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Introduction

@ Deep learning and human society are on a collision course. Deep
learning lies at the heart of self-driving cars. It is essential for many of
the convenient applications on our mobile devices. It makes possible
voice assistants (Alexa, Siri) and we rely on it in helping us find
directions to our destination.

@ Deep learning appears regularly in reports that raise warnings
regarding implicit racial bias in commercial Al products (7, 7), voice
concern over the use of ChatGPT in education, and express
astonishment over DALL-E 2 creating art from natural language
descriptions.

@ The simple fact is that deep learning applications mimic human
behavior in a manner that appears to pass the Turing test (a.k.a.
imitation game) under non-expert examiners. This fact should give us
pause to consider how this technology might be used in lay society.
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Introduction

@ Let us consider a scenario using demographic and economic data on
residents of geographically based communities.

@ These community datasets are gathered and used to help a city or
other potential service providers decide how to serve community
residents.

@ But ultimately the idea is that the city or provider is using these
datasets to decide how to invest in services that improve public health
and safety.

@ To make our problem more concrete, we consider a single city
composed of several geographically distinct communities.
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Introduction

@ Each community resident is characterized by a vector of attributes, a.
Attribute vector components are either real-valued or categorical variables
measuring that resident’'s measured attribute.

@ The city uses the resident data to decide in which community it will place
major infrastructure projects.

@ These community datasets often contain the personal information of
community residents. The private nature of this data raises a number of
issues.

e Security: One issue concerns the potential for external agents to either
maliciously corrupt/alter the data to unfairly influence the city's
decisions.

e Privacy: Another issue concerns the unauthorized access of
private/sensitive resident data.

o Equity: We are also concerned with whether an ML algorithm used to
make decisions regarding residents is " fair" with respect to the
resident’s gender, race, economic status.
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Security - Adversarial Examples

@ One security concern is with adversarial examples.

@ These are perturbed data samples that are injected into a ML system
to cause the system to make a false prediction or categorization.

@ The maliciously perturbed data may be inputs to an inference version
of the model, so the attacker can evade detection.

@ These perturbed data samples can also be used during online ML
training to compromise an existing model. This use of perturbed data
is sometimes called data poisoning.
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Security - Adversarial Examples

@ Concern with adversarial examples was kicked off by a surprising discovery in
(szegedy 2013) that found several ML models, including state-of-the-art
deep networks are vulnerable to adversarial examples.

@ That work found very slight perturbations of a correctly sampled input could
trick the trained model into making the wrong classification.

@ These adversarial examples could be generated by slightly perturbing a
correctly sampled input in the training data.

@ This example showed that neural network training may not select models
whose performance is robust to variations in the input datasets.

noise
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Security - adversarial examples

@ One way for addressing this issue is by generating adversarial examples and
then adding those examples to the training data. There are several ways
such adversarial examples can be generated. The following script shows a
particularly simple example based on the MNIST dataset.

@ We first train a highly accurate classifier on the MNIST dataset and then
use it to create adversarial examples.

earlyStop = EarlyStopping(monitor=’val_categorical_accuracy’,
min_delta=0, patience=10, verbose=0, mode=’auto’,
baseline=None, restore_best_weights=True)

mnist_model.fit(x_train, y_train, batch_size=128, epochs=100,
verbose=0, validation_data=(x_test, y_test) N
callbacks=[earlyStopl)

print (mnist_model.evaluate(x_train, y_train))
print (mnist_model.evaluate(x_test, y_test))

#1875/1875 #[; ] - 11s #6ms/step
# - loss: 0.1083 - categorical_accuracy: 0.9860

# [0.10834111273288727,0.9860333204269409]

#

#313/313 [ ] - 2s 6ms/step

# - loss: 0.1168 - categorical_accuracy: 0.9845

# [0.11677185446023941, 0.9845000505447388]
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Security - Adversarial Example

We first try to create an adversarial example, by selecting an image in
the data set that we want to perturb. We then create an image of pure
noise and add it to the original image.

class =5 class =5

Figure: Selected image of the digit 5 and its noise perturbed version
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Security - Adversarial Example

unity: InputLayer

@ Classifying the noisy image
does not generate an
incorrect classification. So
we need to build a model to
generate the adversarial
example

@ To generate a model capable \ /

of creating an adversarial “id: Add
example, we create a model
with two inputs; selected
image and noise.

Y

adverzarial noise: Dense

Y

reshape: Reshape image: InputLayer

Y

clip_values: Activation

@ We retrain the noise image
with a "mistargeted” loss. v
This means we freeze all
weights except those in the

noise layer.
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Security - adversarial example

regularizer = 12(0.01)
loss_function = ’categorical_crossentropy’
model = mnist_model

image = Input(shape=(28,28,1),name=’image’)

one = Input(shape=(1,), name = ’unity’)

noise = Dense(28%28,activation=None,use_bias=False,kernel_initializer=’random_normal’,
kernel_regularizer=regularizer,name=’adversarial_noise’) (one)

noise = Reshape((28,28,1), name=’reshape’) (noise)

Add(name="add’) ([noise, image])
Activation(’clip’,name=’clip_values’) (net)

outputs = model(net)
adversarial_model = Model (inputs=[image,one], outputs=outputs)
adversarial_model.layers[-1].trainable = False

adversarial_model.compile(optimizer=’nadam’, loss=loss_function, metrics=[categorical_accur:
adversarial_model.summary ()

#target adversarial classification

target = 9 #non-target
target_vector = np.zeros(10)

target_vector [target] = 1.

#train adversarial image
adversarial_model.fit(x={’image’:img, unity’:np.ones(shape=(1,1))},
y=target_vector.reshape(1,-1),epochs=10000,verbose=0,
callbacks=[checkpoint])
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Security - adversarial example

The resulting perturbed image resulting in an incorrect classification of "9” was
obtained by taking the original 5 image and adding the adversarial noise obtained
during training of the adversarial model. This image indeed is classified by the

MNIST model as 9, but if we look at what that image is in Fig. 77, we see little
difference

class =9
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Deep Learning with Differential Privacy

@ Another security concern for community datasets regards the privacy of
individual resident data when the entire dataset is being used to find out
something about the community as a whole.

@ The main concept used to address this issue with regards to databases is
differential privacy [Dwork 2008].

@ With regard to databases, differential privacy ensures that the removal or
addition of a single database item does not substantially affect the outcome
of any analysis or query.

@ This provides a mathematically rigorous way to manage the fact that any
query to a statistical database may disclose some bits of information about
individual entries.
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Deep Learning with Differential Privacy

@ Database privacy concerns also appear in deep learning. The neural network
is trained on a large dataset and for deep networks, the model’s
overparametrization means that some attributes of individual data entries
may be disclosed by users of that model.

@ These models should not disclose private information and one can develop
algorithmic techniques for training that provide e-differential guarantees for
individual dataset entries. T

@ Let us consider a statistical database. A statistic is a quantity computed
from a sample. We suppose a trusted curator gathers sensitive information
from a large number of residents (the sample) with the goal of learning (and
releasing) statistics for the entire population.

@ The problem is to release this statistical information without compromising
the privacy of any individual resident.
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Deep Learning with Differential Privacy

@ We consider an interactive setting in which the curator sits between the users
and the database. Queries from the users and responses to these queries
may be modified by the curator to protect the privacy of the residents.

@ We define the notion of differential privacy in the context of this
interactively curated statistical database. Intuitively, differential privacy
ensure that the removal or addition of a single database item does not
substantially affect the outcome of any statistical analysis.

@ We can formalize this notion as follows. Think of the database as a data
matrix whose rows represent the attribute vectors of individual residents in
the community. We define a randomized mechanism (a.k.a. algorithm)

M : D — R that takes a dataset D € D and randomly maps it to a statistic
in R.

@ We say two datasets D, D’ € D are adjacent if they differ by one entry. We
say this mechanism satisfies (¢)-differential privacy if for any two adjacent
datasets D, D’ € D and for any subset S C R we have

Pr{M(D) € S} < ePr {M(D') € S}
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Deep Learning with Differential Privacy

@ Any mechanism that satisfies this condition should address all concerns that
any resident may have about leaking their personal information.

@ This condition says that if a resident removes his/her data from the dataset,
no output and so no consequences arising from that output will become
more or less likely for the individual.

@ For example, if the database were used by an insurer to determine whether or
not to insure a resident, then whether or not the resident is in the database
would have a negligible impact on whether the resident gets insured.

@ Achieving differential privacy means that we hide the presence or absence of
a single individual.

@ Consider the query "How many rows in the database satisfy property P?"
The presence or absence of a single row can effect the answer by at most 1.

@ So a differentially private mechanism for a query of this type can be
designed by first computing the true answer and then adding random noise
so that for any z,z’ for which |z — 2'| = 1, we have Pr{z} < e‘Pr{z’}.
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Deep Learning with Differential Privacy

@ To see why this is so, consider any feasible response, r. For any m if m is
the true answer to the query and the response is r then the random noise
must have value r — m.

@ Similarly, if m — 1 is the true answer and the response is r, then the random
noise must have value r — m + 1.

@ So for the response to be generated in a differentially private manner it
suffices for

Pr {noise = r — m} <
e
~ Pr{noise=r—m+1} —

e—€ €
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Deep Learning and Differential Privacy

@ For deep learning models, one seeks to protect the privacy of the training
data. The neural network model is our “mechanism”.

@ One might attempt to do this by working with the final parameters after
training. In general, however, one does not have useful tight bounds on how
these weights vary with the training data.

@ A more sophisticated approach aims to control the influence of the training
data during the training process; specifically during the stochastic gradient
descent (SGD) computation.

@ These SGD algorithms (7, 7) train a model with parameters 6 by minimizing
the empirical loss function L(6).

@ Each step of the SGD computes the gradient VyL(0, x;) for a random subset
of examples, clips the £ norm of each gradient, compute the average, add
noise to protect privacy, and takes a step in the opposite direction of this
average noisy gradient.

@ At the end we also need to compute the privacy loss of the mechanism
based on the information maintained by the curator.
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Statistical Fairness in Supervised Learning

@ Fairness is a key consideration when machines use algorithms to make
decisions.

@ Fairness is defined with respect to population groups that are marginalized
in a legal or societal manner as a result of demographic factors (gender,
race, age) or socio-economic factors.

@ In particular, it means that decisions or favorable outcomes provided to
groups are independent of that group is marginalized or not.

@ "Fairness”, however, has a number of formal definitions. This section
considers statistical measures of fairness.
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Statistical Notions of Fairness

o Before introducing statistical fairness measures, we will first review
the classification problem to establish notational conventions
commonly used the ML fairness literature.

o Classification determines a plausible value for an unknown target Y
given observed inputs, X. Typically the target Y and inputs, X are
jointly distributed random variables.

@ At the time of classification the value of the target variable is
unknown, but we observe an input X and make a guess Y = h(X)
based on what we observed.

@ The function h is called a classifier or predictor. The output of the
classifier is called a label or prediction.
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Statistical Notions of Fairness

@ We choose a classifier h out of a model set H that has good classification
accuracy.

@ Formally, this means we select h so that Pr{Y = \A/} is close to 1. But
there may be other criteria that we wish to consider as constraints on this
optimization problems. These criteria take a closer look at how well the
classifier works on positive targets (Y = 1) and negative targets (Y = 0).

Event | Condition | Resulting notion

Y = Y=1 True positive rate (TPR)
Y = Y=1 False negative rate
Y=1|/Y=0 False positive rate (FPR)
Y=0|Y=0 True negative rate

Table: Common classification criteria
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Statistical Notions of Fairness

@ Rather than simply trying to maximize the Pr{Y = \7} we consider

problems where the cost of true positives, false positives, true negatives, and
false negatives may be different.

@ The problem of optimal classification is then to find a classifier that
minimizes the cost in this weighted expectation over the entire population.

@ Note that since the false negative rate is equals 1 — TPR and the true
negative rate equals 1 — FPR, we really only need to consider model that
maximize the expected value,

Ex.y {TPR — A x FPR}

where A is a weight on the cost of the FPR.
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Statistical Notions of Fairness

@ The optimal classifier often has the problem that it can be realized as a
threshold test applied to a risk score (a.k.a. sufficient statistic).

r(x)=Pr{Y =1|X =x}

@ This risk is, therefore, the posterior probability of outcome Y given X. In
particular, if we seek to minimize the classification error Pr { Y # \7} then

one can show that ¥ = h(X) where

by = {1 ) =Pr{Y=1]X=x} >1/2
)= 0 otherwise

@ In this case the threshold is 1/2 for we assumed an equal cost for false
positives and false negatives.
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Statistical Notions of Fairness

@ But if our weight A is not equal to one, then h(x) will select 1 with a
different threshold level. Each choice of a threshold corresponds to a
different weight A on the FPR.

@ By varying this threshold between 0 and 1, we trace out a curve in a
two-dimensional space whose axes correspond to TPR and FPR. This curve
is called the ROC curve (a.k.a. receiver operating characteristic)
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Statistical Notions of Fairness

@ "Discrimination” is concerned with socially relevant groups of people that
have historically received unjust or systematically adverse treatment.

@ U.S. law recognizes certain protected categories of people. These categories
include race, sex, religion, disability status, and place of birth.

@ We are interested in determining whether a classifier that was trained on
input data, X is inherently discriminatory against of these protected
categories, and if so what we can do to address the situation.

@ "Fairness” is concerned with whether a protected category receives the same
favorable outcomes under resource distribution as the unprotected category.

@ In our problem we will use the random variable A to correspond to a
protected (A = 1) versus an unprotected group (A = 0). The random
variable, A is often called a sensitive attribute.
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Statistical Notions of Fairness

@ |t is sometimes thought that removing or ignoring sensitive attributes in the
training data will ensure the trained model's impartiality.

@ This practice, however, is often ineffective and even harmful. The reason for
this is that the other attributes in the training data that were not excluded
may be positively correlated to the sensitive attribute. What this means is
that when we train the model, then it will eventually learn labels that are
highly correlated to the sensitive attribute.

@ Statistical fairness criteria use statistical measures to determine whether the
labels predicted by a learned classifier are discriminatory or not. Researchers
have proposed dozens of different statistical fairness criteria, but we this
section will confine its attention to two distinct measures known as
demographic (statistical) parity and equal odds.
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Demographic Parity

@ This criteria requires that the outcome be statistically independent of the
sensitive attribute, A.

@ Formally this means
Pr{?:1|A:a}=Pr{?:1|A:b}

@ This criteria also goes under the name of statistical parity or disparate
impacts.

@ In many cases, we relax this requirement for independence by allowing a
positive slack, ¢ > 0 such that

Pr{?zl\Aza}—Pr{?zuA:bHge
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Demographic Parity

@ Decisions and models based solely on "independence” (parity) can have
undesirable outcomes.

@ Consider, for example, a scenario in which a company hires applicants at the
same rate from a protected and unprotected group. So the company’s hiring
practice satisfy demographics parity.

@ But let us also assume that applicants in the unprotected group are select
are selected more carefully than applicants from the protected group. This
could lead to more "unqualified” hires being made from the protected group.

@ This would have the unintended consequence of reinforcing pre-existing
biases that hires from the protected group will always perform worse than
hires from the unprotected group.
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Equal Odds

This criterion attempts to address the problem described above for
demographic parity.

In a typical classification problem, there is a difference between accepting an
individual with a positive target versus accepting one with a negative target.

The target variable, Y, may be viewed as providing a sense of the
individual's merit.

So the equal odds criteria attempts to ensure that the likelihood of a
qualified person in the protected group receiving a favorable outcome is
equal to the likelihood of a qualified person in the unprotected group
receiving a favorable outcome.

This is sometimes called a separation criterion and may be seen as being
equivalent to the following

Pr{ —1|Y—1Afa} - Pr{ —1|Yf1A7b}
Pr{ _1|Y_0A_a} - Pr{ _1|Y_0A_b}

This criteria is sometimes referred to as equalized odds or equal opportunity.
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Equal Odds

@ The idea of basing fairness on this "separation” principle has been
controversial. This is particularly true when positive outcomes from an
optimal classifier vary between the protected and unprotected group.

@ Enforcing equality in this case may lead to worse classifier performance
which leads many to question whether this is really fair?

@ One response to that criticism is to focus on the cost of misclassification. In
particular, if the protected group has been historically marginalized, the cost
of denying resources to qualified people in this group may be seen as having
a much higher societal cost.

@ In this case, one can argue that sacrificing some degree of optimality to
address historical biases may be in the better long-term interests of the
community.
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Optimal Classifier UCI Dataset

@ We will evaluate these two criteria (demographic parity and equalized odds)
for a classifier that was trained to maximize the likelihood of classifying a
city resident as being either a high (income greater than 50k/year) or low
(income less than 50k /year) wage earner.

@ This optimal classifier will then be used as the baseline for developing ML
methods that improve that model’s fairness.

@ The dataset we use to explore this is the UCI adult dataset.

@ This dataset was derived from US census data and contains demographic
information from several thousand individuals.
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Optimal Classifier UCI Dataset

@ We will take the UCI dataset and modify it to remove irrelevant or biased
attributes (fnlwgt and gender). We remove gender because we are
concerned with fairness w.r.t. gender.

@ We will treat the variable income as the training target, so it too is dropped
from the input dataset

@ We need to modify the dataset to take care of missing values.
@ Certain categorical features will be encoded as integers

@ Other categorical features will be one-hot encoded.
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Optimal Classifier UCI Adult Dataset

@ The curated dataframe now has 88 columns, with the last one being the
target variable. So we put the first 87 columns in the input data X and the
last column in the target y.

@ From the curated dataset, we now split the data 80% training and 20%
testing. The training data is then split 80/20 between p-training and
validation.

@ This script uses sklearn's fit_transform method to rescale the training
inputs.

@ We then declare a dense sequential model with two hidden layers of 16 and
then 8 nodes. The output layer has a single node.

@ So when compiling the model, we specify a binary crossentropy loss function
and use the standard Adam optimizer.
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Optimal Classifier UCI Adult Dataset

X = dataframe.iloc[:, 0:87].values
y = dataframe.iloc[:, 8ul.values

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
X_ptrain, X_val, y_ptrain, y_val = train_test_split(
X_train, y_train, test_size = .2)

from sklearn.preprocessing import StandardScaler
sc = StandardScaler()

X_ptrain = sc.fit_transform(X_ptrain)

X_val = sc.fit_transform(X_val)

X_test = sc.transform(X_test)

import keras
from keras.models import Sequential
from keras.layers import Dense

classifier = Sequential()
classifier.add(Dense(units=16,

activation = "relu", input_dim = 87))
classifier.add(Dense(units=8, activation "relu")
classifier.add(Dense(units=1, activation "sigmoid")
classifier.compile(optimizer = ’adam’,

loss = "binary_crossentropy",

metrics = ["accuracy"])
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Optimal Classifier UCI Adult Dataset

@ | trained this model for 20 epochs with minibatches of 256. As usual, | save
the history of training and validation loss/accuracy at each epoch so | could
generate the training curves and saved the model with the best validation
loss. The training curve in Fig. 77 suggests that the model was successfully

trained with the best model achieving an accuracy of 85%.
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Figure: Training curves for model trained on adult UCI dataset
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Optimal Classifier UCI Adult Dataset

@ The "optimal” classifier was trained to maximize its accuracy. But we would
like to obtain a more nuanced view of classifier performance with regard to
the sensitive attribute of "gender”.

@ In particular, we compute the optimal classifier's equal opportunity and
demographics parity metrics for male/female groups.

@ We also varied the prediction threshold between 0 and 1 and plotted the
male and female ROC curves.

10 ROC for optimal high-wage adult classifier
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Addressing Discrimination in Optimal Adult Classifier

There are three ways one can address discrimination in the optimal classifier.

@ Pre-processing: [Kamiran 2012, Calmon 2017] This method transforms the
input dataset, X to remove any correlation of the data and the sensitive
attribute.

® In-training: [Zafar 2017, Kamishima 2012, Sattiegeri 2019] These methods
involve adding a fairness constraint into the training of the model. This can
either be done. by treating the fairness constraint as a regularization kernel
or through adversarial training.

@ Post-processing: [Hardt 2016, Pleiss 2017] This method adjusts a learned
classifier so it is uncorrelated with the sensitive attribute. These methods
usually involve the development of a randomized model
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@ Deep learning is becoming a major force in the everyday lives of members of
human communities. Recent applications involving Generative and
Transformer models appear to pass the Turing test to non-expert examiners.
ML algorithms are being trained to use demographic and economic data of
community residents to decide on how and who should receive services.
Since resident data is often "private”, we need to address three major
concerns; security, privacy, and fairness.

@ We examined security with respect to the ease with which adversarial
examples can be created for trained neural networks. These adversarial
examples can be used by malicious agents or they can be used to expand a
model’s training set and thereby improve model robustness to maliciously
perturbed inputs.

@ The concern with adversarial examples was kicked off by a surprising
discovery in (7, 7) that found several ML models, including state-of-the-art
deep networks are vulnerable to adversarial examples. That work found very
slight perturbations of a correctly sampled input could trick the trained
model into making the wrong classification.
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@ Adversarial examples are generated by taking a known input sample and
perturbing it so it is classified incorrectly. That small perturbation may not
necessarily be i.i.d. random noise being added to the picture. But it can be
noisy patterns with particular correlations.

@ We generate an adversarial example from an adversary model. This model
takes two inputs; the test input (image) that we wish to perturb and a
"noise” input pattern. The noisy input is then passed through an optimal
classifier and we compute a loss which is mistargeted by being the difference
between the prediction and the "desired” incorrect classification. We freeze
all model weights except those on the noisy input pattern. We then use
backpropagation to find the input pattern that minimizes the mistargeted
loss. This method generates a specific noise pattern that misclassifies the
specified input.

@ Another security concerns regards the privacy of individual resident data.
This chapter reviewed the Dwork's differential privacy concept. Differential
privacy is defined with respect to databases and it ensures that the removal
or addition of a single database item does not substantially impact the
outcome of any statistical query to the database.
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@ This database privacy notion can be applied to neural networks since the
deep learning model is trained on a large dataset so that the neural network
becomes the mechanism a dataset curator uses to generate a response to an
input query. Differential privacy basically involves adding noise to the input
samples during training.

@ Fairness is a key consideration when ML algorithms are used to make
decisions about who gets and does not get services. There are certain
categories of residents who have legal protected status based on gender,
race, age, etc. Fairness essentially means that outcomes should be equally
distributed between those in and out of the protected group. Statistical
fairness interprets this equality in terms of conditional probabilities.

@ There are two basic notions of fairness considered in this chapter. These are
based on the "independence” of outcomes with respect to the group's
protected attribute. The other is based on the notion of separation.
Demographic (statistical) parity is an example of a fairness criterion based on
independence. Equal odds is an example of a fairness criterion based upon
separating out those individuals qualified to receive a favorable outcome.
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@ Demographic parity requires that the outcome be statistically independent of
the sensitive attribute, A. Formally this means

Pr{ _1|A_a} Pr{ _1|A_b}

This criteria also goes under the name of statistical parity or disparate
impacts.

@ In many cases, we relax this requirement for independence by allowing a
positive slack, ¢ > 0 such that

‘Pr{\?:l\A:a} Pr{ —1|A—bH

@ Decisions and models based solely on "independence” (parity) can have
undesirable consequences by allowing more "unqualified” residents in the
protected group to receive benefits than those in " qualified” residents.
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@ Equal Odds may be seen as being equivalent to the following
Pr{V:1|Y:1,A:a} = Pr{?:1|Y:1,A: }
Pr{?:1|Y:0,A=a} - Pr{?:1|vzo,A= }

where the target Y is seen as a surrogate for an individual's " merit” to
receive a positive outcome.

@ The idea of basing fairness on this "separation” principle has been
controversial. Enforcing equality in this case may lead to worse classifier
performance which leads many to question whether this is really fair?
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@ There are three ways one can address discrimination in the optimal classifier.
These methods are categorized as

o Pre-processing: This method transforms the input dataset, X to
remove any correlation of the data and the sensitive attribute.

e In-training: These methods involving adding a fairness constraint into
the training of the model. This can either be done. by treating the
fairness constraint as a regularization kernel or through adversarial
training.

o Post-processing: This method adjusts a learned classifier so it is
uncorrelated with the sensitive attribute. These methods usually
involve the development of a randomized model.
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