
Introduction

Neural networks were first applied to RL in 1995 for playing
backgammon.

The success of that early work relied on pre-engineered game features
that simplified the learning problem.

In 2013, a deep convolutional network was used to learn how to play
the entire suite of Atari video games without any prior feature
engineering.

This model was called deep Q network or DQN agent. It took the
video game screen as an input and output the actions to be taken.
The model learned Q∗ and the policy, π∗, was then determined
directly from Q∗.

DQN outperformed professional human game testers by a wide
margin. This demonstration set off a wave of research in deep
Reinforcement learning that has been used in a wide range of real-life
applications; autonomous driving, datacenter cooling, traffic light
control, healthcare, robotics, power management.

(ND) Deep Reinforcement Learning April 17, 2025 1 / 38

Deep Q Reinforcement Learning

Figure: Performance of DQN on Atari Video Games (?, ?)
(ND) Deep Reinforcement Learning April 17, 2025 2 / 38

Deep Q Reinforcement Learning

The DQN agent is trained using past agent interactions with the
environment that have been saved in a first-in first-out (FIFO) replay
buffer.

Each entry popped onto the buffer is a tuple

(sk , ak , rk+1, sk+1)

that represents that environmental reward and state, rk+1 and sk+1,
returned to the DQN agent for taking action ak when the
environment is in state sk .

The DQN agent is then trained with a randomly selected batch of
tuples in the replay buffer for a single step of the backpropagation
algorithm updating the agent’s weights.

(ND) Deep Reinforcement Learning April 17, 2025 3 / 38

Deep Q Reinforcement Learning

The DQN agent takes the current state, s, and outputs the Q∗ value
for each action a ∈ A. So we have a regression problem.

The loss the the MSE between the optimal Q∗ and the estimate
value, Q̂. The problem is that we don’t know the target, Q∗.

So we use Bellman’s equation since

Q∗(s, a) = Es′∈s

[
r(s, a, s ′) + γmax

a′∈A
Q∗(s ′, a′)

]
We approximate the expectation by the sample mean evaluated over a
minibatch drawn from the replay buffer and then use the estimated
value Q̂ in the above equation.

So the update we actually use is

L(w) =
1

M

M∑
k=1

(
rk+1 + γmax

a′∈A
Q̂w (sk+1, a)− Q̂w (sk , ak)

)2

where w represents the trainable parameters of the neural network
(ND) Deep Reinforcement Learning April 17, 2025 4 / 38

Deep Q Reinforcement Learning

We now show how to build a DQN agent object hat can be used in
solving the FrozenLake problem. We initialize the Agent class object

<latexit sha1_base64="3vb4/6cfrBMLZ97eC795akC6o/8=">AAADrnicbVLbjtMwEHUbLku4bBceebGokFqxKknRcpMqLeKFx12Jdle0keU4k9Ra2wm2gyhV/44v4I2/wUmL2nQ7kqWZOWdmPJe4ENzYIPjbant37t67f/TAf/jo8ZPjzsnTiclLzWDMcpHr65gaEFzB2HIr4LrQQGUs4Cq++VzhVz9AG56rr3ZRQCRppnjKGbXORU5av2cxZFwtHSl2PrnymaDG4E8ZKPvRx04SSDEhXHFLSM+VSk+xsdQCMfwXnGLK6lSV0V8HVFLxBhJkrhd45FJ8L6En6U8BajQ8C4J+kyiAasVVRrTL6/jBIAjCJgUKw0WuHLgHuKzEgQcArjaAS3c7G0mA0cX/Yq/fNAkZlZLW4IcmsG3doVujSdqZiWPtWAd7IsLY0TTa+32egKhKVEZccpHUnl6/YvgzUMl2Z6TTrZqoBN9Wwo3SRRu5IJ0/syRnpXQ7rtc9DYPCRkuqLWcCVv6sNFBQdkMzmDpVUQkmWtbntsIvnSfBaa7dUxbX3t2IJZXGLGTsmJLaudnHKuchbFra9H205KooLSi2LpSWAtscV7eLE66BWbFwCmWau79iNqfajddduO+GEO63fFuZDAfh28HZ5bB7PtyM4wg9Ry9QD4XoHTpHX9AFGiPWftW+bH9rT73Am3iRR9bUdmsT8ww1xJv/AwUsEkE=</latexit>

class Agent:

def __init__(self, state_size, action_size):

self.memory = deque(maxlen=2500)

self.learning_rate = 0.001

self.epsilon = 1

self.max_eps = 1

self.min_eps = 0.01

self.eps_decay = 0.001/3

self.gamma = 0.9

self.state_size = state_size

self.action_size = action_size

self.epsilon_lst=[]

self.model = self.buildmodel()

(ND) Deep Reinforcement Learning April 17, 2025 5 / 38

Deep Q Reinforcement Learning

The buildmodel methods builds the DQN neural network.

<latexit sha1_base64="o9rb5rgdYvb6OYY02yGdatMBc0s=">AAAEk3icnVNbaxNBFN4mq9Z4aar45MuQImwghE3UKko0ah98ESqatpCEMDtzNh06l3VmthhDf5B/xzf/jbOzkSRtVPDAsofvXL7vHM4kGWfGxvHPrUo1vHb9xvbN2q3bd+7u1HfvHRmVawIDorjSJwk2wJmEgWWWw0mmAYuEw3Fy9q6IH5+DNkzJz3aWwVjgqWQpI9g6aLJb+T5KYMrk3CUlDhMXNVQYhRQlOeNUKAo8cgRp80UZ8uZh1EOf4EsO0jLMo+blcBtTGh2ANBA97rYQk1luJ5SJXtGtbSy2MDHsG7QQJpade0W9hgaeN5r/arascCIWNX8p8YxFjZv5KmWxPKw3kRIlMsYh4sqYgkgYaLSQytyiXBftoDcUi4jrcibu2kgmpxPtZltrp8HmWpZdV+DlsktxXmgL+d2s7ZulSGZtjSVVwv+iJnqFPClkhnElV7NXKdfLmLRR3HqyQZrLw3oq8NdyWeX87pYoIzbyglqoOBJloBf/nm2pv8j8o/r/pBiBpMvDnNT34nbsDV11OgtnL1jY4aT+Y0QVyYW7T8KxMcNOnNnxHGvLCIeL2ig3kGFyhqcwdK7EAsx47t/UBXrkEIpSpd0nLfLoasUcC2NmInGZAttTczlWgJtiw9ymz8dz/xhAkpIozTmyChUPFFGmgVg+cw4mmjmtiJxi7e7DPeOaW0Ln8shXnaNuu7Pffvqxu9fvLtaxHTwMGkEUdIJnQT94HxwGg4BU69X96utqP3wQvgzfhgdlamVrUXM/WLPwwy+KhFqD</latexit>

def buildmodel(self):

model = Sequential()

model.add(Dense(32, input_dim=self.state_size, activation="relu"))

model.add(Dense(32, activation = "relu")

model.add(Dense(self.action_size, activation="linear"))

model.compile(loss = "mse", optimizer = Adam(lr=self.learning_rate))

return model

def action(self, state):

if np.random.rand() > self.epsilon:

return np.random.randint(0,4)

return np.argmax(self.model.predict(state, verbose=0))

def pred(self, state):

return np.argmax(self.model.predict(state, verbose=0))

(ND) Deep Reinforcement Learning April 17, 2025 6 / 38

Deep Q Reinforcement Learning

The replay buffer is implemented within the DQN Agent object

<latexit sha1_base64="Z57TaJzp1UARxBQAJ4OrOyOAG+o=">AAAFUHicjVRLb9NAEHabFIp5tXDksqJCitvUcirxUKWgSlw4Fok+pCSyxutxsqr3od0NbYj6E7n0xu/gwgEEa8dJkyaHzsXjb+b75uH1JipnxkbRz7X1Wn3jwcPNR/7jJ0+fPd/afnFq5FBTPKEyl/o8AYM5E3himc3xXGkEnuR4llx8KuJn31AbJsVXO1LY49AXLGMUrIPi7VrWTbDPxNglJQ7j1z5xlmJGIE1jjlzqUcPpZ00i8DI2Fiw2icZL0GmTpFK4twoEWmgGh6VCYQUtnEiEoBSKtNG4p0gwa0OjymHagmuRDmLDvuNcGc4EKwOkTTSIVPLQAFc5NuYaWODOqJnU9xyrSZi4rXRbvDALuo+2qF7yF2IsI0LaUnGRtIJI9shSSjlCHziHXaFC4HBVTSVTzEP3rVNG7dxWi+8oDbajIFjRY5y5Yiv4d7krqZ2o15kso+dUJqi/1OtEOGNT0Rm9SVBJOjDtVpPMVZopuE2VAqgMy6UgHys9JmIHHS5Xmia2SbUSuCoyyf4CMdhd2qlbJF6pxv5UJU6RwmgXFTOu+WBvgT9j+6uKx7mx07M9jwd+10G3f1W8tROFUWlk2WlVzo5X2XG8ddNNJR1yFJbmYEynFSnbG4O2jOZ47XeHBhXQC+hjx7kCOJreuLwQrskbh6Tl4c6ksKRE5xlj4MaMeOIyOdiBuRsrwFWxztBmH3pjJtTQoqCTQtkwJ1aS4nYhKdNIbT5yDlDNXK+EDkC7U+PuIN8toXV35GXn9CBsvQvffjnYOTqo1rHpvfJeew2v5b33jrzP3rF34tHaj9qv2p/a3/pN/Xf938baJHW9enovvQXb8P8D/Fabdw==</latexit>

def add_memory(self, new_state, reward, done, state, action):

self.memory.append((new_state, reward, done, state, action))

def replay(self, batch_size):

minibatch = random.sample(self.memory, batch_size)

for new_state, reward, done, state, action, in minibatch:

target = reward

if not done:

target = reward +

self.gamma*np.amax(self.model.predict(new_state,verbose=0))

target_f = self.model.predict(state,verbose=0)

target_f[0][action] = target

self.model.fit(state, target_f, epochs=1, verbose=0)

if self.epsilon > self.min_eps:

self.epsilon = (self.max_eps - self.min_eps)*

np.exp(-self.eps_decay*episode)+ self.min_eps

self.epsilon_lst.append(self.epsilon)

(ND) Deep Reinforcement Learning April 17, 2025 7 / 38

Deep Q Reinforcement Learning

<latexit sha1_base64="y0W4X+HykVnX1azT2O4qFFEgJOw=">AAAFinicdVRdb9MwFM22lo0yYINHXiwqtFQqoa1gg6KiSTDE45DYh5RFkePctNYcJ7LdjS7qf+E38ca/wYnTZum2+5Lr43OvfU5sBymjUvV6/9bWNxrNR5tbj1tPtp8+e76z++JUJlNB4IQkLBHnAZbAKIcTRRWD81QAjgMGZ8Hl13z+7AqEpAn/pWYpeDEecxpRgpWG/N2NPxcBjCnPNCnQWDxvCbjGIvSZVCPXa0WJQJBSmYSAKEcC8zHYSmDK/RKWnWEL6ZAKKxgh4FeOAAnK7rg9r5rxsRAjnjo3IBJpG0jSG+jUKW6ReWiE+re76kLddIJTsJfULnL7XVR18kwrs3/doFcMw4SDHnzHTEIB5IpUpSXGv32pIF3IyKNdquAhCLuzhDHJTdPN8Bi4cszQ7Kcicbj2C6hb7qRbbKGLlJhyUuCURwkyTuUr26bRPS1ylagQf79rd8juclQ5WCOhmpW12gfsLIQbvWHoxxAnYmY/KLIEVxUt/uKibDlBo6Kwsj6PVFCu7GjvyBywIcrKozZ8P3+X1Q/fHGEeotxGTVOa4KBaryqOUqkpEUuwso0g/dMp09scOoP5QgjKzHe+16n1CfSturx1vvL74eA01WfENojha0EMeLmAcavzBemrRSaFq8MVUwWkDM/sitBpXeie1X30d9o9p1cEupv0y6RtlXHs7/y9CBMyjXV3wrCUbr+XKi/DQlHCYN66mEpIMbnU67s65TgG6WXFUzJHbzQSFlckSrhCBXq7IsOxlLM40MwYq4lcncvB++bcqYo+ehnl6VQBJ2ahaMqQSlD+LqGQCiCKzXSCiaB6r4hMsNAHSb9eLW1Cf1Xy3eR04PT3nQ8/B+3DQWnHlvXKem3ZVt86sA6tH9axdWKRxmbjbWO/cdDcbg6an5qfDXV9rax5adWi+e0//Nqwrw==</latexit>

reward_lst=[]

for episode in range(train_episodes):

state= env.reset()[0]

state_arr=np.zeros(state_size)

state_arr[state] = 1

state= np.reshape(state_arr, [1, state_size])

reward = 0

done = False

for t in range(max_steps):

env.render()

action = agent.action(state)

new_state, reward, done, truncate, info = env.step(action)

new_state_arr = np.zeros(state_size)

new_state_arr[new_state] = 1

new_state = np.reshape(new_state_arr, [1, state_size])

agent.add_memory(new_state, reward, done, state, action)

state= new_state

if done:

print(f’Episode: {episode:4}/{train_episodes} and step: {t:4}.

Eps: {float(agent.epsilon):.2}, reward {reward}’)

break

reward_lst.append(reward)

if len(agent.memory)> batch_size:

agent.replay(batch_size)

(ND) Deep Reinforcement Learning April 17, 2025 8 / 38

Deep Q Reinforcement Learning

We tested the model for 100 episodes and found that the learned
policy was successful 100% of the time. This is to be expected here
because we used the ”deterministic” FrozenLake environment.

The training score is the ”reward” received at the end of each
episode. What this shows is that the likelihood of receiving a reward
of 1.0 (i.e. getting to the desired destination) becomes more
likelihood the longer we train. This graph therefore shows that our
training procedure is working well.

(ND) Deep Reinforcement Learning April 17, 2025 9 / 38

Policy Gradient Methods

All of the preceding RL algorithms (SARSA, Q-learning, DQN) were
based on first learning the value function and then determining the
optimal policy. These algorithms are therefore referred to as value
gradient methods.

Another approach to RL learns the policy directly. In this case the
policy is written as π(a : s, θ) where θ is a set of parameters that we
need to learn. Reinforcement learning algorithms that learn a model
for the policy are called policy gradient methods.

In this case we define a performance measure J(θ) for the policy
model and then use gradient ascent to find those parameters θ that
maximize that performance measure

θt+1 = θt + α∇̂θJ(θt)

where ∇̂θJ(θt) is a stochastic estimate whose expectation
approximates the gradient of J(θ).

(ND) Deep Reinforcement Learning April 17, 2025 10 / 38

Policy Gradient methods

One advantage that policy-gradient methods have over value-gradient
methods is that the approximate policy automatically ”explores” the
state space.

Another important advantage of policy gradient methods is that the
policy function π(a|s, θ) may be much simpler than the value function
model

The policy function π(a | s, θ) can be parameterized in any way we
wish, we simply need to make sure it is differentiable with respect to
its parameters.

If the action and state spaces are discrete and not too large, then one
can then we can form a set of parameterized numerical preferences,
h(s, a, θ) ∈ R for each state-action pair.

(ND) Deep Reinforcement Learning April 17, 2025 11 / 38

Policy Gradient Methods

The actions with the highest preference in each state are given the
highest probabilities of being selected

π(a | s, θ) = eh(s,a,θ)∑
b e

h(s,b,θ)

These preferences, h(s, a, θ), can be parameterized in many ways.
They many be computed by a deep neural network, or they could
simply be linear functions,

h(s, a, θ) = θTx(s, a)

of a predefined set of feature vectors x(s, a).

(ND) Deep Reinforcement Learning April 17, 2025 12 / 38

