
Homework 5 - Transfer Learning with Advanced CNN Models - Spring 2025

Essay Question: Even though the basic convolution neural network (CNN) architecture ap-
peared during the second wave of neural network research [Fukushima, IEEE SMC-Trans, 1983],
there were several unique features in Krizhevsky’s CNN model [Krizhevsky, NeurIPS, 2012] that
were critical for the renewed interest in deep learning models over the past decade. Write a one
paragraph essay that starts with the preceding prompt. The following sentences should support
this assertion by identifying the unique features of Krizhevsky’s work and discussing why these
features were instrumental in driving the recent resurgence of neural network research. Your para-
graph should close with your opinion regarding the relative importance of these features and how
they may drive or hinder future neural network research.

Problem 1: Consider a CNN model that takes an JPG image of shape (128,128,3) and passes
it through 3 Conv2D layers with ReLU activations, a string of 2, and no zero padding. The ℓth
Conv2D layer (ℓ = 1, 2, 3) outputs ℓ∗16 channels. The output of the last Conv2D layer is flattened
and mapped to 5 real-valued outputs through a Dense layer using a softmax activation function.

• Write a Keras script that instantiates the Model object for this CNN.

• Determine the shape of each layer’s output.

• Determine how many trainable parameters are in the model.

Solution: This network would be used for a multi-class classification problem

from tensorflow import keras
from tensorflow.keras import layers
inputs = keras.Input(shape=(128,128,3))
x = layers.Rescaling(1./255)(inputs)
num_channels = 16
for ell in range(3):

x = layers.Conv2D(num_channels,3,activation="relu",strides=2)(x)
num_channels = num_channels*2

x = layers.Flatten()(x)
outputs = layers.Dense(5,activation="softmax")(x)
model = keras.Model(inputs,outputs)

layer output shape trainable parameters
input (128, 128, 3) 0
Rescaling (128, 128, 3) 0
Conv2D1 (63, 63, 16) (3× 3× 3 + 1)× 16 = 448
Conv2D2 (31, 31, 32) (3× 3× 16 + 1)× 31 = 4640
Conv2D3 (15, 15, 64) (3× 3× 32 + 1)× 64 = 18496
Flatten (14400,) 0
Dense (5,) ((14400 + 1)× 5) = 72005

so the number of trainable param-

eters is

448 + 4640 + 18496 + 72005 = 95, 589

Problem 2: Consider the 1D convolutional network declared by the following Keras script,

1

inputs = Keras.Input(shape=(6,1))
outputs = layers.Conv1D(1,3, activation = "relu", use_bias=False)(inputs)
model = keras.Model(inputs = inputs, outputs = outputs)

If all trainable parameters are equal to one, then determine the model’s output when the input is
a rank-1 tensor

[
0 −1 2 −1 1 0

]
.

Solution:

Figure 1: solution

Notebook Assignment 1 (brain tumor classification): Gathering and labeling data is expensive
and time consuming. It is therefore important to know how to train models when there is limited
data available. One way of doing this is to transfer the knowledge contained in one model to
another model. This notebook assignment asks to use a pretrained CNN model and use it for the
classification analysis of brain MRI scan images. The classification task is to classify each MRI
image as either having a ”tumor” or ”no-tumor”.

The Brain MRI image dataset (zip file on course website) consists of 253 image samples of high-
resolution brain MRI scans. The images are grayscale in nature and vary in size. The dataset
has been pre-processed so the images are placed in two directories TRAIN and TEST. Each of
these directories has two subdirectories NO or YES representing the true label of each image. The
images are jpg files with shape (244,244,3).

1. Create a train ds and test ds dataset objects using the keras utility ”image data set
from directory”. Your dataset should declare the image size as (244,244) and create batches
of size 32. Use a 30% validation split to decompose the training dataset object into a p-
training and validation dataset object. Print out the number of batches in the p-training, the
validation, and the testing dataset objects.

Solution: I used the following script

height = 244
width = 244
batch_size = 10
dataset_dir ="data/TRAIN/"
test_dir = "data/TEST/"

train_ds = image_dataset_from_directory(
dataset_dir, image_size = (244,244),
batch_size = 32

)

val_split = 0.30
train_ds_size = len(list(train_ds))
val_size = int(val_split*train_ds_size)
ptrain_size = train_ds_size-val_size
ptrain_ds = train_ds.take(ptrain_size)
val_ds = train_ds.skip(ptrain_size).take(val_size)

test_ds = image_dataset_from_directory(
test_dir, image_size = (244,244),
batch_size=32

)

print(f"ptraining dataset size = {len(ptrain_ds)}")
print(f"validation dataset size = {len(val_ds)}")
print(f"testing dataset size = {len(test_ds)}")

2

2. Display 16 of the training images in a 4 by 4 array and have the title on each image indicates
its true class label

Solution: I used the following script

fig, ax = plt.subplots(4,4, figsize=(10,10))
images, labels = next(iter(train_ds))
for k in range(16):

#print(images[0].shape)
image = images[k].numpy().astype(’uint8’)
label = labels[k].numpy().astype(’uint8’)
i, j = k//4, k%4
ax[i, j].imshow(image)
ax[i, j].set_title(f"Brain Tumor: {label}")
ax[i, j].axis(’off’)

plt.show()

The images are shown below.

3. From keras.applications import the pre-trained model ResNet50V2. Set the input
shape to (244,244,3) and leave off the top layer of the model. Fix the model weights and
then add a classification layer on top that consists of data augmentation that randomly flips,
rotates,and zooms the input images, a GlobalAveragePooling2D, 64 node Dense layer, a
Dropout layer with 0.3 dropout rate and a dense layer that has a single node as its output

3

with a sigmoid activation function. Use the model summary routines to determine the total
number of parameters in the model and the number of trainable weights. Be sure to rescale
the inputs to the convolutional base so they are in the range from 0 to 1. Compile the model
with a Adam optimizer using a binary crossentropy loss function. Print out the number of
trainable parameters in your refined model. How many parameters are in the fixed convolu-
tional base?

Solution:. I used the following script

n_hidden = 64

data_augmentation = keras.Sequential([
layers.RandomFlip("horizontal"),
layers.RandomRotation(0.1),
layers.RandomZoom(0.2),

])

conv_base = ResNet50V2(input_shape =(244,244,3), include_top=False)
conv_base.trainable = False
#conv_base.summary()

inputs = keras.Input(shape=(244,244,3))
x = data_augmentation(inputs)
x = layers.Rescaling(1./255)(inputs)
x = conv_base(x)
x = GlobalAveragePooling2D()(x)
x = layers.Dense(n_hidden,activation = "relu")(x)
x = layers.Dropout(0.3)(x)
outputs = layers.Dense(1, activation="sigmoid")(x)
model_resnet50v2 = keras.Model(inputs,outputs)

model_resnet50v2.compile(optimizer=Adam(),
loss="binary_crossentropy",
metrics=["accuracy"])

model_resnet50v2.summary()

Total params: 23,696,001 (90.39 MB)
Trainable params: 131,201 (512.50 KB)
Non-trainable params: 23,564,800 (89.89 MB)

conv_base.summary()
#Total params: 23,564,800 (89.89 MB)
#Trainable params: 0 (0.00 B)
#Non-trainable params: 23,564,800 (89.89 MB)

4. Checkpoint the model to save the model with the smallest validation loss. The train the model
using p-training dataset for 20 epochs and that validates the models using the validation
dataset. Plot the training curves for your model.

Solution: I used the following script

callbacks = [
keras.callbacks.ModelCheckpoint(

filepath="best_model.keras",
save_best_only = True,
monitor="val_loss"

)
]

num_epochs = 20
history = model_resnet50v2.fit(ptrain_ds, epochs=num_epochs,

validation_data = val_ds,
callbacks = callbacks)

def training_curves(history):
train_loss = history.history["loss"]
val_loss = history.history["val_loss"]
train_accuracy = history.history["accuracy"]
val_accuracy = history.history["val_accuracy"]

epochs = np.arange(1,len(train_loss) + 1)

4

figure, axis = plt.subplots(1,2,figsize=(10,4))
axis[0].plot(epochs, train_loss, "b--", label="p-training loss")
axis[0].plot(epochs, val_loss, "b", label="validation loss")
axis[0].set_title("p-Training and Validation Losses")
axis[0].set_xlabel("Epochs")
axis[0].set_ylabel("Loss")
axis[0].legend()

axis[1].plot(epochs, train_accuracy, "b--",label="p-training accuracy")
axis[1].plot(epochs, val_accuracy, "b", label="validation accuracy")
axis[1].set_title("p-Training and Validation accuracy")
axis[1].set_xlabel("Epochs")
axis[1].set_ylabel("Accuracy")
axis[1].legend()

training_curves(history)

Figure 2: Training Curves

5. Evaluate the accuracy of your final trained model on the testing dataset. Let TP denote
the number of true positive classifications, FP denotes the number of false positive classi-
fications, TN being the number of true negative classifications, and FN being the number
of false negative classifications. Accuracy is the (TP+TN) divided by total number of ex-
amples when the model output is greater than 0.5. It is a coarse measure of a classifier’s
performance. In practice, we look at the

TPR = True Positive Rate =
TP

TP + FN

FPR = False Positive Rate =
FP

TN + FP

for a variety of threshold, not just 0.5. Compute the TPR and FPR for your classifier for the
following thresholds

thresholds = {0.025, 0.05, 0.075, .1, .2, .3, .4, .5, .6, .7, .8, .9, .925, .950, .975}

and plot the TPR vs FPR to form the classifiers Receiver Operating Characteristic. Also plot
the heatmap of the classifier’s confusion matrix when the threshold is 0.5.

Solution: I used the following script. This gave an 86% accuracy on the testing data.

5

best_model = keras.models.load_model("best_model.keras")
test_loss, test_accuracy = best_model.evaluate(test_ds)
print(f"test loss = {test_loss:.2f}")
print(f"test accuracy = {test_accuracy:.2f}%")

threshold_table = [.025, .05, .075, .1,.2,.3,.4,.5,.6,.7,.8,.9,.925,.95,.975]
roc = [(0,0)]

for threshold in threshold_table:

y_true=[]
y_pred=[]

for x,y in test_ds:
y_true = np.hstack((y_true,y.numpy()))
predictions = best_model.predict(x)
predictions = predictions.reshape((len(predictions,)))
predictions = (predictions>=threshold).astype(’int32’)
y_pred = np.hstack((y_pred,predictions))

y_pred_not = (1-y_pred).astype(’int32’)
tp = np.sum((y_pred*(y_true==1)).astype(’int32’))
fn = np.sum((y_pred*(y_true==0)).astype(’int32’))
fp = np.sum((y_pred_not*(y_true==1)).astype(’int32’))
tn = np.sum((y_pred_not*(y_true==0)).astype(’int32’))

tpr = tp/(tp+fn) #true positive rate
tnr = tn/(tn+fp) #true negative rate
fpr = 1-tnr #false positive rate
fnr = 1-tpr #false negative rate

roc.append((tpr,fpr))

if (threshold == .5):
cm = confusion_matrix(y_true,y_pred)
sns.heatmap(cm, annot=True, fmt=’d’)
plt.xlabel(’Predicted’)
plt.ylabel(’True’)

rocx=np.array(roc)
tprx = rocx[:,0]
fprx = rocx[:,1]
plt.figure(2)
plt.plot(fprx,tprx)

6

