
Homework 1 - Learning By Example - Spring 2025

Essay Question 1: There are numerous factors that led to the explosive interest in Machine Learn-
ing since 2012. Write an essay that starts with this sentence and goes on to identify and describe
the main forces giving rise to this renewed interest. Be sure to discuss how/why the forces you list
led to this interest. Conclude your essay with a single sentence summarizing the main assertion in
your essay.

Problem 1: Consider a logistic regression problem whose targets are in the set Y = {0, 1}. Show
that minimizing the negative log likelihood of the dataset is equivalent to minimizing the dataset’s
empirical risk based on the binary cross-entropy loss function.

Solution: For binary targets Y = {0, 1}, we let

Qy|x(yk = 0|xk) ≈ σ(sw(xk))

Qy|x(yk = 1|xk) ≈ 1− σ(sw(xk))

So the likelihood of the dataset is

L(D |w) =
N∏
k=1

Qy|x(yk|xk) =
N∏
k=1

(ykhw(xk) + (1− yk)(1− hw(xk)))

If we take the negative log-likelihood function this becomes

− logL(D |w) = −
N∑
k=1

log (ykhw(xk) + (1− yk)(1− hw(xk)))

where yk takes values of 0 or 1. Because of the monotone nature of the log function, we see that
maximizing the likelihood is equivalent to minimize the negative log likelihood. But if we divide
the negative log-likelihood by N , this is simply the empirical risk,

− 1

N
logL(D |w) = R̂D[hw] = −

1

N

N∑
k=1

(yk log hw(xk) + (1− yk) log(1− hw(xk)))

with the binary cross-entropy loss function

L(y, hw(x)) = −y log hw(x)− (1− y) log(1− hw(x))

Problem 2: Consider a learning-by-example problem whose inputs x ∈ [0, 2] and whose targets
y ∈ {−1,+1}. Assume the ”system” draws samples (x, y) with an equal probability of the sample
being in class −1 or +1. Assume that the conditional probability of the inputs, x are

P (x | y = −1) =
{

1 if 0 ≤ x ≤ 1
0 otherwise , P (x, | y = +1) =

{
1/2 if 0 ≤ x ≤ 2
0 otherwise

Assume the model has the form hw(x) = sgn(x−w) where w ∈ R is the weight. Assume the loss
function is L(y, hw(x)) = 1(y ̸= hw(x)).

1

1. Determine the true risk, R[hw], as a function of w.

2. Determine the optimal model weight, w, that minimizes the model’s true risk, R[hw].

Solution: From the problem statement we know that Pr(y = +1) = Pr(y = −1) = 1/2 and the
conditional densities are

p(x | y = −1) =
[
1 0 ≤ x < 1
0 otherwise , p(x | y = +1) =

{
1
2

0 ≤ x < 2
0 otherwise

Let ŷ = hw(x) denote the prediction made by model hw(x) = sgn(x−w). This means ŷ(x) = −1
if x < w and +1 if x ≥ w. The true risk is

R[hw] = E[1(y ̸= hw(x)) = Pr (x > w, y = −1) + Pr (x < w, y = +1)

There are four cases to consider.

1. If w ≤ 0, then Pr(x < w, y = +1) = 0 since x has support over [0, 2] and w < 0. This
means Pr(x ≥ w, y = −1) = 1

2
since x ≥ w covers the entire interval [0, 2]. This implies

R[hw] =
1
2

for w ≤ 0

2. if 0 < w < 1 then we have

Pr(x < w, y = +1) =
1

2

∫ w

0

p(x | y = +1)dx =

∫ w

0

1

4
dx =

w

4

Pr(x > w, y = −1) =
1

2

∫ 2

w

p(x | y = −1)dx =
1

2

∫ 1

w

dx =
1− w

2

So the true risk is

R[hw] =
1
2
− w

4
for 0 ≤ w < 1

3. For 1 ≤ w < 2 we have

Pr(x < w, y = +1) =
1

2

∫ w

0

p(x | y = +1)dx =
1

2

∫ w

0

1

2
dx =

w

4

and Pr(x ≥ w, y = −1) = 0 since p(x | y = −1) = 0 when x /∈ [0, 1]. So the true risk is
R[hw] =

w
4

when 1 ≤ w < 2 .

4. For w > 2, we have P (x,w, y = +1) = frac12 and P (x > w, y = −1) = 0 so the true risk
is 1

2
.

The true risk, therefore is

R[hw] =


1
2

w ≤ 0
1
2
− w

4
0 < w < 1

w
4

1 ≤ w < 2
1
2

w ≥ 2

2

Notebook Assignment 1: We will consider a logistic regression problem that trains a model using
a dataset consisting of N input vectors, xk ∈ Rn and N target labels yk ∈ {0, 1} for k = 1, . . . , N .
The dataset D = (X,Y) consists of two data matrices

X =
[
x1 x2 · · · xN

]
, Y =

[
y1 y2 · · · yN

]T
The model is hw : Rn → [0, 1] where

hw(x) = σ(wTx) (1)

where w ∈ Rn is a weight vector and σ(s) =
1

1 + e−s
is a softmax function. The loss function will

be the binary cross-entropy function you examined in problem 1.
Such models are often trained using gradient descent algorithms. These algorithms update the

weights of the model using the equation

wk+1 ← wk − η
∂R̂D(w)

∂w
(2)

where η > 0 is called the learning rate and R̂D(w) is the empirical risk function of the model hw

on the given dataset. The algorithm starts with an initial weight, w0 and then updates wk using
equation (2) until a termination condition is satisfied. The termination condition satisfied if either
1) the number of recursions (iter) exceed a specific limit (maxiter) or 2) that the Euclidean
norm of the difference between two successive weight updates

|wk+1 − wk| ≤ tol

where tol is a specified tolerance level.
The training data you will use for this notebook exercise is a numpy array

ring_data.npy

which you can find a link to in the course’s vault. This numpy array has a shape (3, 2000). It may
be seen as a matrix whose kth column is the kth sample in the dataset (k = 1, 2, . . . , 2000). The
first two elements of the kth column is the input xk ∈ R2 and the third element of that column is
the target label yk. If you want to use this matrix in Google Colab, you’ll first need to upload it
from your local directory into Google Colab session storage.

1. Write two Python functions

def Rhat(w,X,Y):
def gradRhat(w,X,Y):

whose inputs are the weight vector, w, input data matrix, X and target matrix Y. The
function Rhat returns the empirical loss at w for the dataset D = (X,Y). The function

gradRhat returns the gradient
∂R̂D(w)

∂w
evaluate at w for dataset D = (X,Y). To test

your function, compute the empirical risk and gradient of that risk on the given dataset when
the components of the model parameter vector, w = [−1, 1].

3

2. Write a Python function

def fit(X,Y, lr, maxiter, tol):

whose input arguments are the numpy array of input samples, X, numpy array of binary
targets, Y, the learning rate (lr) η, and the hyperparameters maxiter and tol. Have
this function return the last weight vector, w, obtained after the gradient descent algorithm
terminates and a numpy array, history, whose entries contain the value of the loss function
and the weight vector computed afte reach recursion of the gradient descent algorithm. Test
your function with a learnin rate η = 0.1 for a maximum o 100 iterations (maxiter) and a
tolerance (tol) of 10−4. Then plot the empirical loss as a function of the iteration. Scatter
plot for the dataset’s input samples, xk, coloring the class 1 samples blue and the class 0
samples green. On the scatter plot also plot the initial discriminant surface and the final
discriminant surfaces obtained after the gradient descent algorithm terminates.

Solution (part 1): We first need to derive an expression for the empirical risk. Because the targets
are in Y = {0, 1}, we have

R̂D(w) = −
1

N

N∑
k=1

[
yk log(σ(w

Txk) + (1− yk) log(1− σ(wTxk))
]

where σ(s) = 1
1+e−s . This means that

σ′(s) =
dσ(s)

ds
= − es

(1 + es)2
=

1 + e−s − 1

(1 + e−s)2

=
1

(1 + e−s)
− 1

(1 + e−s)2
=

1

1 + e−s

(
1− 1

1− e−s

)
= σ(s)(1− σ(s))

We now take the gradient

∂R̂D(s)

∂w
=

1

N

N∑
k=1

[
−yk

1

σ(wTxk)
σ′(wTxk)xk + (1− yk)

1

1− σ(wTxk)
σ′(wTxk)xk

]

=
1

N

N∑
k=1

[
−yk(1− σ(wTxk))xk + (1− yk)σ(w

Tx)xk

]
=

1

N

N∑
k=1

[
−ykxk + ykσ(w

Txk)xk + σ(wTxk)xk − ykσ(w
Txk)xk

]
=

1

N

N∑
k=1

(
σ(wTxk)− yk

)
xk

These equations are then used to write expressions for the empirical risk and its gradient.
I ran this in Google Colab. I first uploaded ring_data.npy to Google Colab Session Storage.

The following script loads the data set and then prints its shape.

4

data = np.load("ring_data.npy")
print(f"data shape = {data.shape}")

_,Ntrain = data.shape

X = data[0:2,0:Ntrain].reshape(2,Ntrain)
Y = data[2,0:Ntrain].astype(’int’).reshape(Ntrain)
indx = np.where(Y==-1)
Y[indx] = 0

indx1 = np.where(Y==1)
plt.scatter(X[0,indx1],X[1,indx1],c=’b’)
indx0 = np.where(Y==0)
plt.scatter(X[0,indx0],X[1,indx0],c=’g’)
plt.legend((’clss+1’,’class 0’))
plt.title(’Ring Data’)

Note that the original target data takes values in Y = {−1,+1}, but that the empirical risk base
don the sigmoid assumes targets Y = {0,+1}, so I changed the values in Y to reflect this.

I then wrote the two function using the formulae I derived above. My versions of these functions
are given below. The last line computes Rhat for the dataset using the specified w = [−1, 1]. This
shows R̂ = .936 and ∂R̂

∂w
= [−1.508,−0.605].

def sigma(s):
return 1/(1+np.exp(-s))

def gradRhat(w,X,Y):
nw,N = X.shape
dRhat_dw = np.zeros(nw)
for k in range(N):

xk = X[:,k]
yk = Y[k]
dRhat_dw += ((sigma(np.sum(w*xk))-yk)/N)*xk

return dRhat_dw

def Rhat(w,X,Y):
eps = 1.e-10
nw,N = X.shape
Rhat = np.zeros(1)
for k in range(N):

xk = X[:,k]
yk = Y[k]
if (yk >= (1-eps)):

Rhat += -yk*np.log(sigma(np.sum(w*xk)))/N
if (yk <= eps):

Rhat += -(1-yk)*np.log(1-sigma(np.sum(w*xk)))/N
return Rhat

5

w = [-1,1]
print(f’Rhat = {Rhat}’)
print(f’gradRhat = {gradRhat}’)

Rhat = [0.93645349]
gradRhat = [-1.50774038 -0.60466714]

Solution (part 2):. My version of the training function is

def fit(X,Y,lr,maxiter = 500, tol = 1e-6):
nw,N = X.shape
w = [-1,1]
history = np.concatenate([Rhat(w,X,Y),w]).reshape(1,3)
for _ in range(maxiter):

diff = -lr * gradRhat(w,X,Y)
if np.all(np.abs(diff)<=tol):

break
w += diff
entry = np.concatenate([Rhat(w,X,Y),w]).reshape(1,3)
history = np.vstack((history,entry))

return w,history

wfinal, xhist = fit(X,Y,lr=0.1,maxiter=100,tol = 1.e-4)

The code to generate the plots

nk,_ = xhist.shape
plt.figure(1)
plt.plot(range(nk),xhist[:,0])
plt.xlabel(’iteration count (iter)’)
plt.ylabel(’empirical risk Rhat(w|D)’)
plt.title(’empirical risk of model wk’)

wstart = xhist[0,1:3]
x0start = np.arange(-20,30,.5)
x1start = -x0start*wstart[0]/wstart[1]
x0final = np.arange(-20,30,.5)
x1final = -x0final*wfinal[0]/wfinal[1]

import matplotlib.pyplot as plt
indx1 = np.where(Y==1)
plt.figure(2)
plt.scatter(X[0,indx1],X[1,indx1],c=’b’)
indx0 = np.where(Y==0)
plt.scatter(X[0,indx0],X[1,indx0],c=’g’)
plt.title(’Ring Data with discriminants’)

6

plt.plot(x0start,x1start,’b--’)
plt.plot(x0final,x1final,’b-’)
plt.legend((’class +1’,’class 0’,’w start’,’w final’))

The output from this cell is shown below in Fig. 1.

Figure 1: Notebook Result

7

