
Homework 6 - Recurrent Neural Networks - Spring 2025

Essay Question: Sequence to Sequence Learning for Natural Language Processing (NLP) switched
from recurrent network networks (RNN) to transformer models after 2017. The neural attention
mechanism used by Transformer models had a number of advantages over earlier RNN models.
Write a one paragraph essay describing what neural attention does and identify at least 3 reasons
why the use of attention in Transformer models worked better than earlier RNN models for NLP.
Conclude your essay with a sentence summarizing the message of your paragraph.

Notebook Assignment 1 (RNN): Chua’s circuit is the simplest electronic circuit exhibiting chaos
as verified in numerous laboratory experiments, computer simulations, and rigorous mathematical
analyses. The circuit diagram is shown in Fig. 1. It contains five circuit elements. The first
four elements are standard linear passive devices: namely, an inductor (L), resistor (R), and two
capacitors (C1 and C2). These devices setup a standard oscillator circuit. What gives rise to chaos
is a nonlinear element whose current-voltage characteristic (iR vs vR) that is shown on the right
side of Fig. 1 has a negative slope, which essentially means it is an active element with a negative
resistance. Physically this active nonlinear diode can be realized using linear op-amp circuits. In
this notebook assignment, you will use an LSTM to predict the future steady state behavior of
Chua’s circuit.

By rescaling the circuit variables vC1 , vC2 , and iL, we obtain the following dimensionless equa-
tions for Chua’s circuit involving 3 state variables x, y, and z and 2 dimensionless parameters α
and β

ẋ(t) = α(y(t)− x− ϕ(x(t)))
ẏ(t) = x(t)− y(t) + z(t)
ż(t) = −βy(t)

where ϕ(x) is defined as a piecewise-linear function

ϕ(x) = m1x+
1

2
(m0 −m1) (|x+ 1| − |x− 1|)

with m0 and m1 denoting the slopes of the inner and outer segments of the piecewise linear function
shown in Fig. 1.

One can visualize the chaotic behavior of this circuit by numerically integrating the circuit’s
differential equations (1) and generating a phase plane portrait of the resulting trajectory. A phase
portrait plots the points of the state trajectory, {x(t), y(t), z(t)}, in the state space and draws edges
between temporally adjacent points as shown on right side of Fig. 1. What this phase portrait
shows is that the long-term steady-state behavior is not strictly periodic and demonstrates a great
deal of sensitivity to perturbations of the initial state. This sensitivity to initial conditions is usually
seen as the hallmark of a chaotic dynamical system.

1. Simulate Chua’s Circuit: Use the SciPy function odeint to numerically integrate Chua’s
state equation (1) over the time interval t ∈ [0, 5] seconds. Sample the state every 0.1 seconds
assuming α = 16, β = 28, m0 = −1.2 and m1 = −0.7. Use your simulation to generate
25, 000 different trajectories from random initial state vectors, (x0, y0, z0) whose components
are uniformly sampled over the interval [−0.5, 0.5] in an i.i.d. manner. Use your simulated

1

Figure 1: (LEFT) The Chua Circuit, (RIGHT) Chua Attractor, phase plane portrait

trajectories to create a numpy array (input bucket) of shape (25000, 28, 3) whose ith
slice is formed by taking the slice raw data[i,:28,:] and adding zero mean white
noise whose samples are uniformly distributed between [−0.1, 0.1]. So input bucket con-
sists of noise corrupted versions of the first 2.8 seconds of each simulated trajectory. Create
another numpy array (target bucket) of shape (25000, 6) whose ith slice first three
components equal the noise-free trajectory state raw data[48,:] and whose last three
components equal the noise free trajectory state raw data[49,:]. So target bucket
are the targets formed from the last two points in the noise free simulated trajectories. Gen-
erate a phase portrait for one of the inputs and associated targets. Show the input trajectory
in blue and the target in red.

2. Train LSTM Model: Split the data in input bucket and target bucket into training
and testing set assuming a 25% testing split. Split the training data into a p-training and
validation set assuming 25% validation split. Create three tensorflow dataset objects for
these data sets assuming a 128 batch size. Instantiate and train a three layer stack of LSTM
networks each with 256 nodes (no dropout) for 150 epochs using your dataset objects. Note
that this may take a couple of hours to train because your model will have about 1.3 million
weights.

3. Evaluate Model: Show the training curves and compute the test MAE for the model with
the smallest validation loss. For the trained layered model, generate all of the predictions
made by your model on the test dataset’s inputs. Randomly select 10 of these predictions
and plot the 3D phase portrait of the input (blue), the actual target (red), and the predicted
target (green - dashed). Based on these samples, does your model appear to predict the future
behavior of this chaotic system?

Notebook Assignment 2 (SMS spam detection): This notebook assignment uses deep learing

2

to detect spam messages in a manner similar to the sentiment analysis problem discussed in the
textbook. We will use a Kaggle data set (SMS Spam Detection Dataset). This assignment makes
use of Python’s pandas and sklearn libraries, most of which are used in the HW6utils script.

1. Load the SMS Dataset: Use the load sms dataset function from HW6utils.py to
load the SMS dataset. This dataset consists of 5572 text messages and the targets are labeled
1 (for spam) or 0 (for ham). In loading the data set used an 80/20 split to form the training
and testing datasets. Determine the number of training and testing samples. Print out the
first 10 input text messages and print out whether they are HAM or SPAM.

2. Create a Naive Bayes Baseline: Scikit-learn (aka sklearn) is a free and open-source ma-
chine learning library for Python. One sklearn function is a multinomial naive Bayes model
for text (you built a similar function in earlier HW). We’ve encapsulated the training of
Sklearn’s Naive Baye’s model as a HW6utils function. Use this function to print a report
characterizing the Naive Bayes baseline’s metrics

Precision =
True Positives

True Positives + False Positives

Sensitivity =
True Positives

True Positives + False Negatives

F1 Score =
2× Precision × Sensitivity

Precision + Recall

Ideally we want models that have high precision and sensitivity. The F1 score is the harmonic
mean of these two measures and is commonly used to evaluate a classifier’s performance.

3. Instantiate LSTM Model: Create a text vectorization layer (text vec) that uses the aver-
age word length in the corpus as the max number of tokens and assume an output sequence
length equal to the number of unique words (tokens) in the corpus. Assume an integer out-
put mode. Adapt your text vectorization layer to create the vocabulary list. Then create a
word embedding layer with input dimension equal to the average word length and output
dimension equal to 128 nodes.

Instantiate and compile a bidirectional LSTM layer that takes the text message string as an
input and outputs the probability of the input text being SPAM. Your model will have an input
layer with shape (1,) and data type tf.string. The encoding of the text message will be
done by your text vectorization layer (text vec), followed by your word embedding layer.
The output of the embedding layer will feed a stack of two bidirectional LSTM layers each
with 64 nodes using a tanh activation. You will need to flatten the output of the last LSTM
layer. We suggest you introduce a dropout layer, followed by a dense layer with 32 nodes and
relu activation, followed by a dense output layer with a single node and sigmoid activation.
Compile your model with an adam optimizer, binary crossentropy loss, and accuracy metric.

4. Train Model: Create a call back that saves the model with the smallest validation loss and
then fit your model using the training data with the testing data being used for validation.
Train your model for at least 5 epochs. Note that this model can take a very long time to
train, about 1 hour for each epoch. Use Sklearn functions classification report

3

and confusion matrix to evaluate your model’s accuracy using 0.5 prediction thresh-
old. Print out the model’s accuracy and compare to the NB model’s accuracy. Print out the
full classification report for your model and compare against the NB model’s report. Com-
pute the confusion matrix for your model, print out a heatmap of the confusion matrix, and
compare it to the confusion matrix of the NB model.

4

