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Introduction

Deep Generative Learning has recently generated considerable attention
due to applications such as DALLE-2 and ChatGPT.

Both of these applications can take a natural language prompt and produce
a meaningful response.
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Introduction

Deep generative learning is a significant departure from the earlier
supervised learning problems considered in prior chapters.

Supervised learning results in discriminative models since it trains models
that are used to discriminate whether a given input lies in a given class or
not.

Generative learning, on the other hand builds models that generate new
samples whose distribution match that of a given collection of training
inputs.

Recall that the system in our learning-by-example problem input samples, x ,
that are drawn from an unknown probability distribution Fx(x). An observer
would then create a target, y , by drawing from the conditional distribution
Q(y |x).

The learning by example problem built models for Q(y |x). In generative
learning, we are building models for Fx(x).
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Introduction

There are several reasons why learning the input distribution, Fx(x), might
be useful.

Since the generative model creates samples that were not in the original
dataset, it can be used to augment the original dataset in a way that is more
powerful than the earlier transformation-based data augmentation schemes
for CNNs.

Generative models can also be used to identify fundamental features in the
input data, thereby providing reduced order representations for input
samples. We can use these reduced order representations to explore the
input data in a way that allows us to generate new datasets that are biased
for or against certain features in the original dataset.

This last part is particularly important for creating ”deep fakes” using ML
and also for addressing issues of fairness and privacy in surveillance, social
and medical systems.

Finally, generative models can also be used to more quickly identify inputs
that are inconsistent with the dataset. This last part is useful in flagging
outliers
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Introduction

Until a few years ago, discriminative models were the main driver in deep
learning.

This is changing due to recent advances in generative adversarial networks
(GAN) (Goodfellow 2014), generative pre-trained transformers (GPT)
(Radford 2018) and diffusion models (Ho 2020).

These models architectures are the drivers behind applications that, at least
to the untrained eye, appear to pass the Turing test.

As of the writing of these lectures (2023), generative learning has come to
be seen as the next major driver of deep learning technologies due not only
to its technological breakthroughs but also due to the way it has penetrated
the life of lay society.
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Text Generation using GPT

The NLP lectures showed how one can use RNN’s or Transformers to predict
the next words or next few words in a text fragment.

This text fragment is called a prompt. For instance, if the prompt is ”the
cat is on the”, and the model was trained on a database consisting of the
name of Broadway musicals and plays, then the model would response might
be ”hot tin roof”, followed with an attribution to the playright Tennessee
Williams.

Any model that can model that learns the probability of the ”next word” in
a text prompt is called a language model. A language model captures the
statistical structure of the language’s latent space.

Once you have trained such a language model, you can sample from it to
generate new sequences or sentences. This is done by feeding the model an
initial string of text (the prompt) and asking it to generate the next
character, word, or phase.
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Text Generation using GPT

Figure: The process of word-by-word text generation using a language model

That word or phrase is then added back to the model’s input data and we
repeat the process.

This loop allows one to generate sentences (responses) of arbitrary length
that reflect the structure of the data on which the model was trained.

These sentences almost look ”human-like” in their responses, since they
were trained on natural language fragments.
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Text Generation using GPT

When generating text, the way one chooses the next token is critically
important.

A naive approach would use a greedy sampling strategy in which the model
always selects the next most likely token. The greedy approach, however,
often generates text that is predictable and may not look like coherent
language.

A more useful sampling strategy would select the next word in a probabilistic
fashion. This is done by sampling from the probability distribution for the
next word.

Sampling probabilistically from the softmax output of the model allows for
even unlikely words to be sampled from time to time, thereby generating
more interesting reading sentences.
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Text Generation using GPT

In practice, we control the amount of randomness in the sampling process.

If there is too much randomness, then the sentences become nonsensical. If
there is too little, then the sentences because predictable.

We control randomness by introducing a parameter called the softmax
temperature.

In particular, let f (x) denote the original density and let T denote the
softmax temperature. Then the new distribution, g(x) would be

g(x) = e log(f (x))/T

Higher temperatures result in sampling distributions of higher entropy
producing more surprising and unstructured sentences, whereas lower
temperature results in less randomness and more predictable generated data.
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Text Generation with GPT

We built a transformer model for sequence-to-sequence learning.

We trained this model by feeding a source sequence (sentence) into a
transformer encoder and then fed both the encoded sequence and target
sequence into a transformer decoder.

The decoder was trained to predict the next word in the input sentences.

In training this model, we used a callback to generate text using a range of
different softmax temperatures after every epoch.

This allows us to see how the generated text evolves as the model begins to
converge, as well as the impact in the sampling strategy. We will seed our
training with the text prompt, ”This movie” so that all of our generated
reviews start with this phrase.
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Text Generation with GPT

temperature = 0.2: This movie film moved attempts far from between
comedy situations central steve plays west his ultimately affect suit gives key
the approach movie to filled progress life from adventures political humor
tragedy humor violence pathos etc tolerable rookie personalities comedy
cinematography ball original story music telling with how nice flooded a
hollywood

temperature = 0.5: This movie movie is at excellent truth funny [UNK] it
is wasnt simply in boring fact history i i thought hated it it when was i over
started [UNK] playing i it mean a everything tv like look this nothing movie
can helicopters make and tricks better from then horrible on actors

temperature 1.0: This movie movie sucks was well bad into the town
movie while why one did cant you be get frustrated through when so you
many start people drinking are is hiroshima attempting and laugh just at
because how you you invest feel in how some terrible episodes movies of
should kurosawa try
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Feature Extraction using PCA

One way of learning the input sample distribution would be to learn a
parameterized model of the distribution.

For example, let X̂ = {x̂}Mk=1 denote the collection of input samples,
xk ∈ Rn, that were drawn in an i.i.d. manner from an unknown distribution
Fx(x).

We could use X̂ to construct an empirical distribution function

F̂X̂(x) =
1

M

M∑
k=1

σ(x − x̂k)

where σ : Rn → R is a monotone increasing function from 0 to 1.

We know that this empirical distribution converges almost surely to the true
distribution as M → ∞.
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Feature Extraction using PCA

The problem we have is that our input samples, xk , have a high
dimensionality, thereby meaning we would need a exponentially large number
of input samples to obtain a good empirical estimate of the true distribution.

Our dataset samples, however, will not usually distributed across uniformly
across all of Rn. In many real-life applications these samples are
concentrated about a smooth lower dimensional surface in Rn called a
manifold.

These manifolds would have a lower dimensionality than n and the
distribution could therefore be characterized with a smaller set of latent
variables.

We could think of these latent variables as fundamental features of the input
samples.
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Feature Extraction using PCA

This leads to the following approach for generating samples matching the
input sample’s distribution.

We would first identify an encoder that maps the input samples onto this
lower dimensional latent space and have a decoder that that takes any
vector in the latent space and maps it to an input sample.

This approach is, essentially, a data compression scheme where the encoder
compresses the ”information” in the input data and the decoder
decompresses the latent variable to recover that information.

Note that the compression step is usually lossy in the sense that some
information may be irretreivably lost and hence cannot be recovered when
decoding.

So the main goal is to find the ”best” encoder/decoder pair from a given
family that minimizes the reconstruction error.
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Feature Extraction using PCA

Principal component analysis (PCA) is one way for identifying the linear
features used to encode a set of input samples.

The goal of PCA is to identify the a basis of vectors to represent the data
set so the number of basis vectors is less than the input sample dimension
and to do so in a way that minimizes the reconstruction error.

To describe this approach more precisely, let the input data samples be
denoted as X = {xk}Mk=1 where xk ∈ Rnd is an nd -dimensional real-valued
vector for all k . We can concretely represent X as a matrix

X =
[
x1 x2 · · · xM

]
whose columns are the data samples, xk .
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Feature Extraction using PCA

Now let P be a linear transformation from Rnd to Rne where ne < nd . If we
then look at

Y = PX

The columns of matrix Y ∈ Rne×M are the projection of the columns of X
onto the lower ne-dimensional latent space.

In particular, we can view

P =


pT1
pT2
...
pTne


This is a stack of row vectors in which pk ∈ Rnd are seen as an alternative
set of basis vectors for the original input data vectors in X.
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Feature Extraction using PCA

Note that the projection of X through P may lose information because the
dimensionality of the latent vectors is less than that of the original data
vectors.

The covariance matrix of Y is defined as

CY =
1

M
YYT = P

(
1

M
XXT

)
PT = PCXP

T

where CX = 1
MXXT is the covariance matrix of the original data matrix, X.

Ideally, we want the rows of P to be orthogonal vectors. If this is the case
then CY is a diagonal matrix and we say that the rows of P are principal
components of X.
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Feature Extraction using PCA

Note that XXT is a symmetric matrix that can de decomposed as VΛVT

where Λ is a diagonal matrix consisting of the eigenvalues of CX and V is a
matrix of eigenvectors of CX arranged as columns.

We can, therefore, see that if we choose P to be a matrix whose rows are
eigenvectors of CX then

CY = VTVΛVTV = Λ

We have just shown that the principal components of X are the eigenvectors
of CX.

It is common to use singular value decompositions (SVD) to compute the
principal components. SVDs represent the most numerically stable way of
computing such decompositions for large data matrices.
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Feature Extraction using PCA

For any m × p matrix, Q, one can prove that there exist m ×m and p × p
unitary matrices U and V and a real r × r diagonal matrix Σ such that

Q = U

[
Σ 0
0 0

]
VT

The matrix Σ has the form

Σ = diag(σ1, σ2, . . . , σr )

where σi ≥ σi+1 for i = 1, . . . , r − 1 and r ≤ min(m, p) is the rank of matrix
Q.

The triple, (U,Σ,V) is called the singular value decomposition of Q. This
decomposition is unique and σ1 to σr are called the non-zero singular values
of Q.

These non-zero singular values are also the positive roots of the non-zero
eigenvalues of QTQ.
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Feature Extraction using PCA

To see how this relates back to PCA, let us consider a data matrix X whose
columns are the data sample vectors that have been centered with respect
to the dataset’s mean.

Recall that C = 1
MXXT is the covariance matrix of the data matrix. We

know the principal components are the eigenvectors of CX.

Now consider the SVD of the data matrix X = UΣVT . Let us express the
covariance matrix of X in terms of its SVD

XXT = UΣVTVΣUT = UΣ2UT

We can therefore conclude that

CX =
1

M
UΣUT = UΛUT

where Λ is a diagonal matrix whose diagonal elements are λi =
σ2
i

M .

Since U is a unitary matrix (i.e. UTU = I) we can readily see that

CXU = UΛ
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Feature Extraction using PCA

This means that the columns of U are the prinicipal components.

Since we defined the PCA transformation P so its rows were the principal
component vectors, we have P = UT . If we then look at transforming all
data points into the PCA coordinates we have

Y = PX = UTUΣVT = ΣVT

This last result is used in the following example where we use the SVD of
the data matrix to do a PCA of the Fisher iris dataset.

Figure: Fisher Iris Data set, PCA analysis
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Feature Extraction using PCA

We used the SVD to find the principal components of Fisher’s iris dataset.
This dataset has 150 length and width measurements on the petals and
sepals of 3 species of irises.

I used MATLAB to load the iris dataset, scatter plot the first two features,
compute the SVD of the data matrix and then find the first right singular
vectors with the largest singular values.

The preceding figure shows that the data for the 3 classes are not well
separated. The scatter plot for the two dominant principal components on
the right show a much cleaner separation between the 3 classes.

<latexit sha1_base64="QwmH7wIS0vywmEiwYbDWmy/lTKA="></latexit>

load irisdata.txt

X = irisdata(:,1:4)’; %150 measurements of length 4

spec = irisdata(:,5)’; %class labels

n = size(X,2);

figure(1)

scatter(X(1,:),X(2,:),30,spec,’filled’)

xlabel("x1");ylabel("x2");

title("scatter plot of 2 raw measurements");

Xmean = mean(X,2); %find mean

A = X - Xmean*ones(1,n); %center the data

[U,S,V] = svd(A, ’econ’) %find SVD of centered data matrix

sigma = diag(S);

C = S(1:2,1:2)*V(:,1:2)’; %principal components of each data point

figure(2);

scatter(C(1,:),C(2,:),30,spec,’filled’)

xlabel(’PC1’);ylabel(’PC2’);

title("scatter plot of 2 PCA features");
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Autoencoders

An autoencoder is a deep learning model with an encoder-decoder
architecture that takes an input image or text, encodes it over a space of
latent variables, and then decodes that latent vector into the original image.

We can see the encoder as compressing the high dimensional input data
onto the lower dimensional latent embedding vector.

The decoder then decompresses that latent vector back into the original
image.

Figure: Autoencoder architecture
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Autoencoders

the autoencoder is trained to reconstruct the input image, so that we train
this with the input and target sample being the same image.

The latent vector z is a vector in a low dimensional vector space, Rne .

If the embedding dimension, ne , is 2 or 3, we can easily visualize the points
in the dataset and see how various images are ”close” or ”far” apart. Let us
do this for the fashion MNIST database .

Figure: Sample Images from fashion MNIST dataset(ND) Deep Generative Learning
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Autoencoder

We are now going to load the Fashion MNIST dataset and then construct
an autoencoder based on CNNs. The dataset is included in TensorFlow, so
we can load it as follows.

We are going to retype the pixel data from uint8 to float32 and normalize
it so it takes values between 0 and 1. We will then zero pad and expand the
shape of the input images so they are all (32, 32, 1). This is done because
our model expects a rank-3 tensor.

We declare the encoder model formed from three 2D convolutional layers,
that use strides to down sample the image to a shape of (4, 4, 128).

We will select a latent space, ne , of 2. So the encoder’s output is simply a
two dimensional vector.
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Autoencoder

<latexit sha1_base64="sUEy2pmSsUFy/UEjjSQ/0RMiBdU="></latexit>

encoder_input = layers.Input(

shape=(IMAGE_SIZE, IMAGE_SIZE, CHANNELS), name="encoder_input"

)

x = layers.Conv2D(32, (3, 3), strides=2, activation="relu", padding="same")(

encoder_input

)

x = layers.Conv2D(64, (3, 3), strides=2, activation="relu", padding="same")(x)

x = layers.Conv2D(128, (3, 3), strides=2, activation="relu", padding="same")(x)

shape_before_flattening = K.int_shape(x)[1:] # the decoder will need this!

x = layers.Flatten()(x)

encoder_output = layers.Dense(EMBEDDING_DIM, name="encoder_output")(x)

encoder = models.Model(encoder_input, encoder_output)

encoder.summary()
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Autoencoder

The decoder is a mirror image of

the encoder. It upsamples the

latent vector from a shape of (2)

to a shape of (32, 32, 1). The 2-d

latent vector is expanded through

a dense layer to a shape of (2048)

and then reshaped to (4, 4, 128).

We then use three transposed 2D

convolutional layers to upsample

the spatial dimensions until we get

to the desired output shape.

<latexit sha1_base64="QYbrqcNVdAM5ih38/UB5hY6JBj4="></latexit>

decoder_input = layers.Input(shape=(EMBEDDING_DIM,), name="decoder_input")

x = layers.Dense(np.prod(shape_before_flattening))(decoder_input)

x = layers.Reshape(shape_before_flattening)(x)

x = layers.Conv2DTranspose(

128, (3, 3), strides=2, activation="relu", padding="same"

)(x)

x = layers.Conv2DTranspose(

64, (3, 3), strides=2, activation="relu", padding="same"

)(x)

x = layers.Conv2DTranspose(

32, (3, 3), strides=2, activation="relu", padding="same"

)(x)

decoder_output = layers.Conv2D(

CHANNELS,

(3, 3),

strides=1,

activation="sigmoid",

padding="same",

name="decoder_output",

)(x)

decoder = models.Model(decoder_input, decoder_output)

decoder.summary
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Autoencoder

We now build the autoencoder, compile it with Aam, and train for epochs. We

visualize how the autoencoder maps the dataset images to the latent space.
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Autoencoder

Figure: Fashion-MNIST Latent Space (right) embedding of all dataset samples
(left) reconstructed images whose latent variables are regularly sampled in the 2-d
latent space
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Autoencoder

The reconstructions were obtained by regularly sampling the latent space
and then running the latent vector through the decoder.

What we see is that as we move across the space, that the images ”morph”
in a somewhat predictable manner.

In practice, this aspect of the autoencoder can be used to create a biased
set of samples that ignore some features in the original dataset and
accentuate others.

Notice that some clothing items are represented over rather small areas of
the latent space, whereas other clothing items cover a larger area.

notice is that there are large empty areas in the latent space that do not
represent any actual clothing item.

These are well known problems with autoencoders that we address through
the varational autoencoder (VAE).
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Variational Autoencoder

Varational autoencoders (Kingma 2013) map the inputs to a normal
distribution centered at a point in the latent space.

Because a normal distribution is completely characterized by its first two
moments, we really only need to map the encoder’s output to two different
outputs; the mean vector and the variance matrix.

In general, however, we assume the normal distribution has a diagonal
covariance matrix, so that we really only need to have the encoder output
two vectors, one for the mean of the distribution and the other for the
diagonal of the covariance matrix.

Since variance values are non-negative, however, we will find it more
convenient to map to the log of the variance since this has values between
−∞ and ∞.

This range of mappings fits more nicely with our neural network models.
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Variational Autoencoder

As a result the variational autoencoder architecture changes so the latent

variables between the encoder and decoder now are the mean, z mean and the log

of the variance, z log var of the distribution.

Figure: VAE Model Architecture
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Variational Autoencoder

We can build the VAE model in much the same way we did for the
autoencoder. There are, however, some significant differences.

The first major difference is seen in the encoder where the encoder now has
three possible outputs, z mean, z log var, and z.

The extra output z is a randomly drawn sample from the distribution
defined by z mean and z log var.

This sampled output, z, is generated by a new Sampling layer class that we
define at the top of the following script.

Decoder is similar to that in Autoencoder
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Variational Autoencoder - Encoder

<latexit sha1_base64="x8LddTzOxa8H5Vswu7lz1reJZ18="></latexit>

IMAGE_SIZE = 32

EMBEDDING_DIM = 2

#Sampling Layer

class Sampling(layers.Layer):

def call(self, inputs):

z_mean, z_log_var = inputs

batch = tf.shape(z_mean)[0]

dim = tf.shape(z_mean)[1]

epsilon = K.random_normal(shape=(batch, dim))

return z_mean + tf.exp(0.5 * z_log_var) * epsilon

# Encoder

encoder_input = layers.Input(

shape=(IMAGE_SIZE, IMAGE_SIZE, 1), name="encoder_input"

)

x = layers.Conv2D(32, (3, 3), strides=2, activation="relu", padding="same")(

encoder_input

)

x = layers.Conv2D(64, (3, 3), strides=2, activation="relu", padding="same")(x)

x = layers.Conv2D(128, (3, 3), strides=2, activation="relu", padding="same")(x)

shape_before_flattening = K.int_shape(x)[1:] # the decoder will need this!

x = layers.Flatten()(x)

z_mean = layers.Dense(EMBEDDING_DIM, name="z_mean")(x)

z_log_var = layers.Dense(EMBEDDING_DIM, name="z_log_var")(x)

z = Sampling()([z_mean, z_log_var])

encoder = models.Model(encoder_input, [z_mean, z_log_var, z], name="encoder")
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Variational Autoencoder

The other big change from our earlier encoder is our choice of loss function.
The autoencoder used MSE or binary crossentropy for the loss.

The VAE, however, needs to use a loss function that helps the latent layer
learn the mean and variance of the normal distributions that each input
maps to.

This is accomplished by regularizing the loss function so it penalizes means
and variance that are not close to a unit variance normal distribution.

This is accomplished by taking our loss to be the sum of the reconstruction
loss (measured as before by the MSE between the input and the
reconstruction) and an additional weighted loss term that measures the
”distance” of the current distribution’s mean/variance against a zero-mean
unit variance normal distribution.
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Variational Autoencoder

This second measure is usually taken to be the Kullback-Leibler (KL)
divergence. The KL divergence for two densities p and q is defined as

KL divergence = DKL(p, q) =

∫
p(x) log

p(x)

q(x)
dx

This measure equals zero when p(x) = q(x). In our case, p is the normal
distribution N(z mean,z log var) and q is the normal distribution N(0, 1).

So the KL divergence is

kl loss = −1

2

∑
i

(1 + log(σ2
i )− µ2

i − σ2
i )

where z mean = µ and σ is the diagonal of the covariance matrix.

The actual loss function used to train the VAE adds the KL divergence to
the reconstruction loss

VAE Loss = reconstruction loss + β × KL divergence
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Variational Autoencoder

<latexit sha1_base64="dN/ViDm2pzWtb7Uwl5UMy+ozJ5I="></latexit>

class VAE(models.Model):

def __init__(self, encoder, decoder, **kwargs):

super(VAE, self).__init__(**kwargs)

self.encoder = encoder

self.decoder = decoder

self.total_loss_tracker = metrics.Mean(name="total_loss")

self.reconstruction_loss_tracker = metrics.Mean(

name="reconstruction_loss"

)

self.kl_loss_tracker = metrics.Mean(name="kl_loss")

@property

def metrics(self):

return [

self.total_loss_tracker,

self.reconstruction_loss_tracker,

self.kl_loss_tracker,

]

def call(self, inputs):

"""Call the model on a particular input."""

z_mean, z_log_var, z = encoder(inputs)

reconstruction = decoder(z)

return z_mean, z_log_var, reconstruction

def train_step(self, data):

"""Step run during training."""

with tf.GradientTape() as tape:

z_mean, z_log_var, reconstruction = self(data)

reconstruction_loss = tf.reduce_mean(

BETA

* losses.binary_crossentropy(

data, reconstruction, axis=(1, 2, 3)

)

)

kl_loss = tf.reduce_mean(

tf.reduce_sum(

-0.5

* (1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var)),

axis=1,

)

)

total_loss = reconstruction_loss + kl_loss

grads = tape.gradient(total_loss, self.trainable_weights)

self.optimizer.apply_gradients(zip(grads, self.trainable_weights))

<latexit sha1_base64="rdGxFmUZ6syq7hLQmpl+J95aNCg="></latexit>

def test_step(self, data):

"""Step run during validation."""

if isinstance(data, tuple):

data = data[0]

z_mean, z_log_var, reconstruction = self(data)

reconstruction_loss = tf.reduce_mean(

BETA

* losses.binary_crossentropy(data, reconstruction, axis=(1, 2, 3))

)

kl_loss = tf.reduce_mean(

tf.reduce_sum(

-0.5 * (1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var)),

axis=1,

)

)

total_loss = reconstruction_loss + kl_loss

return {

"loss": total_loss,

"reconstruction_loss": reconstruction_loss,

"kl_loss": kl_loss,

}
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Variational Autoencoder

We are now in a position to create the VAE model using our preceding VAE

class object.

Figure: VAE latent space for fashion MNIST (left) reconstructions (right) location
of sampled points
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Variational Autoencoder

The preceding examples used a low dimensional latent space to help you
visualize how vectors in the latent space give rise to image reconstructions.

We now turn to an example using a higher dimensional latent space to
demonstrate how we can ”explore” the latent space and create or modify
how a given input image.

This example uses the CelebFaces Attributes (CelebA) dataset with over
200,000 color images of celebrity faces, each annotated with various label
(e.g. smiling, blonde,...).

The images in this dataset are RGB images of shape (64,64,3). We will
consider a latent space of 200, rather than 2.

(ND) Deep Generative Learning
week 18, 19, 20, 21 (updated: April 11, 2024)
39 / 74



Variational Autoencoder

We construct a variational autoencoder in much the same way as we did for
the Fashion MNIST dataset.

Because the inputs are larger, however, we will need a more deeper model.
In particular, we will have 5 convolutional layers with batch normalization
that take the input shape (64,64,3) down to (2, 2, 64).

We then map this to two layers of shape (200, ) for z mean and z log var

that are passed through a sampling layer producing the actual output latent
vector z.

We then train the VAE model for 10 epochs. This training takes
significantly longer because the model is deeper with over 500,000 weights.
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Variation Autoencoder

Figure: (Top) input images from CelebA dataset (Bottom) reconstructed images
generated by trained VAE.

(ND) Deep Generative Learning
week 18, 19, 20, 21 (updated: April 11, 2024)
41 / 74



Variational Autoencoder

One benefit of the latent space is that because it is a vector space we can do
basic vector arithmetic on it.

For example, suppose we want to take an image of somebody who looks sad
and given them a smile. To do this, we first need to find a vector in the
latent space that points in the direction of increasing smile.

Adding this vector to the encoding of the original image in the latent space
will give a new latent vector which when decoded should generate a smiling
image.

To find this ”smile” vector, we return to the CelebA dataset and look at the
labels.

Each image in the dataset is labeled with 40 different attributes such as
”wearing hat”, ”wearing lipstick”, ”young”, ”smiling”, etc.
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Variational Autoencoder

To get the ”smiling” direction, for example, we would first compute the
average position of encoded images in the latent space with the ”smiling”
attribute and subtract the average position of encoded images that do not
have the attribute ”smiling”.

The resulting vector can then be taken as the ”smiling” director, what we
will call its feature vector.

We can then generate new latent vectors from the original one, z as

z new = z+ alpha ∗ feature vector

where alpha controls how much we want to shift our original vector, z,
along the feature direction.
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Variational Autoencoder

Figure: Transformation of various input images into blondes
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Generative Adversarial Networks

Generative adversarial networks (GAN) (Goodfellow 2014) were first
proposed in 2014.

Their introduction stimulated a great deal of interest in generative learning
and led to some of generative learning’s most impressive accomplishments.

The GAN takes a game theory approach to learning how to generate new
samples from the system’s input distribution, Fx(x).

Game theory envisions two players who take actions that further their own
self interests while having the additional impact of interfering with the
competing player’s game performance.

The basic idea is that these two players struggle until they reach a point
from which neither player can gain an advantage over the other. Such points
are called Nash equilibria.
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Generative Adversarial Networks

The GAN’s two players are a generator and discriminator model.

The generator generates samples that may be seen as ”fake” copiesof inputs
in the original dataset.

The generator trains itself so its distribution of ”fake” samples matches the
distribution, Fx(x), of inputs in the original dataset.

The other player is a discriminator who takes an input from either the
generator or dataset and updates itself so it can correctly discriminate
between ”fake” samples from the generator and ”true” samples from the
dataset.

Another way of thinking about this game is that the ”generator” learns to
create samples that can ”fool” the discriminator while the discriminator is
learning how to distinguish the generator’s fake samples from the true ones.
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Generative Adversarial Networks

At each training step, we randomly select an input to the discriminator from
either the training dataset or the Generator, G . The generator’s output is
obtained from a random input. That random input is obtained by randomly
sampling the latent space and then adding noise to the resulting latent
vector.

The discriminator, D, then classifies that input as being either ”fake” or
”true”. We then compute the loss for the discriminator’s classification and
use that loss to drive backpropagation’s update of both the Generator and
Discriminator’s weights.

Figure: GAN Training(ND) Deep Generative Learning
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Generative Adversarial Networks

Let us now describe the training process in a more formal manner. Let Pz(z)
denote the distribution of a latent vector drawn from the latent space.

Let Fx̂(x̂) denote the distribution of samples, x̂ , created by the generator.
Let Fx(x) denote the true distribution of input samples, x in the dataset.

We will train the discriminator, D to maximize the accuracy over ”real”
decision points, x , in the training data by maximizing

Ex∼Fx [logD(x)]

Meanwhile for a fake sample, x̂ , created by the generator G using input, z ,
drawn from Pz over the latent space, the discriminator will be trained so its
outputs a probability D(G (z)) that is small for ”fake” samples and close to
1 for ”true” samples. This suggests we should train our discriminator to
maximize

Discriminator Accuracy on Fake Data == Ez∼Pz [log(1− D(G (z)))] (1)
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Generative Adversarial Network

So the loss function for the discriminator is our usual binary cross-entropy
function

L(D,G ) = Ex∼Fx [logD(x)] + Ez∈Pz [log(1− D(G (z)))]

Our training of the discriminator seeks to select discriminator weights that
maximize LD(D,G ) for a fixed generator, G .

During the generator’s training, we adjust G ’s weights to increase the
likelihood of D being wrong in its classification of fake samples. This means
that we are trying G to minimize equation (1), exactly opposite of what we
did when training the discriminator.

So training the generator seeks to minimize L(D,G ) for a given D by
selecting the weights of G , whereas training the discriminator seeks to
maximize, L(D,G ) for a given G by selecting the weights of D.

This training is done in a back and forth manner between D and G until we
achieve a Nash equilibrium, (D∗,G∗), where

L(D,G∗) ≤ L(D∗,G∗) ≤ L(D∗,G )
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Generative Adversarial Network

We now demonstrate the construction and training of a deep convolution GAN

(DC-GAN) used to generate ”fake” images.

Figure: DCGAN generator and discriminator models
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Generative Adversarial Network

We define a separate loss functional and optimizer for each model, since
they are trained separately.

The discriminator’s loss function quantifies how well the discriminator is able
to distinguish real images from fake images. It compares the discriminator’s
prediction on the real image to an array of 1’s and the prediction on the fake
input to zeros. So the discriminator loss function is a binary cross entropy
function,

The generator’s loss quantifies how well it is able to trick the discriminator.
This loss function is simply the cross entropy function

We also declare two separate optimizers because we are training two
different models. The both use the ADAM optimizer, rather than the
RMSprop. The learning rate is usually set very small to help stabilize
learning and in some cases the learning rate is changed adaptively.
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Generative Adversarial Network

Training the GAN follows the game theoretic flow and so we have to write a
new train method for the GAN.

This method will call the following train step function which uses the
GradientTape object to separately compute gradients used in updating the
weights of the two models.

Note that the training-step in this implementation trains the discriminator
for one step, and then the generator for one step.

In many applications, however, it has proven to be better to train the
generator for several steps before updating the discriminator.
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Generative Adversarial Network

<latexit sha1_base64="CeMJKWu7YvNaJi5CMVA+xoVBSY4="></latexit>

# Notice the use of ‘tf.function‘

# This annotation causes the function to be "compiled".

@tf.function

def train_step(images):

noise = tf.random.normal([BATCH_SIZE, noise_dim])

with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:

generated_images = generator(noise, training=True)

real_output = discriminator(images, training=True)

fake_output = discriminator(generated_images, training=True)

gen_loss = generator_loss(fake_output)

disc_loss = discriminator_loss(real_output, fake_output)

gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)

gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)

generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))

discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))

(ND) Deep Generative Learning
week 18, 19, 20, 21 (updated: April 11, 2024)
53 / 74



Generative Adversarial Network

epoch 1 epoch 10 epoch 20

epoch 30 epoch 40 epoch 50

Figure: GAN generated images
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Diffusion Models

Alongside GANs, diffusion models are one of the most influential generative
modeling techniques for images.

Diffusion models now outperform previous state-of-the-art GANs have
become the go-to choice for generative modeling engineers in the visual
domain.

For example, OpenAI’s DALLE-2 and Google’s ImageGen applications for
text-to-image generation all use diffusion models to generate the output
image after a transformer has decoded the users prompting text.

The breakthough diffusion model appeared in 2020 trained a diffusion model
that rivaled GANs across several datasets.
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Diffusion Models

The core idea behind DDPMs is relatively simple - we train a deep learning
model to denoise an image over a series of very small steps.

If we start from pure random noise, in theory we should be able to keep
applying the model until will obtain an image that looks as if it were drawn
from the training set.

The DDPM makes use of two Markov chains to achieve this. There is a
forward chain that perturbs data to noise and a reverse chain that converts
noise back to data.

The forward chain is usually hand-designed with the goal of transforming
any data distribution into a standard Gaussian image.

The reverse chain undoes the forward chain by learning transition kernels
parameterized by deep neural networks. New data points are then generated
by first sampling a random vector from the standard Gaussian, followed by
ancestral sampling through the reverse Markov chain.
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Digression - Markov Chains

Markov chain is a probabilistic model for trials of a random experiment.

Let {xk : k ≥ 0} be a sequence of random variables taking values from set
X = {1, 2, . . . , n}.

Markov Property: For all k ≥ 0 and any x , y ∈ X we have

Pr {xk+1 = y | k = x} = Pr {xk+1 = y | xk = x} = pyx

We can represent pyx as a matrix qk = Pqk−1. Markov chain is the ordered

tuple (X ,P,X0,Xa).
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Diffusion Models

We can describe this more formally as follows. Let assume that we have an
input x0 ∈ Fx(x) that was selected from the training dataset’s input
distribution.

The forward Markov chain generates a sequence of random variables,
{xk}Tk=0, with transition kernel Q(xt |xt−1).

Using the chain rule of probability and the Markov property, we can factor
the joint distribution of x1, x2, . . . , xT conditioned on the initial input, x0,
which we denote as Q(x1, . . . , xT | x0) into

Q(x1, . . . , xt | x0) =
T∏
t=1

Q(xt | xt−1) (2)

In DDPMs, the transition kernel is handcrafted to incrementally transform
the data distribution x0 ∼ Fx(x) into a tractable prior distribution which is
usually taken to be a standard Gaussian distribution.
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Diffusion Models

The most common choice for the transition kernel is

Q(xt | xt−1) = N(
√
1− βtxt−1, βt I) (3)

where βt ∈ (0, 1) is a hyperparameter chosen ahead of time by the designer.

Note that this transition kernel allows us to marginalize the joint distribution
to obtain an analytic form for Q(xt | x0 for all t ∈ {0, 1, . . . ,T}. Specifically

if we let αt
def
= 1− βt and αt

def
=

t∏
k=0

αk , then we have

xt =
√
αtxt−1 +

√
1− αtϵt−1

=
√
αtαt−1xt−2 +

√
1− αtαt−1ϵ

...

=
√
αtx0 +

√
1− αtϵ

So we can conclude that

Q(xt |x0) = N(
√
αtx0, (1− αt)I)
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Diffusion Models

This means that given the initial input x0, we can easily obtain a sample xt
by sampling a Gaussian vector ϵ ∼ N(0, I) and applying the above
transformation xt =

√
αtx0 +

√
1− αtϵ.

When αT ≈ 0, then xT is nearly a Gaussian distribution and so
Q(xT ) ≈ N(0, I).

To generate new data samples, DDPMs start by first generating an
unstructured noise vector from the prior distribution and then gradually
removing noise through a learned Markov chain running in the reverse
direction.

In particular, the reverse Markov chain is parameterized by a prior
distribution P(xT ) = N(0, I) because the forward process was constructed so
that Q(xT ) ≈ N(0, I).
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Diffusion Models

The learnable transition kernel Pw (xt−1 | xt) with weights w takes the form

Pw (xt−1 | xt) = N(µw (xt , t),Σw (xt , t))

where w denotes the model parameters and the man µw (xt , t) and variance
Σw (xt , t) are parameterized by deep neural networks.

With this reverse Markov chain in hand, we can generate a data sample x0
by first sampling a noise vector xT ∼ p(xT ) and then iteratively sampling
from the learnable transition kernel xt−1 ∼ Pw (xt−1 | xt) until t = 1.
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Diffusion Models

The key to the success of this sampling process is training the reverse
Markov chain to match the actual time reversal of the forward Markov
chain. We adjust the parameter w so the joint distribution of the reverse

Markov chain, pw (x0, x1, . . . , xT )
def
= P(xT )

∏
k = 1TPw (xt−1 | xt) closely

approximates that of the forward process

Q(x0, x1, . . . , xT )
def
= Q(x0)

T∏
k=1

Q(xt | xt−1).

This is achieved by minimizing the Kullback-Leibler (KL) divergence of these
two distributions.

KL(Q(x0, . . . , xT ), Pw (x0, . . . , xT ))

= −EQ(x0,...,xT ) [logPW (x0, . . . , xT )] + const

= EQ(x0,...,xT )

[
− logP(xT )−

T∑
k=1

log
Pw (xt−1 | xt)
Q(xt | xt−1)

]
+ const

≥ E [− logPw (x0)] + const
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Diffusion Models

The ”const” term contains terms that are independent of the weights w and
hence don’t impact training.

The objective of DDPM training is to maxmize the VLB, which is relatively
easy because it is a sum of independent terms and can therefore be
estimated efficiently through Monte Carlo sampling and optimized using
stochastic gradient descent.

Notice that we are free to choose a different βt at each time step. The
original DDPM paper used a linear schedule where βt increased by a fixed
increment at each time step.

It was later found that a sinusoidal schedule worked better where

αt = cos2
( πt

2T

)
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Diffusion Models

We now illustrate the DDPM model following an example in. We’ll be using the

Oxford 102 flower dataset on Kaggle. After downloading the dataset we create

the training dataset.

Figure: Sample Images from Oxford 102 Flower Dataset
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Diffusion Models

Our denoising diffusion model will be based on a U-net architecture. Before
discussing the U-net model in depth, let us look at how it is trained.

Our model will be trained in a custom way so we need to build it as a
subclass of Keras Model class.

It is important to note that our DiffusionModel actually keeps two copies
of the U-net model in it.

One is trained using stochastic gradient descent, the other uses an
exponential moving average (EMA) of the weights of the other copy. This is
done because the EMA network is not as susceptible to short-term
fluctuations and spikes in the trianing process, therefore making it more
robust for generation of images than the actively trained network.

We therefore use the EMA network when we produce an output from the
network.
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Diffusion Models

The model we will use is a U-net model. This model consists of an encoder
and decoder with residual connections between the convolutional layers.

This model takes the noise variance βt and an image x with shape
(64, 64, 3) as an input.

The output is the model’s prediction of the noise added to the image also
with shape (64, 64, 3).

The encoder generates a latent space of size (8, 8, 128) through a series of
DownBlocks.

The decoder predicts the noise added to the image during the forward pass.

The decoder consists of a sequence of upsampling UpBlocks. The layers in
the DownBlock, UpBlock, and ResidualBlock are shown on the right of
the next figure.
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Diffusion Models

Figure: (Left) Unet model (Right) blocks used in Unet model
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Diffusion Model

This model was trained on the Oxford Flower Dataset using an Adam optimizer

for 50 epochs. We used a batch size of 64 samples.

Figure: Reconstructions generated by DDPM model
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Diffusion Models

Note that we can also interpolate between two points in the latent space. The

results in Fig. ?? show how this allows us to smoothly morph one generated into

another image.

Figure: Interpolating between points in the latent space to morph between images
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Summary

Generative learning builds models that generate new sample whose
distribution match tat of the trainning inputs.

Generative learning can be used to augment the original dataset, it can be
used to obtained reduced order (latent space) representations of the inputs,
we can use explore these latent spaces that allow us to control how we
generate new samples, generative models can also be used to more easily
identify outliers.

As of 2023, generative learning has become the next ”big” thing in deep
learning with significant impact on lay society through applications such as
ChatGPT and DALL-E 2.

Generation of natural language using either RNN’s or transformers provide
one example of generative learning. These take a learned NLP models and
feed the output back into the input to generate entire essays. Generative
pre-trained transformer models (GPT) represent the current generation of
large language models lying at the heart of many of the recent generative
tools used by the lay public.
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Summary

Principal component analysis may be seen as the basis for early generative
learning models. PCA seeks to transform a data matrix through a
transformation the reduces the dimensionality of the representation. The
rows of the transformation matrix are called the principal components of the
data set when the transform the covariance of the original data to a
diagonal form.

In general the principal components of the data matrix are the eigenvalues
of the original data set’s covariance matrix.

It is common to use singular value decompositions (SVD) to compute a
dataset’s principal components.

Autoencoders are deep learning models with an encoder-decoder structure
that takes an input vector, compresses it onto a lower dimensional latent
space, and then decompresses the latent representation into a recosntruction
of the original input.
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Summary

The main point of autoencoders is to find a compact latent space
representation of the dataset, which can then be explored using vector
arithmetic. We can use these operations to morph one image into another,
to create biases in our data that favor one can of input, or to remove biases
in a way that assures greater fairness.

Variational autoencoders are autoencoders that map each input onto a
probability distribution in the latent space. This latent distribution is usually
Gaussian. The decoder then samples from these Gaussian distributions and
uses the sample to reconstruct the input. A key part of training VAEs
requires one to regularize training using the KL divergence. This has the
effect of spreading out the representations over the entire latent space in a
way that ensures all classes get more equal coverage than customarily occurs
with unregulated autoencoders.
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Summary

Generative adversarial networks (GAN) were one of the first generative
models that was highly successful in creating image samples.

GANs use a game theory approach whose two players are a generator model
G and a discriminator model, D.

One trains a GAN by fixing D and then selecting G to minimize the loss.
The next step involves fixing G and then training D to maximize the loss.
The loss function is a binary cross entropy function that adjusts D to
maximize the discriminator’s likelihood of detecting fake samples and adjusts
G to minimize the same objective for the discriminator. When it works, the
training process converges to a Nash equilibrium where neither player has an
advantage over the other.
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Summary

The latest generative model is the denoising diffusion probabilistic model
(DDPM). This model is based on two Markov chains. The forward chain
adds noise to an image in small increments until the image is a Gaussian
distribution. The reverse chain undoes the addition of noise in small
increments, taking a sampling of a multi-variate Gaussian distribution and
then incrementally removing the noise to generate an image.

DDPM models are based on a Unet architecture that takes an input image,
adds noise to it and then predicts the noise that was added. The model can
then be used to denoise a sample Gaussian to construct complex images.

Diffusion models such as DDPM are used in text-to-image generators like
DALL-E 2. These models use a GPT to transform a text string to a latent
space representation and then use a diffusion model to generate the image.
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