Homework 4 - Machine Learning Training Pipeline - Spring 2025

Essay Question: Machine learning (ML) pipelines offer many benefits to the ML engineer respon-
sible for designing, training, and evaluating ML models that perform will without overfitting the
available data. These benefits are ... List what you see as the benefits of these pipelines, for each
benefit include a sentence describing how that benefit helps the process of model development.
Conclude with a sentence summarizing the critical role that such pipelines play in developing ML
applications.

Notebook Assignment 1 (Naive Bayes Baseline Model) :

Introduction: A widely used baseline model for text classification is the Naive Bayes model. The
text classification problem has input samples x € {0, 1}¢ that are binary vectors of dimension d.
The ith component, z;, represents the ith word in a predefined vocabulary list and z; = 1 if the ith
word in the vocabulary is present in a text document and is 0 otherwise. The target, y € {0, 1},
for input sample x is 1 if the text document is in class 1 (let’s say a paper about deep learning)
otherwise it is 0 (a document that is about something other than deep learning). The text classifica-
tion problem uses the dataset to train a model that predicts which class a document belongs to. In
general, we would classify the document, x, with the class that has the highest posterior probability
Pr(y | x). We will use our Naive Bayes’ baseline model to compute an estimate, f’}(y |x), of that
posterior probability, which we would then use to compute the baseline accuracy levels we need
our deep learning model to beat.

Our estimate for lg\r(y | x) is obtained by first using Bayes’ theorem to note that

Pr(x|y)Pr(y)

EI. Pr(x|y)Pr(y)

Pr(y|x) =

The probability Pr(y) can be estimated from the dataset by simply counting up how many samples
are in class y = 1 or class y = 0 and dividing by the total number of samples in the dataset.

We need to estimate the a priori probability Pr(x|y), which is what our "trained” model should

do. But to get a crude baseline model for this, we can simply assume that x is a random variable
whose components, x;, are independent Bernoulli random variables

Pr(xy) = xPr(z; = 1]y) + (1 — 2;)Pr(a; = 1]y)

The baseline model’s estimate of the document’s a priori probability is therefore,

Pr(x|y) = [(eiPrla = L]y) + (1 = 2)(1 ~ Pr(ai |))

The probability Pr(xz; = 1|y) can be estimated from the dataset by simply counting up how many
times word 7 appears in documents that are of class y.

So we can now propose the following procedure to generate a Naive Bayes’ baseline model for
the text classification problem

1. Define vocabulary list V' where the cardinality of V' determines the dimension of the input
vectors, X.

\®]

W

A

. Count the following in the dataset

e N = total number of documents in the dataset
¢ N, =number of documents labelled with class m form =1,2,... M

* n,,(x;) = number of documents of class & containing word i

. Estimate the likelihoods Pr(z, |y = m) = "=
. Estimate the priors f)\r(y =m) = NTm

. Estimate the baseline model’s prediction of the posterior log likelihood for each class

log(Pr(y = m|x) = log(Pr(x|y = m))+ log(Pr(y = m))
14
= log(ﬁ(y =m))+ Zlog (xlf’;(xz ly=m)+ (1 —z;)(1 — f’\r(xl ly = m)))

=1

. The baseline model’s prediction is to select the class that has the largest log likelihood. One
then evaluates the model’s performance (accuracy or confusion matrix) on the test data.

. Exercise 1: Consider a set of document, each of which is related to Sports (S) or to Infor-
matics (I). Define a vocabulary of eight words,

ry = goal
ro = tutor
T3 = variance
x4y = speed
V=)
x5 = drink
re = defence
xr7y = performance
rg = field

So each document is an 8-dimensional binary vector. Let the input samples be

(3

]
]
[a]
e
aw]
(aw]

OlRkr R~~~ OO0 0
W= O, O)OO
Bl= = O OO Oo
S = = O O = O =
S/ O O = OO = =O

W | OO R = OO
W | O = = O = O =
D= =R OO == O
SO R OO O = =
RO OO OO OO
SN O R O = O = O

\ J

where each column’s first 8 elements are the inputs for that sample and the last element is
the class label (s or i). Classify the following input sample using the Naive Bayes Classifier

x=[10011101]"

2

Solution: The total number of documents in the training set is N = 11 with N, = 6 and
Nins = 5. The prior probabilities are therefore

— - 5
Pr(sport) = %, Pr(inf) = 1

The document count, nsport(xi) and n;,¢(z;) are obtained for each component of the feature
inputs
Neport (Ti) P(x; | sport) nie(x;) P(x;|inf)

X
x| 1 3 3/6 1 1/5
x9 | O 1 1/6 3 3/5
x3 | 0 2 2/6 3 3/5
x4 | 1 3 3/6 1 1/5
x5 | 1 3 3/6 1 1/5
xg | 1 4 4/6 1 1/5
x7 | 0 4 4/6 3 3/5
xg | 1 4 4/6 1 1/5

Table 1: table

We then compute the posterior loglikelihood of the class as

8
log(ls\r(sport |x)) o log I/D;(sport)) Zlog (les}(:m | sport) 4+ (1 — x;)(1 — I/D\r(azZ \ sport)))
i=1
——
3 3

6 3 5 2 1 2 1 2
o log(ﬁ)+log <6><6><3><2><3>< > = —4.4898

8
Pr(inf|x) o Pr(inf)] (xilg;(:ci inf) + (1 — 2;)(1 — Pr(a; | inf)))

1
5 (1 2 2 1 1 2 1

x 11<5><5><5><5><5>< ><5><>——9.9751

Since —4.4898 = log ls}(sport | logx) > 1/3\r(inf | x) = —9.9751 we classify this document

as sport.

2. Exercise 2: Consider the IMDB dataset whose input samples, x, are encoded as binary
vectors of dimension 10,000 with binary valued targets. Use the IMDB training data to
determine a Naive Bayes’ baseline model. Evaluate the baseline model’s accuracy on the
IMDB testing data.

Solution: We first load the imdb dataset

from tensorflow.keras.datasets import imdb

import numpy as np

num_words = 10000

(train_x, train_y), (test_x,test_y) = imdb.load_data (num_words=num_words)

We then take the input samples of the training and test sets and encode them as one-hot
vectors. The scripts for doing this are in the optimizer section of chapter 4.

import numpy as npd
def encode (sequences, dimension = 10000):
results = np.zeros((len(sequences),dimension)
for i, sequence in enumerate (sequences) :
for j in sequence:
results[i, Jj] = 1.
return results

train_x = encode (train_x)
test_x = encode(test_x)
train_y = np.asarray(train_y) .astype("float32")
test_y = np.asarray(test_y) .astype("float32")

I broke the development of the Naive Bayes baseline model into two functions. The first

function baseline model computes the dataset statistics Pr(y = m) and Pr(z; |y = m)
for each word in the vocuabulary.

def baseline_model (samples, labels) :
N = len(labels)
indxl = np.where(labels
indx0 = np.where(labels

N1 = len(indxl)

X1 = samples[indxl, :]
NO = len(indx0)

X0 = samples[indx0, :]
nl = np.sum(X1l,axis=0)
n0 = np.sum(X0,axis=0)
Pl = N1/N

PO = NO/N

Plx = nl/N1
POx = n0/NO
return [P1,PO,Plx,PO0x]

model = baseline_model (train_x, train_y)

This function takes the training dataset and returns the four probabilities in a list called
model. We then use that model to evaluate the performance (i.e. accuracy) of the baseline
model’s predictions on the testing dataset.

def baseline_evaluate (model, samples, labels) :
#samples = train_x
#labels = train_y
Pl = model[0]
PO = model[1]
Plx = model[2]
POx = model[3]
error = np.zeros(len(samples))
for entry, sample in enumerate (samples):
label = labels[entry]
#print (label)
postl = Pl*(samplexPlx+ (l-sample) » (1-P1x)
post0 = PO« (samplexP0x+ (l-sample) (1-P0x)

logPl
logPO

np.sum(np.log (postl)
np.sum(np.log (post0))

if logP1l>1logP0:
pred=1.
else:
pred=0.
#print ([pred, labell)

if (pred!=label):
error[entry]=1

error_rate = np.mean (error)
accuracy = 1l- error_rate

return accuracy

baseline_accuracy = baseline_evaluate (model,test_x,test_y)
print (f"baseline test accuracy = {100«baseline_accuracy:.2f}%")

Note that we use the posterior log-likelihood, rather than likelihood. This is because if
we used the likelihood, the repeated product of probabilities would be very ”small”. The
outcomes establishes that the baseline model’s test accuracy is 83.90%.

. Now instantiate a neural network model whose input layer takes the 10000 dimensional in-
put sample and maps it through two dense layers of 4 nodes each using an relu activation
function. The output layer of the model has a single mode with a sigmoid activation func-
tion. Compile your model using an RMSprop optimizer with a learning rate of 10~%, binary
crossentropy loss function, and “accuracy” as the metric. Train the model for 60 epochs
using 80% of the data samples in the original imdb training data and using the remaining
20% for validation. Use minibatch training with a batch size of 256. Plot the training curves
of your model (training/validation loss and accuracy). Let the ”best” model obtained during
training be the one with the smallest validation loss and evaluate the “test accuracy” of that
model. Compare your result to that obtained with the Bayes Naive baseline model.

Solution: I started this by creating dataset objectis for the ptraining, validation, and testing
data.

#first convert the original IMDB data into training and testing dataset objects
import tensorflow as tf

batch_size = 256

train_ds = tf.data.Dataset.from_tensor_slices((train_x,train_y))

train_ds = train_ds.batch (batch_size)

train_ds_size = len(list(train_ds))

test_ds = tf.data.Dataset.from_tensor_slices((test_x,test_y))

test_ds = test_ds.batch (batch_size)

test_ds_size = len(list (test_ds))

We then split train_ds into a pre-training dataset and validation dataset object using a
20% split.

val_split = 0.20

train_ds_size = len(list(train_ds))

val_size = int(val_splitstrain_ds_size)
ptrain_size = train_ds_size-val_size

ptrain_ds = train_ds.take (ptrain_size)

val_ds = train_ds.skip(ptrain_size) .take(val_size)

We know go ahead to instantiate and compile the model

from tensorflow import keras
from tensorflow.keras import layers

num_nodes = 4
num_epochs = 60

learning_rate = le-4

inputs = keras.Input (shape=(10000,))

x = layers.Dense (num_nodes, activation="relu") (inputs)
x = layers.Dense (num_nodes,activation = "relu") (x)
outputs = layers.Dense(l,activation="sigmoid") (x)

model = keras.Model (inputs=inputs, outputs=outputs
model.summary

model.compile (
optimizer = tf.keras.optimizers.RMSprop (learning_rate=learning_rate),
loss = "binary_crossentropy",
metrics = ["accuracy"])

We now train the model for 60 epochs on the ptraining dataset and use the validation dataset’s
loss to trigger a callback that saves the "best” model

callbacks= [
keras.callbacks.ModelCheckpoint (
filepath="test_model.keras",
save_best_only = True,
monitor="val_loss"
)]

history = model.fit (ptrain_ds, epochs=num_epochs
validation_data = val_ds,
callbacks = callbacks)

We then generate the training curves, evaluate the ’best”model’s accuracy on the testing data
and compare to the baseline model’s accuracy on the testing data.

test_model = keras.models.load_model ("test_model.keras")
best_test_loss, best_test_acc = test_model.evaluate (test_ds

import matplotlib.pyplot as plt

train_loss = history.history["loss"]
val_loss = history.history["val_loss"]
train_acc = history.history["accuracy"]
val_acc = history.history["val_accuracy"]

epochs = range(l, len(train_loss) + 1)

figure, axis = plt.subplots(l,2)

axis[0].plot (epochs, train_loss, "b--", label = "Training loss")
axis[0].plot (epochs, val_loss, "b", label = "Validation loss")

axis[0] .set_title(f"Baseline Test Accuracy: {baseline_accuracy: .2f}")
axis[0].legend()

axis[1l].plot (epochs, train_acc, "b--", label = "Training Accuracy")
axis[1l].plot (epochs, val_acc, "b", label = "Validation Accuracy")
axis[l].set_title(f"Best Test Accuracy: {100xbest_test_acc: .2f}%")
axis[1l].legend()

These results show that the baseline’s accuracy is 84% whereas the trained model’s accuracy
1s 87%. So what we see is that the Naive Bayes baseline actually does very well, thereby
providing a good starting point for seeing whether our neural network model is actually
learning anything useful.

Baseline Test Accuracy: 0.84 Best Test Accuracy: 87.58%
0.70 1

=== Training loss
— Validation loss

0.65

0.60

0.55

0.50 1

0.45

0.40

0.35

——= Training Accuracy
—— Validation Accuracy

0 20 40 60 0 20 40 60

Figure 1: Problem 1 result

Notebook Assignment 2 (Hyperband Tuner):. One of the most time-consuming tasks in deep
learning is hyperparameter tuning. These hyper-parameters include the number of layers and num-
ber of nodes in a deep network. It may include optimizer parameters such as the learning rate
or momentum term. It may also include parameters used by a dropout layer or L, regularization.
Hyperparameter tuning is usually done by creating a finite grid of model configurations, evaluating
the loss or accuracy achieved by training a model with the given hyper-parameters, and then using
the outcomes to select a new set of parameterized model configurations. The selection criterion is

chosen to “reduce” the number of configurations until the recursive application of this base process
identifies a single parameter set that trains a model with the smallest loss (highest accuracy).

Two methods for hyperparameter tuning are Bayesian optimization and the Hyberband algorithm.
Both methods have been implemented in the KerasTuner tool which is available in TensorFlow.
This notebook assignment has you code a simple tuning algorithm whose basic recursion is the
foundation of the Hyperband algorithm. We then have you walk through the same search using
TensorFlow’s Keras Tuner. You will be working with the fashion MNIST classification problem
form HW3.

1. Consider a two layer dense sequential model. The first layer has 128 nodes with RELU
activation, followed by a 10 node dense layer. We will treat the number of nodes in that first
dense layer as the hyperparameter, n_hidden. Load the fashion-mnist dataset and create a
numpy array, hp_bag which is the set of hyperparameters we want to test.

import numpy as np
hp_bag = np.arange(16,320,32)

hp_bag is therefore a collection of n_hidden hyper-parameters that we search through in
the next exercise for the “best” model using the Hyperband algorithm

2. The hyperband algorithm [1] is based on the idea that you start by training a collection (bag)
of models for a few epochs, say 5, and then discard from the bag those models that performed
worst. You then continue training for another 5 epochs, discard the worst ones, and continue
until there is only one model left, which you then train to completion.

In this first problem train a simple model for the Fashion-MNIST dataset. The model has two
dense layers where the first layer has n_hidden nodes using an ReLLU activation and a 10
node dense layer. The number of nodes in the first hidden layer will be the hyper-parameter
we are tuning. To do this, you first create a numpy array, hp bag which contains the set of
hyperparameters (i.e. n_hidden) we want to test.

import numpy as np
hp_bag = np.arange(16,320,32)

You will write a script that trains the configurations in hp_bag for just 5 epochs on the p-
training data you split from the Fashion-MNIST training data in HW 2. You will evaluate
the loss achieved by all fo the trained models on the validation data and then remove at
most num_remove=3 configurations with the largest losses from hp_bag. Your algorithm
will repeat this process until there is only one model left in the bag. You will then evaluate
generate the training curves for this last model when training for 30 epochs and determine
the best model’s loss and accuracy.

Note that unless you suppress TensorFlow’s logging function, your script will produce a great

deal of logging output. You can use the following script to adjust the level of TensorFLow’s
autoamted logging functions.

import os
import logging
def set_tf_loglevel (level):
if level >= logging.FATAL:
os.environ[’/TF_CPP_MIN_LOG_LEVEL’]='3'

if level >=logging.ERROR:
os.environ[’TF_CPP_MIN_LOG_LEVEL’]='2'
if level >=logging.WARNING:
os.environ[’/TF_CPP_MIN_LOG_LEVEL’]="1"
else:
os.environ[’/TF_CPP_MIN_LOG_LEVEL’]='0"
logging.getLogger (' tensorflow’ .setLevel (level)

set_tf_loglevel (logging.FATAL)

Solution:. I started by generating the ptraining, validation, and testing datasets from the
Fashion-MNIST dataset. This is similar to what you did in HW2.

import numpy as np

import matplotlib.pyplot as plt
import tensorflow.keras as keras
import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import datasets

(x_train, y_train), (x_test, y_test) = datasets.fashion_mnist.load_data/()

x_train_n = np.array(x_train) .astype ("float32") /255
x_train_n = x_train_n.reshape (60000,28%28

N,_ = x_train_n.shape

train_split = 2/3

Nptrain = np.ceil (Nxtrain_split).astype ("uint32")
x_ptrain = x_train_n[:Nptrain]

y_ptrain = y_train[:Nptrain]

x_val = x_train_n[Nptrain:]

y_val = y_train[Nptrain:]

x_test_n = np.array(x_test) .astype ("float32") /255
x_test_n = x_test_n.reshape (10000,28x28)

I think defined a function that built a model using a given set hp of hyperparameters. For
this problem there is only one hyperparameter; the number of nodes in the hidden layer.

from tensorflow.keras import layers
def build_model (hp) :
model = keras.Sequential ([
keras.Input (shape=(784,)),
layers.Dense (hp,activation="relu"),
layers.Dense (10, activation="softmax")
1)
model.compile (optimizer='rmsprop’,
loss = "sparse_categorical_crossentropy",
metrics = [’accuracy’])
return model

def initialize_models (hp_bag) :

for hp in hp_bag:
model_name = "data/model_"+str (hp)+".keras"

model = build_model (hp)

#you need to fit the model
model.fit (x_ptrain,y_ptrain,epochs = 0, verbose=0)

model.save (model_name)

#model.summary ()

The following script is the main loop I used for the hyperband recursion.

from keras.models import load_model
hp_bag = np.arange (16, 320, 32)

print ("INITIALIZING MODELS")
initialize_models (hp_bag)

batch = 0

while len (hp_bag)>1:
print ("BATCH "+str (batch)
result_bag = np.empty((0,3))
for hp in hp_bag:

model_name = "data/model_"+str (hp)+".keras"
model = load_model (model_name)
model.fit (x_ptrain,y_ptrain,
epochs=5, batch_size=512, verbose=0,
validation_data = (x_val,y_val))

result = model.evaluate(x_val,y_val,verbose=0)

model.save (model_name)

loss = result[0]
acc = result[1]
entry = np.array ((hp, loss,acc)

result_bag = np.vstack((result_bag,entry)
batch =+ 1
print (result_bag)

num_remove = 3
for _ in range (num_remove) :
active_configs = np.shape (hp_bag)
if active_configs[0] > 1:
indx = np.argmax(result_bag[:,1])
result_bag = np.delete(result_bag, indx, 0)
hp_bag=np.delete (hp_bag, indx, 0)
print (hp_bag)

which produced the output for each BATCH

INITIALIZING MODELS

BATCH 0

/Users/michaellemmon/miniconda3/envs/tf/lib/python3.11/site-packages/keras/src/saving/saving_lib.py:576: UserWarning: Skipping variable loadin
saveable.load_own_variables (weights_store.get (inner_path))

[[16. 0.5241344 0.82209998]
[48. 0.54471242 0.79079998]
[80. 0.46926987 0.83539999]
[112. 0.50595856 0.82824999]
[144. 0.51651382 0.8136]
[176. 0.46490663 0.83450001]
[208. 0.49769789 0.81435001]
[240. 0.45981461 0.83405]
[272. 0.44445401 0.84044999]
[304. 0.48474991 0.82795 1]
[80 112 176 208 240 272 304]

BATCH 1

[[80. 0.53647697 0.80620003]
[112 0.40749145 0.8549]
[176 0.45521241 0.83060002]
[208 0.41527501 0.84560001]
[240 0.4102712 0.85000002]
[272 0.43135807 0.84364998]
[304 0.36038336 0.86914998]]
[112 208 240 304]

BATCH 1

[[112. 0.44476479 0.84434998]
[208. 0.34902436 0.8732]
[240. 0.34777969 0.87015003]
[304. 0.33136478 0.88069999]1]
[304]

The best model was one with 304 nodes in the hidden layer. So we then generated the
training curves

hp = hp_bag[0]
model = build_model (hp)
model.summary ()

callbacks = [
keras.callbacks.ModelCheckpoint (
filepath="NA-4-1.keras",
save_best_only = True,
monitor = "val_loss"

]

history = model.fit (x_ptrain,
y_ptrain,
epochs=30,
batch_size=512,
validation_data = (x_val, y_val),
callbacks = callbacks)

Loss

import matplotlib.pyplot as plt
history_dict = history.history

loss_values = history_dict["loss"]

val_loss_values = history_dict["val_loss"]

epochs = range(l, len(loss_values)+1l)

test_model = keras.models.load_model ("NA-4-1.keras")

test_loss, test_acc = test_model.evaluate(x_test_n, y_test,verbose=1)

print (f"Test accuracy: {test_acc: .3f}")

training_curves (history)

pTraining and Val Losses ptraining and val accuracy

08 @ so0®

@ training loss
—— Validation loss

geeee®
0.90 -ut'“
o*?

@ Training acc
— Validation acc

T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Epochs Epochs

Figure 2: HW4 problem 2 result

3. TensorFlow has an automated tuning function based on the Hyperband algorithm described
above [2]. TensorFlow’s implementation of the algorithm is much more efficient than the
script you probably wrote and it is useful to know how to use it. You can make use of the
tool in the following script. This script can also be found on the TensorFlow website for
kt_tuner.

import tensorflow as tf
from tensorflow import keras
import keras_tuner as kt

(img_train, label_train), (img_test, label_test) = keras.datasets.fashion_mnist.load_data()
Normalize pixel values between 0 and 1

img_train = img_train.astype(’ float32’) / 255.0

img_test = img_test.astype (’ float32’) / 255.0

def model_builder (hp) :
model = keras.Sequential (
model.add (keras.layers.Flatten (input_shape= (28, 28)))

Tune the number of units in the first Dense layer

Choose an optimal value between 32-512

hp_units = hp.Int (‘units’, min_value=32, max_value=512, step=32)
model.add (keras.layers.Dense (units=hp_units, activation=’relu’))
model.add (keras.layers.Dense (10))

Tune the learning rate for the optimizer
Choose an optimal value from 0.01, 0.001, or 0.0001
hp_learning_rate = hp.Choice(’learning_rate’, values=[le-2, le-3, le-4])

model.compile (optimizer=keras.optimizers.Adam(learning_rate=hp_learning_rate)
loss=keras.losses.SparseCategoricalCrossentropy (from_logits=True)
metrics=[’accuracy’])

’
v

return model

tuner = kt.Hyperband(model builder,
objective='val_accuracy’,
max_epochs=10,
factor=3,
directory="my_dir’
project_name=’intro_to_kt’

stop_early = tf.keras.callbacks.EarlyStopping(monitor='val_loss’, patience=5

10

tuner.search (img_train, label_train, epochs=50, validation_split=0.2, callbacks=[stop_early])

Get the optimal hyperparameters
best_hps=tuner.get_best_hyperparameters (num_trials=1) [0]

print (£7mn
The hyperparameter search is complete. The optimal number of units in the first densely-connected

layer is {best_hps.get (‘units’)} and the optimal learning rate for the optimizer

is {best_hps.get (’learning_rate’)}.
oy

The output from this identifies the best model after 30 trials as aving 512 nodes with a
validation accuracy of 89%

Trial 30 Complete [00h 00m 17s]
val_accuracy: 0.862333357334137

Best val_accuracy So Far: 0.8924166560173035
Total elapsed time: 00h 04m 05s

The hyperparameter search is complete. The optimal number of units in the first densely-connected
layer is 512 and the optimal learning rate for the optimizer
is 0.001.

References

[1] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hy-
perband: A novel bandit-based approach to hyperparameter optimization. The Journal of
Machine Learning Research, 18(1):6765-6816, 2017.

[2] Tom O’Malley, Elie Bursztein, James Long, Francois Chollet, Haifeng Jin, Luca Invernizzi,
et al. Kerastuner. https://github.com/keras-team/keras—-tuner, 2019.

11

https://github.com/keras-team/keras-tuner

