Introduction

Neural networks were first applied to RL in 1995 for playing
backgammon.

The success of that early work relied on pre-engineered game features
that simplified the learning problem.

In 2013, a deep convolutional network was used to learn how to play
the entire suite of Atari video games without any prior feature
engineering.

This model was called deep @ network or DQN agent. It took the
video game screen as an input and output the actions to be taken.
The model learned Q* and the policy, 7*, was then determined
directly from Q*.

DQN outperformed professional human game testers by a wide
margin. This demonstration set off a wave of research in deep
Reinforcement learning that has been used in a wide range of real-life
applications; autonomous driving, datacenter cooling, traffic light
control, healthcare, robotics, power management.
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Deep @ Reinforcement Learning

@ The DQN agent is trained using past agent interactions with the
environment that have been saved in a first-in first-out (FIFO) replay
buffer.

@ Each entry popped onto the buffer is a tuple

(5k7 ak, Mk+1, 5k+1)

that represents that environmental reward and state, ry11 and sx41,
returned to the DQN agent for taking action ayx when the
environment is in state sy.

@ The DQN agent is then trained with a randomly selected batch of
tuples in the replay buffer for a single step of the backpropagation
algorithm updating the agent’s weights.
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@ The DQN agent takes the current state, s, and outputs the Q* value
for each action a € A. So we have a regression problem.

@ The loss the the MSE between the optimal @* and the estimate
value, Q. The problem is that we don’t know the target, Q*.

@ So we use Bellman's equation since

Q*(s,a) = Egrcs [r(s, a,s')+~ max Q*(s, a’)]
a'e

@ We approximate the expectation by the sample mean evaluated over a
minibatch drawn from the replay buffer and then use the estimated
value @ in the above equation.

@ So the update we actually use is

~

M 2
1 ~
L(W) = MZ <rk+1 +’Yg/]€a/)4( QW(Sk-i-l:a) - QW(Sk7ak)>
k=1

where w represents the trainable parameters of the neural network
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We now show how to build a DQN agent object hat can be used in
solving the FrozenLake problem. We initialize the Agent class object

class Agent:
def __init__(self, state_size, action_size):
self.memory = deque(maxlen=2500)
self.learning_rate = 0.001
self.epsilon = 1

self .max_eps = 1
self.min_eps = 0.01
self.eps_decay = 0.001/3
self.gamma = 0.9

self.state_size = state_size
self.action_size = action_size
self.epsilon_lst=[]

self.model = self.buildmodel ()
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The buildmodel methods builds the DQN neural network.

def buildmodel(self):
model = Sequential()
model.add(Dense (32, input_dim=self.state_size, activation="relu"))

model.add (Dense(32, activation = "relu")
model.add(Dense(self.action_size, activation="linear"))
model.compile(loss = "mse", optimizer = Adam(lr=self.learning_rate))

return model

def action(self, state):
if np.random.rand() > self.epsilon:
return np.random.randint(0,4)
return np.argmax(self.model.predict(state, verbose=0))

def pred(self, state):
return np.argmax(self.model.predict(state, verbose=0))
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The replay buffer is implemented within the DQN Agent object

def add_memory(self, new_state, reward, done, state, action):
self .memory.append((new_state, reward, done, state, action))
def replay(self, batch_size):
minibatch = random.sample(self.memory, batch_size)
for new_state, reward, done, state, action, in minibatch:
target = reward
if not done:
target = reward +
self.gamma*np.amax (self .model.predict (new_state,verbose=0))
target_f = self.model.predict(state,verbose=0)
target_£f[0] [action] = target
self .model.fit(state, target_f, epochs=1, verbose=0)

if self.epsilon > self.min_eps:
self.epsilon = (self.max_eps - self.min_eps)*

np.exp(-self.eps_decay*episode)+ self.min_eps

self.epsilon_lst.append(self.epsilon)
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reward_lst=[]
for episode in range(train_episodes):

state= env.reset () [0]

state_arr=np.zeros(state_size)

state_arr([state] = 1

state= np.reshape(state_arr, [1, state_size])

rewvard = 0

done = False

for t in range(max_steps):
# env.render()
action = agent.action(state)
new_state, reward, done, truncate, info = env.step(action)
new_state_arr = np.zeros(state_size)
new_state_arr[new_state] = 1
new_state = np.reshape(new_state_arr, [1, state_sizel])
agent.add_memory(new_state, reward, done, state, action)
state= new_state
if dome:

print (f’Episode: {episode:4}/{train_episodes} and step: {t:4}.
Eps: {float(agent.epsilon):.2}, reward {reward}’)
break

reward_lst.append(reward)

if len(agent.memory)> batch_size:
agent.replay(batch_size)
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@ We tested the model for 100 episodes and found that the learned
policy was successful 100% of the time. This is to be expected here
because we used the "deterministic” FrozenLake environment.

@ The training score is the "reward” received at the end of each
episode. What this shows is that the likelihood of receiving a reward
of 1.0 (i.e. getting to the desired destination) becomes more
likelihood the longer we train. This graph therefore shows that our
training procedure is working well.
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Policy Gradient Methods

@ All of the preceding RL algorithms (SARSA, Q-learning, DQN) were
based on first learning the value function and then determining the
optimal policy. These algorithms are therefore referred to as value
gradient methods.

@ Another approach to RL learns the policy directly. In this case the
policy is written as m(a : s,0) where 6 is a set of parameters that we
need to learn. Reinforcement learning algorithms that learn a model
for the policy are called policy gradient methods.

@ In this case we define a performance measure J(0) for the policy
model and then use gradient ascent to find those parameters  that
maximize that performance measure

9t+1 == Ht + O[Vg.j(et)

where Vg, is a stochastic estimate whose expectation
approximates the gradient of J(6).
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Policy Gradient methods

@ One advantage that policy-gradient methods have over value-gradient
methods is that the approximate policy automatically "explores” the
state space.

@ Another important advantage of policy gradient methods is that the
policy function 7(als, §) may be much simpler than the value function
model

@ The policy function m(a|s, ) can be parameterized in any way we
wish, we simply need to make sure it is differentiable with respect to
its parameters.

o If the action and state spaces are discrete and not too large, then one
can then we can form a set of parameterized numerical preferences,
h(s,a,0) € R for each state-action pair.
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@ The actions with the highest preference in each state are given the
highest probabilities of being selected

eh(saaﬁ)

m(als,0) = 7217 E50)

@ These preferences, h(s, a,f), can be parameterized in many ways.
They many be computed by a deep neural network, or they could
simply be linear functions,

h(s,a,0) = 07 x(s, a)

of a predefined set of feature vectors x(s, a).
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