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Ecology, 61(4), 1980, pp. 764-771 
? 1980 by the Ecological Society of America 

ENERGY FLOW, NUTRIENT CYCLING, AND 
ECOSYSTEM RESILIENCE1 

D. L. DEANGELIS 
Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 USA 

Abstract. The resilience, defined here as the speed with which a system returns to equilibrium 
state following a perturbation, is investigated for both food web energy models and nutrient cycling 
models. Previous simulation studies of food web energy models have shown that resilience increases 
as the flux of energy through the food web per unit amount of energy in the steady state web increases. 
Studies of nutrient cycling models have shown that resilience increases as the mean number of cycles 
that nutrient (or other mineral) atoms make before leaving the system decreases. In the present study 
these conclusions are verified analytically for general ecosystem models. The behavior of resilience 
in food web energy models and nutrient cycling models is a reflection of the time that a given unit, 
whether of energy or matter, spends in the steady state system. The shorter this residence time is, 
the more resilient the system is. 

Key words: energy flow; food web model; mathematical model; nutrient cycling; resilience; 
stability. 

INTRODUCTION 

A key aim of theoretical ecologists is the elucidation 
of relationships between the structure and stability of 
ecosystems. This is true both for ecologists concerned 
with food web or trophic level models involving pop- 
ulation number, biomass, or energy (e.g., O'Neill 
1976, Pimm and Lawton 1977) and for those primarily 
concerned with modeling of material cycles (e.g., Jor- 
dan et al. 1972, Webster et al. 1975). 

A number of different meanings have been attached 
to the term, "stability." Probably the most common 
interpretation is that a system is stable when it tends 
to return to an equilibrium point from which it has 
been displaced. A related concept, relative stability, 
is a measure of both the resistance of the system to 
perturbations and the speed with which it returns to 
an equilibrium point following a perturbation. This lat- 
ter property has been referred to as system "resil- 
ience" (e.g., Webster et al. 1975). The faster the per- 
turbed system returns from its initial displacement 
back to the equilibrium point, the shorter its recovery 
time, TR, and the greater its resilience is said to be. 
We shall, therefore, take 1/TR as a measure of system 
resilience. 

This paper is concerned with the relationships be- 
tween resilience and some basic aspects of model 
structure. A mathematical approach in this direction 
has been made for nutrient cycling (Child and Shugart 
1972, Webster et al. 1975, Harwell et al. 1977), but 
these papers apply only to linear models that can be 
adequately condensed into two-compartment systems. 
In this paper, I attempt to deduce results applicable 
to general nonlinear models of both food webs and 
nutrient cycles. In particular, it will be shown that 
system resilience can be related to two fundamental 

structural concepts: (1) the energy flux through the 
system per unit standing crop in the steady state, or 
its "power capacity" (Odum and Pinkerton 1955), and 
(2) the recycling index of the system or the mean num- 
ber of cycles a unit of matter makes in the system 
before leaving it. A simple index that incorporates 
both concepts is proposed. The present work will not 
attempt to develop a rigorous, systematic mathemat- 
ical theory, although the elements for such a theory 
exist (e.g., Ulanowicz 1972, Finn 1976, Patten et al. 
1976, Barber 1978a, b). 

Before examining the connections between resil- 
ience and model structure mathematically, let us con- 
sider some selected examples of food web and nutrient 
cycling models that serve as a reference for later the- 
oretical work. 

EXAMPLES OF FOOD WEB AND 
TROPHIC MODELS 

In an attempt to understand underlying similarities 
and differences among ecosystem types, O'Neill 
(1976) used data for six diverse ecosystems, repre- 
senting tundra, tropical forest, deciduous forest, salt 
marsh, spring, and pond to parameterize a standard 
nonlinear energy flow model with compartments for 
active plant tissue, inactive plant tissue, and hetero- 
trophs. The six models were each subjected to a stan- 
dard perturbation, and their recovery towards equilib- 
rium was followed through time. As a measure of 
recovery time, or return time to equilibrium, TR, the 
sum of squares of deviations between the perturbed 
transient behavior and the steady state was integrated 
over time following a perturbation assumed to occur 
at time t = 0: 

3 

0c E {(Xi(t) -X*)2lXi*21 

TR = dt i1 , (1) 
() E{ (Xi -Xi*)21Xi *2 } 

{(X,, 
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where Xi* is the equilibrium value of the ith compo- 
nent of the three-component model, X1,i is the initial 
displacement of the ith component, and Xi(t) is the 
instantaneous value following the perturbation. 

O'Neill (1976) found that TR decreased as energy 
input (rate of flow of energy into the system via the 
autotroph compartment) per unit standing crop in the 
steady state increased. As might be expected, the tun- 
dra model had the longest recovery time, and hence 
the lowest resilience. The pond ecosystem, with a rel- 
atively low standing crop and a high rate of biomass 
turnover, had the shortest recovery time and hence 
the highest resilience. O'Neill related his results to an 
intuitive suggestion by Odum and Pinkerton (1955). 
These authors defined power capacity for ecological 
systems as the quantity of energy processed per unit 
living tissue, and hypothesized that greater power ca- 
pacity would result in greater capability to counteract 
change, or greater resilience. 

Pimm and Lawton (1977) examined the observation 
that food chains are seldom longer than four or five 
trophic levels. They employed a set of Lotka-Volterra 
equations, 

___ = ?bi + I aiX3)Xi (i = 1, 2, n), (2) 
dt ~~~j=1 

to describe the flow of biomass through a variety of 
configurations of species, including straight chains of 
n species or trophic levels. Like O'Neill (1976), Pimm 
and Lawton assumed that the recovery time, TR, 

would be an important characteristic of the system. 
They computed the equilibrium points, Xi* (i = 1, 2, 
. . ., n), and linearized the equations about this point 
to obtain the matrix equation, 

dY = AY, (3) 
dt= 

where Y is the vector of perturbed biomasses, 
Y = (Y1, Y.., Y,) and A is the matrix 

ai1X'* a"* . . . XI * 

A = (j2X2* a(22X,* . . . a,, .,* (4) 

a,,IX,, a, . . . a,,, ,, * 

Only stable systems were considered, i.e., systems for 
which all real parts of the eigenvalues of A are nega- 
tive. For such linear, stable systems, the return time, 
TR, is usually defined as the inverse of the absolute 
value of the real part of the eigenvalues that has the 
least negative real part, Xmax; 

TR = 1.0/ Real(Xinax) . (5) 

This expression is a measure generally similar to the 
expression for TR defined by Eq. 1. To obtain results 
of a general nature, Pimm and Lawton (1977) used a 

Monte Carlo technique, choosing values of ai Xi* ran- 
domly within certain realistic limits and examining the 
resulting distribution of return times. 

A significant finding of Pimm and Lawton's (1977) 
work is that, as the number of trophic levels in a chain 
of species increases, the average recovery time also 
increases. Hence, the resilience decreases, making the 
system remain away from equilibrium longer following 
perturbations. DeAngelis et al. (1978) confirmed these 
results, but also pointed out that decreases in recovery 
time can result when the energy flux through the sys- 
tem is increased. This result is similar to O'Neill's 
(1976) findings. 

The two antecedent examples of nonlinear trophic 
and food web models demonstrate that the flux of en- 
ergy or biomass through the system has an important 
influence on the resilience. The higher this flux, the 
more quickly the effects of the perturbation are swept 
from the system and the system approaches its equi- 
librium. 

EXAMPLES OF NUTRIENT CYCLING MODELS 

As chemical energy passes through successive 
trophic levels, it is degraded towards low-quality ther- 
mal energy, which is unable to perform useful work. 
For this reason, there is usually little recycling of en- 
ergy (though the coprophagy model discussed by Finn 
[1976] is something of an exception). Atoms of a given 
material element, on the other hand, can be recycled 
indefinitely. Some nutrients may be held very tightly 
by the system and recycled many times before they 
are lost as "output" from the system. 

The stability of material cycles has received atten- 
tion in recent years. Jordan et al. (1972) considered 
the stability of mineral cycles in forest ecosystems and 
proposed a standard model consisting of compart- 
ments for minerals in soil, wood, canopy leaves, and 
litter. These compartments form a cycle, but the sys- 
tem is an open one since minerals enter the system 
from rainfall and from the weathering in the soil, and 
are lost via soil runoff and leaching. Data for various 
mineral cycles for three different forest types were 
used to parameterize the standard model, which was 
then run on the computer to obtain the recovery time, 
TR, similar to that defined by O'Neill (1976). 

An important conclusion reached by Jordan et al. 
(1972) was that models of nonessential elements tend 
to be more resilient than models of essential elements. 
They suggested, as a possible explanation for this pe- 
culiarity, that essential nutrients, such as calcium or 
phosphorus, tend to be tightly cycled. A perturbation 
to the system, therefore, damps away slowly. Minerals 
that are not essential, cesium for example, are lost at 
a high rate from the system, so the perturbation is 
quickly "washed out." 

A similar observation was made by Pomeroy (1970), 
who pointed out that coral reefs and rain forests are 
examples of systems with tight nutrient cycles. When 
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FIG. 1. A hypothetical four-species food chain, a special 
case of the system described by Eqs. (2). Energy enters the 
system through compartment 1, the autotroph level. 

systems of this type are disturbed, recovery may be 
very slow because there is little throughflow of nu- 
trients coming from outside the systems. 

The basic factor determining the resilience of nu- 
trient cycling models seems to be the degree of recy- 
cling, while the factor determining the resilience of 
food web or trophic models (with no feedback) is the 
energy or biomass flux per unit standing crop. Ac- 
tually, these two factors are similar, as both relate to 
the rapidity with which a given unit of material or 
energy is carried through the system from the com- 
partment where they enter (input compartment) to the 
compartment from which they exit the system (output 
compartment). In the next sections these intuitive 
ideas are formulated mathematically. 

RESILIENCE AS A FUNCTION OF FLUX 

THROUGH THE SYSTEM 

Since numerous food web models (e.g., Pimm and 
Lawton 1977) are based on the Lotka-Volterra system 
of equations (Eqs. 2), these form a useful starting point 
for the mathematical analysis. I shall consider an n- 
species model, a special case of which (n = 4) is 
shown in Fig. 1. In Eqs. 2, bl is allowed to be positive, 
while all the other big's (i = 2, 3, . . ., n) are negative, 
as might be the case if species 1 is an autotroph and 
the other species are heterotrophs. 

One of the special features of Eqs. 2 is that the flux 
per unit standing crop through the system from input 
to output varies directly with the magnitude of the big's. 
By flux is meant the amount of matter (biomass or a 
particular nutrient) or energy flowing through a system 
or specified subsystem in a given amount of time. By 
standing crop is meant the total instantaneous amount 
of matter or energy in a system or specified subsystem. 

Suppose each rate, bi, can be written as bi = sbi' (i = 
1, 2, . . ., n), where each bi' is a constant. The scaling 
parameter s is a measure of the magnitude of system 
throughput. As s increases, all big's increase propor- 
tionally, reflecting assumed simultaneous increases in 
primary production and the respirations. It is easy to 
show that the equilibrium values, Xi*, are all linear 
combinations of the parameters bi and, hence, are all 
proportional to the scaling parameter, s: 

x* Cikbk 
k=1 

=S Cikbk' (i = 1, 2, n), (6) 
k=1 

where the Cij's are constants. 
Note from Eq. 4 that all elements in the matrix A 

contain factors of Xi*, and hence are proportional to 
s. The eigenvalue equation can now be written as 

(sA' - XA) Y = 0, (7) 

where the elements of A' have the form ai E Cikbk'. 
k,=1 

This implies that all eigenvalues, including Xmax, are 
proportional to s, and that TR= l.O/Real(Xmax) is 
inversely related to s, or the magnitude of flux 
through the system. 

The flux per unit standing crop through a speci- 
fied subsystem, in this case a compartment of the 
system in steady state, is (for i > 1) 

i-i 11 

Fi = a jX = -E aiXi* - , (8) 
j=I .1=1 

where 11 are absolute value signs. The flux Fi is a 
linear function of bi' (i = 1, 2, . . . n) and thus of s. 
The result is that the recovery time to equilibrium, TR,9 

is inversely related to the flux per unit standing crop, 
or the power capacity. Therefore, resilience is directly 
related to this power capacity. 

In general, the resilience of a model will not increase 
linearly with the rates of input to and output from the 
system, because increases in system input and output 
rates are not always linearly related to increases in the 
power capacity of the model. For example, in the sim- 
ple linear model, 

dX1 = b- a X, (9a) dt 

dX2 = yalAX1 - a22X2 (y < 1), (9b) dt 

increases in b, and a22 would change the equilibrium 
values, X,* and X.,*, but would not change the fluxes 
per unit standing crop, a12 and ya12. Resilience of the 
system in this case can be shown to increase at a rate 
less than linear with respect to a22, while b, has no 
effect. 
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K1=O 

xp x* xp'* x 

FIG. 2. The phase-plane plot of the zero isoclines asso- 
ciated with Eqs. (lOa, b). The pair of isoclines (K, = 0, K2 = 
0) represents a stable predator-prey system, while (K,' = 0, 
K2 = 0) represents an unstable system. In the first case, the 
equilibrium point lies to the right of the peak, and in the 
second case this is reversed. Increasing the flux through the 
system by increasing b, and b., shifts both the peak and equi- 
librium point to the right. 

Many food web models employ the Michaelis-Men- 
ten function to represent interactions. For example, 
consider the predator-prey model 

dXA - (b I - CX: - gXi)XI K,(X 1,X2)X1 ( 1Oa) 

dit (C + X I )- 2l2(1b dX2 - ( 
-X b2X 

= 2(X1)X2. (l10b) 
dt c ? XI 2/2 

For this type of model, the prey zero isocline forms 
a hump and the predator zero isocline is a vertical line 
(Fig. 2). This model is of special interest because Ro- 
senzweig (1971) used it to demonstrate a "paradox of 
enrichment." As the input parameter, b I, is increased, 
representing an enrichment of the prey's food or other 
resources necessary for growth, the prey isocline is 
heightened and shifted to the right (K,' = 0 curve in 
Fig. 2). If this shift is enough to move the new peak, 
P', to the right of the equilibrium point, E, then the 
equilibrium point is unstable. Therefore, enrichment 
of the system can be deleterious. Even if the shift does 
not move the peak to the right of E, it can be shown 
that the resilience of the system is decreased. 

As seen earlier for the Lotka-Volterra model, in- 
creases in the input flux tend to increase food chain 
resilience. An explanation of why an increase in input 
flux, or enrichment, destabilizes the system in the 
present case should be sought. One interpretation is 
that the steady-state flux of energy per unit standing 
crop of the predator population does not simulta- 
neously increase, which would have represented in- 
creased predator turnover, but stays at the constant 
value, b,. Hence, the predator population builds up 
and the prey become increasingly predator controlled. 

331 
\ 

32 

f22f 22 

ff 
7\ 

FIG. 3. An abstract model for material cycling in an eco- 
system. There is an input I into compartment 1 and losses, 
Efij, from each compartment. The fij's are fluxes, If, being a 
recycling flux. 

If predator control of the prey population exceeds the 
self-regulation effects of the prey caused by the term 
gX,, then a perturbation of Xl away from its equilib- 
rium value will lead to deviation amplification, and a 
spiralling out to a limit cycle. 

By allowing the flux through the predators to in- 
crease, either by increasing b, as b, is increased or by 
letting be be a function of X. (e.g., be = bo'X2), the 
paradox of enrichment can be avoided or at least de- 
layed. Consider the former case, allowing both bl and 
b., to increase in proportion to a parameter s; bI = 
b1Is, be = b2's. The position of the peak, XP, and of 
the equilibrium point, X,*, as functions of s are, re- 
spectively, 

XIP = (sb,' - gC)12g, and (Ila) 

X, * = Cb2's/(yf+ b2's) . (I lb) 

Since the equilibrium point now shifts to the right, the 
tendency towards destabilization may not occur, or 
there may even be a tendency towards greater resil- 
ience as s is increased over certain ranges. Ultimately, 
if s is increased enough, the system must destabilize 
because there is a limit, f, on the flow of energy per 
unit standing crop of predators. 

RESILIENCE AS A FUNCTION 
OF RECYCLING 

Consider the abstract three-compartment model for 
a nutrient cycle shown in Fig. 3. An input of nutrient 
enters compartment 1, passes to compartments 2 and 
3, and either leaves the system through any of these 
compartments or recycles to compartment 1. In the 
steady state, the magnitude of the input, I, is balanced 
by the total output from the three compartments. Be- 
fore exiting from the system, individual atoms of nu- 
trient may recycle a number of times through the sys- 
tem. 
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The model shown in Fig. 3 is not the most general 
that can be used to represent a nutrient cycle, but it 
is a fairly good analog of larger systems, and the re- 
sults derived below should be broadly applicable. The 
general nonlinear equations for the system in Fig. 3 
can be written 

d"' = I + fl3(XIX3) - f2I(XIX2) - flI(XI) (12a) dt 

dX2 = f2I(X1,X2) -f32(X2,X3) -f22(X2) (12b) 
dt 

dX3 = f32(X2,X3) -f13(X1,X3) -f33(X3) (12c) 
dt 

Let us consider the case in which recycling is strong, 
so that the steady-state flux out of the system from 
any given compartment is very small compared to oth- 
er fluxes from the compartment; i.e., 

ji(Xi)/fi(Xi,Xj)- E (E < 1) (13) 

Assume the system of equations (12a,b,c) has a sta- 
ble equilibrium pointX* = (X1*, X2*, X3*). The equa- 
tions can be linearized about X* by substituting X = 
X* + y(t) and keeping only the terms linear in y(t). 
The three eigenvalues of this nutrient cycling system 
can be determined from the equation 

X3 + A2X2 + A1X + AO = 0, (14) 

where A,, A1, and A2 are constants. It is shown in 
the Appendix that the ratios A,/A, and A/A2 are very 
small (A/VA1 - E, A/(A2 E e). 

If, as assumed, E < 1, it can be shown that one of 
the eigenvalues of this stable system is approximately 
equal to -A/VAl (see Appendix). This is a negative 
number because of the assumed stability, and' is very 
small in magnitude, so it is likely that X = -A(/A1 is 
the eigenvalue whose real part is the largest of any of 
the system's eigenvalues. Even if this is not the largest 
real part, it is clear that the largest real part of an 
eigenvalue in the system must be at least as large as 
-A(/A 1: 

-AO/A1 S Real(Xmax) < 0.0 (15) 

The return time, TR, as defined by Eq. 5, then obeys 
the inequality l/TR S AO/A. Since A/A1 E, then 

TR ' l/E. (16) 

We can define an "index of recycling," R, that mea- 
sures the average number of times a unit of material 
is recycled before leaving the system. The probability 
that such a unit, upon leaving a particular compart- 
ment, will pass to another compartment in the system 
rather than leaving the system is 1.0 - fi(Xi)l 

fji(Xj, j), and the probability, Pc, of the unit making 
a complete circuit is, for the system in Fig. 3, 

3 

PC= 1 { 1.0 - fi(Xi)lfi(i ,Xi) }, (17) 
i=1 

where j = i + 1 except when i = 3, in which case j = 
1. It follows that the mean number of cycles, R, a unit 
makes through the system before leaving it is 

R 1.0/(1.0 - P,). (18) 

From (13) it can be seen that P, (1.0 - E)3 - 1.0 

- 3.0E, so that 

R- 1.0/(3.OE). (19) 

By our definition, resilience is inversely related to TR, 

so from (16) and (19), it follows that resilience varies 
inversely with the index of recycling, R. 

AN INDEX OF RESILIENCE 

Two factors that affect the resilience of a model 
have been determined: (1) the magnitude of flux (en- 
ergy, biomass, or nutrient) per unit standing crop 
through the system, and (2) the index of recycling, R. 
Both factors will influence nutrient cycling models, but 
only the former is very significant for food web or 
trophic models because the magnitude of energy re- 
cycling is small. As mentioned earlier, both of these 
factors, though independent, relate to the rapidity with 
which a unit of energy or material is carried from the 
input to the output of the system. Because of this, it 
seems possible to define a single index that character- 
izes the resilience of the system. 

Consider a general model, either a food web or a 
nutrient cycling model, consisting of n compartments. 
Assume that all of the input to the system passes 
through compartment 1 and all of the output passes 
through compartment n. It is always possible to define 
compartments (artificially, if necessary) to make this 
true. Let the equations governing the system have the 
general form 

dX, 
d 

_ 
= I+ ? f1j(X1,Xj) - Efj3(X1,Xj) (20a) 

j=2 j=2 

dXj 
d 

_ 
= Ifj(XiXj) - 1fJi(XXj) (20b) 

dt j=1 j=1 
joi joi 

dXt 1-l, 
dt" = Ifli(Xj I - fjI(XiIXJ ) (20c) 

j=1 j=1 

The turnover time, ri, for material or energy in 
compartment i in the steady state is defined here 
as the steady-state amount of material in the com- 
partment divided by the total flux out of the com- 
partment; i.e., 

-r= Xi*lFi (21) 

where 

F, = 1fji(XiXj). (22) 
j=1 

jpi 

The probability that a unit of flux from compartment 
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FIG. 4. An ecosystem model illustrating the concept of 
mean time of transfer, TT. A unit of energy or matter enters 
compartment 1. The fluxes, fij, among the compartments are 
given in units of mass per unit time, say kilograms per day. 

i goes next to some particular compartment j is 

P,, = /ji l F1 . (23) 

Define the time it takes a unit of energy or material to 
pass from the input compartment to the output com- 
partment (that is, from compartment 1 to compartment 
n) as the transit time, TT. The transit time over a 
particular feasible path, say path k, is 

TTk ( ( )k (24) 

where E represents the summation over all steps 

in pathway k. If there are M feasible paths, the 
mean transit time over all M feasible paths is 

TT = E Pn1.k( Ti)k (25) 

where p,1 is the probability of the unit of energy or 
matter taking the kth path, 

Pn l,k = Pni Pij . . . Pm Pm 1 (26) 

If there is recycling, then m will approach infinity. 
As an example, consider Fig. 4, which represents 

energy flow through a hypothetical food web in steady 
state. The numbers in the compartments represent 
steady-state energy values in, say, kilojoules per hect- 
are per year. Imagine a seventh compartment, an ar- 

200 

z~~~~~~~~~ LU 

E- E 

0 

0 
F-- 

LU L 0~~~~ 

2 3 

TT, MEAN TRANSIT TIME 

FIG. 5. The return time, TR, plotted as a function of the 
mean time of transfer, TT, for a Lotka-Volterra model of the 
form in Fig. 1. Each point in the plot represents the average 
of 1000 Monte Carlo samples for a different set of limits on 
the parameter values, aij. 

tificial sink compartment into which the losses go from 
all six other compartments. Using the above proce- 
dure, the mean time it takes a unit of energy to pass 
from the input compartment 1 to the output compart- 
ment 7 can be computed to be TT 11.2 yr. 

There is no recycling in the above example, but the 
same procedure can be used in cases where recycling 
does occur. Barber (1978a, b) has recently presented 
a more general procedure for computing the transit 
time of a unit through a system. 

Increases in the magnitude of fluxes, Fi, per unit 
standing crops in the compartments can be seen from 
the above analysis to decrease the mean transit time, 
TT, by decreasing the Ti's. Similarly, decreasing val- 
ues of the recycling index, R, should obviously cause 
TT to decrease. We showed earlier that increasing the 
flux through the system and decreasing R cause the 
return time to equilibrium, TR, to decrease. Hence, 
there should be a positive correlation between TR and 
TT over a sampling of ecosystem models. This has 
been corroborated by numerous Monte Carlo simula- 
tions of Lotka-Volterra equations. For example, con- 
sider a four-compartment system similar to that shown 
in Fig. 1, but with feedback flows also included. Pa- 
rameter values, aij, were chosen from uniform distri- 
butions between prescribed limits, the equilibrium 
points found, and TR and TT computed. In one such 

This content downloaded from 129.74.236.237 on Sat, 11 Jul 2015 16:08:57 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


770 D. L. DEANGELIS Ecology, Vol. 61, No. 4 

case, I let a13 = a3c = a24 = a42- = 0 and varied the 
limits on a41 = 0.1 a,4, taking 1000 Monte Carlo sam- 
ples for each set of prescribed limits. The resultant 
averages of TR and TT were regressed as shown in 
Fig. 5, indicating a strong positive correlation. 

CONCLUSIONS 

Models of food web or trophic level energetics and 
models of nutrient cycles have been treated separately 
in the literature, and different conclusions have been 
drawn concerning the factors that affect the resilience 
of these models. The study of energetic models has 
led to the conclusion that the magnitude of flux, in this 
case energy or biomass, per unit standing crop through 
the system, or the power capacity, is positively cor- 
related with the system's resilience (O'Neill 1976, 
DeAngelis et al. 1978). The analysis of nutrient cycles, 
on the other hand, indicates that the recycling index 
is a determinant of resilience, and that the resilience 
of a model decreases as the degree of recycling in- 
creases. These conclusions are not mutually exclu- 
sive, and both factors can operate in a given model. 
Both the power capacity and the recycling index are 
measures of how fast units of energy or matter are 
carried through the system from input to output. In 
fact, it is possible to define a single index, the mean 
transit time of a unit from input to output, TT, that 
incorporates the two factors of power capacity and 
recycling. This mean transit time, TT, should, in prin- 
ciple, be strongly positively correlated with the recov- 
ery time, TR, of an ecosystem model from a pertur- 
bation, and therefore, inversely correlated with the 
resilience. Extensive Monte Carlo simulation appears 
to confirm this relationship. These results should bring 
us a little closer to understanding the influence of 
structure on stability in ecosystems, although this 
present work is only an outline of more thorough work 
that should be done. 
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APPENDIX 

Linearize Eqs. (12a,b,c) by letting X = X* + y(t) and sav- 
ing only terms linear iny(t), to obtain 

dy1 (1f1V1 I (Al) 
dt OX2*I IY I X Y2 + OX *3 (A. 1) 

dy2 = f2l V+ ?2v2 - Of32 y3 (A.2) 
dt OX,* O3 

dy1 = d, YI+ - 3 YV3 + (123'3Y3 (A.3) 
dt ax,* ax,,* 

where 

dIi a(fJi f -I f') (i 1, 2, 3), (A.4) 
Oxi* 

and where j represents the compartment from which flux 
enters i, and k is the compartment to which flux goes from 
compartment i. 

The eigenvalue equation for these equations is 

1 -A x - O21 Of1:1 
aX2* aX:,* 

det Of2 (a.-A - O2 -0. (A.5) 

_ xI* -xl2 (133- 
Of:13 Of 12 - 

OxI* Ox2* 
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Expansion of this determinant leads to a third-order equation 
in X, Eq. (14). A significant amount of cancellation occurs in 
the term A,, such that the surviving terms of A(, all contain 
at least one factor of the form 3fh3ldX,. This is not generally 
true of the terms that constitute A, and A2, so from (13) 
these terms are much larger than AO; AO/A,1 E and AO/A2 - E . 

Since, as deduced above, Al(A) < 1.0, one eigenvalue of 
Eq. (14) is approximately X, = -A/JA,, as can be shown by 

techniques in any standard text covering asymptotic tech- 
niques (e.g., Lin and Segel 1974). This can be corroborated 
by substituting XA = -A(/A, into Eq. (14). Since XA is very 
small, the first two terms of Eq. (14) are negligible, so the 
equation is approximately satisfied. The other eigenvalues 
are given approximately by solutions of the equation, 

X2 +A2X +AI = . (A.6) 
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