
Homework 4 - Machine Learning Training Pipeline - Spring 2025

Essay Question: Machine learning (ML) pipelines offer many benefits to the ML engineer respon-
sible for designing, training, and evaluating ML models that perform will without overfitting the
available data. These benefits are ... List what you see as the benefits of these pipelines, for each
benefit include a sentence describing how that benefit helps the process of model development.
Conclude with a sentence summarizing the critical role that such pipelines play in developing ML
applications.

Notebook Assignment 1 (Naive Bayes Baseline Model) :
Introduction: A widely used baseline model for text classification is the Naive Bayes model. The
text classification problem has input samples x ∈ {0, 1}d that are binary vectors of dimension d.
The ith component, xi, represents the ith word in a predefined vocabulary list and xi = 1 if the ith
word in the vocabulary is present in a text document and is 0 otherwise. The target, y ∈ {0, 1},
for input sample x is 1 if the text document is in class 1 (let’s say a paper about deep learning)
otherwise it is 0 (a document that is about something other than deep learning). The text classifica-
tion problem uses the dataset to train a model that predicts which class a document belongs to. In
general, we would classify the document, x, with the class that has the highest posterior probability
Pr(y |x). We will use our Naive Bayes’ baseline model to compute an estimate, P̂r(y |x), of that
posterior probability, which we would then use to compute the baseline accuracy levels we need
our deep learning model to beat.

Our estimate for P̂r(y |x) is obtained by first using Bayes’ theorem to note that

Pr(y |x) = Pr(x | y)Pr(y)
Pr(x)

∝ Pr(x | y)Pr(y)

The probability Pr(y) can be estimated from the dataset by simply counting up how many samples
are in class y = 1 or class y = 0 and dividing by the total number of samples in the dataset.

We need to estimate the a priori probability Pr(x | y), which is what our ”trained” model should
do. But to get a crude baseline model for this, we can simply assume that x is a random variable
whose components, xi, are independent Bernoulli random variables

Pr(xi|y) = xiPr(xi = 1 |y) + (1− xi)Pr(xi = 1|y)

The baseline model’s estimate of the document’s a priori probability is therefore,

Pr(x | y) =
d∏

i=1

(xiPr(xi = 1 | y) + (1− xi)(1− Pr(xi | y)))

The probability Pr(xi = 1 | y) can be estimated from the dataset by simply counting up how many
times word i appears in documents that are of class y.

So we can now propose the following procedure to generate a Naive Bayes’ baseline model for
the text classification problem

1. Define vocabulary list V where the cardinality of V determines the dimension of the input
vectors, x.

1

2. Count the following in the dataset

• N = total number of documents in the dataset

• Nm =number of documents labelled with class m for m = 1, 2, . . .M

• nm(xi) = number of documents of class k containing word i

3. Estimate the likelihoods P̂r(xi | y = m) = nm(xi)
Nm

4. Estimate the priors P̂r(y = m) = Nm

N

5. Estimate the baseline model’s prediction of the posterior log likelihood for each class

log(P̂r(y = m |x)) = log(P̂r(x | y = m)) + log(Pr(y = m))

= log(P̂r(y = m)) +

|V |∑
i=1

log
(
xiP̂r(xi | y = m) + (1− xi)(1− P̂r(xi | y = m))

)
6. The baseline model’s prediction is to select the class that has the largest log likelihood. One

then evaluates the model’s performance (accuracy or confusion matrix) on the test data.

For this assignment you’ll use the preceding method to compute a baseline model for the IMDB
Movie Review dataset and then compare that baseline against a sequential model trained on the
same dataset. The tasks that need to be completed for this exercise are enumerated below.

1. TO DO: Load the IMDB dataset from tensorflow and create the train/test input/target sample
arrays assuming a 10000 word vocabulary. Print the shape of the train/test input/target arrays
and print the first sample’s input/label.

2. TO DO: Write a function that encodes each input sample as a one-hot encoded vector whose
kth component is 1 if that kth vocabulary work appears in the review and is zero otherwise.
Use your function to encode the training/testing inputs as one-hot encoded vectors, and re-
type each input as float32. Print out the shape of training input data. Print out the number of
vocabulary words in the first review and print out the word indices.

3. TO DO: Write a function (baseline model) that computes the statistics Pr(y = m) and
Pr(xk | y = m) where m is the class label in {0, 1}. Your function should take the training
dataset and returns the four probabilities in a list called model. The first two components are
the probabilities Pr(y = 0) and Pr(y = 1). The last two components are arrays containing
the probabilities Pr(xk | y = 0) and Pr(xk | y = 1). Print the class probabilities Pr(y = 0)
and Pr(y = 1). Verify the shape of the conditional sample probabilities.

4. TO DO: Write a function that evaluates the accuracy of the baseline model’s predictions on
the testing data. In writing your function use the sum of log likelihoods, rather than product
of likelihoods. This turns out to be more robust computationally. Print the accuracy returned
by your evaluation function.

2

5. TO DO: Use the training/testing data arrays to form tf dataset objects train ds and
test ds. Assume a batch size of 256 and print out the shape of each dataset object along
with the number of batches in each dataset. Take the training dataset object (train ds)
and use an 80/20 split to partition it into a p-training dataset and a validation dataset object.
Print the number of p-training batches and validation batches in your dataset objects.

6. TO DO: Instantiate a sequential model whose input layer takes the 10000 dimensional input
sample (1-hot encoded) and maps it through two dense layers of 4 nodes, each using relu
activation. The output laye rof the model is a single node with sigmoid activation. Compile
your model using an RMSprop optimizer with a learning rate of 10−4, binary crossentropy
loss, and ”accuracy” as the metric. Print the model summary and determine the number of
trainable weights.

7. TO DO: Train your model for 60 epochs using the p-training data and validation dataset
objects. Create a callback that saves the ”best model” with the smallest validation loss. Have
your fit routine return the history object.

8. TO DO: Evaluate the best model’s test accuracy. Print out the model’s test accuracy along-
side the baseline accuracy you computed above. Compare the two. Plot the training curves
for this history object.

Notebook Assignment 2 (Hyperband Tuner):. One of the most time-consuming tasks in deep
learning is hyperparameter tuning. These hyper-parameters include the number of layers and num-
ber of nodes in a deep network. It may include optimizer parameters such as the learning rate
or momentum term. It may also include parameters used by a dropout layer or L2 regularization.
Hyperparameter tuning is usually done by creating a finite grid of model configurations, evaluating
the loss or accuracy achieved by training a model with the given hyper-parameters, and then using
the outcomes to select a new set of parameterized model configurations. The selection criterion is
chosen to ”reduce” the number of configurations until the recursive application of this base process
identifies a single parameter set that trains a model with the smallest loss (highest accuracy).

Two methods for hyperparameter tuning are Bayesian optimization and the Hyberband algorithm.
Both methods have been implemented in the KerasTuner tool which is available in TensorFlow.
This notebook assignment has you code a simple tuning algorithm whose basic recursion is the
foundation of the Hyperband algorithm. You will be working with the fashion MNIST classifica-
tion problem. The tasks for this exercise are enumerated below.

1. Use set tf loglevel to reduce the number of logging messages. This function is in
HW4utils.py and should be called as

set_tf_loglevel(logging.FATAL)

TO DO: Use the other HW4utils functions to load the fashion MNIST dataset and create
a p-training, validation, and test dataset. Use a 2/3 split in splitting the training data into
p-training and validation data.

3

2. TO DO: Create a function model builder that takes a hyperparameter (hp) represent-
ing the number of nodes in a MLP’s hidden layer. Your model builder function will build a
model that takes an input with shape (784,), has ”hp” nodes in the first hidden dense layer
with an relu activation, and has 10 nodes in the final output layer with a softmax activation.
Your function should also compile the model using an rmsprop optimizer, sparse categori-
cal crossentropy loss, and ”accuracy” metric. The function should return the handle of the
instantiated model.

TO DO: You will also need to create another function that takes a set (hp bag) of hyperpa-
rameters and builds a model for each hyperparameter in the bag. For each of these models,
train the model for 0 epochs to complete the build (set verbose=0 to reduce the output). You
will then need to save the model as

"model"+str(hp)+".keras"

so it can be used later.

3. This is the main part of the exercise. You will implement a simplified version of the hyper-
band algorithm

Consider a two layer dense sequential model. The first layer has hp nodes with RELU
activation, followed by a 10 node dense layer. We will treat the number of nodes in that first
dense layer as the hyperparameter. Load the fashion-mnist dataset and create a numpy array,
hp bag which is the set of hyperparameters we want to test.

import numpy as np
hp_bag = np.arange(16,320,32)

hp bag is therefore a collection of n hidden hyper-parameters that we search for the
”best” model using the Hyperband algorithm [1]. This task has you implement has simplified
form of the hyperband algorithm.

The hyperband algorithm [1] is based on the idea that you start by training a collection (bag)
of models for a few epochs, say 5, and then discard from the bag those models that performed
worst. You then continue training for another 5 epochs, discard the worst ones, and continue
until there is only one model left, which you then train to completion.

TO DO: Use this algorithm to train a simple MLP model for the Fashion-MNIST dataset.
Your earlier model builder function constructs models with two dense layers in which
the number of nodes in the hidden layer is the hyperparameter you are tuning. So you will
need to create a numpy array, hp bag, containing the hyperparameters we want to test. In
this case, select an array that goes from 16 to 320 in increments of 32. Then write a script
that trains the configurations in hp bag for just 5 epochs on the p-training data. Evaluate
the loss achieved by all of the trained models on the validation data and remove at most
(num remove) 3 configurations with the largest losses from hp bag. Your algorithm will
repeat this process until there is only one model left in the bag.

4. TO DO: To finish the exercise, train the remaining model for 30 epochs, generate the training
curves, and determine the best model’s test accuracy.

4

NOTE: TensorFlow has an automated tuning function based on the Hyperband algorithm described
above [2]. TensorFlow’s implementation of the algorithm is much more efficient than the script
you probably wrote and it is useful to know how to use it. Tutorial can be found on tensorflow
website. Feel free to explore as it may be useful for those of you considering doing a project.

References
[1] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hy-

perband: A novel bandit-based approach to hyperparameter optimization. The Journal of
Machine Learning Research, 18(1):6765–6816, 2017.

[2] Tom O’Malley, Elie Bursztein, James Long, François Chollet, Haifeng Jin, Luca Invernizzi,
et al. Kerastuner. https://github.com/keras-team/keras-tuner, 2019.

5

https://github.com/keras-team/keras-tuner

