Fairness in machine learning

Yuying Duan

Topics

- Bias in Automate decision making
- What is fairness in machine learning and why should we care

• Approaches to enforce fairness in machine learning

Bias in Automate Decision Making

Machine learning systems are being implemented in decision making

Case Study 1: Amazon Recruiting system

In 2010, Amazon built an AI recruiting tool

that can automate the process of reviewing resumes and recommending top candidates.

Case Study 1: Amazon Recruiting system

In 2010, Amazon built an AI recruiting tool

that can automate the process of reviewing resumes and recommending top candidates.

- The system was trained on past resumes submitted to Amazon over a 10-year period.
- Predict whether a candidate fits this job.

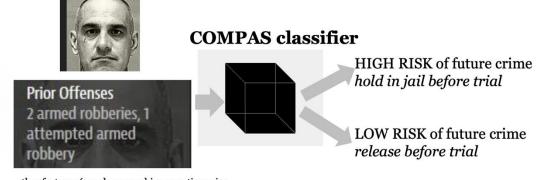
Case Study 2: COMPAS

In the **early 2000s**, a private company called Northpointe, Inc developed Correctional Offender Management Profiling for Alternative Sanctions (COMPAS) that is used for making decision of bail.

Case Study 2: COMPAS

In the **early 2000s**, a private company called Northpointe, Inc developed Correctional Offender Management Profiling for Alternative Sanctions (COMPAS) that is used for making decision of bail.

- Used in prisons across country: AZ, CO, DL, KY, LA, OK, VA, WA, WI
- The system uses answers to a 137-item questionnaire, plus data from criminal records
- Predict the likelihood that a defendant will reoffend (i.e., recidivism risk) or fail to appear in court



other features (e.g. demographics, questionnaire answers, family history)

Automate Decision making is a machine learning problem

Amazon trains a model to decide if the candidate can get the job based on the candidate's profile. The decision \hat{y} is a binary attribute: $\hat{y} = 1$ indicates the candidate can get the job, if $\hat{y} = 0$, the candidate can not get the job.

Automate Decision making is a machine learning problem

Amazon trains a model to decide if the candidate can get the job based on the candidate's profile. The decision \hat{y} is a binary attribute: $\hat{y} = 1$ indicates the candidate can get the job, if $\hat{y} = 0$, the candidate can not get the job.

- A generator that generates individual's profile $\mathbf{x} \in \mathcal{X}$: in an i.i.d manner from $F_{\mathbf{x}}(x)$. An observer (recruit manager) that draws the target $\mathbf{y} \in \{0, 1\}$ that indicates if one successfully get this job in an i.i.d manner from $P_{\mathbf{y}|x}(y \mid x)$
- A model set: $\mathcal{H}:\mathcal{X} o \{0,1\}$
- A loss function: $L[h] = E_{x,y}[1\{y \neq h(x)\}] \quad 1\{\cdot\}$ is the indicator function.

Automate Decision making is a machine learning problem

Amazon trains a model to decide if the candidate can get the job based on the candidate's profile. The decision \hat{y} is a binary attribute: $\hat{y} = 1$ indicates the candidate can get the job, if $\hat{y} = 0$, the candidate can not get the job.

- A generator that generates individual's profile $\mathbf{x} \in \mathcal{X}$: in an i.i.d manner from $F_{\mathbf{x}}(x)$. An observer (recruit manager) that draws the target $\mathbf{y} \in \{0, 1\}$ that indicates if one successfully get this job in an i.i.d manner from $P_{\mathbf{y}|x}(y \mid x)$
- A model set: $\mathcal{H}:\mathcal{X} o \{0,1\}$
- A loss function: $L[h] = E_{x,y}[1\{y \neq h(x)\}] \quad 1\{\cdot\}$ is the indicator function.

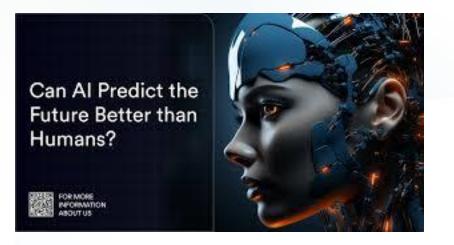
For a machine learning problem, we will pick a model (recruit policy) that minimizes the loss function:

$$\min_{h\in\mathcal{H}}:L_\lambda[h]=\mathrm{E}_{\mathbf{x},\mathbf{y}}[1\{\mathbf{y}
eq h(\mathbf{x})\}]$$

Concerns in Automate decision making

Hiring could become faster and less expensive by using ML models.

Concerns in Automate decision making



Hiring could become faster and less expensive by using ML models.

But there are problems

In 2018 <u>*Reuters*</u> reported: Amazon developed an AI-powered recruiting tool that exhibited bias against women.

In 2018 <u>*Reuters*</u> reported: Amazon developed an AI-powered recruiting tool that exhibited bias against women.

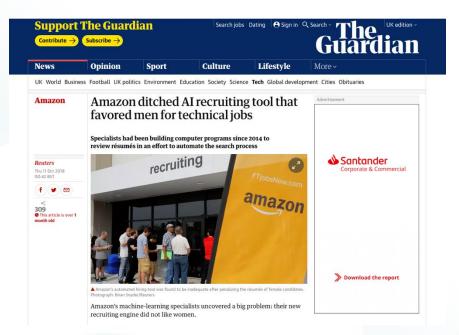


Table 1: The employment rates of male and female applicants in the field of information technology at Amazon.

Gender	Number of Applicants	Employment Rate
Male	100	40%
Female	50	20%

In 2018 <u>*Reuters*</u> reported: Amazon developed an AI-powered recruiting tool that exhibited bias against women.

- The tool, trained on resumes submitted over a decade, predominantly from male applicants, learned to favor male candidates for technical roles.
- It penalized resumes containing the word "women's.

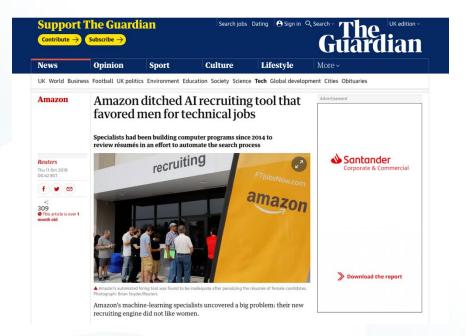


Table 1: The employment rates of male and female applicants in the field of information technology at Amazon.

Gender	Number of Applicants	Employment Rate
Male	100	40%
Female	50	20%

In 2016, *ProPublica* reported that COMPAS was:

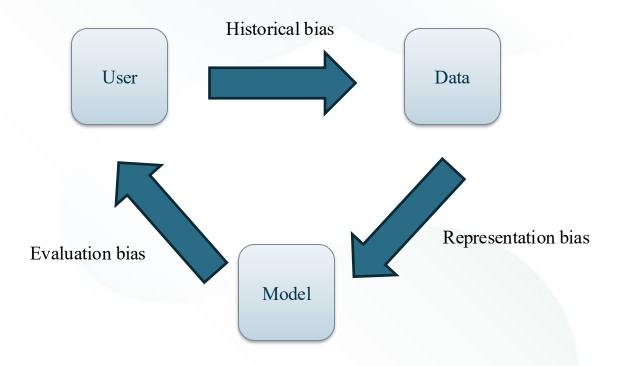
- **Biased against Black defendants:** Black defendants were **more likely** to be incorrectly predicted as high risk for reoffending.
- Favoring white defendants: White defendants were more likely to be incorrectly labeled as low risk.

In 2016, *ProPublica* reported that COMPAS was:

- **Biased against Black defendants:** Black defendants were **more likely** to be incorrectly predicted as high risk for reoffending.
- Favoring white defendants: White defendants were more likely to be incorrectly labeled as low risk.

Bernard Parker, left, was rated high risk; Dylan Fugett was rated low risk. (Josh Ritchie for ProPublica)

The process of the automate decision making:



Historical bias:

• Historical bias is the already existing bias and socio-technical issues in the world and can seep into from the data generation process.

Historical bias:

• An example of this type of bias can be found in a 2018 image search result, where searching for women CEOs ultimately resulted in fewer female CEO images due to the fact that only 5% of Fortune 500 CEOs were woman, which would cause the search results to be biased towards male CEOs.

Philip N Cohen 🥑 @familyunequal

I get 5 women in my first 154 images for "CEO" in Google images. (That includes CEO Barbie.)

Historical bias:

• The search algorithm reflected the reality caused by historical inequalities in access to leadership opportunities and resources between men and women.

Representation bias:

The model trained on the given dataset demonstrates better generalization for the majority class but underperforms on the minority class.

Evaluation bias:

The data distribution changes during inference.

• What is fairness in machine learning and why should we care

Preventing bias against specific groups is a legal requirement:

The Equal Credit Opportunity Act (ECOA) is codified in the United States Code at: <u>15 U.S. Code § 1691 - Purpose of the Act</u>

> " It shall be unlawful for any creditor to discriminate against any applicant, with respect to any aspect of a credit transaction-

(1) on the basis of race, color, religion, national origin, sex or marital status, or age (provided the applicant has the capacity to contract);

(2) because all or part of the applicant's income derives from any public assistance program; or

(3) because the applicant has in good faith exercised any right under this chapter."

Preventing bias against specific groups is a legal requirement:

Credit (Equal Credit Opportunity Act)

Education (Civil Rights Act of 1964; Education Amendments of 1972)

Employment (Civil Rights Act of 1964)

Housing (Fair Housing Act)

Preventing bias against specific groups is a legal requirement:

Preventing bias against specific groups is a legal requirement:

- ► Race
- ► Sex
- ► Religion
- ► National origin
- ► Citizenship
- ► Pregnancy
- Disability status
- Genetic information
- Others depend on the application

- really hard question
- start with the common concrete statistical definition

Def. 1 Statistical Parity

- Decide whether someone should be hired $(\hat{Y} = 1)$ or not $(\hat{Y} = 0)$
- Sensitive attribute: male S = 0, female: S = 1

Table 1: The employment rates of male and female applicants in the field of information technology at Amazon.

Gender	Number of Applicants	Employment Rate	
Male	100	40%	
Female	50	20%	

Historical bias

Def. 1 Statistical Parity

- Decide whether someone should be hired $(\hat{Y} = 1)$ or not $(\hat{Y} = 0)$
- Sensitive attribute: male S = 0, female: S = 1

Statistical parity: $Pr(\hat{Y} = 1 \mid S = 0) = Pr(\hat{Y} = 1 \mid S = 1)$

Male and female have the same probability getting hired.

Table 1: The employment rates of male and female applicants in the field of information technology at Amazon.

Gender	Number of Applicants	Employment Rate	
Male	100	40%	
Female	50	20%	

Historical bias

Def. 2 Equal Opportunity

- Ground-truth label that indicates one's qualification Y = 0 (not qualified) Y = 1 (qualified)
- Decide whether someone should get resource $(\hat{Y} = 1)$ or not $(\hat{Y} = 0)$
- Sensitive attribute: African-American S = 0, white: S = 1

Def. 2 Equal Opportunity

- Ground-truth label that indicates one's qualification Y = 0 (not qualified) Y = 1 (qualified)
- Decide whether someone should get resource $(\hat{Y} = 1)$ or not $(\hat{Y} = 0)$
- Sensitive attribute: African-American S = 0, white: S = 1

Equal Opportunity:

$$P(\hat{Y}=1 \mid Y=1, S=0) = P(\hat{Y}=1 \mid Y=1, S=1)$$

African-American and white who are qualified/ who are deserved have the same probability getting hired.

Def. 3 Equalized Odds

• Ground-truth label that indicate whether the defendant actually reoffends (Y = 1) or not (Y = 0)

•Decide whether in the jail e some before tail ($\hat{Y} = 1$) or not ($\hat{Y} = 0$)

• Sensitive attribute: African-American S = 0, white: S = 1

What that mean fairness in ML?

Def. 3 Equalized Odds

• Ground-truth label that indicate whether the defendant actually reoffends (Y = 1) or not (Y = 0)

•Decide whether in the jail e some before tail ($\hat{Y} = 1$) or not ($\hat{Y} = 0$)

• Sensitive attribute: African-American S = 0, white: S = 1

Equalized Odds:

$$P(\hat{Y} = 1 \mid Y = 1, S = 0) = P(\hat{Y} = 1 \mid Y = 1, S = 1)$$

$$P(\hat{Y}=0 \mid Y=0, S=0) = P(\hat{Y}=0 \mid Y=0, S=1)$$

African-American and white individuals who are reoffenders have the same probability of not being released. African-American and white individuals who are not reoffenders have the same probability of being released.

Debate on using which fairness notion?

Statistical Parity corrects historical bias, but may significantly reduce model accuracy and lead to overcompensation.

Equal Opportunity / Equalized Odds Corrects model-induced bias, results in less accuracy loss, has the problem of "bias in, bias out.

• Approaches to enforce fairness in machine learning

Three different approaches to enforce Fairness in ML

- Pre-processing: adjusts the features space to be uncorrelated with the sensitive attribute.
- In-processing: works with non-discrimination criterion as a regularization term in the model training process.
- Post-processing: adjusts learned classifiers so the resulting classifier is uncorrelated with the sensitive attribute.

Pre-processing

Data: $x \in \mathcal{X}, y \in \mathcal{Y}, s \in \mathcal{S}$

Model: one generator and two discriminators

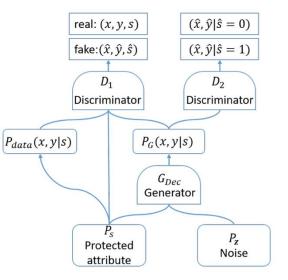
Loss function:

 $\min_{G_{Dec}} \max_{D_1, D_2} V(G_{Dec}, D_1, D_2) = V_1(G_{Dec}, D_1) + \lambda V_2(G_{Dec}, D_2),$

where

$$\begin{split} &V_1(G_{Dec}, D_1) \\ &= \mathbb{E}_{s \sim P_{\text{data}}(s), (\mathbf{x}, y) \sim P_{\text{data}}(\mathbf{x}, y|s)} [\log D_1(\mathbf{x}, y, s)] \\ &+ \mathbb{E}_{\hat{s} \sim P_G(s), (\hat{\mathbf{x}}, \hat{y}) \sim P_G(\mathbf{x}, y|s)} [\log(1 - D_1(\hat{\mathbf{x}}, \hat{y}, \hat{s}))], \end{split}$$

$$\begin{split} V_2(G_{Dec}, D_2) &= \mathbb{E}_{(\hat{\mathbf{x}}, \hat{y}) \sim P_G(\mathbf{x}, y \mid s=1)} [\log D_2(\hat{\mathbf{x}}, \hat{y})] \\ &+ \mathbb{E}_{(\hat{\mathbf{x}}, \hat{y}) \sim P_G(\mathbf{x}, y \mid s=0)} [\log(1 - D_2(\hat{\mathbf{x}}, \hat{y}))], \end{split}$$



Xu, Depeng, et al. "Fairgan: Fairness-aware generative adversarial networks." 2018 IEEE international conference on big data (big data). IEEE, 2018.

Pre-processing

- Pre-processing transforms the feature space so it is independent of the sensitive attribute.
- This approach is agnostic to what we do with these features later on and so it can ensure independence under any training process on the new space.
- Pre-processing typically uses adversarial training, so it has high computational cost.

In-processing

Data: $x \in \mathcal{X}, y \in \mathcal{Y}, s \in \mathcal{S}$

Model: a classifier $h: \mathcal{X} \to [0, 1]$

 $\text{Loss function:} \ \mathcal{L}_{\lambda}(h(x),y) = -[y\log(h(x)) + (1-y)\log(1-h(x))] + \lambda \cdot \operatorname{Cov}(h(x),s)$

Fairness regularization

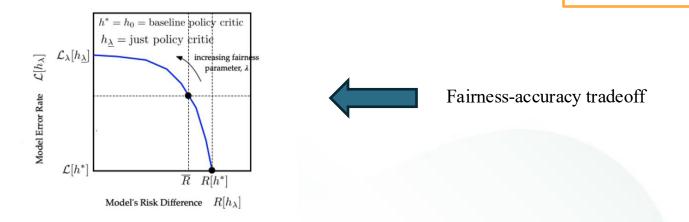
Zafar, Muhammad Bilal, et al. "Fairness constraints: Mechanisms for fair classification." *Artificial intelligence and statistics*. PMLR, 2017.

In-processing

Data: $x \in \mathcal{X}, y \in \mathcal{Y}, s \in \mathcal{S}$

Model: a classifier $h: \mathcal{X} \to [0, 1]$

 $\text{Loss function:} \ \mathcal{L}_{\lambda}(h(x),y) = -[y\log(h(x)) + (1-y)\log(1-h(x))] + \lambda \cdot \operatorname{Cov}(h(x),s)$



Zafar, Muhammad Bilal, et al. "Fairness constraints: Mechanisms for fair classification." *Artificial intelligence and statistics*. PMLR, 2017.

In-processing

- In-processing introduces the non-discrimination criterion as a regularization constraint during model training.
- The issue of in-processing is the the regularization constraint may greatly slow down the convergence of the training algorithm.

Data: $x \in \mathcal{X}, y \in \mathcal{Y}, s \in \mathcal{S}$

Model: a classifier $h: \mathcal{X} \to [0,1]$

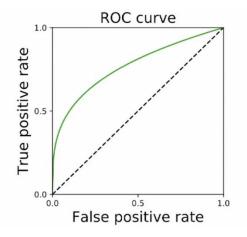
Loss function: $\mathcal{L}(h(x),y) = -[y\log(h(x)) + (1-y)\log(1-h(x))]$

Hardt, M., Price, E., & Srebro, N. (2016). Equality of opportunity in supervised learning. *Advances in neural information processing systems*, 29.

- h(x) indicates the probability that a sample x is classified as class 1.
- The optimal predictor takes value of:

 $\widehat{Y} = egin{cases} 1 & ext{if } h(x) > 1/2 \ 0 & ext{otherwise} \end{cases}$

If I plot the TPR against FPR for all possible thresholds :

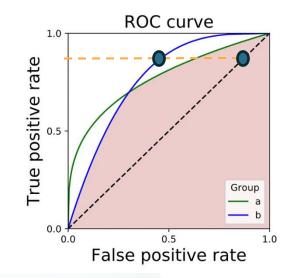


Hardt, M., Price, E., & Srebro, N. (2016). Equality of opportunity in supervised learning. *Advances in neural information processing* systems, 29.

- h(x) indicates the probability that a sample x is classified as class 1.
- The optimal predictor takes value of:

 $\widehat{Y} = egin{cases} 1 & ext{if } h(x) > 1/2 \ 0 & ext{otherwise} \end{cases}$

If I plot the TPR against FPR for all possible thresholds group a and group b :



Hardt, M., Price, E., & Srebro, N. (2016). Equality of opportunity in supervised learning. *Advances in neural information processing* systems, 29.

- Post-processing refers to the process of taking a trained classifier and adjusting it using a randomization procedure to enforce fairness.
- Post-processing does not impact the model original training pipeline.
- Post processing's advantage is that it works with trained classifiers and therefore does not need access to the raw data.

Message taken from this lecture

- Fairness is a legal requirement in automate decision making.
- Fairness is hard to define and evaluate, this lecture introduces three notation of fairness: Statistical parity, Equal Opportunity and Equalized Odds
- Three different approach to enforce fairness: Pre-processing, in-processing, post-processing