Homework 3 - Neural Network Models - Spring 2025

Essay Question: The current generation of deep neural network (NN) models (2010’s-present)
addressed many of the issues faced by model sets used in earlier waves of neural network research.
Write a one paragraph essay that starts with the preceding sentence. The following sentences of
the paragraph should support this assertion by describing the novelty of each wave’s model sets,
the issues that limited the utility of these earlier models, and how deep NN models address these
issues. Your paragraph should close with your opinion concerning the future prospects of the
current generation of deep NN models and should discuss why you feel this way.

Problem 1: Consider a linear regression problem whose inputs x € R" and whose targets are
y = 0Tx+n € R where § € R™ is some unknown parameter vector and 7 is a zero mean normally
distribution random variable with variance o2. Let the model set, 7, consist of all linear models
of the form h,(z) = w’x where w € R™ is the model’s weight vector. Let the problem’s loss
function the be squared prediction error L(y, h,(s)) = (y — hy(5))?.

Let D = {(zx, yx) }_, be arandomly selected dataset of N samples and let w* € R" be the model
weight vector that minimizes the model’s empirical risk over the dataset. Define the matrices,

xt i P+ (1) ny

ol ~ o (2 n
X = .2 ; Y = y.Q) Y = (2) , = ’

xj]\ﬂ/ YN hw* (ajN) ny

where 1z, are the data input samples, vy, = 67z, +n;, are the data targets, n;, is the noise in the data
targets, and w* are the model weights minimizing the model’s empirical risk over the dataset.

1. Let w* be the optimal model weights for a given dataset D = {X,Y} with NV samples.
Determine a closed form expression for w* as a function of the unknown system parameters,
0, the input data matrix X for the given dataset, and the target noise vector, n.

2. For the optimal model, h,~, determined above, find an expression for the true risk, E[h,-],
as a function of the target noise covariance, 0.

3. Let us define the following matrix

H < x(X7X)"'x”

Determine an expression for the expected value of the risk difference, Ep {}A%D [hw+] — R[] }
for a optimal models A+ for the randomly selected datasets D.

Hint: You will probably need to use the fact that H is a symmetric matrix with trace(H) = n
and H? = H.

Solution (optimal w*): The empirical risk is
Rolha] = 5 [Xuw — Y[
D|lbw] — N w

1

taking the gradient with respect to w and setting equal to zero

Vo Rplhy) = % (X"Xw - XTY) =0

which gives | w* = (X*X) 'X"Y |. We now note that Y = X6 + n. Inserting this into the above
equation and simplifying gives

w* = (XTX)'XT (X6 + n)
= |0+ (X"X)"'X™n

Solution (true risk): The true (actual) risk for the optimal model obtained in part 1 is
Rlhy] = E,y [(y — hw*(x))Q] =E;, [(xT(H —w*) + n)ﬂ
= E.n [(xT(Q — (0 + (XTX)"'XTn)) + n)ﬂ
= E,n [(xT(XTX)’lXTn + n)ﬂ =
because x and n are uncorrelated from each other and n is zero mean.
Solution (risk difference): The empirical risk of the optimal model A, is

1
Rolhw] = FIXw' =Y

_ % IX (0 + (XTX)'XTn) — (X0 +)|’

1 T~r\—15T 2 1 2
= N|X(X X)'X"n — n| =¥ (H — I)n|
= ¥ [n"H"Hn —n"(H+H")n +n'n]

L
= |=n"(I-H)n

N

So now take the expected value over the datasets,
Ep [R[hw*] . ﬁp[hw*]] — E,[n’(I-H)n]
1 T 1 T
2
= o°— JNtraee(H) =0’ (1 - %)

Problem 2: Consider the neural network model shown in Fig. 1 that uses the notational con-
ventions from the lecture notes (chapter 3) in which x) and s¥) are the outputs and inputs, re-
spectively, of the nodes in the (th layer (including the bias node). Let W = {W®}3_, be a
collection of weights where W) is the the weight matrix connecting the outputs from layer ¢ — 1
to nodes of layer /. Let y, = hy(Xj) denote the prediction made by the model for the kth input
Xx;. Assume that all initial weights are 0.5 and that we are using the squared error loss function

L(ye,Ye) = lyrx — ¥il*

Figure 1: Problem 2

1. Compute the forward pass to obtain x(*), s(, and h(x;,) for all layers assuming the input
X = [1 } and that the target is y, = [(1) } . Show the equations and scripts you used to

compute these items.

2. Use the backward pass to obtain the error sensitivities, () for each layer with the same
input/target and then compute the updated weights for each layer assuming a learning rate,

7, of 0.1 for the given dataset sample input x;, = 1 } and target y;, = ?

Solution: The following MATLAB script computes the forward path

%$initial weights

W{l} = .5%ones (3, 3);
W{2} = .5%ones(4,3);
W{3} = .5xones(4,2);

%$input and target
input = [1;1];
target = [0;1];

$forward propogation
x0 = [1;input];
x_in = x0;

fprintf ("inputs (s) and outputs (x)\n")
for i=1:3;
s{i} = W{i}"*x_in;
disp(s{i}’)
x{i} = [1; tanh(s{i})];
disp(x{i}")
x_in = x{i};
end;

fprintf ("model output yhat\n")
vhat = x{3} (2:end);
disp (yhat)

The outputs are

inputs (s) and outputs (x)

1.5000 1.5000 1.5000

1.0000 0.9051 0.9051 0.9051
1.8577 1.8577 1.8577

1.0000 0.9525 0.9525 0.9525
1.9287 1.9287

1.0000 0.9586 0.9586

model output yhat
0.9586
0.9586

We now perform the backward pass using the following script

fprintf ("sensitivity (del)\n")
Wdel = 2x (yhat-target);
for i=1:3
del{4-1i} = (l-tanh(s{4-i})."2) .xWdel;
disp(del{4-1i}")
Wdel = W{4-1}+del{4d-1i};
Wdel Wdel (2:end) ;
end;

gradWw{l} = x0xdel{1l}’;

gradW{2} = x{1l}xdel{2}’;
gradW{3} = x{2}*del{3}’;
lr = 1;

fprintf ("updated weights\n")
disp(W{l}-1lrxgradwW{l})

disp (W{2}-1lrxgradW{2})

disp (W{3}-lr+gradwW{3})

The outputs are

sensitivity (del)

0.1554 -0.0067
0.0069 0.0069 0.0069
0.0019 0.0019 0.0019

updated weights

0.4981 0.4981 0.4981
0.4981 0.4981 0.4981
0.4981 0.4981 0.4981
0.4931 0.4931 0.4931
0.4938 0.4938 0.4938
0.4938 0.4938 0.4938
0.4938 0.4938 0.4938
0.3446 0.5067
0.3520 0.5064
0.3520 0.5064
0.3520 0.5064

Notebook Assignment (Deep Learning Classes): Deep learning often requires extremely large
datasets of labeled data. While it may not be hard to gather the input samples, xj, of the dataset,
labeling that data to generate targets, vy, is expensive and time consuming. One way of addressing
this issue is through transductive inference ' (ak.a. semi-superivsed learning) that reasons from
specific (training) cases to specific (test) cases. This approach may be possible when the data
inputs are related to each other in a manner that can be described by a graph. In this case, the
additional information provided by an input samples relationship to other samples may provide a
way to infer the class membership of unlabeled samples.

This notebook assignment uses python class objects to instantiate a neural network model for
transductive inference. Chapter 3 gave an example of such classes for a SequentialModel
constructed from DenseLayer objects. This notebook develops class objects for a Graph Con-
volution Network (GCN) 2. The GCN model is, essentially, a sequential model formed from
GCNLayers. The input to the resulting model is the normalized adjacency matrix, A € RVN*V,
for a graph with)V nodes and a feature matrix X € RY*" whose kth row is the feature vector for
the kth node. The model’s output is a matrix Y € RY*™ whose kth row estimates the probability
of node £’s class membership where there are m distinct classes.

Transductive inference is performed using a GCN in the following manner. The dataset is a
labelled graph, G = (V, E, x,y) where V is a set of nodes, E C V' x V is a set of edges, v : V —
R™ maps each node, v € V, onto a real-valued feature vector, x(v) € R",andy : V — {0,1}™
is a target for each node v such that y(v) € {0,1}™ is a one-hot encoded vector of one of m
class names. The model set maps graph G’s adjacency matrix and a feature matrix X onto the

10. Chapelle, B. Scholkpf, and A. Zien, Eds. Semi-Supervised Learning, MIT Press, 2006: see chapt. 24
2Kipf, Thomas N., and Max Welling. ”Semi-supervised classification with graph convolutional networks.” arXiv
preprint arXiv:1609.02907 (2016).

prediction Y of each node’s class probabilities. What makes this different from the learning-by-
example problem, is that rather than assuming the model is trained using all targets in Y, we
assume that the model is trained on a subset of Y., of training targets. The problem is whether
the model can generalize to nodes in G whose labels were not in the training set Y,,;,. In other
words, can knowledge of the topology around training nodes be used to infer the class of nodes
that were not in the training set.

This assignment has you write GCN class objects that are trained on the CORA dataset *. This
dataset consists of 2708 scientific publications classified into one of seven classes. The dataset con-
sists of 5419 links indicating which publications have been cited. Each publication in the dataset is
described by a one-hot encoded word vector indicating the absence/presence of the corresponding
word from a dictionary of 1433 unique words and a label indicating which class the publication
belongs to. We have pre-processing the CORA dataset and stored it as a pk1 (pickle) archive that
you can load as
import numpy as np

import tensorflow as tf
import pickle

with open("cora_dataset.pkl", "rb") as fp:
dataset = pickle.load (fp)

A = dataset[0] #normalized adjacency matrix
X = dataset[1l] #node feature matrix

Y = dataset[2] #node one-hot encoded targets

classes = dataset[3] #np.array of class names
train_mask = dataset[4] #Boolean array of training nodes
test_mask. = dataset[5] #Boolean array of test nodes

The preprocessed pkl file is in the course vault.

1. Create a GecnLayer class similar to the DenseLayer class we showed you in lecture.
The class constructor has the following inputs n_input, n_output, and the activation
function. The constructor initializes a weight array, W, of shape (n_input,n_output).
These weights are randomly initialized as a t £ . Variable with values between —1 and 1.
The class’ __call__method takes the adjancecy matrix A and feature matrix X as an input.
The output returned by __call__is

7(AXW)

where o is the activation function.

Solution: This is essentially identical to DenseLayer, with the only difference being in
the __call__method.

class GcnLayer:

def __init_ (self,n_input,n_output,actiation):
self.activation=activation
w_shape = (n_input,n_output)
w_initial = tf.random.uniform(w_shape, minval=-1,maxval=1)
self.W = tf.Variable(w_initial)

def _ call_ (self, A,X):
return self.activation (A@X@self.W)

@property

def weights (self):
return [self.W]

2. Create a GecnModel class similar to the SequentialModel class shown to you in lecture.
The only major difference is that this model keeps a list of instantiated GcnLayer objects
where the output of the /th layer is used as the feature vector, X for the ¢ + 1st layer. Note

3Sen, Prithviraj, et al. ”Collective classification in network data.” Al magazine 29.3 (2008): 93-93.

that all layers in the model use the same adjacency matrix, A. Then use your classes to
instantiate a graph convolution network (GCN) model with two GecnLayers where the first
layer’s output is a rank-2 tensor with shape (2308, 32). The second layer is a rank-2 tensor
with shape (2308, 7).

Solution: This is nearly identical to the SequentialModel class. The only difference
lies in how the layers are chained together

class GcnModel:
def __init__ (self, layers):
self.layers = layers
def __call_ (self,inputs):
A = inputs[0]
x = inputs[1]
for layer in self.layers:
x = layer (A, x)
return x
@property
def weights(self):
weights=[]
for layer in self.layers:
weights += layer.weights
return weights

#create model

n_hidden = 16

n_nodes, n_features = X.shape

n_classes = len(classes)

relu = tf.nn.relu

softmax = tf.nn.softmax

layerl = GecnlLayer (n_features,n_hidden, relu)
layer2 = Genlayer (n_hidden, n_classes, softmax)
model = GcnModel ([layerl, layer2])

. Write a evaluate function whose inputs are the GcnMode 1 model, the adjacency matrix,
A, the dataset’s feature matrix, X, the dataset’s array of one-hot encoded targets, Y, and a
Boolean valued mask, mask, on the graph’s nodes. The function returns the average loss
and average accuracy of the model over the graph nodes selected in mask. For the loss
function use the categorical crossentropy function. Evaluate the masked loss and accuracy
of the model using both the t rain_mask and test_mask in the dataset.

Solution: This also looks similar to the evaluate function in the leccture. What is dif-
ferent however is the fact that we are only evaluating loss and accuracy over a masked set

of targets. This means that when we compute the sample average of the loss/accuracy, we
zero those values not in the mask and make sure we compute the average only over those
non-zeroed sampled. So I created two functions to compute the “masked” loss and accuracy.

def masked_loss_function (Y, Yhat,mask) :

cce = tf.keras.losses.categorical_crossentropy
per_sample_losses = cce (Y, Yhat)
sample_weights = tf.cast (mask,"float64") #mask is Boolean, we need to convert to float

correction_factour = tf.reduce_mean (sample_weights)
masked_losses = per_sample_losses » sample_weights
loss = tf.reduce_mean (masked_losses)/correction_factor
return loss

def masked_accuracy_function (Y, Yhat, mask):

preds = np.argmax (Yhat, axis=1)
targets = np.argmax(Y,axis=1)
accuracy = (preds==targets)

sample_weights = tf.cast (mask,"float64")

correction_factor = tf.reduce_mean (sample_weights)
masked_accuracy = accuracyxsample_weights

accuracy = tf.reduce_mean (masked_accuracy)/correction_factor
return accuracy

def evaluate (model, A,X,Y, mask):
Yhat = model ([A,X])
masked_loss = masked_loss_function(Yhat,Y,mask)
masked_acc = masked_accuracy_function(Yhat,Y,mask)
return masked_loss, masked_acc

#evaluate initial model before training

train_loss,train_acc = evaluate(model,A,X,Y,train_mask)

print (f"\n train loss = {train_loss: .2f}, train accuracy = {100xtrain_acc: .2f}%")
test_loss, test_acc = evaluate(model,A,X,Y,test_mask)

print (f"\n test loss = {test_loss: .2f}, test accuracy = {100+train_acc: .2f}%")

train loss = 14.11, train accuracy = 11.7%

test loss = 14.25, test accuracy = 10.30%

4. Write a £it function whose inputs are the GecnMode 1 model, the adjacency matrix, A, the
dataset’s feature matrix X, the dataset’s array of one-hot encoded targets, Y, the number of
training epochs, the learning rate, and a Boolean valued mask on the graph’s nodes. The
output from the £it is the history of the masked loss and accuracy for the training and
testing masks. Test your £1it method on the GcnModel you instantiated in part 2; training
for 1000 epochs with the training mask, t rain_mask, and a learning rate of n = .3. After
training for 500 epochs, evaluate the model’s testing loss and accuracy. Compare to the
accuracy obtained with the untrained model.

Solution: The fit function has to use the masks provided in the dataset.

def fit (model, A,X,Y, n_epochs, lr, train mask,test_mask):
Yhat = model ([A,X])
train_loss, train_acc = evaluate(model,A,X,Y,train_mask
test_loss, test_acc = evaluate (model,A,X,Y,test_mask)
history = [(train_loss, test_loss, train_acc, test_acc)

for epoch in range (n_epochs) :
with tf.GradientTape() as tape:
Yhat = model ([A, X]
loss = masked_loss_function(Yhat, Y, train_mask
gradients = tape.gradient(loss, model.weights):
for g, w in zip(gradients, model.weights) :
w.assign_sub (gxlr)
train_loss, train_acc = evaluate(model,A,X,Y, train_mask)
test_loss, test_acc = evaluate (model,A,X,Y,test_mask)
history = np.vstack(((history, (train_loss,test_loss, train_acc, test_acc))
if epoch%10==0:
print ("=', end="")
if epoch%100==0:
print (f"\nepoch {epoch}: training {train_loss:.2f}/{train_acc%100:.2f})% -
testing {test_loss:.2f}/{test_acc*100: .2f}%",end="")

return history

history = fit (model,A,X,Y,n_epochs, lr, train_mask,test_mask)

train_loss,train_acc = evaluate (model,A,X,Y,train_mask)

print (£"\n train loss = {train_loss}, train acc = { 100xtrain_acc)%")
test_lost, test_acc = evaluate (model,A,X,Y,test_mask)
print (f"\ntest loss = {test_loss}, test_accuracy = {100xtest+acc}s")

After training for 1000 epochs with learning rate of 0.3 we get

epoch 0: training 14.00/14.00% - testing 14.14/11.96%==========
epoch 100: training 3.12/84.86% - testing 5.28/70.

epoch 200: training 1.87/89.43% - testing 4.38/74. =
epoch 300: training 1.60/90.57% - testing 4.31/74. =
epoch 400: training 1.55/90.57% - testing 4.17/75. =
epoch 500: training 1.46/91.14% - testing 4.11/75. =
epoch 600: training 1.41/91.43% - testing 4.09/75. =
epoch 700: training 1.36/91.71% - testing 4.09/75. =
epoch 800: training 1.18/92.86% - testing 4.11/75. =
epoch 900: training 1.12/93.14% - testing 4.01/75. =

1

train loss = 1.1184475861578715, train acc = 93.1428571428

5%

test loss = 3.9894692070009135, test accuracy = 75.95419847328245%

We note that after training the test accuracy is 75.8%, which is certainly

5. Write a script that plots the training curves (training/test loss and accuracy versus training
epoch). Comment on whether these curves show any overfitting or underfitting of the data.

Solution:. My script is given below

Loss

import matplotlib.pyplot as plt

def training_curves (history):
train_loss = history[:,0]
test_loss historyl[:,1]
train_acc historyl[:,2]
test_acc = history[:,3]
nsample,_ = history.shape
epochs = np.arange (1,nsample+l)

figure, axis = plt.subplots(l,2,figsize=(10,2.5))

axis[0].plot (epochs, train_loss, "b--", label="training loss")
axis[0] .plot (epochs, test_loss, "b", label="testing loss")
axis[0].set_title("Training and Testing Losses")
axis[0].set_xlabel ("Epochs")

axis[0].set_ylabel ("Loss")

axis[0].legend()

axis[1l].plot (epochs, train_acc, "b--",label="Training acc")
axis[1l].plot (epochs, test_acc, "b", label="Testing acc")
axis[1l].set_title("Training and Testing accuracy")
axis[1l].set_xlabel ("Epochs")

axis[1l].set_ylabel ("Accuracy")

axis[1l].legend()

training_curves (history)

The plots do now show any evidence of overtraining, which suggests that we could have
used a larger more complex model to get a better fit. Another issue we see is the apparent
difference between the training and testing loss. This difference is often associated with
training sets that did not capture the full complexity of the data. This is reasonable in our
case, since we had nearly 3 times as much data in the testing set than the training set.

Training and Testing Losses Training and Testing accuracy
-== training loss J.,_—-"“' ________ TTeTTTTTTT
1259 —— testing loss 0.8 Fg
10.0 - - \
g 06 1
7.5 1 =
2 04
i .4
501
AN ——- Training acc
A -
2.5 1 e e e —_—— 0.2 —— Testing acc
T T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000

Epochs Epochs

