − z31 + z2) +

∂ϕ2

∂z2
(y + ϕ2)− y

This forces V̇c < 0 and thereby stabilizes the origin of the entire cascade.

The preceding discussion assumed the diving lower systems were inte-

grator chains, but one can also simply assume that they are linear systems.

In particular, assume the full system has the form

ż = f(z) + g(z)y

ξ̇ = Aξ + bu

y = cT ξ

We assume that the driving system is globally stable when ξ = 0 with a

Lyapunov function V such that

V̇ =
∂V

∂z
f(z) ≤ −W (z) < 0

for some positive definiteW . The problem is to find a linear control that sta-

bilizes the driving linear system without destabilizing the driven nonlinear

system. Note that the stability of the lower linear system does not always

guarantee the cascaded full system is stable. An example of this was seen

in the peaking phenomenon.

Let us assume (A, b) is stabilizable so there exists a matrix K such that

A + bK is Hurwitz. This means there exist matrices P = PT > 0 and
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Q = QT > 0 such that

(A+ bK)TP+P(A+ bK) = −Q

We then consider the backstepping control Lyapunov for the entire cascade,

Vc(z, ξ) = V (z) + ξTPξ

and consider a control of the form

u = Kξ + v

Note that we are using the stabilizing linear control for the lower system

with an additional term v that is intended to stabilize the entire cascade. To

determine this v, let us example the directional derivative of Vc,

V̇c(z, ξ) = V̇ (z) + ξ̇TPξ + ξPξ̇

= −W (z) +
∂V

∂z
g(z)y

+ξT (P(A+ bK) + (A+ bK)TP)ξ + 2ξTPbv

≤ −W (z) = ξTQξ +
∂V

∂z
g(z)y + 2ξTPbv

We are interested in the last two terms and note that if we select v to cancel

the term ∂V
∂z
g(z)y, then V̇c < 0.

To select v in this way, we require first that P satisfy the Lyapunov equa-

tion,

(A+ bK)TP+P(A+ bK) = −Q.(73)

In addition to this, however, we also require

Pb = c(74)

This last condition holds when the linear system is said to be feedback pos-

itive real.



7. FEEDBACK PASSIVATION 283

Assuming that we can find P satisfies equations (73- 74), then we can

see that

V̇x(z, ξ) ≤ −W (z)− ξTQξ + ∂V

∂z
g(z)y + 2ξTPbv

= −W (z)− ξTQξ + ∂V

∂z
g(z)y + 2ξT cv

= −W (z)− ξTQξ + ∂V

∂z
g(z)y + 2ξTyv

Since y and v are scalars, we can annihilate the last two terms by letting

v = −1

2

∂V

∂z
g(z)

and so V̇c < 0 thereby establishing the Lyapunov stability of the cascaded

system’s origin. The control law u that therefore ensures the stabilized lin-

ear system cannot destabilize the driven nonlinear system is

u = Kξ − 1

2

∂V

∂z
g(z)

7. Feedback Passivation

A key part of the constructive method involves supposing we had Lyapunov-

like functions from which we can construct the controller. It is not always

apparent where such control Lyapunov functions might come from. But

recall that when we discussed passivity in chapter 4, we found one of its

main features was that its storage function arose in a natural way from the

kinetic and potential energy of the system. So this observation suggests that

another avenue for stabilizing a nonlinear system might be to use passivity

concepts. The following sections discuss the use of feedback to passivate

nonlinear systems.

Consider the problem of stabilizing the origin of the system

ẋ = f(x) + g(x)u
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with u as the input. The important thing here is that we assume we are free

to pick the output of this system

y = h(x)

to make the input-output system from u to y passive. Clearly, this may not

be possible in all applications. We view, however, the problem of deter-

mining where to place sensors as part of the system design process. The

control u is then computed assuming we only have access to y. Based on

the preceding section’s discussion we know that if we select y to ensure the

system is passive, then we can easily use a feedback law u = −ky to ensure

the origin is Lyapunov stable. Moreover, if we can also verify that the sys-

tem with the given output is ZSD then we will known the interconnection

is globally asymptotically stable.

By theorem 28, our ability to find a y = h(x) that renders the system pas-

sive with a positive definite storage function means that the system is stable

when u = 0. This is overly restrictive and so we seek a more flexible way

of passivating the plant that does not require the original system to be sta-

ble. Instead we simply assume that the uncontrolled system is stabilizable

and use a feedback law in conjunction with a selected output function, h, to

passivate the system. In particular, this means we need to find a feedback

transformation

u = α(x) + β(x)v

with β(x) invertible and an output y = h(x) such that the system

ẋ = [f(x) + g(x)α(x)] + g(x)β(x)v

y = h(x)

is passive. If such a transformation exists then we say the original system is

feedback passive. The process of selecting the feedback transformation and

the output is called feedback passivation. Feedback passivation represents a

useful tool in the design of asymptotically stabilizing nonlinear controllers.

In particular, if we are able to establish that the feedback passivated system



7. FEEDBACK PASSIVATION 285

is ZSD, then we can use measurement feedback v = −ky to ensure the

origin is asymptotically stable.

One of the key issues we encountered in our earlier study of “feedback

linearization” methods was identifying the set of affine systems for which

such linearizations were possible. Essentially, we asserted that feedback

linearization is possible when the underlying system is controllable and if

its set of vector fields is involutive. We face a similar question when we

consider feedback passivation. In that case, however, the conditions that are

needed to ensure the system is feedback passive are that

• the system has a relative degree no greater than one

• and the zero dynamics must be at least weakly minimum phase

(i.e. not unstable)

To see how restrictive these conditions are we examine what these condi-

tions mean for LTI systems. For LTI systems, the relative degree require-

ment means there is exactly one more pole than zero; a condition that is

essential for high-gain stabilization. For LTI systems the minimum phase

condition requires that all zeros lie on the left hand side of the complex

plane. Both of these requirements are extremely restrictive and therefore

suggest that the feedback passivation scheme may be of limited value un-

less we can find a way to sidestep these limitations.

The following example provides a simple walk through the steps used in

feedback passivating a system. In particular, consider the system

ẋ1 = x21x2

ẋ2 = u

If we select the output y = x2, then we readily see we have a relative degree

one system that is already in its normal form. Since it is in normal form, we

can easily identify the zero dynamics ẋ1 = 0. This is only stable and so the

system is weakly minimum phase. We can then use the following feedback
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transformation

u = v + x31

to passivate the system. In particular with this choice of output and feedback

transformation the input-output system becomes

ẋ1 = x21x2

ẋ2 = −x31 + v

y = x2

If we then consider a candidate storage function V (x) = 1
2
x21 +

1
2
x22 we can

see compute V̇ to get

V̇ = x1ẋ1 + x2ẋ2

= x31x2 + x2(−x31 + v)

= x2v = yv

which establishes the passive (lossless) nature of the transformed system.

Note that if y(t) = v(t) = 0 for all t, then x2(t) = 0 which means that

ẋ2 = 0 and so x1 = 0. In other words, this system is zero-state observable

(ZSO) and so we know the output feedback law v = −ky for any k > 0

will render the system’s origin globally asymptotically stable.

While the preceding example showed how the feedback transformation

and selection of h conspire to make a system passive, the example provided

little guidance in terms of how to choose the feedback transformation or

output. For this to be a truly useful tool we need to identify a systematic

method for feedback passivating a system. This may be difficult to do in

general, but when we focus our attention on cascaded systems it then be-

comes possible to formulate a method. This is the topic covered in the next

section.
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8. Passivation of Cascades

This section examines feedback stabilization designs for the cascade of two

nonlinear systems with subsystem states z and ξ as shown in Fig. 11. In

this cascade, the control only enters the ξ subsystem. The interconnected

subsystems are also assumed to satisfy the following ordinary differential

equations

ż = f(z) + ψ(z, ξ)

ξ̇ = a(ξ) + b(ξ)u

As discussed earlier, the stability of the driving and driven system need

not imply the stability of the cascade. This was an issue we faced in I/O

feedback linearization designs in which we found that having minimum

phase zero dynamics may not be sufficient to assure asymptotic stability of

the entire system.

u ξ z

FIGURE 11. Cascaded System

This section investigates the possibility of using feedback passivation to

passivate the cascade emerging from I/O feedback linearization. The main

assumption we need to achieve this objective is that the unforced driven

system ż = f(z) is globally stable with a C2 radially unbounded positive

definite function W (z) such that LfW ≤ 0. So we are only assuming that

the driven system ż = f(z) is globally Lyapunov stable. In the context of

I/O feedback linearization, of course, this means that the zero dynamics are

weakly minimum phase.

Motivated by an I/O feedback linearized system where the driving sys-

tem is a chain of integrators and the driven system is a weakly minimum

phase zero dynamic, we consider the problem of feedback passivating the
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following

ż = f(z) + ψ(z, ξ)

ξ̇ = Aξ +Bu

For this particular case, it is possible to identify a systematic method for de-

termining the feedback transformation and output needed to feedback pas-

sivate the cascade.

This is done by identifying two passive input-output subsystems, G1 and

G2. The first subsystem G1 is obtained by factoring the interconnection

function in the driven system as

ψ(z, ξ) = ψ̃(z, ξ)Cξ

where C is chosen so the linear transfer function

G1(s) = C(sI−A)−1B

is positive real, since this implies the linear system is passive. To make

this choice for C clearer, we need to review a few results regarding passive

linear systems.

Consider the linear systemG
s
=

[
A B

C D

]
with transfer functionG(s) =

C(sI−A)−1B. The transfer function matrix G(s) is positive real if

• poles of all elements of G(s) are in Re(s) ≤ 0.

• For all real ω where jω is not a pole of any element of G(s), the

matrix G(jω) +GT (jω) ≥ 0.

• Any purely imaginary pole jω for any element of G(s) is a simple

pole and the residue lims→ȷω(s−jω)G(jω) is positive semidefinite

Hermitian.

The passivity properties of positive real transfer functions are based on the

positive real lemma also known sometimes as the KYP lemma which we

state below without proof.
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THEOREM 40. (Positive Real Lemma) Let G(s) = C(sI−A)−1B+D

be a p×p transfer function matrix where (A,B) is controllable and (A,C)

is observable. Then G(s) is positive real if and only if there exist matrices

P = PT > 0, L, and W such that

PA+ATP = −LTL

PB = CT − LTW

WTW = D+DT

From the positive real lemma, one can then show that if G(s) is positive

real it must also be passive. In particular, consider V (x) = 1
2
xTPx as a

candidate storage function and compute

uTy − ∂V

∂x
(Ax+Bu) = uT (Cx+Du)− xTP(Ax+Bu)

= uTCx+
1

2
uT (D+DT )u− 1

2
xT (PA+ATP )x− xTPBu

= uT (BTP +WTL)x+
1

2
uTWTWu

+
1

2
xTLTLx− xTPBu

=
1

2
(Lx+Wu)T (Lx+Wu) ≥ 0

which means G(s) is passive. The important thing to note from the positive

real lemma is that conditions for G(s) to be positive real (i.e. passive) are

recast in terms of three of matrix equations. The third equation

WTW = D+DT

determines W from the known system matrix D. The first equation is a

Lyapunov equation

PA+ATP = −LTL

where we pick L and then have a linear equation for P that we can solve

for. The second equation can be rewritten as

CT = PB+ LTW
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which shows that to make G passive (positive real) we need to pick C (i.e.

the output ) to satisfy the above equation. So in this case the choice of C to

render G1 passive is relatively easy.

With this choice for C, the block G2 for the driven system becomes

ż = f(z) + ψ̃(z, ξ)u2

with input u2 = y1. We still need to define the output y2 for this system to

ensure the G2 is passive. In particular, since we know ż = f(z) is stable

with Lyapunov function W (z), we use this as a candidate storage function

for G2. Computing the derivative of W yields

Ẇ =
∂W

∂z
(f(z) + ψ̃(z, ξ)y1) ≤

[
∂W

∂z
ψ̃(z, ξ)

]
u2

where we used the fact that LfW ≤ 0 and y1 = u2. This will be passive if

we take the output of G2 to be

y2 = h2(z, ξ) =

[
∂W

∂z
ψ̃(z, ξ)

]T
With this choice for y2, the second blockG2 will be passive and we can then

use the feedback transformation

u = −h2(z, ξ) + v

to create a feedback interconnection which, by the passivity theorem ??,

will ensure the cascasde from v to y1 is passive. Moreover, if the cascade

is ZSD, this means that the usual output feedback law v = −ky will render

the origin of the passivated system globally asymptotically stable.

The preceding example was confined to cascades in which the driving

system was linear. This obviously is of great use in assuring the asymptotic

stability of system realizations obtained from an I/O feedback linearization.

However, we also know that such linear systems are topologically equiva-

lent to affine nonlinear systems and this suggests that we should be able to

extend the above development to cascades in which the driving system is
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nonlinear and affine in the control. This is in fact the case. The resulting

controller is simply stated below without proof.

THEOREM 41. (Feedback Passivation of Cascade) Suppose that for the

cascade

ż = f(z) + ψ(z, ξ)

ξ̇ = a(ξ) + b(ξ)u
(75)

in which the equilibrium z = 0 of ż = f(z) is globally stable with a C2

radially unbounded positive definite function W (z) such that LfW ≤ 0.

Suppose there exists an output y = h(ξ) such that

• the interconnection ψ(z, ξ) can be factored as ψ(z, ξ) = ψ̃(z, ξ)y,

• the subsystem

ξ̇ = a(ξ) + b(ξ)u

y = h(ξ)
(76)

is passive with a C1 positive definite, radially unbounded storage

function U(ξ).

Then the entire cascade in (75) is rendered passive with the feedback trans-

formation

u = −(Lψ̃W )T (z, ξ) + v(77)

and V (z, ξ) = W (z) + U(ξ) is its storage function. If, with the new input

v and the output y, the cascade is ZSD, then v = −ky with k > 0 achieves

global asymptotic stability of the equilibrium (z, ξ) = (0, 0).

Example: Let us consider the system

ż = −z + z2ξ

ξ̇ = u
(78)

We will consider two strategies for stabilizing this system. In the first strat-

egy, we use partial feedback of ξ to force the driving ξ-subsystem to go
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to zero. The idea is that by driving ξ to zero that the stability of the un-

forced driving system ż = −z will be sufficient to ensure the stability of

the cascade. The second strategy will use full state feedback to implement

a feedback passivating control.

While both strategies achieve local stabilization of the origin, there is a

subtle difference in global nature of the stability achieved. In particular, we

will show that the first partial feedback strategy only achieves what is called

semiglobal asymptotic stability, by which we mean that there is a control for

any initial condition that assures asymptotic stability, but the gain required

to achieve that convergence grows with the distance of the initial state from

the equilibrium. On the other hand, the passivating control is able to achieve

global asymptotic stability in the sense that there is a fixed control law that

assures convergence to the origin for any initial condition.

Let us first look at the partial feedback approach. In this case we use a

linear feedback law u = −kξ with k > 0 to achieve asymptotic stability of

(z, ξ) = (0, 0). We use the Lyapunov function V (z, ξ) = z2+ξ2 to estimate

the region of attraction. The derivative of V is

V̇ = −2(z2 + kξ2 − ξz3) = −
[
z ξ

] [ 2 −z2

−z2 2k

][
z

ξ

]
(79)

negative for z2 < 2
√
k. An estimate of the region of attraction is the largest

set V = c in which V̇ < 0. This shows that with a feedback gain k > c2

4

that we can guarantee any prescribed c. In other words, we can guarantee

convergence from an initial condition, x0, with V (x0) > c only if the gain

k > c2/4. So this what we mean when we say the system is semi-globally

asymptotically stable.

Let us now consider a passivating design that employs full-state feed-

back to achieve global stabilization. We use y1 = ξ to first create a linear

passive system G1. Then by selecting W (z) = 1
2
z2 as a storage function,

we establish that the first equation in (78) defines a passive system G2 with

u2 = ξ as the input and y2 = z3 as the output. Hence with the feedback
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transformation

u = −y2 + v = −z3 + v

the cascade (78) becomes a feedback connection of two passive systems.

The ZSD property is also satisfied because in the set y1 = ξ = 0, the

system reduces to ż = −z. Therefore a linear feedback control v = −ky1
with k > 0 will render the whole cascade globally asymptotically stable

(GAS).

9. Backstepping Feedback Passivation

One of the major limitations of feedback passivation is that it requires the

system to have relative degree one and be weakly minimum phase. This is

a very small class of systems and to make feedback passivation practical

we need to extend it beyond this class of systems. This section shows how

backstepping can be used to bypass the relative degree one obstacle.

We discuss backstepping feedback passivation by first presenting an ex-

ample and then formalizing what we see in the example. In particular, let

us consider the following system

ẋ1 = x2 + θx21

ẋ2 = x3

ẋ3 = u

The relative degree of the system depends on what we choose for the system

output. The output in I/O feedback linearization would be x2 since it is at

the top of the chain of integrators. If y is chosen that way then the system

has a relative degree 2. The zero dynamics are embedded in the first equa-

tion and satisfy ẋ1 = θx21, which is clearly unstable. So this system with

y = x2 fails to satisfy the conditions needed for the cascade to be feedback

passive.
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To use the feedback passivation methods, therefore, we need to make

some different choices for the output y. If we are free to choose y, then we

should choose it so the system has relative degree one. We’ll denote this

output as y3 and define it to be

y3 = x3 − α2(x1, x2)

Note that since y3 contains x3 and ẋ3 = u, the system from u to y3 will have

a relative degree of one.

The second term, α2(x1, x2), will be chosen to satisfy the minimum

phase requirement. In particular, with the chosen output y3, this means

that the zero dynamics are given by the first two equations. In particular

when y3 = 0, then we know x3 = α2(x1, x2) and inserting this into the first

two equations yields the zero dynamics

ẋ1 = x2 + θx21

ẋ2 = α2(x1, x2)

Let us assume that we select α2(x1, x2) so the system is stable, but note that

it has the same form as our original system, except that it is now of order

2 instead of order 3. Since it has the same structure as our original system,

we can try the same trick.

In particular, we consider the system

ẋ1 = x2 + θx21

ẋ2 = v

where we treat v as the control input. We select an output y2 so that this

system is of relative degree one, which following our earlier strategy means

that

y2 = x2 − α1(x1)
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When y2 = 0, which means that x2 = α1(x1), we obtain the system’s zero

dynamics as

ẋ1 = α1(x1) + θx21

with the output y1 = x1. This is obviously a first order system and we

need to select α1(x1) to asymptotically stabilize the zero dynamics. The

selection of α1(x1) is relatively easy now since we could use something

like the damping theorem to dominate the nonlinear term.

The preceding construction generated a sequence of passivating outputs

y1, y2, and y3 that proceed in a bottom-up manner from the full system

equations, reducing the order of the system by 1 at each step, until we are

left with a scalar system. Once we stabilize that scalar system, we can then

use our usual backstepping control to generate the control α2(x1, x2) that

stabilizes the second order system, and then use that stabilized system to

construct the control u = α3(x1, x2, x3) that stabilizes the full original sys-

tem. In this regard, the construction of the control laws is done in a top

down manner; starting from the scalar system and proceeding step by step

until we’ve stabilized the full system. As one should recognize, this is noth-

ing more than the backstepping procedure that we introduced previously

and shows another application of backstepping as a tool that, in this case,

sidesteps the relative degree one restriction we encountered in the use of

feedback passivation. The basic step described in the above example can

now be formalized into the following theorem

THEOREM 42. (Backstepping Feedback Passivation) Assume that for

the system

ż = f(z) + g(z)u(80)

there is a C1 feedback transformation u = α0(z) + v0 and a C2 positive

definite radially unbounded storage function W () such that this system is

passive from input v0 to output y0 = [LgW ]T (z) (i.e. Ẇ ≤ yT0 v0). Then the
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augmented system

ż = f(z) + g(z)ξ

ξ̇ = a(z, ξ) + b(z, ξ)u,
(81)

where b−1(z, ξ) exists for all z and ξ, is feedback passive with respect to the

output y = ξ − α0(z) and the storage function V (z, y) = W (z) + 1
2
yTy. A

particular control law that renders this augmented system passive is

u = b−1(z, ξ)

(
−a(z, ξ)− y0 +

∂α0

∂z
(f(z) + g(z)ξ) + v

)
(82)

Furthermore the augmented system (81) with this control law (82) is ZSD

with respect to input v if and only if the base system (80) is ZSD for the

input v0.

Proof: Substituting ξ = y + α0(z), we rewrite the augmented system (81)

as

ż = f(z) + g(z)(α0(z) + y)

ẏ = a(z, y + α0(z)) + b(z, y + α0(z))u− α̇0(z, y)

Using the feedback transformation in equation (82) this system becomes

ż = f(z) + g(z)(α0(z) + y)

ẏ = −y0 + v
(83)

The passivity of the system from v to y is established with the storage func-

tion V (z, y) = W (z) + 1
2
yTy. The time derivative of V is

V̇ = Ẇ + yT (−y0 + v) ≤ yTv

where we used the fact that Ẇ ≤ yT0 v0 and that y = v0.

To verify the ZSD property of (83), we set y ≡ v ≡ 0 which implies

y0 ≡ 0. Hence the system (83) is ZSD if and only if z = 0 is attractive

conditionally to the largest invariant set of ż = f(z) + g(z)α0(z) in the set

where y0 = (LgW )T = 0. This is equivalent to the ZSD property of the

original system for input v0 and output y0. ♢
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10. Example: The TORA System

This section shows how feedback passivation, backstepping, and I/O feed-

back linearization can be used together to stabilize a well known benchmark

problem in nonlinear control known as the TORA (translation oscillator

with rotating actuator) system.

The TORA system in Fig. 12 consists of a platform that can oscillate

with damping in the horizontal plane (no gravity effect). On the platform

is a rotating eccentric mass that is actuated by a DC motor. The motion

of this mass applies a force to the platform that can be used to damp the

translational oscillations. The motor torque is the control variable and the

problem is to find a control law that asymptotically stabilizes the system at

a desired equilibrium.

FIGURE 12. (right) TORA system at UMich (left) Diagram

of TORA system

We let x1 be the displacement of the platform from the equilibrium posi-

tion. The state x2 = ẋ1 denotes the velocity of the platform’s displacement.

x3 = θ is the angle of the rotor with x4 = ẋ3 denoting the angular velocity

of the rotor. In these coordinates the system dynamics can be written as

ẋ = f(x) + g(x)u
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where u is the torque applied to the eccentric mass. The vector fields f and

g are

f(x) =


x2

−x1+ϵx24 sinx3
1−ϵ2 cos2 x3

x4
ϵ cosx3(x1−ϵx24 sinx3)

1−ϵ2 cos2 x3

 , g(x) =


0

−ϵ cosx3
1−ϵ2 cos2 x3

0
1

1−ϵ2 cos2 x3


with ϵ being a constant parameter that depends on the rotor, platform masses,

and eccentricity. Typically the value of this constant is ϵ = 0.1.

We will find it convenient to use a feedback linearizing transformation

to transform this system to a simpler form. Recall that the relationship

between the feedback linearized system and the original system is a diffeo-

morphism, which means these systems are equivalent. In particular we use

the following state variables

z1 = x1 + ϵ sinx3

z2 = x2 + ϵ cosx3

ξ1 = x3

ξ2 = x4

with the feedback transformation

v =
1

1− ϵ2 cos2 ξ1
[
ϵ cos ξ1

(
z1 − (1− ξ22)ϵξ1

)
+ u
]

= α(z1, ξ) + β(ξ)u

to bring the system to the following normal form

ż1 = z2

ż2 = −z1 + ϵ sin ξ1

ξ̇1 = ξ2

ξ̇2 = v

(84)

For this system we will examine three methods for asymptotically stabiliz-

ing the origin. The first method uses feedback linearization. The second
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method uses integrator backstepping and the third will use feedback passi-

vation.

10.1. Feedback Linearization of TORA system. The system equa-

tion (84) is already in normal form since a feedback linearizing transforma-

tion was used above to put it in that form. This is a common preliminary

step in the design of nonlinear controllers. To more easily see how this re-

lates to our prior discussion of feedback linearization, let us rename the z

variables as η =

[
z1

z2

]
so that the system equations becomes

ξ̇1 = ξ2

ξ̇2 = v

η̇1 = η2

η̇2 = q(ξ, η)

where q(ξ, η) = −η1 + ϵ sin ξ1. The first two equations represent the lin-

earized I/O dynamics of the system in which ξ1 is taken as the output and

the last two equations model contain the zero-dynamics of the system.

We know that we can stabilize the I/O map from v to y using a control

of the form,

v = −k1ξ1 − k2ξ2

and in particular we select the gains k1 and k2 so the origin of the ξ-

subsystem is globally asymptotically stable. With this control, we simply

need to check and see if the cascade of this stabilized linear I/O dynamic

with the zero-dynamics is also asymptotically stable.

Let us examine the input-to-state stability of the η-subsystem

η̇1 = η2

η̇2 = −η1 + ϵ sin ξ1
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where ξ1 is treated as an external disturbance. The η-subsystem is not

asymptotically stable when ξ = 0 because it is linear with eigenvalues of

±j. This means, therefore, that the zero-dynamics are weakly minimum

phase. So no matter what we choose to stabilize the upper system, we will

not be able to assure the asymptotic stability of the zero dynamics. This

example, therefore, is a case where input-output feedback linearization as

we described it above does not synthesize an asymptotically stabilizing con-

troller. The best we can hope for is that the cascaded system is stable.

This conclusion is supported by a MATLAB simulation for the feedback

linearization controller with k1 = k2 = 1. The script and results from this

simulation are shown in Fig. 13. The top plot shows the translational states,

x1 and x2 = ẋ1. The bottom plots shows the rotational states. As expected

the rotational states are controlled to the origin, whereas the translational

states continue oscillating.
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1
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x1
x2
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-1

-0.5

0

0.5

1
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x4=omega

FIGURE 13. (left) script (right) simulation results for

TORA system using I/O feedback linearizing control

10.2. Integrator Backstepping Controller for TORA system. We now

introduce an integrator backstepping control for the TORA system. In this
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case it is more convenient to keep the system in (z, ξ) coordinates we intro-

duced above.

ż1 = z2(85)

ż2 = −z1 + ϵ sin ξ1(86)

ξ̇1 = ξ2(87)

ξ̇2 = v(88)

Integrator backstepping starts by treating ξ1 in equation (86) as a ”vir-

tual control” input and synthesizes a control law, ϕ1(z) that stabilizes the z

subystem (eqs. 85-86). The particular virtual control we will use is

ϕ1(z) = −c0 tan−1 z2

where 0 < c0 < 2. To verify that this control asymptotically stabilizes

the z-subsystem, we consider the candidate Lyapunov function V0(z) =
1
2
(z21 + z22) and compute the directional derivative to get

V̇0(z) = −ϵz2 sin(c0 tan−1 z2)

which can be shown to be nonpositive. If we then consider the setE = {z ∈
R2 : V̇0(z) = 0}, one may easily deduce that E = {z ∈ R2 : z2 = 0}.
So from the Invariance principle (theorem ??) we know z asymptotically

converges to the largest invariant set in E. That invariant set is, of course,

just the origin so the proposed virtual control ϕ1(z) indeed globally asymp-

totically stabilizes the origin of the z-subsystem in equations (85-86).

We now rewrite equations (85-87) in a form consistent with our back-

stepping procedure where we treat ξ2 as the control input u = ϕ2(z, ξ1) we

need to find.

ż = f(z) + g(z) sin ξ1 = F (z, ξ1)

ξ̇1 = u
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and

f(z) =

[
z2

−z1

]
, g(z) =

[
0

ϵ

]
Note that this is not quite in the form required by theorem 38 because the

input from the lower system ξ1 does not enter linearly, it is modified by a

sine function. This means we cannot directly use theorem 38.

We will modify the backstepping procedure so it applies to systems such

as

ż = F (z, ξ1)

ξ̇1 = u

in which the upper system may not be affine in ξ1. This modification is done

the same steps we followed to establish theorem 38. We use our control

ϕ1(z) from above which is known to asymptotically stabilize the origin of

ż = F (z, ϕ1(z)) and then rewrite the augmented system is

ż = F (z, ϕ1(z)) + [F (z, ξ1)− F (z, ϕ1(z))]

ξ̇1 = u

and we introduce the backstepping variable

y1 = ξ1 − ϕ1(z)

With this change of variables the system becomes

ż = F (z, ϕ1(z)) + ψ(z, ξ1)y1

ẏ1 = u− ϕ̇1(z)

= u− ∂ϕ1(z)

∂z
F (z, ξ1)

where

ψ(z, ξ1) =
1

ξ − ϕ1(z)
[F (z, ξ1)− F (z, ϕ1(z)]

At this point, the only difference from our earlier analysis is the introduc-

tion of the function ψ(z, ξ1) rather than using g(z). We needed to do this
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because in our system g(z) does not inject ξ1 into the upper system in a

linear manner. Other than this change, the rest follows as expected and can

be shown (homework) to give a control of the form

u = ϕ2(z, ξ1) = −∂V0
∂z

ψ(z, ξ1)− k(ξ − ϕ1(z)) +
∂ϕ1(z)

∂z
F (z, ξ1)

where V0 is the Lyapunov function for ż = F (z, ϕ1(z)).

So we now return to our example. For the proposed control, ϕ1(z), we

can readily see that

F (z, ξ1) =

[
z2

−z1 − ϵ sin(c0 tan−1 z2)

]

with ψ(z, ξ1) being

ψ(z, ξ1) =

 0
ϵ[sin ξ1+sin(c0 tan−1 z2)]

(ξ1+c0 tan−1 z2)


and the modified backstepping control is

ϕ2(z, ξ1) = −c1(ξ1 + c0 tan
−1 z2) + c0

z1 − ϵ sin ξ1
1 + z22

− ϵz2
(ξ1 + c0 tan

−1 z2)

[
sin ξ1 + sin(c0 tan

−1 z2)
]

with c1 > 0. This therefore gives a globally asymptotically stabilizing

control for the first 3 equations of the system (85-87). We still have one

last backstepping operation to do before we obtain the actual control for the

entire system.

We now use backstepping to obtain a stabilizing control for the entire

system (85-88). Note that this system can be seen as a cascade of the system

given by equations (85-87) with the last subsystem (88). To emphasize this
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let ζ =

[
z

ξ1

]
then we can rewrite the entire system equation as

ζ̇ = F (ζ, ξ2) =

 z2

−z1 + ϵ sin ξ1

ξ2


ξ̇2 = v

where v is the control input to the system in equations (85-88) that we need

to find. Applying our earlier backstepping formalism will give

v(z, ξ) = −c2(ξ2 − ϕ2(z, ξ)) +K1(z2)z2 +K2(z, ξ1)(−z1 + ϵ sin ξ1)(89)

+K3(z, ξ1)ξ2 − (ξ1 + c0 tan
−1 z2)(90)

with c2 > 0 and where

K1(z2) ≡
c0

1 + z22

K2(z, ξ1) ≡ − ϵ

ξ1 + c0 tan
−1 z2

[
sin ξ1 + sin(c0 tan

−1 z2) + c0z2
cos(c0 tan

−1 z2)

1 + z22

]
− c0c1
1 + z22

− 2c0z2
z1 − ϵ sin ξ1
(1 + z22)

2
+
ϵc0z2[sin ξ1 + sin(c0 tan

−1 z2)]

(1 + z22)(ξ1 + c0 tan
−1 z2)2

K3(z, ξ1) ≡ −c1 −
ϵc0 cos ξ1
1 + z22

− ϵz2 cos ξ1
ξ1 + c0 tan

−1 z2

+
ϵz2[sin ξ1 + sin(c0 tan

−1 z2)]

(ξ1 + c0 tan
−1 z2)2

We simulated the action of this controller with c0 = c1 = c2 = 3. The

script and results from this simulation are shown in Fig. 14. The top plot

shows the translational states, x1 and x2 = ẋ1. The bottom plots shows the

rotational states. This controller indeed asymptotically stabilizes the origin

of the entire system, but it is extremely complicated as can be seen from

equation (90) as well as the MATLAB script.

10.3. Feedback Passivating System for TORA systems. We now in-

vestigate the use of feedback passivation in controlling the TORA system.
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FIGURE 14. (left) script (right) simulation results for

TORA system using integrator backstepping control

To start we write out the system equations, but expanding out ẋ2 term to

show more clearly the actual control input u.

ż1 = z2

ż2 = −z1 + ϵ sin ξ1

ξ̇1 = ξ2

ξ̇2 = a(z1, ξ1) + b(ξ1)u

(91)

where

a(z1, ξ1) =
ϵ cos ξ1[z1 − (1 + ξ22)ϵ sin ξ1]

1− ϵ2 cos2(ξ1)

b(ξ1) =
1

1− ϵ2 cos2(ξ1)
Feedback passivation, recall, requires the choice of an output function y =

h(z, ξ) so that the system from u to y has relative degree one and the zero-

dynamics are weakly minimum phase. To be relative degree one, we require

the control input u appear after a single differentiation of of the output.

From the system equation (91) we see this means that y = ξ2 with the

corresponding zero dynamics

ż1 = z2

ż2 = −z1 + ϵ sin ξ1

ξ̇1 = 0

(92)
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This means that ξ1(t) is a constant. Since the underlying system is linear,

we can readily see that the output remains bounded for all time, thereby

establishing that the zero-dynamics are stable. Since this choice of output

ensures the entire system has relative degree one and a weakly minimum

phase zero dynamic, we can feedback passivate the system.

Recall that to feedback passivate a system we also need a Lyapunov func-

tion, W (z, ξ1), for the zero dynamics in equation (92). In particular, we can

use

W (z, ξ1) =
1

2
(z1 − ϵ sin ξ1)2 +

1

2
z22 +

k1
2
ξ21

where k1 is a design parameter. It can be shown that the time derivative of

W along system trajectories of (92) is nonpositive and is, in fact, Ẇ = 0.

The feedback transformation required to asymptotically stabilize this

system is given by

v = −Lψ̃W + w = (z1 − ϵ sin ξ1)ϵ cos ξ1 − k1ξ1 + w

which renders the system passive from the new input w to the output y = ξ2

with respect to the storage function

V (z, ξ) = W (z, ξ1) +
1

2
ξ22(93)

where, in fact V̇ = ξ2v = yv.

Next we verify if the system with output y = ξ2 and input w is ZSD.

From y = ξ2 ≡ 0, we get ξ̇2 ≡ 0, which with w ≡ 0 gives

0 ≡ ϵ cos ξ1(z1 − ϵ sin ξ1)− k1ξ1

This means ξ2 ≡ 0 implies that ξ1 is constant and from the above equation

z1 is also a constant so that ż1 = z2 ≡ 0. Then ż2 = z1 − ϵz3 ≡ 0 which

together with the above relation shows ξ1 ≡ 0. This proves that y ≡ 0 and

w ≡ 0 only if all of the states are 0, thereby establishing the system is ZSD.

Because the system is passive and ZSD, with the positive definite, radi-

ally unbounded storage function, we can achieve global asymptotic stability
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with w = −k2y = −k2ξ2. The resulting control therefore can be shown to

be

u = b−1(−a− ∂W
∂ξ1
− k2ξ2)

= ϵ2x24 sinx3 cosx3 − ϵ3 cos2 x3(z1 − ϵ sinx3)
−(1− ϵ2 cos2 x3)(k1x3 + k2x4)

(94)

A script was written to simulate this feedback passivating controller with

k1 = 1 and k2 = 0.15. The results are shown below in Fig. 15 and they

indeed show that the translational dynamics have been asymptotically stabi-

lized. There are, however, two things to notice. The first is that the resulting

controller is much simpler than the backstepping controller we designed in

the preceding subsection. The second thing to note, however, is that the

convergence rate for the controlled system is extremely slow.

for time=0:dt:tstop;
   
   z(1,1) = x(1)+eps*sin(x(3));
   z(2,1) = x(2)+eps*x(4)*cos(x(3));
   xi(1,1) = x(3);
   xi(2,1) = x(4);
   
  u = eps^2*x(4)^2*sin(x(3))*cos(x(3))-
eps^3*cos(x(3))^2*(z(1)-eps*sin(x(3)))...
      -(1-eps^2*cos(x(3))^2)*(k1*x(3)+k2*x(4));
 
   
    
   f(1,1) = x(2);
   f(2,1) = (-x(1)+eps*x(4)^2*sin(x(3)))/(1-
eps^2*(cos(x(3)))^2);
   f(3,1) = x(4);
   f(4,1) = (eps*cos(x(3))*(x(1))-
eps*x(4)^2*sin(x(3)))/(1-eps^2*cos(x(3))^2);
   
   g(1,1) = 0;
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FIGURE 15. Simulation results for feedback passivating

control (94) for the TORA system based on the storage func-

tion in equation (93).

The passivity-based controller given above cannot be made faster through

a different selection of the controller gains. The only way to achieve faster

response is to include z1 in the feedback law and this might be accom-

plished by modifying the storage function to increase the penalty on large

deviations in the translation coordinate, z1. So we use the following storage
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function upon which to feedback passivate the system

V (z, ξ) =
k0 + 1

2

[
(z1 − ϵ sinx3)2

]
+
k1
2
x23 +

1

2
x24(1− ϵ2 cos2 x3)(95)

For this choice of storage function we can show that the control becomes

u = −k0ϵ cosx3(−z1 + ϵ sinx3)− k1x3 − k2x4(96)

A simulation for this feedback passivating control is shown in Fig. 16 with

gains k0 = 10, k1 = 5, and k2 = 0.5. This simulation retains much of

the simplicity of the original feedback passivating control with a transient

response that is consistent with what was seen with the backstepping control

law.
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FIGURE 16. Simulation results for feedback passivating

control (96) for the TORA system based on the storage func-

tion in equation (95).

11. Summary

This chapter presented a constructive approach to the stabilization of

nonlinear systems based on Control Lyapunov functions. The material

on feedback linearization is drawn from Khalil (2002) and Isidori (1995).

Much of the discussion on the stabilization of the cascades generated by
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feedback linearization was drawn from Sepulchre et al. (2012). The appli-

cation of these methods to the TORA system Wan et al. (1996) were drawn

from Jankovic et al. (1996).





CHAPTER 6

Data Driven Control Systems

The last five chapters presented methods for control system design that as-

sume the prior knowledge of an accurate mathematical model for the plant.

Even in the uncertain plants of chapter 3, we assumed there were bounds on

the model uncertainty. This need for a prior accurate model is an important

part of model-based engineering design. In the past, engineers went to great

lengths to ensure that the physical system fit within the assumed modeling

framework. In recent years it has become increasingly difficult to ensure

that the ”model” matches ”real-life. Our systems are increasingly complex

and they are open to the environment in a way that does not allow us to

“engineer” away complexity. Controlling such systems, therefore, means

that we must ”learn” a model for the plant or directly learn a controller that

is stabilizing.

Data-driven control seeks to ”learn” stabilizing controllers for a plant

for which we have no prior model using data obtained from watching how

the system responds to observed inputs. While there are a number of ap-

proaches to data-driven control, this chapter provides a high level review

of only three methods. The first methods is an indirect approach that uses

input/output data to identify a model for the plant and then design the con-

troller. Another approach known as adaptive control seeks uses online data

to adjust an existing controller and thereby improve its performance. Fi-

nally, we review the use of Machine learning in data-driven control. In

particular we build on chapter 2’s results regarding the control of Markov

Decision Processes and outline a current popular approach known as Rein-

forcement Learning.

311
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1. Dynamic Mode Decomposition with Control (DMDc)

Dynamic mode decomposition with control (DMDc) is a method that uses

regression to identify the A and B matrices for an LTI discrete time system

of the form

x(k + 1) = Ax(k) +Bw(k)(97)

where A ∈ Rn×n and B ∈ Rm×n This identification is done using a se-

quence of M observed states X = {x(i)}Mi=0 and inputs W = {w(i)}Mi=0.

These two sets form the data used in determining the system matrices,

(A,B). This data is used to form the following data matrices

X =
[
x(0) x(1) · · · x(M − 1)

]
, W =

[
w(0) w(1) · · · w(M − 1)

]
We also form a time-shifted version of the X matrix

X+ =
[
x(1) x2 · · · x(M)

]
By the linear dynamics in equation (97) we have

X+ = AX+BW =
[
A B

] [ X

W

]
def
= FΩ

We can then see that an least squares approximation for F can be obtained

using the standard formula[
Â

B̂

]
= F̂ = X+(ΩΩT )−1

In general the inverse will exist since the number of data samples M is

chosen to be much greater than m + n. In practice, computing this inverse

is numerically unstable due to the size of the matrices and so we usually

use singular value decompositions of Ω to do this computation in a more

numerically stable manner.

The preceding discussion used data on the system state and inputs to

identify the (A,B) pair for a linear time-invariant system. But, as noted

before, this ”linear” model is an idealization of the physical plant generating

the data. Moreover, we may only have access to the system’s inputs and
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outputs, y, rather than direct access to the system’s states. Even in this

situation we can use DMDc to identify a suitable ”linearized” model of the

nonlinear plant

ẋ(k + 1) = f(x(k))

y(k) = h(x(k))

where x(k) ∈ Rn and y(k) ∈ R This is done using the notion of time-delay

embedding where we take a vector formed from the delayed system outputs

as a state for the system.

Taken’s embedding theorem provides the basis for using time-delayed

outputs of a scalar systems,

yn =


y(n− d+ 1)

y(n− d+ 2)
...

y(n)


in place of the state x(n) at time n. The vector yn represents a time-delayed

set of the past d system outputs before time n. Taken’s theorem says that

under certain regularizing assumptions, there is a one-to-one map from the

original state x(n) onto the yn vector provided M ≥ 2n + 1. On the basis

of this theorem we would then form the DMDc data matrix

X =
[
y0 y1 · · · yM−1

]
and then proceed to estimate the system pair (Â, B̂) as before. The justi-

fication for using this linear approximation is based on the fact that yn is

a time-shifted version of yn+1. But that linear approximation clearly only

holds if the dimensionality, d, of the embedding vector is infinite. We would

then expect that we can always linearize a nonlinear system’s dynamics by

projecting it onto an infinite dimensional linear systems and then using a

lower finite dimensional approximation to design the control system.



314 6. DATA DRIVEN CONTROL SYSTEMS

One important observation about an input-output system

ẋ = f(x) + g(x)u

y = h(x)

is that if the system is passive then there are a number of extremely robust

stabilization schemes that we can use. In particular, if we can use learn a

linearized model of the system, then it is relatively easy to modify the output

from that model to transform our identified linear system into a passive

system.

2. Data-driven Discovery of Koopman Eigenfunctions

Let us consider the following state-based system

ẋ(t) = f(x(t)), x(0) = x0

We define the flow, Φt : Rn → Rn as an indexed automorphism on the

state space such that

Φt(x0) = x(t;x0)

We define an observable, h : Rn → R as any real-valued function taking

the state x onto a real scalar (observation). We denote the linear space of all

C1 observables asH.

The Koopman operator, Kt : H → H is an operator mapping observ-

ables onto othe observables. The operators are indexed with respect to time,

t ∈ R so they form a one parameter semigroup of operators that take values

Kt[h](x0) = h(Φt(x0)) = h(x(t;x0))

for any time t ∈ R and any initial state x0 ∈ Rn. So Kt is a linear transfor-

mation defined on the linear function space,H, and may be seen as mapping

an observable for the “current” output onto an observable for the output at

time t in the future.
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Since the Koopman operator is a linear transformation on H, it has an

eigendecomposition. So there exists λ ∈ C and an associated function,

ϕ : Rn → C such that

Kt[ϕ](x0) = ϕ(Φt(x0)) = λϕ(x0)

Note that the eigensubspace generated by each eigenfunction is an invariant

of the Koopman operator so that the subspace formed by a finite number

of these Koopman eigenfunctions is finite dimensional and the dynamics of

h(x) generated by Kt will be ”linear”. In other words, if we choose observ-

ables that are Koopman eigenfunctions then the dynamics of that transfor-

mation will be linear.

For a given eigenvalue, λ, we can obtain an approximation of the Koop-

man eigenfunctions can be obtained in a data-driven manner. The simplest

approach would frame the problem as a regression over a library of basis

functions. In particular, we consider a set of p candidate basis functions

θi : Rn → R and arrange them as a matrix

Θ(x) =
[
θ1(x) θ2(x) · · · θp(x)

]
For the chosen λ, the associated eigenfunction would be

ϕ(x) =

p∑
k=1

θk(x)ξk = Θ(x)ξ

The solution vector ξ would be obtained by finding the vectors in the null

space of the following linear transformation

(λΘ(x)−Θ(X+))

Note that this approach assumes we have specified the eigenvalue λ. In

general, we would have to also determine what λ should be, which would

require a more sophisticated approach that simultaneously searches for λ

and ϕ.
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3. Nonlinear Adaptive Control

Control synthesis is based on prior knowledge of the plant’s dynamics. This

prior knowledge might be obtained in the data-driven methods described

above. But in some cases, we may have an existing control system and the

plant or controller’s parameters are changing over time. Robust controllers

ensure a minimum performance level over the entire range of parameter

variation, but that minimum level may be overly conservative in practice.

Adaptive control seeks to tune an existing control law in a manner that

improves its performance even though the system parameters are initially

unknown. One approach to adaptive control uses the nonlinear damping

theorem and backstepping from chapter 5 to adapt nonlinear control sys-

tems in a manner that stabilizes the unknown system.

As is usually done in constructive nonlinear control, we start by consid-

ering how to stabilize an unknown scalar system and then use backstepping

to extend that strategy to a systems consisting of a chain of integrators driv-

ing that scalar system. The scalar system of interest to us is

ẋ = u+ θϕ(x)(98)

This is a special case of the uncertain system considered in the nonlinear

damping theorem of chapter 5, except that now the uncertainty is denoted

as θ. In our case, we now think of θ as an unknown parameter, rather than

an external uncertain disturbance. Even if we do not know a bound for θ,

the nonlinear damping theorem provides a way to design a static nonlinear

controller that guarantees the global boundedness of x. Recall from the

damping theorem that this robust control is

u = −cx− kxϕ2(x)

with the resulting closed loop system equation

ẋ = −cx− kxϕ2(x) + θϕ(x)
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We can use V = 1
2
x2 as an ISS control Lyapunov function for this system

and verify that its directional derivative satisfies

V̇ ≤ −cx2 + θ2

4k

which implies that x(t) converges to the interval

|x| ≤ |θ|
2
√
kc

The size of this interval can be reduced by increasing k or c, but we cannot

force x(t) to asymptotically converge to zero if θ is a nonzero constant.

Increasing k or c to reduce the size of the residual region is undesirable

because it increases the ”jumpiness” of the system to noise, which may

accentuate the impact that neglected uncertainties have on the system. So

we are interested in finding a way to reduce the size of this residual set. In

particular, we want it to go to zero so we can ensure asymptotic convergence

to the equilibrium.

To ensure asymptotic convergence of x(t) to zero, we employ adaptation.

In particular, if θ were known, then we could use the control

u = −θϕ(x)− c1x

to render the derivative of V0(x) = 1
2
x2 negative definite and thereby en-

sure convergence to zero. This control, however, cannot be used since θ

is unknown and so one way to address this issue is to use the certainty-

equivalence principle which assumes that we use a control of the form

u = −θ̂ϕ(x)− c1x

where θ̂ is an estimate of the actual parameter θ such that some averaged

measure of the estimation error

θ̃ = θ − θ̂

is zero. In this case the system would on average be able to cancel the

dynamics associated with θ and replace them with the linear control −c1x.

We call this the certainty-equivalence approach since we are asserting that
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the use of the parameter estimate is equivalent to using the true or ”certain”

parameter in our controller.

The question we need to answer is whether certainty-equivalence indeed

assures that the system will asymptotically converge to zero. So let us con-

sider the candidate Lyapunov function V0(x) = 1
2
x2 and compute its di-

rectinal derivative

V̇0 =
∂V0(x)

∂x
ẋ = x(−cx− θ̂ϕ(x) + θϕ(x))

= −cx2 + θ̃xϕ(x)

For a linear system, we an take ϕ(x) = x, so that θ represents the unknown

dynamic and we get

V̇0 = −(c− θ̃)x2

Provided we can ensure θ̃ < c, then we have asymptotic convergence to

zero. In particular, for linear systems, if we know that θ̃ → 0 as t → ∞,

then eventually this stabilization condition holds and we should be able to

assure the convergence to zero.

For general nonlinear systems, however, we cannot rely on certainty

equivalence. In fact we see that in

V̇0 = −cx2 + θ̃xϕ(x)

the second term is indefinite and depending on the form of ϕ(x), it may

be that this second term dominates the system’s behavior. Moreover, we

have already seen examples of nonlinear systems in which ”peaking” in the

estimation error θ̃ may destabilize the upper system. This suggests we need

to abandon certainty-equivalence as a design principle in nonlinear adaptive

control.

So let us augment V0 with a quadratic term in the parameter error θ̃.

V1(x, θ̃) =
1

2
x2 +

1

2γ
θ̃2
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where γ > 0 is a design constant we call the adaptation gain. The derivative

of this candidate Lyapunov function is

V̇1 = xẋ+
1

γ
θ̃
˙̃
θ

= −c1x2 + θ̃xϕ(x) +
1

γ
θ̃
˙̃
θ

= −c1x2 + θ̃

[
xϕ(x) +

1

γ
˙̃
θ

]
The second term is still indefinite, but it contains the dynamics of the esti-

mation error in it,

˙̃
θ = − ˙̂

θ

So we make an appropriate selection for the parameter estimator, ˙̂
θ, that

cancels the indefinite term. In particular we choose the update law

˙̂
θ = γxϕ(x)

then the directional derivative of V1 becomes

V̇1 = −c1x2 ≤ 0

The resulting adaptive system now consists of the original system with the

control and the update law,

ẋ = −c1x+ θ̃ϕ(x)

˙̃
θ = −γxϕ(x)

This then gives us a nonlinear estimator for θ. The preceding discussion

assumed there was no other disturbance driving the system, but we could

clearly have introduced disturbances as well in a manner that would render

the adaptively controlled system ISS to this external disturbance.

The preceding discussion assumed the uncertainty generated by the esti-

mation error could be cancelled by the control. This cannot be done if the

parameter uncertainty is not matched to the control. This is the case in the
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following system

ẋ1 = x2 + θϕ(x1)(99)

ẋ2 = u(100)

This particular form, suggests that we can use backstepping to get the de-

sired “adaptive” control law.

4. Extremum Seeking Stabilization

Extremum seeking stabilization (ESS) uses a dithering sinusoidal pertur-

bation to the control input that allows one to determine the gradient of a

control Lyapunov function without having a prior model for the system’s

dynamics. Following this gradient allows the system state to seek the mini-

mum of the CLF, thereby stabilizing the system state about the origin.

We can see the basic idea in this approach on the following open-loop

unstable scalar system

ẋ = x+ b(t)u

where the control direction b(t) is unknown. For such a system, the standard

controllers would fail if the sign of b(t) was incorrect or if b(t) had a change

in sign. If, however, we consider the action of a control

u =
√
αω cos(ωt) + kV (x))

where V (x) = x2 is a candidate Lyapunov function, then for ω sufficient

large, the “averaged” state of the system is

x(t) = x(0) +

∫ t

0

(x(τ)b(τ)u(τ)dτ)

converges to the origin. This assertion can be justified by noting that x

satisfies the differential equation

ẋ = (1− kαb2(t))x
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Note that the ”unknown” b(t) is now replaced by b2(t) ≥ 0. So if b(t) is

nonzero often enough, then for large enough kα > 0, we can ”practically”

stabilize the system in the sense that the averaged state x goes to zero and

the true state remains in a bounded neighborhood of the origin.

We can illustrate this in a simple example where the unknown system is

ẋ = x+ (0.5x+ sin(10t))u

In this case b(t) = 0.5x(t) + sin(10t). We use the candidate Lyapunov

function V (x) = x2 and the control u is then

u =
√
αω cos(ωt+ kV (x))

where we select ω = 1000, α = 10. Fig. 1 shows the resulting state tra-

jectory that on ”average” converges to the origin. The true state trajectory

oscillates about this minimum in a bounded way, thereby exhibiting uni-

form ultimately bounded behavior (or what is sometimes called practical

stability).

FIGURE 1. Extremem Seeking Control

Note that the control in this example assumes very little about the actual

system dynamics. All we really required was that the output from the plant

was a Lypunov-like function V . The control itself simply dithers back and

forth around the the current value of V . The dithering control causes varia-

tions in V whose phase with respect to the cosine can be detected and used

to guide the control in a way that seeks the minimum point of the control



322 6. DATA DRIVEN CONTROL SYSTEMS

Lyapunov function V . This strategy works for more general MIMO sys-

tems. It does not achieve ”asymptotic stability”, rather it achieves practical

stability.

5. Reinforcement Learning

Reinforcement Learning teaches an agent how to act in an unknown envi-

ronment. Consider an agent that interacts with an external environment.

The environment is a dynamical system that provides to the agent, at each

time instant, the environment’s current state and a reward in response to the

agent’s current action. The agent does not know the environment’s reward

function or dynamics. It must learn these things by seeing how the envi-

ronment responds to the agent’s actions. The agent then uses what it learns

about the environment to identify an action (control) policy that selects ac-

tions in response to the current environmental state. That action is selected

to maximize the aggregate discounted reward the agent receives over a finite

time horizon. Reinforcement learning can therefore be seen as trial-and-

error learning since it learns how to act in response to the positive/negative

consequences of its actions. This learning process is ”data-driven” in the

sense that the ”data” are the states/rewards seen in response to each action.

RL can be understood as an optimal control problem for Markov De-

cision Processes (MDP), which we discussed in chapter 2. That chapter

defined the agent/environment interaction as a tuple, (S,A, p, r, S0, SK)

where S is a finite set of environmental states, A is a finite set of agent

actions. The sets S0, Sk ⊂ S are initial and terminal state sets. The map

p : X × A → P(S) maps the current state action pair at time k, (sk, ak)

onto the next state through the probability distribution

p(y |x, a) = Pr {sk+1 = y | sk = x, ak = a}

The other map, r : S×A×S → R maps the current state-action-next state

triple (sk, ak, sk+1) onto the numerical reward rk+1 ∈ R.
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The agent and environment interact over a sequence of time steps, k =

0, 1, 2, 3, . . . , K. The initial state s0 lies in S0. At each time instant k,

the agent selects and action ak ∈ A using a policy π : S → P(A).
The policy uses the current state sk, to randomly select the action ak with

respect to distribution π(ak | sk = s). The environment then takes this

action and returns its next state sk+1 ∼ p(· | sk, ak) and the next reward

rk+1 = r(sk, ak, sk=1. This interaction therefore generates a sequence of

state-action-reward triples

(s0, a0, r1)→ (s1, a1, r2)→ · · · → (sK−1, aK−1, rK)

where the stopping timeK occurs when the system state sK ∼ p( : |sK−1, aK−1)

enters the terminal state set SK for the first time. Each run is called an

episode

What we saw, before, was that we wanted to find a policy, π that max-

imized the total discounted reward the agent receives for an episode, av-

eraged over all episodes the agent might see. This optimal value is called

the value function and for a given policy π, the value received by an agent

starting in state s is

V π(s) = Eπ
{
K−1∑
k=0

γkr(sk, π(sk), sk+1) | s0 = s

}

where γ ∈ (0, 1) is a discount factor. We seek a policy π∗ such that

V π∗
(s) ≥ V π(s)

for all s ∈ S and over all feasible action policies, π. We learned from

chapter 2 that V π satisfies the Bellman equation

V π(s) =
∑
a∈A

π(a | s)
∑
s′∈S

p(s′ | s, a)(r(s, a, s′) + γV π(s′))

We also say that it was sometimes valuable to write this ”value” as a func-

tion of the state action pair (s, a), This Q-function also satisfied a Bellman
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like equation of the form

Qπ(s, a) =
∑
s′∈S

p(s′ | s, a)
(
r(s, a, s′) + γmax

a∈A
Qπ(s′, a)

)
The optimal policy could then be obtain

π∗(s) = argmax
a
Q∗(s, a) = argmax

a

{
max
π∈Π

Qπ(s, a)

}
Finally, we saw that if the state transition distribution p and reward function

were known, then we could use the value iteration to generate a sequence

value functions V̂ℓ that asymptotically converge to the optimal value func-

tion V ∗, from which we could then obtain the optimal policy π∗.

Reinforcement learning (RL) is built on the framework described above,

the only difference being that we do not have prior information about the

state transition kernel, p, or the reward function, r. Instead, we have the

agent who uses an action policy to select an action, ak, and then observe

the environment’s reward, rk+1 and state sk+1 generated in immediate re-

sponse to that selected action. RL, therefore, uses a trial and error scheme

to ”learn” the optimal action policy for the MDP. This is done by recur-

sively estimating the value function using a value gradient method or by

directly learning the policy using policy gradient methods. The following

subsections review some of the basic RL algorithms used for both methods.

5.1. RL Value Gradient Algorithms: Value gradient methods esti-

mate the gradient of the value function using the Bellman equation. They

use these gradients to estimate the state-action value function from which

the optimal policy can be readily determined. These value gradient algo-

rithms are known a temporal-difference (TD) learning and this section ex-

amines two specific versions of TD learning, the SARSA algorithm and

Q-learning.

TD learning may be seen as an efficient way of using Monte Carlo meth-

ods to estimate the value function of a given policy. Monte Carlo (MC)
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methods use simulations to estimate the likelihood of events through a sim-

ulation model of the environment. That simulation is used to generate a

large number of process trajectories, each trajectory being called an episode.

That set of trajectories is then used to estimate fundamental statistics of the

process, such as the expectation of the value function at each state in the

state space.

Let V π(s) denote the value of environmental state s ∈ S under a fixed

policy π : S → A. The simulation model is used to generate a large col-

lection of episodes and we examine those episodes that pass through a give

state s ∈ S. We can then estimate the value function from s by simply

taking the empirical mean of the total reward generated by all of these

episodes. Consider a single episode that generates the state and reward

sequence {sℓ}∞ℓ=0, then the value from a state s = sk for a specific k can be

estimated as

V̂ π(sk)← V̂ π(sk) + α

[
∞∑
ℓ=0

γℓr(sk+ℓ, π(sk+ℓ), sk+ℓ+1)− V̂ π(sk)

]
where α ∈ (0, 1) is a hyperparameter called the learning rate. If we do this

for all episodes passing through the same s then we are essentially averaging

the value received from state s. Note that this update can only be computed

at the end of each episode. This means we have to wait until the entire

episode has been completed before updating our estimate of V̂ π(s) at that

state. This means, of course, that MC methods represent a very inefficient

way of estimating the value function and so are not used in practice.

We would like a method that updates the estimate of V π every time

we get a new reward and state from the environment in response to the

agent’s action. By the Bellman equation, we know that the value function

at state sk is equal to the value function at sk+1 plus the immediate reward,

r(sk, ak, sk+1) that the agent receives at time k + 1 in response to using

action ak. So, rather than waiting to the end of the episode to compute

an estimate of the value function based on the total reward obtained from

that state, i.e.,
∑∞

ℓ=0 γ
ℓr(sk+ℓ, ak+ℓ, sk+ℓ+1), we substitute with the Bellman
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approximation to get

V̂ π(sk) ← V̂ π(sk)

+α
[
r(sk, ak, sk+1) + γV̂ π(sk+1)− V̂ π(sk)

]
(101)

where ak = π(sk). This update can be computed immediately after the

agent using action ak = π(sk) at time k has received the environment’s

updated state, sk+1, and reward rk+1. So rather than updating our estimate

of the value function after the episode has finished we can compute it as

we are generating each episode. Equation 101 is also called the temporal-

difference or TD prediction equation.

The TD prediction in equation (101) can then be used to find the optimal

policy. This is done following a similar strategy that was portrayed in chap-

ter 2 in equation (17) for the Value or Policy iteration. We would use the

TD-prediction equation (101) to compute estimates of the value function

and then use that value function to improve the policy by selecting actions

that maximize the value. In general, the original Policy iteration improved

its policy throughQπ (state-action value function) rather than the state value

function, V π. But estimating Qπ through the Bellman recursion is nearly

identical to what we do in estimating V π. To see this recall that an episode

consists on an alternating sequence of (state,action) pairs and rewards,

(sk, ak)→ rk+1 → (sk+1, ak+1)→ rk+2 → (sk+2, ak+2) · · ·

Now consider the subsequence from state-action pair to state-action pair and

use that to update the state-action value function. Formally, this is identical

to the earlier TD-prediction equation (101) except that it is in terms of our

estimate Q̂π of the state-action value function,

Q̂π(sk, ak) ← Q̂π(sk, ak)

+α
[
rk+1 + γQ̂π(sk+1, ak+1)− Q̂π(sk, ak)

]
(102)

where ak = π(sk) and rk+1 = r(sk, ak, sk+1). Note that the variables used

in update equation (102) are

(sk, ak, rk+1, sk+1, ak+1)



5. REINFORCEMENT LEARNING 327

which spell out the word s-a-r-s-a. As a result the update in equation (102)

is called the SARSA TD learning algorithm.

There are several variations of the SARSA TD updating equation. One

particular important variation is the Q-learning update equation

Q̂(sk, ak) ← Q̂(sk, ak)

+α
[
rk+1 + γmax

a
Q̂(sk+1, a)− Q̂(sk, ak)

]
(103)

where rk+1 = r(sk, π(sk), sk+1). In this recursion, we are trying to estimate

the optimal state-action value function, Q∗, directly rather than computing

it for a specific policy π. The Q-learning algorithm in equation (103) is

particularly important because it was the first TD algorithm for which one

could formally prove convergence Watkins and Dayan (1992).

The policy π that is used in both the SARSA and Q-learning algorithms

can simply be

π(s) = argmax
a
Q(s, a)

But the convergence of both algorithm requires that the policy ensures all

states are eventually visited infinitely often. It is quite possible that if we

always use the ”optimal” action in a greedy manner that we fail to fully ex-

plore the state space. As a result, the policy that we actually use switches

between the ”optimal” action and a ”random” action. This is called an

ϵ-greedy policy. In particular, it means that given some probability distribu-

tion p(A) (usually chosen to be uniform)

π(s) =

{
a ∼ p(A) with probability ϵ

argmaxaQ(s, a) with probability 1− ϵ

In other words, we choose a random action with probability ϵ and the opti-

mal ”greedy” action with probability 1 − ϵ. The ϵ-greedy policy provides

agents with the capacity to switch between exploration of the state space

(i.e. selecting the random action) versus exploitation of the prior experi-

ence emboded in the Q̂π function (i.e. picking the greedy optimal action).

The ϵ-greedy policy is, perhaps, the simplest way of ensuring the learning
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algorithm explores the entire state space. Other methods employ the no-

tion of regret. For infinite horizon MDPs with finite diameter, the expected

average reward is not a function of state and so we can use the difference

between this expected reward and the reward obtained using the current

policy to trigger actions that ”explore” the state space. The value of these

methods is that they can be used to provide probabilistic bounds on the rate

of convergence of RL algorithms Auer et al. (2008).

I am now going to use the Frozen Lake Environment from Fig. 5 in

chapter 2 to illustrate how a Q-learning algorithm performs. We will then

compare the outcome against the value function obtained using the Value

Iteration in chapter 2. The basic script is shown below

Q = np.zeros((state_size,action_size))

num_episodes = 500000 #max number of episodes

num_steps = 5000 #max length of each episode

lr = .5 # learning rate

gamma = .9 #discount factor

epsilon = .5 #initial epsilon

for episode in range(episodes):

s = env.reset()[0]

done = False

for step in range(num_steps):

#epsilon-greedy

if random.uniform(0,1) < epsilon:

a = env.action_space.sample()

else

a = np.argmax(qtable[s])

s_new, reward, done, trunc, info = env.step(a)

qtable[s,a] = Q[s,a] + lr*(reward+gamma*np.max(Q[s_new])-Q[s,a])

s = s_new

if done:

break

Note that this is a Q-learning algorithm since it is using update equation

(103). To evaluate how well this algorithm is learning the policy, we can
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estimate the total discounted reward using a moving average of the actual

reward obtained in each episode. Let us first evaluate the success rate of

the learned policy in the same way we evaluated the success rate of the

value iteration policy in chapter 2. The resulting value function and optimal

policy are

V ∗ =


0.069 0.057 0.032 0.015

0.071 0.102

0.189 0.27 0.207

0.455 0.858 G

 , π∗ =


W(0) N(3) N(3) N(3)

W(0) W(0)

N(3) S(1) W(0)

E(2) S(1)


Comparing this to the earlier value function and policy obtained using the

Value iteration, we see they are very similar, though not exactly the same. If

we used this policy to evaluate the success rate of the Q-learning policy we

see it is about 82%, comparable to that obtained using the optimal policy.

FIGURE 2. (left) step history for Q-learning in frozen lake

(right) running reward for Q-learning in frozen lake

Fig. 2 shows plots of the step count for each episode and the running

reward as a function of training episode. This shows that the length of

successful episodes that finish at the goal can b extremely long. This is

due to the slippery nature of the transitions. The other thing we note is

that the improvement in the running reward is not monotonic in nature. As

the running reward increases, we see that it will ”stall” out for a period of
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time, increase, and then fall back down again before increasing. This is

an example of a bad episode. Due to the random nature of the transitions,

there is always a probability that there will be a sequence of transitions that

cause the agent to fall in the hole several times in a row, thereby lowering

the estimated value function for those states. If we had simply adopted

a greedy strategy for selecting actions, then this would settle down into a

low performing policy. The use of the ϵ-greedy strategy ensures that there

is always a chance to ”explore” the space in a way that can overcome the

accumulated regret in being too exploitative in our policy.

5.2. Policy Gradient Methods: Another approach to RL is to directly

”learn” the policy, rather than first trying to estimate the value function.

These methods are called policy gradient method for the policy is first writ-

ten as π(a | s, θ) where θ is a parameter vector we need to ”learn”. In this

case we search for policy parameters, θ, that maximize the performance of

the policy. So we first define a performance function J(θ) for the policy

model and then use gradient ascent

θk+1 = θk + α
∂̂J(θk
∂θ

where ∂̂J
∂θ

is a stochastic estimate whose expectation is close to the gradi-

ent of J(θ). In the following we will introduce one such policy gradient

algorithms known as the REINFORCE algorithm.

Let us consider an episodic version of a policy graident method where

the policy is updated after an episode has been completed. We define the

performance function J to be the value function from the initial state s0,

J(θ) = V πθ(s0)

where πθ(a | s) is the policy with parameter θ and V πθ is the value function

under policy πθ. It can be shown Sutton and Barto (2018) that the gradient
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of J(θ) can be approximated as

∇θJ(θ) = ∝
∑
s

∑
µ(s)

∑
a

Qπθ(s, a)∇θπθ(a | s)

≈ Eπθ

[∑
a

Qπθ(s, a)∇θπθ(a | s)

]
(104)

= Eπθ

[
G
∇θπθ(a | s)
πθ(a | s)

]
(105)

where µ(s) is the fraction of time spent in state s over the given episode,

Qπθ(s, a) is the state-action value function under πθ andG is the total return

for the episode. If we let θn denote our policy parameters during the nth

episode, and equation (105) to compute the gradient of J(θn), then we can

get a new set of parameters for the n + 1st episode through the gradient

ascent,

θn+1 = θn + αGn
∇π(a | s, θn)
π(a | s, θn

= θn + αGn ln π(a | sθn)(106)

where Gn is the total reward obtained in the nth episode.

This algorithm is easily implemented on the Frozen Lake environment.

In this case, our policy model πθ will be taken to be a deep neural network

that we instantiate using the Tensorflow/Keras deep learning library. The

model I’ll use is

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers, optimizers

inputs = keras.Input(shape = (state_size,))

x = layers.Dense(16, activation="relu")(inputs)

x = layers.Dense(8, activation="relu")(x)

outputs = layers.Dense(action_size,activation="softmax")(x)

model = keras.Model(inputs=inputs, outputs = outputs)

The actual learning algorithm is now shown below in the following script.

In this script we use Tensorflow/Keras GradientTape object to build a
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computation graph used in computing the gradient of the loss function. The

model uses one-hot encoded versions of the state

for episode in range(num_episodes):

s = env.reset()[0]

with tf.GradientTape() as tape:

for step in range(max_steps):

s_hot =np.zeros(shape=(1,state_size)).astype("float32")

s_hot[0,s] = 1.

action_probls = model(s_hot)

action = np.random.choice(action_size, p = np.squeeze(action_probs))

action_probs_history.append(tf.math.log(action_probs[0, action]))

s, reward, done, trunc, info = env.step(action)

rewards_history.append(reward)

if done:

break

returns = []

discounted_sum = 0

for r in rewards_hstiory[::-1]:

discounted_sum = r + gamma * discounted_sum

returns.insert(0, discounted_sum)

history = zip(action_probs_history, returns)

actor_losses = []

for log_prob, ret in history:

actor_losses.append(-log_prob * ret)

loss_value = sum(actor_losses)

grads = tape.gradient(loss_value, model.trainable_variables)

optimizer.apply_gradients(zip(grads, model.trainable_variables))

if (termination condition satisfied)

break

Fig. 3 illustrates the step and running reward history for our REIN-

FORCE algorithm. This implementation completes its training in about

35000 episodes. Recall that theQ-learning algorithm required about 400,000

episodes before we got an acceptable policy. Also note that the abrupt drops

in running reward due to episodes appears to be much smaller than what

appeared in Q-learning. Overall the learning performance in REINFORCE

appear to be more monontonic in nature, with the running reward being
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small for a long period of time and then abruptly increasing to the desired

termination level. Again, if we evaluate the resulting policy we get a success

rate comparable to that predicted by the optimal Value Iteration policy.

FIGURE 3. (left) step history for REINFORCE in frozen

lake (right) running reward for REINFORCE in frozen lake

6. Summary

This chapter is by no means a complete introduction to data-driven con-

trol methodologies. The topics regarding Koopman operators, DmD, and

extreme seeking control were drawn from Brunton and Kutz (2022). The

material on nonlinear adaptive control comes from Freeman and Kokotovic

(2008). The material on Reinforcement learning is based on Sutton and

Barto (2018) and the more recent work on data driven safety comes from

Wabersich et al. (2023).
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