Homework 1 - Learning By Example - Spring 2025

Essay Question 1: There are numerous factors that led to the explosive interest in Machine Learn-
ing since 2012. Write an essay that starts with this sentence and goes on to identify and describe
the main forces giving rise to this renewed interest. Be sure to discuss how/why the forces you list
led to this interest. Conclude your essay with a single sentence summarizing the main assertion in
your essay.

Problem 1: Consider a logistic regression problem whose targets are in the set Y = {0, 1}. Show
that minimizing the negative log likelihood of the dataset is equivalent to minimizing the dataset’s
empirical risk based on the binary cross-entropy loss function.

Problem 2: Consider a learning-by-example problem whose inputs z € [0, 2] and whose targets
y € {—1,+1}. Assume the “system” draws samples (z, y) with an equal probability of the sample
being in class —1 or +1. Assume that the conditional probability of the inputs, x are

1 if0<2<1

o 1/2 if0<z<2
P(x|y——1)—{0 otherwise

. Plr, [y=+1) = { 0 otherwise

Assume the model has the form A, () = sgn(z — w) where w € R is the weight. Assume the loss
function is L(y, hy(2)) = 1(y # hy(x)).

1. Determine the true risk, R[h,], as a function of w.
2. Determine the optimal model weight, w, that minimizes the model’s true risk, R[h.,].
Notebook Assignment 1: We will consider a logistic regression problem that trains a model using

a dataset consisting of N input vectors, 2, € R™ and N target labels y;, € {0, 1} fork =1,... N.
The dataset D = (X,Y) consists of two data matrices

X:[ﬂfl Lo - INL Y:[yl Y2 - ?JN]T

The model is h,, : R™ — [0, 1] where

ho(z) = o(w’z) (1)

where w € R™ is a weight vector and o (s) = is a softmax function. The loss function will

1+es
be the binary cross-entropy function you examined in problem 1.

Such models are often trained using gradient descent algorithms. These algorithms update the
weights of the model using the equation

ORp(w)

i 2)

Wi1 < Wi —

where 1 > 0 is called the learning rate and Rp(w) is the empirical risk function of the model h,,
on the given dataset. The algorithm starts with an initial weight, w, and then updates wy using
equation (2) until a termination condition is satisfied. The termination condition satisfied if either

1



1) the number of recursions (iter) exceed a specific limit (maxiter) or 2) that the Euclidean
norm of the difference between two successive weight updates

|wk+1 — wk] S tol

where tol is a specified folerance level.

The training data you will use for this notebook exercise is a numpy array ring.data.npy
This numpy array has a shape (3,2000). It may be seen as a matrix whose kth column is the kth
sample in the dataset (k = 1,2,...,2000). The first two elements of the kth column is the input
75, € R? and the third element of that column is the target label ;. If you want to use this matrix
in Google Colab, you’ll first need to upload it from your local directory into Google Colab session
storage. The specific tasks to be completed in this assignment are enumerated below.

1. TO DO: Load the data set ring_data.npy and print the dataset’s shape. The first two
columns are the components of the input sample vector. The third column is the target data.
Take the loaded data and crate an input data array, X, and target array, Y.

TO DO: The class targets in the data set are drawn from {—1,1}. Since the loss function
you will be using assumes non-negative integers for class labels, you will have to transform
the negative targets (-1) in Y to 0.

TO DO: Do a scatter plot of the data, painting the +1 class samples blue and the 0 class
samples green.

2. TO DO: Write two Python functions

def Rhat (w,X,Y):
def gradRhat (w,X,Y) :

whose inputs are the weight vector, w, input data matrix, X and target matrix Y. The
function Rhat returns the empirical loss at w for the dataset D = (X,Y). The function

OR
% evaluate at w for dataset D = (X,Y). To test

w
your function, compute the empirical risk and gradient of that risk on the given dataset when
the components of the model parameter vector, w = [—1, 1].

gradRhat returns the gradient

3. TO DO: Write a Python function
def fit(X,Y, lr, maxiter, tol):

whose input arguments are the numpy array of input samples, X, numpy array of binary
targets, Y, the learning rate (1r) 7, and the hyperparameters maxiter and tol. Have
this function return the last weight vector, w, obtained after the gradient descent algorithm
terminates and a numpy array, history, whose entries contain the value of the loss function
and the weight vector computed after each recursion of the gradient descent algorithm.

TO DO: Test your function with a learning rate 7 = 0.1 for a maximum of 100 iterations
(maxiter) and a tolerance (t o1) of 10~%. Then plot the empirical loss as a function of the
iteration.



TO DO: Scatter plot for the dataset’s input samples, xj, coloring the class 1 samples blue
and the class 0 samples green. On the scatter plot also plot the initial discriminant surface
and the final discriminant surfaces obtained after the gradient descent algorithm terminates.



