Homework 6 - Natural Language Processing - Spring 2025

Essay Question: Sequence to Sequence Learning for Natural Language Processing (NLP) switched
from recurrent network networks (RNN) to transformer models after 2017. The neural attention

mechanism used by Transformer models had a number of advantages over earlier RNN models.

Write a one paragraph essay describing what neural attention does and identify at least 3 reasons

why the use of attention in Transformer models worked better than earlier RNN models for NLP.

Conclude your essay with a sentence summarizing the message of your paragraph.

Notebook Assignment 1 (RNN): Chua’s circuit is the simplest electronic circuit exhibiting chaos
as verified in numerous laboratory experiments, computer simulations, and rigorous mathematical
analyses. The circuit diagram is shown in Fig. 1. It contains five circuit elements. The first
four elements are standard linear passive devices: namely, an inductor (L), resistor (1), and two
capacitors (C and Cy). These devices setup a standard oscillator circuit. What gives rise to chaos
is a nonlinear element whose current-voltage characteristic (ig vs vg) that is shown on the right
side of Fig. 1 has a negative slope, which essentially means it is an active element with a negative
resistance. Physically this active nonlinear diode can be realized using linear op-amp circuits. In
this notebook assignment, you will use an LSTM to predict the future steady state behavior of
Chua’s circuit.

By rescaling the circuit variables v¢,, ve,, and 77, we obtain the following dimensionless equa-
tions for Chua’s circuit involving 3 state variables x, y, and z and 2 dimensionless parameters «
and (3

i(t) = a(y(t) —z — ¢(x(t)))
y(t) = a(t) —y(t) + 2(t)
(t) = —Py(t)

where ¢(z) is defined as a piecewise-linear function
1
é(x) = myx + §(m0 —my) (lz+ 1] — |z —1])

with mg and m; denoting the slopes of the inner and outer segments of the piecewise linear function
shown in Fig. 1.

One can visualize the chaotic behavior of this circuit by numerically integrating the circuit’s
differential equations (1) and generating a phase plane portrait of the resulting trajectory. A phase
portrait plots the points of the state trajectory, {x (), y(t), z(t)}, in the state space and draws edges
between temporally adjacent points as shown on right side of Fig. 1. What this phase portrait
shows is that the long-term steady-state behavior is not strictly periodic and demonstrates a great
deal of sensitivity to perturbations of the initial state. This sensitivity to initial conditions is usually
seen as the hallmark of a chaotic dynamical system.

1. Simulate Chua’s Circuit: Use the SciPy function odeint to numerically integrate Chua’s
state equation (1) over the time interval ¢ € [0, 5] seconds. Sample the state every 0.1 seconds
assuming o = 16, § = 28, my = —1.2 and my; = —0.7. Use your simulation to generate
25, 000 different trajectories from random initial state vectors, (xg, o, 20) Whose components
are uniformly sampled over the interval [—0.5,0.5] in an i.i.d. manner. Use your simulated
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Figure 1: (LEFT) The Chua Circuit, (RIGHT) Chua Attractor, phase plane portrait

trajectories to create a numpy array (input_bucket) of shape (25000, 28,3) whose ith
slice is formed by taking the slice raw_data[i, :28, :] and adding zero mean white
noise whose samples are uniformly distributed between [—0.1,0.1]. So input_bucket con-
sists of noise corrupted versions of the first 2.8 seconds of each simulated trajectory. Create
another numpy array (target _bucket) of shape (25000,6) whose ith slice first three
components equal the noise-free trajectory state raw_data[48, : ] and whose last three
components equal the noise free trajectory state raw_data[49, : ]. So target_bucket
are the targets formed from the last two points in the noise free simulated trajectories. Gen-
erate a phase portrait for one of the inputs and associated targets. Show the input trajectory
in blue and the target in red.

. Train LSTM Model: Split the datain input_bucket and target_bucket into training
and testing set assuming a 25% testing split. Split the training data into a p-training and
validation set assuming 25% validation split. Create three tensorflow dataset objects for
these data sets assuming a 128 batch size. Instantiate and train a three layer stack of LSTM
networks each with 256 nodes (no dropout) for 150 epochs using your dataset objects. Note
that this may take a couple of hours to train because your model will have about 1.3 million
weights.

. Evaluate Model: Show the training curves and compute the test MAE for the model with
the smallest validation loss. For the trained layered model, generate all of the predictions
made by your model on the test dataset’s inputs. Randomly select 10 of these predictions
and plot the 3D phase portrait of the input (blue), the actual target (red), and the predicted
target (green - dashed). Based on these samples, does your model appear to predict the future
behavior of this chaotic system?
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In (2] HHEHHAHH RS R RS
#
# DEPENDENCIES: python 3.12, tensorflow 3.18.0
# main libraries: numpy, scipy, matplotlib, tensorflow
# sublibraries: tensorflow.keras.layers, scipy.integrate.odeint, matplotlib.
# HWeutils training_curves

import numpy as np
import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers
from scipy.integrate import odeint
import matplotlib.pyplot as plt

from HW6utils import training_curves

In [5]:  #HfHH R R R R A

TO DO:

1) Use the scipy function odeint to numerically integrate Chua's state eqt
the interval [0,30] with initial states x())=.1, y(0)=z(0)=0. Sample t
trajectory eery 0.1 seconds. Assume the parameters for the system equec
alpha = 16, beta = 28, m_ 0 = -1.2, and m_1=-0.7.

2) Use your simulation to generate 25,000 different starting trajectories
circuit where each sample trajectory is run over the interval [0,5] anc
sampled every 0.1 seconds. The only difference between these trajector
randomly selected initial state, whose coponents are uniformly distribt
manner over [-0.5,0.5].

3) From your 25000 trajectories create a numpy array (input_bucket) of shec
slice (i,:,:) contains the states of the ith trajectory's first 2.8 sec
white noise whose samples are uniformly distributed bretween [-.1,.1].
array (target_bucket) of shape (25000,6) whose ith slice (1i,:) has whos
two trajectory points in the noise-free trajectory. Plot one of the 3L
the data input samples and associated targets, showing the input in bli

HHEHHFHFHHIHRIEHFETHHRHRHFHR

t 0 =20

dt = le-1

t_final = 5

t = np.arange(t_0, t_final, dt)
num_points = int(t_final/dt)

alpha = 16
beta = 28
mo = -1.2
ml = -0.7

def chua(u,t):
X, ¥y, Z=u

file:///Users/michaellemmon/Documents/Documents - ESC309963/courses/deep learning/tensorflow version/homework/HW6/notebook/HW 6a-final-1.html 1/15



3/12/25, 11:40 AM

HW6a-final-1

phi = mlxx+0.5%(m@-ml)x*(abs(x+1)-abs(x-1))
randx = np.random.normal(@,5e-5,3)

dxdt = alpha*(y-x-phi)
dydt = x-y+z
dzdt = -betaxy

dudt = [dxdt, dydt, dzdt]
return dudt

delay = 22
target_length = 2

# integrate ode system

num_runs = 25000

input_bucket = np.ndarray((num_runs,num_points-delay,3))
target_bucket = np.ndarray((num_runs,target_length*3))

for i in range(num_runs):
if 1%1000==0:
print(str(i)+'-',end="'")
# initial conditions
ud@ = .5%np.random.uniform(-1,1,3)
# integrate ode system
sol = odeint(chua, u@, t)
noise = .1xnp.random.uniform(-1,1, (sol.shape))
noise[num_points-target_length:,:]1=0
sol += noise
input_bucket[i] = sol[:num_points-delay, :]
tmp_target = sol[num_points-target_length:,:]
target_bucket[i] = np.reshape(tmp_target,target_length*3)

sample = int(np.random.uniform(@,num_runs,1)[0])

input_sample = input_bucket[sample,:,:]
target_sample = target_bucket[sample, :]
target_sample = np.reshape(target_sample, (2,3))

fig = plt.figure(1)
ax = fig.add_subplot(111, projection='3d")
ax.set_xlabel('x")
ax.set_ylabel('y")
ax.set_zlabel('z")

ax.plot(input_sample[:,0], input_sample[:,1],input_sample[:,2],'b")
ax.plot(target_samplel[:,0],target_sample[:,1],target_samplel[:,2],'r")
tstring = 'input sample = '+str(sample)

ax.set_title(tstring)

0-1000-2000-3000-4000-5000-6000-7000-8000-9000-10000-11000-12000-13000-14000
-15000-16000-17000-18000-19000-20000-21000—-22000-23000-24000-

Text(0.5, 0.92, 'input sample = 1721')
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input sample = 1721

0.4
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T e e e e e e e e e e e e e e e e e,

TO DO:
1) Split the data in input_bucket and target_bucket into training and test
Split the training data into a p-training and validation set assuming :
2) Create three tensorflow dataset objects for these data sets assuming a
3) Instantiate and train a three layer stack of LSTM networks each with 2%
using your dataset objects. Show the training curves and compute the tes
with the smallest validation loss.

H R HHHHHHHH

NOTE: training this model takes about 2-3 hours.

num_all_training_samples = int(num_runsx.75)

all_training_inputs = input_bucket[:num_all_training_samples,:,:]
all_training_targets = target_bucket[:num_all_training_samples, :1]
testing_inputs = input_bucket[num_all_training_samples:,:,:]
testing_targets = target_bucket[num_all_training_samples:,:]

num_ptraining_samples = int(num_all_training_samples*.75)
ptraining_inputs = all_training_inputs[:num_ptraining_samples,:,:]
ptraining_targets = all_training_targets[:num_ptraining_samples,:]
validation_inputs = all_training_inputs[num_ptraining_samples:,:,:]
validation_targets = all_training_targets[num_ptraining_samples:,:]

batch_size = 128

ptrain_ds = tf.data.Dataset.from_tensor_slices((ptraining_inputs,ptraining_t
ptrain_ds = ptrain_ds.batch(batch_size)
val_ds = tf.data.Dataset.from_tensor_slices((validation_inputs,validatior
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val_ds = val_ds.batch(batch_size)
test_ds =
test _ds = test_ds.batch(batch_size)

inputs = keras.Input(shape=(num_points-delay

x = layers.LSTM(256, return_sequences=True) (i
x = layers.LSTM(256, return_sequences=True) (X
x = layers.LSTM(256) (x)

outputs = layers.Dense(target_length#*3) (x)
model = keras.Model(inputs, outputs)

model.compile(optimizer="rmsprop", loss = "mse", metrics=["mae"])

model.summary ()

callbacks = [
keras.callbacks.ModelCheckpoint (
filepath="HW6-best-model-1.keras",
save_best_only = True,
monitor = "val_loss"

|
num_epochs = 150
history = model.fit(ptrain_ds,
epochs = num_epochs,

validation_data = val_ds
callbacks = callbacks)

best_model = keras.models. load_model("HW6-best-model-1.keras")
test_loss, test_mae = best_model.evaluate(test_ds,verbose=1)

print(f"Test MAE = {test_mae :.2f}")

training_curves(history)

Model: "functional_ 1"

y 3))
nputs)
)

’

tf.data.Dataset.from_tensor_slices((testing_inputs,testing_targe

Layer (type) Output Shape Par
input_layer_1 (InputLayer) ( , 28, 3)

lstm_3 (LSTM) ( , 28, 256) 266
lstm_4 (LSTM) ( , 28, 256) 525
lstm_5 (LSTM) ( , 256) 525
dense_1 (Dense) ( , 6) 1

Total params: 1,318,406 (5.03 MB)
Trainable params: 1,318,406 (5.03 MB)
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Non-trainable params: 0 (0.00 B)
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al_loss: 0.1901
Epoch 132/150

val_mae:

110/110
al_loss: 0.1863
Epoch 133/150

val_mae:

110/110
al_loss: 0.2212
Epoch 134/150

110/110

val_mae:

al_loss: 0.2064
Epoch 135/150
110/110

val_mae:

al_loss: 0.2003
Epoch 136/150
110/110

val_mae:

al_loss: 0.1822
Epoch 137/150

val_mae:

110/110
al_loss: 0.1971
Epoch 138/150

val_mae:

110/110
al_loss: 0.1847
Epoch 139/150

110/110

val_mae:

al_loss: 0.1753
Epoch 140/150
110/110

val_mae:

al_loss: 0.1970
Epoch 141/150
110/110

val_mae:

al_loss: 0.1859
Epoch 142/150

val_mae:

110/110
al_loss: 0.1814
Epoch 143/150

val_mae:

110/110
al_loss: 0.1713
Epoch 144/150

110/110

val_mae:

al_loss: 0.1824
Epoch 145/150
1l10/110

val_mae:

al_loss: 0.1873
Epoch 146/150
110/110

val_mae:

al_loss: 0.1821
Epoch 147/150
110/110

val_mae:

al_loss: 0.2213
Epoch 148/150

val_mae:

110/110
al_loss: 0.1916
Epoch 149/150

110/110

val_mae:

al_loss: 0.1739
Epoch 150/150

val_mae:

HW6a-final-1

.1624

27s 242ms/step -

. 1621

27s 242ms/step -

. 1890

29s 260ms/step —

. 1675

28s 256ms/step —

.1663

28s 257ms/step -

. 1589

27s 250ms/step -

. 1602

28s 257ms/step -

.1614

26s 232ms/step -

.1536

26s 239ms/step -

. 1670

26s 232ms/step -

. 1632

25s 224ms/step -

. 1518

25s 226ms/step —

. 1528

25s 227ms/step -

.1516

24s 222ms/step -

. 1571

25s 228ms/step —

. 1556

25s 225ms/step -

. 1880

26s 239ms/step -

. 1579

25s 225ms/step —

0.1504

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

.0654

.0589

.0617

.0652

.0660

.0589

.0650

.0567

.0592

.0582

.0765

. 0608

.0616

.0563

.0598

. 0440

. 0605

.0520

mae:

mae:

mae:

mae:

mae:

mae:

mae:

mae:

mae:

mae:

mae:

mae:

mae:

mae:

mae:

mae:

mae:

mae:

. 1119

.1080

. 1083

. 1109

.1124

. 1066

. 1106

.1076

. 1075

. 1057

. 1169

. 1079

1077

. 1051

. 1072

. 0981

. 1078

.1036

file:///Users/michaellemmon/Documents/Documents - ESC309963/courses/deep learning/tensorflow version/homework/HW6/notebook/HW 6a-final-1.html

13/15



3/12/25, 11:40 AM HW6a-final-1

110/110 26s 236ms/step — loss: 0.0413 — mae: 0.0976 - v
al_loss: 0.1897 - val_mae: 0.1665
49/49 5s 96ms/step — loss: 0.1600 — mae: 0.1580
Test MAE = 0.15
p-Training and Validation Losses (MSE) p-Training and Validation MAE
1.6 === p-training loss === p-training mae

— validation loss — validation mae

1.4 1 0.8 1

Loss (MSE)

0.2

S~

-
-~
-
S mve v,

T T T T T T
0 25 50 75 100 125 150 0 25 50 75 100 125 150
Epochs Epochs

e e e e

TO DO:

1) For the trained layered model, generate all of the predictions made by
test dataset's inputs. Randomly select 10 of these predictions and plc
portrait of the input (blue), the actual target (red), and the predicte
samples, does your model appear to predict the future behavior of this
chaotic system.

H R HHH KB

best_model = keras.models.load _model("HW6-best-model-1.keras")
test_loss, test mae = best model.evaluate(test_ds,verbose=1)
print(f"Test MAE = {test_mae :.2f}")

predictions = best_model.predict(testing_inputs)

num_testing_samples = num_runs-num_all_training_samples

fig = plt.figure(figsize=plt.figaspect(0.5))

for i in range(10):
sample = int(np.random.uniform(@,num_testing_samples, 1) [0])
input_sample = testing_inputs[sample,:,:]
target_sample = testing_targets[sample, :]
target_sample = np.reshape(target_sample, (2,3))
predict_sample = predictions[sample]
predict_sample = np.reshape(predict_sample, (2,3))

ix = i%2
iy = int(i/2)
ax = fig.add_subplot(2,5,i+1,projection="'3d")

ax.set_xlabel('x")
ax.set_ylabel('y")
ax.set_zlabel('z")

file:///Users/michaellemmon/Documents/Documents - ESC309963/courses/deep learning/tensorflow version/homework/HW6/notebook/HW 6a-final-1.html 14/15



3/12/25, 11:40 AM HW6a-final-1

ax.plot(input_samplel[:, 0], input_samplel:,1], input_samplel:,21,'b")
ax.plot(target_samplel:,0],target_sample[:,1],target_samplel:,2]1,'r")
ax.plot(predict_sample[:,0],predict_sample[:,1],predict_samplel:,2], 'g—-

49/49 4s 81ms/step — loss: 0.1454 — mae: 0.1527
Test MAE = 0.15
196/196 9s 45ms/step
J \EJ)Z \)0 \) \)
—05 y -2 —05 y
X X X X X
2. PN 4
2 0.C _g 2
0 -2. 5
05 — 0.5
0.25
> 0%85 — 0.0 0 00 _p 0.00
2 —os Y 025y 0 -05 Y > -o05 Y "1, -025y
X X X X X
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Notebook Assignment 2 (SMS spam detection): This notebook assignment uses deep learing
to detect spam messages in a manner similar to the sentiment analysis problem discussed in the
textbook. We will use a Kaggle data set (SMS Spam Detection Dataset). This assignment makes
use of Python’s pandas and sklearn libraries, most of which are used in the HW6utils script.

1. Load the SMS Dataset: Use the 1oad_sms_dataset function from HW6utils.py to
load the SMS dataset. This dataset consists of 5572 text messages and the targets are labeled
1 (for spam) or O (for ham). In loading the data set used an 80/20 split to form the training
and testing datasets. Determine the number of training and testing samples. Print out the
first 10 input text messages and print out whether they are HAM or SPAM.

2. Create a Naive Bayes Baseline: Scikit-learn (aka sklearn) is a free and open-source ma-
chine learning library for Python. One sklearn function is a multinomial naive Bayes model
for text (you built a similar function in earlier HW). We’ve encapsulated the training of
Sklearn’s Naive Baye’s model as a HWouti1ls function. Use this function to print a report
characterizing the Naive Bayes baseline’s metrics

True Positives

Precision = — —
True Positives + False Positives
L True Positives
Sensitivity = — -
True Positives + False Negatives
2 x Precision x Sensitivit
F1 Score = y

Precision + Recall

Ideally we want models that have high precision and sensitivity. The F1 score is the harmonic
mean of these two measures and is commonly used to evaluate a classifier’s performance.
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BLSTM Feature Network Classification Network

Text Encoding Network

Figure 2: SPAM model architecture

3. Instantiate SPAM Model: The architecture for your SPAM model is shown in Fig. 2. The
architecture has 3 sequentially connected networks. The text encoding network takes the text
string input and encodes it as an output sequence length equals the number of unique words
(tokens) in the corpus. This encoded sequence is then run through an embedding layer that
transforms each token into a numeric feature vector of length 128. This block has been in-
stantiated in the HW6utils.py file. The second network is a BiLSTM feature network formed
from two Bidirectional LSTM layers with 64 nodes each using a ranh activation function.
To help regularize learning, we added a dropout layer after the BiILSTM feature network.
The final network is a spam classification formed from two dense layers feeding down to
32 (relu activation) and then a single numeric output (sigmoid activation) representing the
probability of the input text being a SPAM message.



4. Train Model: Fit your model using the training data with the testing data being used for vali-
dation. Train your model for at least 2 epochs. Note that this model can take a very long time
to train, about 1 hour for each epoch. Use Sklearn functions classification_report
and confusion matrix to evaluate your model’s accuracy using 0.5 prediction thresh-
old. Print out the model’s accuracy and compare to the NB model’s accuracy. Print out the
full classification report for your model and compare against the NB model’s report. Com-
pute the confusion matrix for your model, print out a heatmap of the confusion matrix, and
compare it to the confusion matrix of the NB model.
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B L L e e e

#

# DEPENDENCIES: Python 3.12.9, Tensorflow 2.18.0

# Python Libraries: numpy, pandas, matplotlib, seaborn, tensorflow, sklearn
#

# sublibraries: matplotlib.pyplot, tensorflow.keras, sklearn
tensorflow.keras.layers, tensorflow.keras.layers.TextVectori
Sklearn.naive_bayes.MultinomialNB
sklearn.metrics.confusion_matrix

H B H

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

from tensorflow.keras.layers import TextVectorization

from HW6utils import load_sms_dataset, naive_bayes_report

from sklearn.metrics import confusion_matrix

HHHARH AR AR HHRHHHR R R AR R

TO DO:
1) Use load_sms_dataset from HWéutils to load the SMS dataset.
This dataset inputs are 5572 text messages and the targets
are 1 (spam message) or @ (ham message). Specify that the
function use an 80/20 split in forming the training and testing dataset
2) Determine the number of training and testing samples. Print out the fi
and print out whether they are HAM or SPAM.

H R HH KB HRH

filename = "data/spam.csv"
train_split = 0.8
(train_x,train_y), (test_x,test_y), (avg_words_len, total_words_len) = load_sn

print(f"shape of training samples = {train_x.shape}")
print(f"shape of testing samples = {test_x.shape}\n")

for sample in range(10):
if train_y[samplel==0:
print(f"HAM:\n {train_x[sample]}\n")
else:
print (f"SPAM:\n {train_x[sample]}\n")

file:///Users/michaellemmon/Documents/Documents - ESC309963/courses/deep learning/tensorflow version/homework/HW6/notebook/HW 6b-final-2 html 177



4/19/25, 1:53 PM

HW6b-final-2

Average number of tokens in all sentences = 15
Total number of unique words in corpus = 15585
shape of training samples = (4457,)
shape of testing samples = (1115,)

HAM:
Go until jurong point, crazy.. Available only in bugis n great world la e b
uffet... Cine there got amore wat...

HAM:
Ok lar... Joking wif u oni...

SPAM:

Free entry in 2 a wkly comp to win FA Cup final tkts 21st May 2005. Text FA
to 87121 to receive entry question(std txt rate)T&C's apply ©084528100750verl
8's

HAM:
U dun say so early hor... U c already then say...

HAM:
Nah I don't think he goes to usf, he lives around here though

SPAM:
FreeMsg Hey there darling it's been 3 week's now and no word back! I'd like
some fun you up for it still? Tb ok! XxX std chgs to send, 3£1.50 to rcv

HAM:
Even my brother is not like to speak with me. They treat me like aids paten
t.

HAM:

As per your request 'Melle Melle (Oru Minnaminunginte Nurungu Vettam)' has
been set as your callertune for all Callers. Press *9 to copy your friends C
allertune

SPAM:

WINNER!! As a valued network customer you have been selected to receivea 3
£900 prize reward! To claim call 09061701461. Claim code KL341. Valid 12 hou
rs only.

SPAM:

Had your mobile 11 months or more? U R entitled to Update to the latest col
our mobiles with camera for Free! Call The Mobile Update Co FREE on 08002986
030

S e e e e e e e s e e e

TO DO:

1) scikit-learn (a.k.a. sklearn) is a free and open-source
machine learning library for the Python programming language.
One sklearn function of use to us id its multinomial naive
bayes model for text. We've encapsulated the determination
of the sklearn naive bayes model in a HW6utils function.
Describe what this function is doing and use it to print

H R R H R R R R
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a report characterize the naive bayes baseline metrics our
trained LSTM model will need to beat.

The sklearn NB model report returns three metrics;

precision, recall and fl-score. Look through the documentation
and describe what eachof these metrics actually measures.

HoH OB R
N
N—

naive_bayes_report(train_x,train_y,test_x, test_y)

NB baseline accuracy = 96.14%

precision recall fl-score support
0 0.96 1.00 0.98 970
1 1.00 0.70 0.83 145
accuracy 0.96 1115
macro avg 0.98 0.85 0.90 1115
weighted avg 0.96 0.96 0.96 1115
- 800
600
©
Q
i
[}
~
= 400
200
0

Predicted label

S e s e e e e

#

DO:

create a text vectorization layer (text_vec) that uses

the average word length in the corpus (15) as the output_sequence_lengt

and assumes an output sequence length equal to the number of unique
words (tokens) in the corpus. Assume an integer output mode.

Adapt the textvectorization layer to create a vocabulary.

Create an embedding layer with input_dim = avg_words_len and output_din
Create a bidirectional LSTM layer thattakes the text message strings

as inputs and ouptuts the probability of the input message being SPAM.
The model has an iput layer with shape (1,) and data type tf.string.

&3

HOoH OB R R K HHHR
N WN
SN SN N
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This is followed by the textvectorization layer and then the embedding
We then follow with a bidirectional LSTM of 64 nodes and a tanh activat
THis is followed by another bidirectional LSTM of 64 nodes, then a Flat
a dropou layer (0.1 probability) which feeds a dense layer of 32 nodes
The output layer is another dense layer with a single node and sigmoid

H R R R R

# create TextVectorization Layer

text_vec = TextVectorization(
#max_tokens = avg_words_len,
standardize = 'lower_and_strip_punctuation',
#output_mode = 'int',
output_sequence_length=avg_words_len

)

text_vec.adapt(train_x)

#create Embedding Layer

embedding_layer = layers.Embedding(
input_dim=total_words_len,
output_dim=128,

embeddings_initializer="'uniform',
#input_length=avg_words_len,

et
# instantiate and compile model

inputs = layers.Input(shape=(1,),dtype=tf.string)

x = text_vec(inputs)

x = embedding_layer(x)

x = layers.Bidirectional(layers.LSTM(64, activation="'tanh', return_sequences=
x = layers.Bidirectional(layers.LSTM(64)) (x)

#x = layers.Flatten() (x)

x = layers.Dropout(0.5) (x)

x = layers.Dense(32,activation="relu') (x)

outputs = layers.Dense(1, activation='sigmoid') (x)
model = keras.Model(inputs, outputs)

model.summary ()

model.compile(optimizer = "adam", loss= keras.losses.BinaryCrossentropy(),me

Model: "functional 5"
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Layer (type) Output Shape Par
input_layer_5 (InputLayer) (None, 1)
text_vectorization_5 (None, 15)
(TextVectorization)
embedding_5 (Embedding) (None, 15, 128) 1,994
bidirectional_10 (None, 15, 128) 98
(Bidirectional)
bidirectional_11 (None, 128) 98
(Bidirectional)
dropout_5 (Dropout) (None, 128)
dense_10 (Dense) (None, 32) 4
dense_11 (Dense) (None, 1)

Total params: 2,196,673 (8.38 MB)
Trainable params: 2,196,673 (8.38 MB)
Non-trainable params: 0 (0.00 B)

#
#
#
#
#
#

e R s s e e e R e

T0 DO:

1) Create a call back that saves the model with the smallest validation lc
using the training data with the testing data being used for validation.
5 epochs. Note that this model can take a very long time to train, about

callbacks = [
keras.callbacks.ModelCheckpoint (

]

)

filepath="HW6-best-model-2a.keras",
save_best_only = True,
monitor = "val_loss"

num_epochs = 10
history = model.fit(train_x,train_y,epochs = num_epochs,

validation_data = (test_x,test_y),
batch_size = 128,
callbacks = callbacks)
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Epoch 1/10
35/35 5s 43ms/step - accuracy: 0.8648 - loss: 0.4231 -
val_accuracy: 0.9767 - val_loss: 0.1036
Epoch 2/10
35/35 1s 36ms/step — accuracy: 0.9791 - loss: 0.0833 -
val_accuracy: 0.9767 — val_loss: 0.0798
Epoch 3/10
35/35 2s 43ms/step - accuracy: 0.9941 - loss: 0.0294 -
val_accuracy: 0.9803 - val_loss: 0.0768
Epoch 4/10
35/35 2s 53ms/step - accuracy: 0.9974 - loss: 0.0147 -
val_accuracy: 0.9740 - val_loss: 0.1047
Epoch 5/10
35/35 2s 54ms/step — accuracy: 0.9974 — loss: 0.0070 -
val_accuracy: 0.9794 - val_loss: 0.0914
Epoch 6/10
35/35 2s 53ms/step — accuracy: 0.9995 - loss: 0.0026 -
val_accuracy: 0.9767 - val_loss: 0.1146
Epoch 7/10
35/35 2s 51ms/step — accuracy: 0.9998 - loss: 8.4459e-0
4 - val_accuracy: 0.9776 - val_loss: 0.1262
Epoch 8/10
35/35 2s 54ms/step — accuracy: 0.9981 — loss: 0.0061 -
val_accuracy: 0.9785 — val_loss: 0.1030
Epoch 9/10
35/35 2s 55ms/step - accuracy: 0.9987 - loss: 0.0021 -
val_accuracy: 0.9803 - val_loss: 0.1036
Epoch 10/10
35/35 2s 53ms/step — accuracy: 1.0000 — loss: 1.8712e-0

4 - val_accuracy: 0.9785 - val_loss: 0.1100

B e o e e e e e e e e e e e e i e A e e

1)

H R R H R R R R

T0 DO:

For the best model, use the sklearn functions classification_report
and confusion_matrix to evaluate your model using a 0.5 prediction thre
your model's accuracy and compare to NB baseline accuracy. Print out t
classification report for your model and compare to NB model's report.
confusion matrix for your model, display its heatmap and compare to the
matrix of the NB baseline.

best_model = keras.models.load_model("HW6-best-model-2a.keras")

from sklearn.metrics import classification_report,accuracy_score
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay

threshold = 0.5

predictions = best_model.predict(test_x)

predictions = (predictions>=threshold).astype('int32")
accuracy = accuracy_score(test_y,predictions)
print(f"test accuracy = {accuracy*100:.2f}%")
print(classification_report(test_y, predictions))

cm =

confusion_matrix(test_y, predictions)
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disp = ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot()

35/35 1s 12ms/step
test accuracy = 98.03%

precision recall fl-score support
0 0.99 0.99 0.99 970
1 0.91 0.94 0.93 145
accuracy 0.98 1115
macro avg 0.95 0.97 0.96 1115
weighted avg 0.98 0.98 0.98 1115

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x1625000
e0>
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