
Introduction to Deep Learning
December 18, 2024

Department of Electrical Engineering
University of Notre Dame

1

Contents

Preface v

Chapter 1. Introduction - Learning by Example 1

1. Problem Statement 1

2. Types of Learning-by Example Problems 4

2.1. Binary Classification: 4

2.2. Regression Problem: 6

2.3. Logistic Regression 7

3. Neural Network Model Sets 10

3.1. Perceptron: 11

3.2. Multi-layer Perceptron: 13

3.3. Deep Neural Networks: 14

4. Deep Learning Software Libraries 16

Chapter 2. Generalization - a statistical approach 25

1. Infeasibility of Perfect Learning 26

2. PAC Learning 28

3. Concentration Inequalities 31

4. Generalization Ability of Finite Model Sets 34

5. Growth Function for Infinite Model Sets 39

6. Generalization Ability of Infinite Model Sets 43

7. Bias-Variance Tradeoff and Early Stopping 47

Chapter 3. Neural Network Model Sets 53

1. Perceptron 53

2. Multi-layer Perceptrons and Deep Neural Networks 58

3. Universal Approximation Ability 69
i

ii CONTENTS

4. BackPropagation 74

5. Automatic Differentiation 81

6. Mini-Batch Gradient Descent Training 86

Chapter 4. Training Pipelines for Deep Learning 89

1. Problem Formulation 92

2. Data Preparation 95

3. Model Selection 100

4. Optimizers 108

5. Norm Regularizers 116

6. Dropout Regularization 121

7. Diagnosing Model Performance with Training curves 122

Chapter 5. Convolutional Neural Networks 129

1. MNIST Problem Revisited 130

2. Computer Vision Applications 132

3. Convolutional Neural Networks 138

4. Image Classification Task - with limited data 144

4.1. Data Augmentation - training with limited data: 147

4.2. Transfer Learning - training with limited data: 150

5. Image Segmentation Task - U-net Architecture 155

5.1. Modern CNN Architectural Patterns: 167

6. Object Detection Task 172

7. Visualizing what CNNs Learn - the problem of model

interpretability 177

7.1. Visualizing Intermediate Activations: 178

7.2. Visualizing Inputs Triggering CNN Filters: 180

7.3. Class Activation Mapping (CAM): 182

Chapter 6. Deep Learning for Natural Language Processing 187

1. Motivating Example 188

2. Recurrent Neural Networks 193

2.1. LSTM Recurrent Networks 195

3. Natural Langage Processing 200

CONTENTS iii

3.1. Text Vectorization 201

4. Bag-of-Words vs Sequence Models 207

4.1. Bag-of-Words Modeling: 207

4.2. Sequence Modeling: 212

5. Neural Attention and the Transformer Model 217

5.1. Neural Attention: 218

5.2. Transformer Encoder: 223

6. Sequence-to-sequence learning and Neural Machine Translation227

6.1. Neural Machine Translation 229

6.2. RNN Sequence-to-Sequence Model 232

6.3. Transformer Sequence-to-Sequence Model 237

Chapter 7. Deep Generative Learning 245

1. Text Generation using Generative Pre-trained Transformers 247

2. Feature Extraction using Principal Component Analysis 251

3. Autoencoders 256

4. Variational Autoencoders 262

5. Generative Adversarial Networks 268

6. Diffusion Models 275

Chapter 8. Deep Learning and Human Society 285

1. Security: Creating Adversarial Examples 286

2. Deep Learning with Differential Privacy 292

3. Statistical Fairness in Classification 295

Chapter 9. Deep Reinforcement Learning 303

1. Finite Markov Decision Processes 304

2. Optimal Actions and the Bellman Equation 307

3. Learning Optimal Action Policies 316

3.1. Monte Carlo Methods: 317

3.2. Temporal-Difference (TD) Learning: 318

4. Deep Q Learning (DQN) 325

5. Policy Gradient Methods - REINFORCE and Actor-Critic 333

5.1. REINFORCE: Monte Carlo Policy Gradient: 338

iv CONTENTS

5.2. Actor-Critic Reinforcement Learning: 343

Appendix A. Probability Review 349

Appendix B. Markov Chains 355

Appendix. Bibliography 363

Preface

These lecture notes were written for an introduction to deep learning course

that I first offered at the University of Notre Dame during the Spring 2023

semester. I offered this course because deep learning had become such a

force in both the technical and lay communities, that I felt it was critical that

MS/PhD and even undergraduate students not leave the University without

having some inkling of what deep learning was capable of.

FIGURE 1. Three wave of neural net-

work research

Neural network learning is often

described as having three distinct

waves of research activity as shown

in Fig. 1 The first wave dates back

to the 1960’s with the emergence

of Widrow’s Madaline learning sys-

tem [WH60] and Rosenblatt’s per-

ceptron model [Ros58]. The sec-

ond wave dates back to the 1980’s

with Hopfield showing that neural

network models could solve NP-hard combinatoric optimization problems

[Hop82] and the development of the backpropagation training algorithm

[RHW86]. The third wave began in 2012 with advances in the use of deep

convolutional neural networks for image classification [KSH12]. Since that

time, interest and research in deep learning has exploded in both the tech-

nical and lay communities. The technical side saw startling advances in

the use of deep generative learning for natural language processing (NLP)

which have recently begun to disruptively filter into the lay community

[VDBZ+23].

v

vi PREFACE

I received my PhD as part of the second wave. Like many other research

scientists, I left neural network research in the 1990’s because it appeared

that the fundamental problem of feature engineering was domain specific. I

then turned my attention to control theory where feedback provided a mech-

anism for learning features in a concrete manner. So when I picked up this

deep learning course 30 years later, I was very skeptical that I would find

anything truly novel there. I was mistaken.

Deep learning, particularly with recent advances in generative pre-trained

transformers, appears to mimic human learning in a manner that can pass

the Turing test if the examiner is rather ”lazy”. In reviewing how these

machines are trained, I came to see close parallels with how students ap-

proach their course work and it became apparent that deep learning success

stories point to a much deeper transformation in how we build autonomous

machines. So, I was converted and these lecture notes are the result of my

re-immersion into neural network computation.

This book has been organized into 9 chapters. Chapter 1 introduces the

main problem solved by deep learning; a supervised learning problem that

is often referred to as learning-by-example. Chapter 2 reviews early work

from the 1980’s using statistical methods to characterize the sample com-

plexity and generalization ability of neural networks. Chapter 3 examines

the three main neural network models; perceptron, multi-layer perceptron,

and deep neural networks. Chapter 4 covers the use of a well-known Python

software library, TensorFlow, for training deep models. After covering the

deep learning basics in chapters 1-4, the book covers the major application

success stories in computer vision (chapter 5), natural language processing

(chapter 6), and generative models (chapter 7). Generative models have

recently had a great impact on human society so I devote chapter 8 to an

examination of security and fairness in deep learning models. I close the

book (chapter 9) on deep reinforcement learning. I do not always teach this

last chapter since the material has often been covered in greater depth by

PREFACE vii

other classes at Notre Dame. My coverage of all of these topics is not ter-

ribly ”deep” for I was interested in providing a survey that would touch on

most of the major models in used to date. The field, however, is changing

rapidly and there are a number of important topics that I had to leave out.

Nonetheless, the coverage in this book should be sufficient to give students

a good enough introduction to deep learning that they can begin using it in

their own future research.

M. D. Lemmon

Department of Electrical Engineering

University of Notre Dame

Fall, 2024

CHAPTER 1

Introduction - Learning by Example

Deep learning uses neural network models with many hidden layers to

solve supervisory learning problems. In supervisory learning, we have a

collection of training examples where each example consists of an input

and a target. The objective is to use these examples to select a function

(a.k.a. model or predictor) that maps any input onto the correct target. We

say this learning problem is supervised because our examples contain both

the input and target. It is also common to refer to this as a learning-by-

example problem. Learning problems that attempt to learn a model with

only the inputs (i.e. no target) are said to be unsupervised. The purpose

of this chapter is to formally state the learning-by-example problem, to de-

scribe several important versions of this problem, and to provide concrete

examples illustrating how the training examples are used to select a suitable

model.

1. Problem Statement

The learning-by-example problem is to select a model from a model set

based on example’s of a system’s inputs and associated outputs. The model

is selected to be optimal in the sense of minimizing the error (a.k.a. loss) be-

tween the model’s output and the system’s output for the same given input.

The learning-by-example problem may therefore be seen as consisting of

three distinct components; the system, the model set, and the loss function.

Each of these distinct components is described in more detail below.

System: The system is defined using the block diagram in Fig. 1. The sys-

tem may be seen as the cascade of two systems; a generator whose output
1

2 1. INTRODUCTION - LEARNING BY EXAMPLE

FIGURE 1. System in Learning-by-Example Problem

is driving an observer. The generator creates inputs, x ∈ X , where X is

called the input set. The generator’s output is drawn in an independent and

identically distributed (i.i.d.) manner from probability distribution, Fx(x).

These inputs are used by an observer to create a target, y ∈ Y for any input

x ∈ X , where Y is called the target set. The target, y, is also drawn in

an i.i.d. manner from a conditional probability distribution Qy|x(y|x). The

learning-by-example problem assumes that both distributions are unknown,

but that we have a finite dataset containing N samples, D = {(xk, yk)}Nk=1,

that were drawn in an i.i.d. manner from the joint probability distribution,

Px,y(x, y) = Fx(x)Qy|x(y|x).

We refer to the set D as the dataset drawn by the system and each pair

(xk, yk) in D will be called an example or sample.

Model Set: The objective of the learning-by-example problem is to use the

dataset, D, drawn by the system to select a model, h : X → Y , that maps

any given input, x ∈ X , onto a predicted target, ŷ = h(x) ∈ Y . This model

is drawn from a model set, H. It is also common to refer to the model

as a predictor since it is ”predicting” the target selected by the observer.

We assume that each model, h ∈ H, is parameterized by a collection of

parameters that are also called weights, w ∈ W , where W is the weight

set. When it is important to mention this parameterization, we often write

the model parameterized by w as hw : X → Y . In this regard, solving the

learning-by-example uses the dataset, D, to select a weight w ∈ W for a

model hw : X → Y that makes predictions, ŷ = hw(x), for the given input

x ∈ X .

1. PROBLEM STATEMENT 3

Loss Function:. The model h ∈ H predicts the system observer’s response

to a given input x ∈ X . The loss function L : Y × Y → R measures how

well the model estimates the observer’s response to x. Common examples

of loss functions are mean squared error (MSE),

L(y, ŷ) = (y − ŷ)2,

used in regression problems and the binary cross-entropy function,

L(y, ŷ) = y log(ŷ) + (1− y) log(1− ŷ),

used in logistic regression problems. Another common loss function is the

classification error,

L(y, ŷ) = 1(y ̸= ŷ),

used in binary classification problems where 1(·) is an indicator function 1.

These three problems (regression, classification, logistic regression) repre-

sent three major categories of learning-by-example that are often found in

practice.

Ideally, one wants to select a model h ∈ H that minimizes the average

actual risk over all samples that the system can generate. This actual risk

is defined as

R[y] = Ex,y [L(y, h(x))] =

∫ ∫
L(y, h(x))Py,x(x, y)dydx.

The problem with this, however, is that our problem stated that the genera-

tor distribution, Fx(x), and observer distribution, Qy|x(y|x), are unknown.

This means that we cannot evaluate R[h] to see if our model actually mini-

mizes R[h].

Since we cannot evaluate R[h], we invoke the principle of empirical risk

minimization [Vap98]. We first define the empirical risk function with re-

spect to a given dataset D = {(xk, yk)}Nk=1 of N samples drawn by the

1
1(·) is 1 if the logical expression in the parentheses is true and is 0 if false.

4 1. INTRODUCTION - LEARNING BY EXAMPLE

system. The empirical risk of a model h ∈ H with respect to dataset

D = {(xk, yk)}Nk=1 is

R̂D[h] =
1

N

N∑
k=1

L(yk, h(xk)).

This is, of course, the sample mean of L(y, h(x)) and because the samples

(xk, yk) are drawn in an i.i.d. manner from the joint distribution Px,y(x, y)),

we know by the weak law of large numbers (see appendix A) that R̂D[h]→
R[h] as the dataset size, |D| = N , goes to infinity. In particular, we say any

model h ∈ H generalizes beyond its training data if its average empirical

risk is close to the average actual risk. We can make this notion of closeness

more precise by adopting an ϵ − δ definition. Formally, we say a model

h ∈ H generalizes well for any ϵ, δ > 0 if there exists a positive integer,

Nϵ,δ, such that for any dataset D with Nϵ,δ examples we have

PrD

[∣∣∣R[h]− R̂D[h]
∣∣∣ > ϵ

]
< δ.

We refer to Nϵ,δ as the given model’s sample complexity. The deep learning

problem is, therefore, to use a given dataset, D, to select a model h ∈ H
that generalizes beyond its dataset in the sense specified above.

2. Types of Learning-by Example Problems

There are three basic types of learning-by-example problems; binary classi-

fication, regression, and logistic regression. Each problem type is described

below.

2.1. Binary Classification: This is a classical hypothesis testing prob-

lem from detection/estimation theory [VT04]. The binary classification

problem takes an input example, say a vector x ∈ Rn, and classifies it as be-

longing to one of 2 discrete classes. The multi-class classification problem

does this with M discrete classes.

2. TYPES OF LEARNING-BY EXAMPLE PROBLEMS 5

Let us now define binary classification in terms of the three components

identified above for a learning-by-example problem. The system inputs,

x are drawn in an i.i.d. manner from a distribution Fx(x) where x is in

an input set X . The target created by the observer is either 0 or 1, i.e.

y ∈ Y = {0, 1}. The observer’s classification is generated by drawing

the target y from the conditional distribution Qy|x(y|x) in an i.i.d. manner.

The model set, H, consists of function hw : X → {0, 1} where w ∈ W is

a weight parameterizing the model. The loss function is the classification

error

L(y, hw(x)) = 1(y ̸= hw(x)).

In other words the loss is 1 if the model’s prediction is incorrect and is 0

otherwise. The binary classification problem is to find a model, hw ∈ H,

that minimizes the empirical risk

R̂D(w) =
1

N

N∑
k=1

1(yk ̸= hw(xk)),

with respect to a known dataset D = {(xk, yk)}Nk=1. Note that this simply

counts up the number of samples in the dataset that are misclassified by the

model hw. By the law of large numbers we know that this converges to the

true error probability as the size, N , of the dataset goes to infinity.

For a concrete example of a binary classification problem, let us consider

a bank that must decide whether a customer’s loan application is to be ap-

proved or not. The inputs are the loan applications that are randomly drawn

from the pool of city residents wanting a loan. These loan applications con-

tain many different categories of information that include numerical data

attributes (age, wage, assets, and debt) and categorical data attributes (race,

sex). These data attributes are then used by the bank’s human loan officer

to decide whether or not the loan application is approved. The target, there-

fore, is the loan officer’s decision to approve or deny the loan application.

Since there are only two options, this is a binary classification problem.

The machine learning problem arises because the bank wants to replace the

6 1. INTRODUCTION - LEARNING BY EXAMPLE

human loan officer with a computer program to approve or reject all future

loan applications. The computer program would compute the output of a

model, hw, that maps the data attributes in the loan application onto 1 (ap-

prove) or 0 (deny). The machine learning problem is to train this model to

mimic the human loan officer’s past behavior on loan approval. The his-

torical record of all past loan applications and the bank’s human decision

maker would form the samples in the dataset used to train the model.

2.2. Regression Problem: This is the basic parameter estimation prob-

lem from detection/estimation theory [VT04]. We assume there is an un-

known real-valued function g : Rn → R from the real input space, Rn, to

the real target space, R. The samples x ∈ X are drawn in an i.i.d. manner

with respect to distribution Fx(x). The observer takes an input, x ∈ Rn and

creates a continuous valued target y ∈ R through the equation

y = g(x) + n(1)

where n is a zero mean random variable with finite variance. The model set

is a chosen set of functions, hw : Rn → R, parameterized by the weights

w ∈ W . The learning problem is to use a dataset D = {(xk, yk)}Nk=1

generated by the system and use that data to select a model hw that predicts

the noiseless output of the unknown function g. In other words, the dataset

targets, y, are noisy version of g(x) and our model, hw is trying to predict

what the noiseless g(x) is for a given x. The quality of this prediction is

determined by the squared error loss function

L(h, hw(x)) = (y − hw(x))
2

where y is the ”noisy” target generated by the observer in equation (1). We

select the model that minimizes the empirical risk

R̂D(w) =
1

N

N∑
k=1

(yk − hw(xk))
2,

2. TYPES OF LEARNING-BY EXAMPLE PROBLEMS 7

over the datasetD = {(xk, yk)}Nk=1. As dataset size, N , goes to infinity, this

empirical risk, R̂D(w), converges to the mean squared error (MSE)

MSE = R(w) = Ex,y

[
(y − hw(x))

2
]
.

of the model where the expectation is taken with respect to the unknown

system distributions, Fx(x) and Qy|x(y|x).

For a concrete example of a regression problem, let us again consider

the bank that must take a customer’s credit card application and decide what

credit limit to place on the approved card. The inputs are applications drawn

from the pool of customers wanting a credit card. The applications contain

both numerical data (age, wage, debt) and categorical data (sex, race) used

in deciding the credit limit. The credit limit itself is a real-valued num-

ber. The credit limit decided by human bank officers has some variability

because there are several human decision makers. The machine learning

problem is then to train a model that minimizes the mean squared error in

the model’s prediction and the actual credit limits selected by the pool of

human decision makers.

2.3. Logistic Regression. The binary classification problem has binary

valued targets. There are, however, applications where we want to esti-

mate the likelihood of a given decision being correct or not. One exam-

ple of such a problem is predicting the likelihood that a person will have

a heart attacked based on various vital statistics such as cholesterol level,

age, weight, etc. We cannot predict a future attack with certainty for this

individual, but we can say how likely it is for one to occur given the fre-

quency with which such events occur in the entire population for a person

with the given vital statistics. So in this learning problem we want to train

a model hw : Rn → [0, 1] that maps a tensor of real-valued attributes onto

the interval [0, 1] such that hw(x) is the probability that an individual with

attributes vector x ∈ Rn can be classified as 1 (heart attack) or−1 (no heart

attack).

8 1. INTRODUCTION - LEARNING BY EXAMPLE

This learning problem is called logistic regression. Let us try to identify

the three components of logistic regression’s learning-by-example problem.

The system consists of a generator that draws a patient’s attribute vector,

x ∈ Rn, from an unknown distribution Fx(x). The system observer draws

a binary valued target, y ∈ {−1, 1} from the conditional density Qy|x(y|x)
where +1 means the patient had a heart attack and −1 the patient did not

have a heart attack. So the dataset D = {(xk, yk)}Nk=1 is drawn from the

historical record of the population for which we already know the outcome.

What we want to do is train a model that ”learns” this condition density

Qy|x(y|x) from the dataset D. The logistic regression problem therefore

tries to learn Qy |x(y|x) from a dataset D whose samples (x, y) are drawn

with joint distribution Fx(x)Qy |x(y|x) where the target y is binary valued.

We need to identify a suitable model set for this problem. To motivate

our selections, let

q+(x)
def
= Qy|x(y = +1 |x) = Pr(y = +1 |x)

denote the probability that a patient in the dataset with attribute x had a

heart attack, y = +1. We can use Bayes theorem to rewrite q+(x) as

q+(x) =
Pr(x | y = +1)× Pr(y = +1)

Pr(x | y = +1)× Pr(y = +1) + Pr(x | y = −1)× Pr(y = −1)

We define the log likelihood ratio of a person having attribute x having a

heart attack over not having one as

s(x) = log
Pr(x, y = +1)

Pr(x, y = −1)
= log

Pr(x | y = +1)× Pr(y = +1)

Pr(x | y = −1)× Pr(y = −1)

and then note that we can rewrite q+(x) as the following function of this log

likelihood ratio,

q+(x) =
1

1 + e−s(x)

def
= σ(s(x))

This function σ : R→ [0, 1] is called a logistic or softmax function.

2. TYPES OF LEARNING-BY EXAMPLE PROBLEMS 9

We can directly express the observer’s conditional density Qy|x(y|x) in

terms of the logistic function. In particular, note that

Qy |x(y|x) =

{
q+(x) for y = +1

1− q+(x) for y = −1
=

{
σ(s(x)) for y = +1

σ(−s(x)) for y = −1

where we used the fact that the logistic function satisfies 1 − σ(s(x)) =

σ(−s(x)) to obtain the last relation. This last relation suggests that the

model we should choose is a logistic function acting on the log likelihood

function s(x). In other words, hw ∈ H will be

hw(x) = σ(sw(x))

where σ is a logistic activation function acting on a neural network model,

sw(x) with weights w that predicts the log-likelihood ratio s(x) for an input

with attribute x.

To complete the characterization of the logistic regression problem, we

now need to define a suitable loss function that can be used to train the mod-

els σ(sw(x)) from the dataset D. To do this we define a likelihood function

for the model. A likelihood function measures how well a model such as

hw(x) = σ(sw(x)) explains the observed data in datasetD = {(xk, yk)}Nk=1.

The likelihood function is the probability distribution of the given dataset,

D being generated by the system. So we can write it as

L(D |w) =
N∏
k=1

Qy|x(yk |xk) =
N∏
k=1

Qy|x(yk |xk)

Since we have Y = {−1,+1}, we can write

Qy|x(yk |xk) ≈ σ(yksw(xk))

where σ(yksw(xk)) is the model’s estimate of the condition probability.

The optimal set of weights for this model are those that minimize the

negative log likelihood function− 1
N
logL(D|w). Because we deal with the

log likelihood function, the product of probabilities become a sum of log

10 1. INTRODUCTION - LEARNING BY EXAMPLE

probabilities and our expression take the form of a sample mean of these

log probabilities. In other words, the negative log-likelihood function is

− 1

N
logL(D |w) = − 1

N
log

(
N∏
k=1

σ(yksw(xk))

)

=
1

N

N∑
k=1

log

(
1

σ(yksw(xk))

)

= − 1

N

N∑
k=1

log(1 + e−yksw(xk))

The last equation shows that the negative log likelihood can be seen as the

average loss seen over the dataset, in other words it is the model’s empirical

risk, if we take the loss function to be

L(yk, hw(xk)) = − log(1 + e−yksw(xk))

So this is the desired loss function for our logistic regression.

It is important to note that this loss function will be different if our tar-

get has different values. The preceding loss function assumes targets are

in {−1,+1}. If our targets were {0, 1}, then one can show that the loss

function will be

L(yk, hw(xk)) = yk log(σ(sw(xk))) + (1− yk) log(1− σ(sw(xk)))

This is called the binary cross entropy loss function.

3. Neural Network Model Sets

A model set, H, is a collection of models, hw : X → Y , parameterized

by weights, w. The learning by example problem is to find a weight, w∗,

that minimizes the empirical risk with respect to datasetD = {(xk, yk)}Nk=1.

Three important types of model sets; the perceptron, the multi-layer percep-

tron, and deep neural networks are described below.

3. NEURAL NETWORK MODEL SETS 11

3.1. Perceptron: The perceptron [Ros58] is an early neural network

model that appeared in the 1960’s. Perceptron models take the form

hw,b(x) = σ(wTx+ b)(2)

where x ∈ Rn is the input, w ∈ Rn is the weight vector and b ∈ R is

another parameter called a bias, and σ : R → R is an activation function

that is usually taken to be monotone increasing. Since the argument to the

perceptron’s activation function is a linear form, we often refer to percep-

trons as linear machines. The activation function takes a variety of forms.

Commonly used activation functions are shown in Table. 1.

linear step ReLu

y = s y =

{
1 s ≥ 0

0 s < 0
y =

{
s s ≥ 0

0 s < 0

softsign logistic tanh

y = 1
1+|s| y = e−s

1+e−s y = tanh(s)

TABLE 1. Table of Activation Functions

The model in equation (2) is just one type of linear machine. In many

applications the designer introduces a set of basis functions, {ϕk}Nk=1 where

ϕk : Rn → R. Each basis function maps the input x ∈ Rn onto a real

number that we call a feature. The intensity of the ϕk is then a measure

of how strongly the input triggers the given feature. We can stack these

features to form a vector function ϕϕϕ : Rn → RN whose output is then take

as a user designed feature vector for the input, x.

Let us consider basis functions

ϕϕϕ(x) =

[
1

x

]
then we can rewrite the earlier perceptron model from equation (2) as

hw,b(x) = σ(θθθTϕϕϕ(x))(3)

12 1. INTRODUCTION - LEARNING BY EXAMPLE

where θθθ =

[
b

w

]
is an augmented weight vector obtained by stacking the

bias b on top of the original weights, w. The perceptron models in equation

(2) and (3) are clearly equivalent, so we will switch back and forth between

the two representations when it is convenient.

input
layer

Σ

output
layer

weights

1

b

...
... activation

function

FIGURE 2. (left) Perceptron Model - (right) binary classifi-

cation with perceptron

The perceptron’s architecture from equation (2) can be visualized using

the block diagram in Fig. 2. The model has a layered architecture consisting

of an input layer and an output layer. The input vector x is an n-vector in

Rn, but the input layer has n+1 nodes, n of which hold the components of

x and the last n+ 1st node holding the bias parameter b. The outputs of the

input layer are then multiplied by the the weights in the augmented weight

vector θθθ and summed together before being passed through the activation

function σ to obtain the perceptron’s output, y.

Perceptrons can be readily used to solve binary classification problems.

In this case we let the activation function σ be a sgn function and let x be

a real valued vector in Rn. Since the perceptron’s output would then be

y = sgn(wTx), the vector, x will lie to one side of an n − 1 dimensional

hyperplane defined by the equation 0 = wTx. This hyperplane is called a

3. NEURAL NETWORK MODEL SETS 13

discriminant surface and the weight vector w is normal to this hyperplane.

If the input x lies on the side of hyperplane pointed to by w, then the output

is +1, otherwise it is −1. We then have

if x satisfies 0 > wTx, then x is in class ”detected” (+1)

if x satisfies 0 < wTx, then x is in class ”not detected” (-1)

The right side of Fig. 2 illustrates this hyperplane in a 2-dimensional input

space as the blue line. The solid bullets represent inputs when the input is

in class +1 and the circles are inputs when the input is in class −1. This

perceptron in the figure misclassifies some of these inputs. In particular, we

see that two of the −1 inputs are on the left side of the blue line and would

therefore be declared as belonging to class +1. We count up these misclas-

sified inputs to compute the empirical risk of the perceptron model. In this

case, since there are 14 inputs, the empirical risk or estimated classification

error is 2/14 = 1/7.

3.2. Multi-layer Perceptron: Neural networks [RHW86, MR89] are

biologically inspired models that extend the perceptron model in equation

(2). These models are more powerful than perceptron models because we

can prove they have a universal approximation ability [Cyb89]. This means

that a neural network model can approximate any complex target function,

whereas the perceptron is limited to target functions that have an underlying

linearity to them.

The simplest neural network model is called a multi-layer perceptron

(MLP). This model came to prominence in the late 1980’s as the result

of two results. The first result was the universal approximation theorem

mentioned above. The second result was the development of a training

algorithm for MLP’s knows as backpropagation [RHW86].

14 1. INTRODUCTION - LEARNING BY EXAMPLE

The MLP simply adds one hidden layer with M nodes to the original

perceptron shown in Fig. 2. Mathematically the output of the MLP is

y = σ

(
M∑
k=1

αkσ(w
T
k x)

)
(4)

where the input is x ∈ Rn and y ∈ R is a scalar output. The activation

function, σ, is applied to the outputs of the hidden layer and the output layer.

So we now have two sets of weights. For the kth node in the hidden layer

there is a weight vector wk ∈ Rn. There is also another set of scalar weights

{αk}Mk=1 that weights the outputs of the hidden layer. We can therefore also

represent the MLP in matrix-vector form as

y = σ(αααTσ(Wx))

where

ααα =

α1

...

αM

 , W =

wT

1
...

wT
M

 .

The resulting model architecture can now be visualized as shown in Fig. 3.

We again see the layered abstraction, where the hidden layer sits between

the original perceptron’s input and output layers.

3.3. Deep Neural Networks: While backpropagation provided an al-

gorithmic way to efficiently train MLP’s, it was soon found that obtain-

ing good models required careful feature design on the front end. In other

words, the designer would need to select a collection of basis functions

ϕk : Rn → R and then find the weights ααα and WWW that minimized the loss

function for the model

y = σ

(
M∑
k=1

αkσ(w
T
kϕϕϕ(x))

)
.(5)

The problem with this was that the selection of ϕϕϕ was highly dependent

on the application the model was being used for and so good models were

highly dependent on the designer’s sense of what ”good” features should be.

3. NEURAL NETWORK MODEL SETS 15

input
layer

Σ

output
layer

Σ

Σ

Σ

Σ

weights weights

hidden
layer

FIGURE 3. Multi-layer Perceptron Model

In other words, training the model did not really ”learn” how to solve the

learning-by-example problem from scratch. As a result of this realization,

the second wave of neural network research began to dissipate in the 1990’s

and it continued to wither until new results appeared in 2012 with a new

neural network architecture called a deep convolutional neural network.

Deep convolution neural networks were able to exceed the classifica-

tion performance of earlier handwriting classifier MLP’s [LBD+89] that

had used pre-specified features, ϕϕϕ. These improvements were obtained by

using a new model architecture called a deep convolutional neural network

[KSH12]. The unique features of this model were that 1) it had multiple

hidden layers and 2) it had a special structure to the weight matrix, WWW , that

were formed from translation invariant convolution kernels. These results

were considered remarkable because they did not use prior feature engi-

neering. So the 2012 results showed that deep neural network models were

capable of learning ”features” on their own without prior help from human

designers. The resulting deep neural networks set off a resurgence of in-

terest in neural network research based on a model that had deep stacks of

hidden layers. This has led to remarkable progress over the past decade in

16 1. INTRODUCTION - LEARNING BY EXAMPLE

computer vision and natural language processing; progress that appears to

be on the brink of transforming human society.

It should be noted that a number of other trends also played a role in

the explosive interest in deep neural networks. In the first place, there were

advances in object-oriented programming that made it possible to develop

software frameworks that could be used to easily train these extremely large

models. Another important development was the rise of the Internet that

made it possible to easily access extremely large datasets that could be used

for training these more sophisticated models. The other important devel-

opment was the rise of Big Tech companies like Amazon, Google, and

Facebook that used the Internet to gather large datasets and then sought to

monetize that data through advanced deep learning applications. Another

important factor was the ubiquity of mobile phones that essentially put the

Internet in the hands of lay society and provided a ready source of data that

the Big Tech companies took advantage of. All of these developments con-

spired to make deep learning well known to the lay public through the many

apps these companies provided to consumers. Deep learning represents, in

this regard, a transformational technology for human society so that under-

standing how and why it works is essential not only for expanding deep

learning’s potential but also is critical to understanding how we can manage

its disruptive influence on human society.

4. Deep Learning Software Libraries

There are several python software libraries used for deep learning. One

purpose of these lectures is to place one of these python libraries, Tensor-

Flow/Keras, in the hands of students. This section walks through a python

script that uses TensorFlow to instantiate and train a convolutional neural

network using examples from the MNIST database.

4. DEEP LEARNING SOFTWARE LIBRARIES 17

MNIST is a large database of handwritten digits (0 − 9) that is used to

train various image processing systems. The database contains 60,000 train-

ing images and 10,000 testing images. All images are 28×28 monochrome

images where each pixel value is an unsigned 8 bit integer (0 − 255). This

section will demonstrate how TensorFlow can be used to instantiate, train,

and evaluate a simple 2D convolution neural network model that takes the

pixel image and recognizes which digit that image represents.

We start our example by first loading the database. The MNIST dataset

is included in TensorFlow and the following Python script loads the training

and testing samples from TensorFlow’s library of datasets.

from tensorflow.keras.datasets import mnist

(train_images, train_labels),(test_images,test_labels) = mnist.load_data()

This script loads the full database into four Numpy arrays. To speed up

the training time, we are only going to train and test our model on a subset

of these four arrays. In particular, we will train on the first 5000 training

images and first 1000 testing images.

train_images = train_images[:5000,:,:].reshape((5000,28,28,1))

train_labels = train_labels[:5000]

test_images = test_images[:1000,:,:].reshape((1000,28,28,1))

test_labels = test_labels[:1000]

The basic data type used in TensorFlow is a tensor. A tensor is a multi-

dimensional array where the number of dimensions is called the tensor’s

rank. We usually specify a rank-n tensor’s shape by the n-tuple, (x1, x2, . . . , xn),

where xi is the number of array components along that ith dimension. A

vector x =
[
1 2 3

]
, may therefore be seen as a rank-1 tensor with

shape (3,). A matrix x =

 1 1 0

0 1 1

1 0 1

 is a rank-2 tensor with shape (3, 3).

The database train_images array is initially a rank-3 tensor of shape

(60000,28,28). The first command in the above script selects out the first

18 1. INTRODUCTION - LEARNING BY EXAMPLE

5000 images in this array and then reshapes it into a rank-4 tensor of shape

(5000,28,28,1). This is done because the convolutional network we are go-

ing to instantiate is expecting rank-3 tensor images as inputs. The database

train_labels array is a rank-1 tensor of shape (1000). The script’s sec-

ond command pulls out the first 5000 entries of this array. The remaining

commands perform the same operations on the MNIST testing data.

The data arrays generated in the preceding script are actually Numpy

arrays. Training of neural network models will be faster if we use these

Numpy arrays to form dataset objects. Neural network training is usually

not done on the whole dataset at once. Instead, we update a model’s weights

using a smaller batch of inputs in the training set. This is called mini-batch

training and it can be done more efficiently by the computer if we create a

dataset object to be used in training. A dataset object is an iterator that can

be called recursively by the model’s training method. One advantage of the

dataset object is that it can divide up the dataset into batches, that can be

called more quickly at training time. The following script uses the Numpy

arrays to instantiate TensorFlow dataset objects that pre-batch the training

and testing data into batches of 32 samples. The original image data array

consists of unsigned 8 bit integers in the range 0 − 255. Neural network

models train better if the data type is floating point and if they are scaled to

[0, 1]. So the following script also retypes the image data as floating point

and rescales it to [0, 1].

train_ds = tf.data.Dataset.from_tensor_slices((train_images,train_labels))

train_ds. = train_ds.batch(32).astype("float32")/255

test_ds = tf.data.Dataset.from_tensor_slices((test_images,test_labels))

test_ds. = test_ds.batch(32).astype("float32")/255

We instantiate a TensorFlow model object by declaring the layers in the

model and then chaining them together. The following TensorFlow script

shows how to do this for a simple sequential model with two convolutional

layers. This model consists of 5 layers

input→ Conv2D→ Conv2D→ Flatten→ Dense.

4. DEEP LEARNING SOFTWARE LIBRARIES 19

The input layer fixes the shape of the input tensors to (28, 28, 1). The first

two dimensions are called spatial dimensions and the third dimension is

called a channel. For MNIST images, the channel only has 1 component

because all images are monochrome. If these images had been RGB color

images, then this third dimension would have 3 components. These inputs

are fed to convolutional layers. Convolutional layers (Conv2D) are special

layers that perform spatial convolutions on their input tensors. The output

from these layers will be rank-3 tensors where the number of channels is

specified as an argument in the layer’s constructor. In general the spatial

dimensions of this output tensor will be slightly smaller due to the convo-

lution operation. These layers also specify an activation function, ReLu.

The output of the convolutional layers is a rank-3 tensor, but the output of

the model is going to be a rank-1 tensor of shape (10), one component for

each of the 10 digits we want to recognize. The last two layers (Flatten

and Dense) reshape the convolutional layer’s outputs into the shape. The

Dense layer is a fully connected layer similar to what we see in an MLP’s

hidden layer. In this example, we use a softmax activation function so the

model outputs are real-valued numbers between 0 and 1.

from tensorflow import keras

from tensorflow.keras import layers

inputs = keras.Input(shape=(28,28,1))

x = layers.Conv2D(filters=2, kernel_size=5, activation="relu")(inputs)

x = layers.Conv2D(filters=4, kernel_size=5, activation="relu")(x)

x = layers.Flatten()(x)

outputs = layers.Dense(10,activation="softmax")(x)

model = keras.Model(inputs=inputs, outputs = outputs)

model.summary()

It is common practice to look at the shape of each layer’s output. This

is done to make sure the tensor shapes are correct. For this example, we

therefore see the following sequence of tensor shapes

input

(28, 28, 1)
→

Conv2D

(24, 24, 2)
→

Conv2D

(20, 20, 4)
→

Flatten

(1600)
→

Dense

(10)

20 1. INTRODUCTION - LEARNING BY EXAMPLE

This particular model has a total of 16266 trainable weights.

We are now ready to train the model declared above using the dataset

objects we created. Training is done by evaluating the gradient of the em-

pirical risk evaluated for a mini-batch of data and then using that gradient to

update the trainable weights. This procedure is done multiple times as part

of a gradient search algorithm. Before conducting the gradient search, we

need to configure the structures used to compute the gradient. This is done

through the model’s compile method.

model.compile(loss = "sparse_categorical_crossentropy",

optimizer = "rmsprop",

metrics = ["accuracy"])

The preceding compile command configures the optimizer used in

computing the gradient. In this method we first declare which loss func-

tion we are using. Since this is a multi-class classification problem we use

a variation of the binary crossentropy function called a sparse categorical

crossentropy function. The optimizer determines how the computed gradi-

ent will be used to update trainable weights. Finally, the compile command

declares which metrics will be used to assess how well model training is

progressing. Recall that the gradient search tries to minimize the aggre-

gated loss of the model on the training dataset. This loss, however, was

chosen to facilitate training, it may not correspond to what the user might

really be interested in optimizing. Classifiers are ultimately concerned with

the prediction accuracy; the number of correct classifications divided by

the total number of classifications made. So the last entry in the compile

method specifies that it wants to keep track of training ”accuracy” over the

course of training. Training is done using the model’s fit method. The

following script shows how this method is invoked.

callbacks = [

keras.callbacks.ModelCheckpoint(

filepath="test_model.keras",

save_best_only = True,

4. DEEP LEARNING SOFTWARE LIBRARIES 21

monitor = "val_loss"

)

]

history = model.fit(train_ds,

epochs=30,

validation_data = test_ds,

callbacks = callbacks)

Model training is done using the training dataset object, train_ds.

Recall that this object pre-batched the first 5000 samples of the MNIST

database into mini-batches of 32 samples. Each mini-batch is used to com-

pute a gradient update to the weights. A training epoch corresponds to a

complete pass through all of the training set’s batches. This example trains

the model for 30 epochs. At the end of each epoch, we use the testing

dataset object, test_ds, to evaluate the model’s aggregate loss and accu-

racy. At the end of each epoch we use a callback function to ”save” the

current model if the loss evaluated on the test data is smallest of all past

evaluating testing losses. Finally, we save this the testing/training losses

and accuracy for each epoch in the history object. The following script

shows how the history object is used to monitor how well our training

process went.

test_model = keras.models.load_model("test_model.keras")

test_loss, test_acc = test_model.evaluate(test_ds)

import matplotlib.pyplot as plt

train_loss = history.history["loss"]

val_loss = history.history["val_loss"]

train_acc = history.history["accuracy"]

val_acc = history.history["val_accuracy"]

epochs = range(1, len(train_loss) + 1)

figure, axis = plt.subplots(1,2)

axis[0].plot(epochs, train_loss, "b--", label = "Training loss")

axis[0].plot(epochs, val_loss, "b", label = "Validation loss")

axis[0].set_title(f"Best Model Loss: {test_loss: .3f}")

axis[0].legend()

22 1. INTRODUCTION - LEARNING BY EXAMPLE

axis[1].plot(epochs, train_acc, "b--", label = "Training Accuracy")

axis[1].plot(epochs, val_acc, "b", label = "Validation Accuracy")

axis[1].set_title(f"Best Model Accuracy: {test_acc: .3f}")

axis[1].legend()

The preceding script first reloads to ”best” model that was obtained dur-

ing training. It then evaluates the loss and accuracy of that model on the test-

ing dataset test_ds. The past history of training/testing loss/accuracy

is stored in arrays and then plotted to show how these measures of train-

ing performance behaved over each epoch. The results are shown below in

Fig. 4.

FIGURE 4. Training/Validation Loss/Accuracy as a function

of epoch

Fig. 4 shows the training curves for this model. The left hand plot shows

how accuracy changes over training epochs. The right hand plot shows how

loss changes over training epochs. Let’s look at the loss curves. We see

that the training loss is a monotone decreasing function of epoch number.

This is to be expected, since training uses follows the gradient of the ag-

gregated loss function to reduce that loss after the update. The solid curve

shows the testing (a.k.a. validation) loss. This was obtained by evaluating

4. DEEP LEARNING SOFTWARE LIBRARIES 23

the model’s loss on the testing data, rather than the training data. The test-

ing loss provides a measure of loss that is statistically independent of the

training loss. In general, testing loss will be a more accurate estimate of the

model’s actual loss R[h]. What we see is that while the testing loss is ini-

tially decreasing, after about the 15th epoch the testing loss begins increas-

ing. In other words, our training is no longer ”generalizing” to data samples

that were outside of its training dataset. We refer to this as model over-

fitting. It means, essentially, that the model has ”memorized” the training

data in such a way that it cannot recognize samples outside of that training

set. Overfitting commonly occurs in training deep learning models and it is

important to know how to detect when it occurs and what steps one might

take to reduce its impact. The next set of lectures provide a statistical basis

for explaining why overfitting occurs.

Remember that we had ”saved” the model with the best testing loss as

we trained it. Overfitting is the reason for doing this. At the end of training,

we are left with the model at the 30th epoch. But what the training curve

for loss shows is that we really should have stopped training around epoch

15 and used that as our final model. The callback we introduced during

training allows us to do just that. We can then evaluate the actual testing

loss/accuracy on that ”best” model. The title of each plot in Fig. 4 shows

those values. Now let us look at the accuracy curve. We see that training

accuracy is a monotone increasing function of epoch that approach perfect

accuracy. The testing accuracy is also monotone increasing but it tends to

stop improving and reaches a maximum value of 0.93.

CHAPTER 2

Generalization - a statistical approach

Learning by example uses a finite dataset, D, to select a model, h, from a

model set,H that minimizes the empirical risk of that model on the dataset.

The dataset,D = {(xk, yk)}Nk=1 consists of ordered pairs of inputs, xk ∈ X ,

and targets, yk ∈ Y , that are drawn in an i.i.d. manner from a joint system

probability distribution, P (x,y). The model, h : X → Y , is selected from

a model set, H, containing models that map the input, x, onto a predicted

target, ŷ = h(x). The learning-by-example problem selects an optimal

model, h∗ that minimizes the model’s empirical risk on the given datasetD,

R̂D[h] =
1

N

N∑
k=1

L(yk, h(xk))

where L : Y × Y → R is a loss function representing the loss or error in

using the predicted output h(xk) versus the true target yk.

While our optimal model minimizes the empirical risk over the data set

D, we really want a model that minimizes the actual risk

R[h] = Ex,y [L(y, h(x)]

where y and x are random target/input variables with an unknown joint

probability distribution. Since that distribution is unknown, however, we

cannot evaluate the actual risk and can therefore not directly find the model

minimizing R[h]. We do know that as the size N of the dataset goes to

infinity, then the weak law of large numbers asserts the empirical risk R̂D[h]

converges with probability 1 to the actual risk. So the problem is to have a

large enough dataset to ensure the risk difference, |R̂D[h] − R[h]| is small.
25

26 2. GENERALIZATION - A STATISTICAL APPROACH

Clearly it would be useful to know how the dataset’s size, N , impacts the

risk difference of the trained model.

Determining that relationship is complicated by the fact that the dataset,

itself, is a random variable. This occurs because dataset samples are ran-

domly generated in an i.i.d. manner. As a result the empirical risk, R̂D[h] is

also a random variable and so we cannot simply require that the risk differ-

ence |R̂D[h]−R[h]| is always small. There will always be a chance that we

selected a dataset for which the risk difference is large and so rather than

requiring our model to ”minimize” the risk difference, we select the model

to limit the probability that the risk difference is large. If we can do this

then we say that the model generalizes beyond its training data. Formally

we say the model, h∗, generalizes beyond the training data if for any ϵ > 0

there exists δ > 0 such that

PrD

{∣∣∣R̂D[h
∗]−R[h∗]

∣∣∣ ≥ ϵ
}
≤ δ

Such a model is also said to be probably approximately correct or PAC

learnable. This statement says that the probability over all possible datasets

of the risk difference being greater than ϵ is less than δ. The parameter ϵ is

the model’s generalization ability and 100×(1−δ) represents the confidence

level of that bound on the generalization ability. In this chapter we study

how this generalization ability varies as a function of dataset size N and the

complexity or size of the model setH. The results from our study will help

explain the shape of the training curves in Fig. 4 in chapter 1.

1. Infeasibility of Perfect Learning

This section uses a specific example to concretely illustrate the fact that we

cannot always select a model that is “perfect” in the sense that minimizing

the empirical risk also minimizes the actual risk. Let us consider a learning-

by-example problem in which the system is modeled as a Boolean function,

f : {0, 1}3 → {0, 1} that maps a 3-d Boolean vector, x ∈ {0, 1}3, onto

a binary class label y ∈ {T,F}. Fig. 1 illustrates this unknown system

1. INFEASIBILITY OF PERFECT LEARNING 27

function as a 3-d hypercube whose vertices represent the 8 different inputs

X = {000, 001, 010, 011, 100, 101, 110, 111}

The figure labels each vertex with one of the input vector. If the vertex is

”solid”, then the target for that input is TRUE. If the vertex is ”open”, then

the target is FALSE. The hypercube shown in Fig. 1 therefore represents a

specific Boolean function we are trying to learn a model for.

000
001

010

100 101

011

110
111

tr
ai

ni
ng

 d
at

a
te

st
in

g
da

ta

FIGURE 1. Perfect learning by example is not feasible

We are going to assume we have two datasets; a training dataset and a

test dataset. The training dataset has 5 pairs of inputs and targets that agree

with the mappings shown on the hypercube in Fig. 1. So the training dataset

is

Xtrain = {(000, F), (001, T), (010, T), (011, F), (100, T)}

We also form a test dataset of 3 samples for the remaining vertices not in

the training data

Xtest = {(101, F), (110, T), (111, T)}

We now assume that we form a model setH consisting of Boolean func-

tions that map all of the training inputs onto their correct training targets in

Xtrain. There are 8 such Boolean functions that we denote as f1, f2, to f8.

The targets generated by these 8 models are shown in the table of Fig. 1.

28 2. GENERALIZATION - A STATISTICAL APPROACH

The training data corresponds to the first 5 rows of the table and the test-

ing data corresponds to the last 3 rows. Our unknown Boolean function

shown in the hypercube is one of these 8 models. In particular, the model

f4 corresponds to the actual function. If we were to select f4 from H then

we minimize the empirical risk on the training data since all training sam-

ples are correctly classified and we also minimize the empirical risk on the

testing data since all testing samples are also correctly classified.

The problem we have, however, is that since we can only use the training

samples to select a model, there is no reason why we could not pick any of

the other 7 models because those models also perfectly classify all training

samples. If we look at the risk of these other models on the testing data,

however, we see that the error rate ranges from 0% (for model f4) to 100%

(for model f5). In other words, we have no rational way of selecting a model

that is ”always” perfect and so we must adopt a more sophisticated way of

describing what it means for a model to be optimal. In particular, we want a

way to ensure that a model with minimal risk on the training data also has a

small risk on a set of testing data samples that are statistically independent

of the training dataset samples.

2. PAC Learning

This impossibility of learning ”perfect” models is a special case of a result

establishing the unlearnability of regular languages from positive and neg-

ative examples [Ang87]. A common approach for dealing with impossible

problems is to simply change the problem’s solution concept. In our case,

this means that instead of requiring a perfect model, we require a model that

is probably approximately correct (PAC). This is referred to as PAC learn-

ing [Val84]. PAC learning requires that the probability is large (probably)

for the model’s prediction being within a small distance (approximately cor-

rect) of the actual target. It is this notion of PAC-learning that will allow

2. PAC LEARNING 29

us to formally demonstrate that the learning-by-example problem is indeed

tractable in a statistical sense.

To formally define the PAC concept, let us first review the problem state-

ment we gave in chapter 1. The learning-by-example problem has three

components. There is a system formed from the cascade connection of a

generator and an observer. The generator draws an input, x ∈ X , in an

i.i.d. manner from a generator distribution, Fx(x). The observer draws a

target, y ∈ Y , in an i.i.d. manner from the observer’s conditional distri-

bution, Qy|x(y|x). The training data set, D = {(xk, yk)}Nk=1, is a finite

set of samples consisting of ordered pairs of inputs, xk ∈ X , and targets,

yk ∈ Y , drawn in an i.i.d. manner from the system’s joint distribution

Px,y(x, y)
def
= Fx(x)Qy|x(y|x). We are going to confine our attention to a

binary classification problem since the PAC concept is a bit easier to define

for this problem. This means, therefore, that the target set, Y = {0, 1}, is

binary.

The second component of our problem is a model set, H, consisting of

models, hw : X → Y , that are parameterized by a weight, w ∈ W . A

model, hw ∈ H, is used to predict the system observer’s output, y ∈ Y , in

response to a given input x ∈ X . We use a loss function, L : Y × Y → R
to characterize how close the model’s prediction, hw(x), for a given x ∈ X

is to the target, y ∈ Y , selected by the system observer. Since we are

confining our attention to a binary classification problem, the loss function

is the classification error

L(y, hw(x)) = 1 {y ̸= hw(x)} .

which is 1 if the model disagrees with the true target and is zero otherwise.

The average loss over a given data set, D = {xk, yk}Nk=1 drawn by the

system, is called the empirical risk function. For a model h ∈ H, this

function is

R̂D[h] =
1

N

N∑
k=1

1(h(xk) ̸= yk).

30 2. GENERALIZATION - A STATISTICAL APPROACH

The optimal model, h∗ ∈ H, is then any model that minimizes the empirical

risk, R̂D[h] with respect to the given data set D.

We are interested in characterizing how close the optimal model, h∗, is

to minimizing the actual risk function,

R[h] = Ex,y {1(y ̸= h(x))} .

The actual risk is the expected value of the loss function with respect to

the system’s joint distribution, Px,y(x, y). It is important to note that the

training data set, D, was selected at random by the system. This means

that D is actually a random variable and so the empirical risk R̂D[h
∗] of the

optimal model, h∗, will also be a random variable. So when we consider

how close the optimal model’s actual risk is to the empirical risk, we must

consider this in a probabilistic sense.

We want to find models that not only minimize the empirical risk, but

we also want the probability to be large for the model’s empirical risk being

”close” to the actual risk. We formalize this by saying that the model h∗ ∈
H is probably approximately correct (PAC) if for any ϵ > 0 there exists

δ ∈ (0, 1) such that

PrDDD

{∣∣∣R̂DDD[h
∗]−R[h∗]

∣∣∣ ≥ ϵ
}
≤ δ.(6)

This inequality says that for any arbitrary tolerance level, ϵ, the probability

of the risk difference,

∆RD[h]
def
=
∣∣∣R̂DDD[h

∗]−R[h∗]
∣∣∣ ,(7)

violating that tolerance is less than some small probability, δ ≪ 1. We also

refer to the risk difference as the model’s generalization error. What PAC

learning says is that the probability of the generalization error being greater

than ϵ is less than δ. We often refer to 100 × (1 − δ) as the confidence

level of the bound. The following sections take a closer look at how we can

determine this confidence level as a function of the chosen tolerance level,

ϵ. We will first do this for finite model sets and then examine how it can be

extended to model sets with an infinite number of models.

3. CONCENTRATION INEQUALITIES 31

3. Concentration Inequalities

We are interested in determine the relation between δ and ϵ in the PAC con-

dition of equation (6). The risk difference
∣∣∣R̂D[h]−R[h]

∣∣∣ in that equation

is a non-negative random variable. This means we can use concentration

inequalities from probability theory to find that relationship. These concen-

tration inequalities are all “boosted” versions of the Markov inequality. This

section reviews those concentration inequalities we will be using in the re-

mainder of the chapter. The results are presented without formal proof since

these proofs can be found in a variety of other references [BLM13].

The Markov inequality says that if x is a non-negative random variable,

then for any ϵ > 0 we have

Pr {x ≥ ϵ} ≤ E[x]
ϵ

(8)

This says, essentially, that x can be seen as concentrating around its mean

value. To justify this assertion, let us take ϵ = δE[x] so that the Markov

inequality becomes

Pr {x ≥ δE[x]} ≤ 1

δ

So if we let δ get large, then the probability that x takes values far away

from its mean value gets arbitrarily small.

The bound implied by the Markov inequality, however, is relatively loose

which limits its usefulness. Concentration inequalities provide a way to

tighten that bound by using a boosting function, ϕ : X → R+, that is non-

decreasing on X such that E{|ϕ(x)|} is finite. The random variable ϕ(x)

will also be non-negative and because ϕ is nondecreasing we can readily

see that

Pr {x ≥ ϵ} ≤ Pr {ϕ(x) ≥ ϕ(ϵ)}

If we then apply the Markov inequality to ϕ(x), we can conclude

Pr {x ≥ ϵ} ≤ E[ϕ(x)]
ϕ(ϵ)

(9)

32 2. GENERALIZATION - A STATISTICAL APPROACH

If the boosting function ϕ(ϵ) = ϵ is linear, then this is the original Markov

inequality. But if we choose the boosting function to increase at a rate that

is more than linear then we can tighten the right hand side of the preceding

bound.

To see how we might use this idea, let’s consider a boosting function,

ϕ(ϵ) = ϵ2 that grows at a quadratic rate, rather than a linear rate. If we then

consider the non-negative random variable

y = |x− E[x]|

then applying the boosted Markov inequality in equation (9) implies

Pr {|x− E[x]| ≥ ϵ} = Pr {y ≥ ϵ} ≤ E[y2]

ϵ2
=

var(x)

ϵ2
(10)

This last equation is called the Chebyshev inequality.

We can use the Chebysev inequality to prove the weak law of large num-

bers (WLLN). WLLN says that if we have a sequence {xk}Nk=1 of N random

variables drawn in an i.i.d. manner with E[|xk|] < ∞ and var(xk) < σ2,

then the sample mean of this sequence is a random variable

zN =
1

N

N∑
k=1

xk

that converges in probability to the expected value of zN as N →∞.

The proof of the WLLN will be somewhat useful to us, so I walk through

it below. First observe that

E[zN] =
1

N

N∑
k=1

E[xk], var(zN) =
1

N2

N∑
k=1

var(xk)

3. CONCENTRATION INEQUALITIES 33

So we have

Pr {|zN − E[zN]| ≥ ϵ} = Pr

{∣∣∣∣∣ 1N
N∑
k=1

xk −
1

N

N∑
k=1

E[xk]

∣∣∣∣∣ ≥ ϵ

}

= Pr

∣∣∣∣∣ 1N

N∑
k=1

xk −
1

N

N∑
k=1

E[xk]

∣∣∣∣∣
2

≥ ϵ2

≤

N∑
k=1

var(xk)

Nϵ2
≤ σ2

Nϵ2

where the last inequality comes from the Chebyshev inequality.

So for any ϵ we choose, we have a δ(ϵ) = σ2

Nϵ2
that goes to zero as N →

∞, which is sufficient to to establish limN→∞ Pr {|zN − E(zn)| ≥ ϵ} = 0.

This proof says that zN clusters around its average as N →∞. But what is

of concern to us is the rate at which that clustering occurs. From the proof

we see the rate of convergence is governed by a 1/N term that we may find

too slow to be of practical value. So we will try to obtain a faster rate of

convergence on the bound by using an exponential (rather than quadratic)

boosting function.

Let us consider the exponential boosting function

ϕ(ϵ) = eλx

where λ > 0. Using the same ideas as before we can say that

|x− E[x]| ≥ ϵ ⇐⇒ eλ|x−E[x]| ≥ eλϵ

which would imply that

Pr {|x− E[x]| ≥ ϵ} = Pr
{
eλ|x−E[x]| ≥ eλϵ

}
We now apply the Markov inequality to deduce that

Pr {|x− E[x]| ≥ ϵ} ≤ E[eλ|x−E[x]|]

eλϵ
(11)

which gives us the concentration inequality known as the Chernoff bound.

34 2. GENERALIZATION - A STATISTICAL APPROACH

The Chernoff bound can be used to to derive another concentration in-

equality for bounded random variables that is critical for establishing bounds

on the generalization ability in learning-by-example problems. This con-

centration inequality is known as the Hoeffding inequality and we state it

below without proof.

THEOREM 1. Hoeffding Inequality: Let xk be an i.i.d. random variable

with xk ∈ [a, b] for all k, then

Pr

{
1

N

∣∣∣∣∣
N∑
k=1

(xk − E[xk])

∣∣∣∣∣ ≥ ϵ

}
≤ exp

(
−2Nϵ2

(b− a)2

)
(12)

The importance of the Hoeffding inequality rests on the fact that its con-

vergence rate scales as e−2N rather than 1/N as suggested by the WLLN.

So the bounds we need to compute on the risk difference will get exponen-

tially tighter as the dataset size N → ∞, rather than the 1/N convergence

rate suggested in our proof for the WLLN.

4. Generalization Ability of Finite Model Sets

This section derives the (ϵ, δ) bounds in the PAC learning equation (6) when

the model set H has a finite number, M , of models. These bounds will

be derived using the concentration inequalities presented in the previous

section.

The bounds we derive below are probabilistic because the dataset D is

a random variable. We will find it convenient to provide some notational

conventions used in characterizing such random variables (see appendix).

The dataset random variableD is defined with respect to a probabiity space,

(Ω,F , µ) where Ω is a set of outcomes, F is a sigma-algebra on Ω, and

µ : Ω → [0, 1] is a probability measure. Each element ω of Ω is called

an outcome. The dataset random variable, D : Ω → ∆N that maps each

outcome, ω, onto a particular dataset, where we let ∆N denote the set of

all possible datasets {(xk, yk)}Nk=1 with N samples. We define an event as

4. GENERALIZATION ABILITY OF FINITE MODEL SETS 35

any subset of Ω consistent with the sigma algebra F . An event A ⊂ F
generated by a random variable D may therefore be written as

A = {ω ∈ Ω : some condition on D(ω)}

where D(ω) is the specific value that the random variable D takes with

respect to outcome ω. For example if A is an event that occurs when the

risk difference of model h ∈ H over a randomly chosen dataset, D, is less

than a specified ϵ then we could write

A(h) =
{
ω ∈ Ω : ∆RD(ω)[h] < ϵ

}
where the event is a function of the given model h. The probability of that

event occurring would then be written as µ(A(h)).

With these notational conventions in hand and recognizing that model

h’s risk difference, ∆RD[h] = |R̂D[h] − R[h]|, is a non-negative random

variable, a direct application of the Chebyshev inequality (10) allows us to

conclude that

µ
({

ω ∈ Ω : ∆RD(ω)[h] ≥ ϵ
})
≤ var(y ̸= h(x))

Nϵ2
≤ 1

Nϵ2
(13)

Since this probability is inversely proportional to dataset size, N , we can see

that as the dataset size grows, the likelihood of having a large risk difference

goes to zero. This inequality states that for any ϵ > 0 we can choose δ =
1

Nϵ2
to ensure the PAC learnability condition in equation (6) is satisfied.

The generalization error in equation (13) provides a probabilistic upper

bound on the model’s, h, true risk, R[h]. Letting δ = 1
Nϵ2

, we can can solve

for ϵ (the generalization error) as a function of N and δ and then can assert

R̂D[h]−
√

1

Nδ
≤ R[h] ≤ R̂D[h] +

√
1

Nδ

with a confidence level of 100 × (1 − δ). This equation sandwiches the

true risk, R[h], between two different terms derived from the empirical risk,

R̂D[h], that we computed on the given dataset. Note that as the dataset

size increases, the difference between the two bounds goes to zero, thereby

36 2. GENERALIZATION - A STATISTICAL APPROACH

suggesting that for large datasets we can use R̂D[h] as an estimate of the

true risk.

We define a model set’s sample complexity as the dataset size, Nϵ,δ, re-

quired to ensure a specified generalization error, ϵ with desired confidence

level, 100 × (1 − δ). From equation (13) we have 1
Nϵ2
≤ δ so the sample

complexity is bounded as

Nϵ,δ ≥
1

δϵ2
(14)

The bound we computed in equation (13), however, is not exactly what

we want. This equation characterizes the PAC learnability of any model

h ∈ H. But we are really interested in PAC-learnability of a specific model

in H, namely the model h∗ that minimizes the empirical risk with respect

to a specific dataset, say D∗. For convenience let us define the following

events,

Aϵ(h) =
{
ω ∈ Ω : ∆RD(ω)[h] < ϵ

}
=

{
Event for Model h’s risk difference being less than ϵ

on any randomly selected dataset

}
Ac

ϵ(h) =
{
ω ∈ Ω : ∆RD(ω)[h] ≥ ϵ

}
=

{
Event for Model h’s risk difference being greater

than ϵ on any randomly selected dataset

}

The following clearly holds for h∗

Aϵ(h
∗) ⊇

⋂
h∈H

Aϵ(h) =

{
Events where risk difference

is less than ϵ for all h ∈ H

}

The complement of this event is

Ac
ϵ(h

∗) ⊂
{
ω ∈ Ω : ∆RD(ω)[h

∗] ≥ ϵ
}
=
⋂
h∈H

Ac
ϵ(h)

4. GENERALIZATION ABILITY OF FINITE MODEL SETS 37

Using the fact that H = {h1, h2, . . . , hM} is finite with M models, and

applying the probability measure µ to the above events gives

µ(Ac
ϵ(h

∗)) =

{
Probability that optimal model’s risk

difference is greater than ϵ

}
≤ µ

(
M⋂
k=1

Ac
ϵ(hk)

)
≤

M∑
k=1

µ(Ac
ϵ(hk))

where the last inequality was obtained Boole’s inequality (aka union bound)1.

The terms in the summation are probabilities that we bounded in equa-

tion (13), so using those bounds above we get

µ(Ac
ϵ(h

∗)) = µ
({

ω ∈ Ω : ∆RD(ω)[h
∗] ≥ ϵ

})
≤

M∑
k=1

µ
({

ω ∈ Ω : ∆RD(ω)[hk] ≥ ϵ
})

≤
M∑
k=1

1

Nϵ2
=

M

Nϵ2

The right hand side is the δ needed to establish that h∗ is PAC learnable.

The sample complexity of the optimal model is therefore

Nϵ,δ ≥
M

δϵ2

and the optimal model’s true risk can be sandwiched between two bounds

formed from the model’s empirical risk as

R̂D[h
∗]−

√
M

Nδ
≤ R[h∗] ≤ R̂D[h

∗] +

√
M

Nδ

with a confidence of 100× (1− δ).

The PAC learnability bounds established above using the Chebyshev in-

equality have limited value. If we require µ(Ac
ϵ(h

∗))≪ 1 to be small, then

this requires N ≫ M . In other words we must have many many more

dataset samples than models in H. Moreover while the bound on R[h∗]

1Boole’s Inequality: Let A and B be two events in probability space (Ω,F , µ), then

µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B) ≤ µ(A) + µ(B).

38 2. GENERALIZATION - A STATISTICAL APPROACH

goes to zero as dataset size, N goes to infinity, the rate of convergence is

very slow, thereby limiting the use of these bounds to only very small model

sets. For this reason we try to find a stronger bound on the PAC generaliza-

tion errors in equation (??) by using a concentration inequality based on an

exponential bound. In particular, we will use the Hoeffding inequality that

was introduced in the preceding section.

An application of the Hoeffding inequality (rather than the Chebyshev

inequality) gives us the following probability for event Ac
ϵ(h),

µ (Ac
ϵ(h)) = PrD {∆RD[h] ≥ ϵ} ≤ 2e−2Nϵ2

Using the same arguments for bounding the probability of Ac
ϵ(h

∗) for the

optimal model we get

µ(Ac
ϵ(h

∗)) = PrD

{∣∣∣R̂D[h
∗]−R[h∗]

∣∣∣ ≥ ϵ
}
≤ 2Me−2Nϵ2

If we then take δ = 2Me−2Nϵ2 , then this again establishes the PAC learn-

ability of the optimal model. The difference lies in our bounds for the

sample complexity and the error in estimating the true risk. The sample

complexity obtained using the Hoeffding bound now becomes

Nϵ,δ ≥
1

2ϵ2
log

(
2M

δ

)
So that the dataset size needed to achieve (ϵ, δ) learnability scales with

logM , rather than M , so our dataset sizes need not be as large. The true

risk is bounded as

R̂D[h
∗]−

√
1

2N
log

2M

δ
≤ R[h∗] ≤ R̂D[h

∗] +

√
1

2N
log

2M

δ

with confidence 100× (1− δ). We now see that if we use the empirical risk

to estimate the true risk we need a much smaller testing set since again this

bound scales as logM rather than M .

The preceding analysis was relevant to finite model sets, but obviously

neural network model sets are not going to be finite since the weights lie in

a vector (tensor) space. So we need to find a way to modify the preceding

5. GROWTH FUNCTION FOR INFINITE MODEL SETS 39

analysis so it can be used on infinite model sets. The trick we will use

is to change the way we count the size of the model set and develop an

alternative measure of the model set’s richness or complexity based on a

quantity known as the Vapnik-Chervonenkis (VC) dimension.

5. Growth Function for Infinite Model Sets

The PAC learnability conditions from the preceding sections assumed the

model set H had a finite number of models. This will not be the case for

neural network model sets whose weight vectors lie in a dense vector space

for these model sets contain an uncountably infinite number of models. To

bound the generalization ability of such model sets, we will need to alter-

native measures of model set complexity that are inherently finite in nature.

FIGURE 2. Two of these

models have the same empiri-

cal risk

The binary classification problem in

Fig. 2 shows that model set cardinality

overcounts a model set’s complexity. The

figure shows an input space, R2, where we

have marked the inputs of the dataset, D.

The inputs shown as solid bullets have tar-

get label, +1, and the inputs shown as open

bullets have target label, −1. We assume

the model set H has three models whose

weight vectors, w1, w2, and w3 form the

blue hyperplanes shown in Fig. 2. Observe

that two of these classifiers (hw2 and hw3)

misclassify the same number of dataset in-

puts and so these tow models have the same empirical risk. This observation

suggests that the number of models (in this case 3) overestimates the rich-

ness of the model set since 2 of these models have the same empirifal risk.

Fig. 2 suggests that an alternative way of measuring the model set’s rich-

ness is to ground that measure in the classification task. In particular, that

40 2. GENERALIZATION - A STATISTICAL APPROACH

richness may be better measured by counting the number of models in H
that lead to distinct labelings of the dataset, rather than using the cardinality

ofH. This idea is sometimes referred to a machine capacity [Cov64].

We now formalize what we mean by counting up the distinct labeling

of a model set. Let D = {(xk, yk)}Nk=1 denote a data set with inputs xk ∈
X ⊂ Rn and targets yk ∈ {−1,+1}. Because these samples were drawn

at random, we treat the dataset, D, as a random variable. The model set,

H, consists of functions h : X → {−1,+1} that maps inputs xk ∈ X onto

either −1 or +1. We define a labeling of the data set D by a model h ∈ H
as the set

lable(h,D) def
= {h(xk)}Nk=1

The set of all possible ways the given model can ”classify” the dataset sam-

ples is called a dichotomy of the samples. The set of all such dichotomies

of D generated by all models inH is then denoted as

dichotomy(H,D) def
=
⋃
h∈H

label(h,D)

What we propose to do is use the maximum number of distinct dichotomies

as a measure of the model set’s richness. In particular, if we let ∆N de-

note the collection of all possible datasets with N samples, then the growth

function of model set H is the function mH : Z>0 → Z>0 such that for any

positive integer N

mH(N)
def
= max

D∈∆N

|dichotomy(H,D)|

In other words mH(N) denotes the maximum number of distinct labelings

of any dataset of N samples that can be generated by any model in H. We

call this the growth function of the model set since it counts the number of

distinct labelings generated by the model set as the size of the dataset, N ,

grows.

To better illustrate what the growth function measures, let us consider a

specific example. In this example the model set, H, is formed form linear

5. GROWTH FUNCTION FOR INFINITE MODEL SETS 41

classifiers solving a binary classification problem with inputs in R2. Let

us consider a dataset with N = 3 samples. These datasets fall into one of

two groups; either all inputs are collinear or they are not collinear. Let ∆lin

denote the set of all datasets whose 3 input samples are collinear. Fig. ??
shows that =there are only 6 ways these three sample inputs can be parti-

tioned into two classes by a linear classifier. This means, therefore that

|dichotomy(H,Dlin)| = 6

FIGURE 3. Growth function example showing there are

only 6 ways that a linear classifier can partition 3 collinear

input samples in R2 into two classes.

Now let us turn our attention to the next group of datasets, ∆no−lin, whose

input samples are not collinear. Fig. 4 shows that there 23 = 8 possible

ways of partitioning three non-collinear inputs into two classes using a lin-

ear classifier. This means, therefore that

|dichotomy(H,Dno−lin)| = 8

So for datasets of size N = 3, the growth function will be the maximum

cardinality of the dichotomy sets for the collinear and non-collinear groups.

In other words we have

mH(3) = max
D∈∆lin∪∆no−lin

|dichotomy(H,D)| = max{6, 8} = 8

Similar logic can be used to evaluate the growth function for a dataset

of 4 inputs samples in R2. There are three cases; all points aligned, 3 out

of 4 aligned, and no 3 points out of 4 are in a line. Using the same logic

as before, one can deduce that if all 4 points are aligned there should be

10 distinct labelings. If three out of four points are aligned then there are

12 distinct labelings. If no 3 out of 4 points are aligned then there are 14

42 2. GENERALIZATION - A STATISTICAL APPROACH

FIGURE 4. Growth function example showing there are 8

ways that a linear classifier can partition 3 non collinear in-

put samples in R2 into two classes.

distinct labelings. We can therefore conclude that mH(4) = 14. This type

of reasoning, however, is a task of exponentially growing complexity. That

complexity means that actually computing the growth function for a model

set is, in general, a computationally intractable problem. So rather than

seeking an explicit way of evaluating mH, we will try to identify computa-

tionally tractable bounds on the growth function using a quantity called the

Vapknik-Chervonenkis or VC dimension.

We define the VC dimension of model set H as follows. We say that a

model setH shatters a data setD if it can distinctly label all dichotomies of

the data set D of size N . If no data set of size k can be shattered by model

set H, then k is called a break point for H. So if k is a break point then

any ℓ > k is also a break point of the model set. The Vapnik-Chervonenkis

or VC dimension of model set, H, is the largest value of N that can be

shattered by any model in the model set H. We denote the VC dimension

of H as dvc(H). Note that since there are most 2N distinct dichotomies of

a data set with N points, this means that dvc(H) is also equal to that value

of N for which mH(N) = 2N . We can also readily see that dvc + 1 is the

smallest break point of the model set.

To make the preceding definition more concrete, let us return to the ear-

lier example that used a linear classifier on inputs in R2. That example

6. GENERALIZATION ABILITY OF INFINITE MODEL SETS 43

showed that there are 23 = 8 possible dichotomies of data sets with size

N = 3 points. Since mH(3) = 8 = 23, we know that 3 is not a break

point for this model set since the data set is shattered by some model . On

the other hand, for a data set of size N = 4, there were 24 = 16 distinct

dichotomies, but we argued that only 14 of these could be generated by a

linear classifier. This means that k = 4 is the smallest break point of the

model set of 2-d linear classifiers which means the VC dimension of this

model set is 3. So while this model set has an infinite number of models in

it, it has a finite VC dimension. We now show how that finite VC dimension

can be used to bound the model set’s growth function.

One can show using a combinatoric inequality known as Sauer’s lemma

that if k is a break point for the model set then

mH(N) ≤
k−1∑
i=0

(
N

i

)
where N is the size of the data set. Since dvc + 1 is the smallest break

point for the model set, and because the right hand side is a k − 1st order

polynomial function of N , we can readily establish that

mH(N) ≤ Ndvc + 1

thereby showing that the growth function (i.e. model set richness) is bounded

by a polynomial function of the data set size, N . Moreover, we can see that

the largest exponent on that polynomial bound is dvc, suggesting that VC

dimension can be taken as a measure of a model set’s richness.

6. Generalization Ability of Infinite Model Sets

Recall that we showed for any finite model set,H that

PrDDD

(∣∣∣R̂DDD[h
∗]−R[h∗]

∣∣∣ > ϵ
)
≤ 2|H|e−2Nϵ2

where N was the set of the data set D and h∗ ∈ H minimized the em-

pirical risk R̂D[h]. In this inequality we used model set’s cardinality, |H|,
as a measure of model set richness. But from the preceding discussion we

44 2. GENERALIZATION - A STATISTICAL APPROACH

also know that a tighter way of estimating the richness of H is through the

growth function. This suggests that we should be able to obtain a bound

replacing |H| with mH(N).

A more careful derivation of this bound [Vap98, SSBD14] for infinite

model sets shows the inequality is actually

PrDDD

(∣∣∣R̂DDD[h
∗]−R[h∗]

∣∣∣ > ϵ
)
≤ 4mH(2N)e−

1
8
ϵ2N .

If the model setH has a finite VC-dimension then mH(N) ≤ Ndvc + 1 and

so this generalization inequality can be written as

PrDDD

(∣∣∣R̂DDD[h
∗]−R[h∗]

∣∣∣ > ϵ
)
≤ 4((2N)dvc + 1)e−

1
8
ϵ2N .(15)

From the preceding bound (15) we can readily show that the model set’s

sample complexity must satisfy

Nϵ,δ ≥
8

ϵ2
log

(
4((2Nϵ,δ)

dvc + 1)

δ

)
We can also show that the true risk of the optimal model h∗ can be bounded

as follows with confidence 100× (1− δ).

R̂D[h
∗]− Ω(N, dvc, δ) ≤ R[h∗] ≤ R̂D[h

∗] + Ω(N, dvc, δ)

where

Ω(N, dvc, δ) =

√
8

N
log

(
4((2N)dvc + 1)

δ

)
We can think of Ω(N, dvc, δ) as the generalization error , epsilon, of the

model set. Both of these bounds are significantly tighter than the bound

based on the model set’s cardinality M . Let us now consider a couple of

example demonstrating how these bounds might be used in practice.

Suppose a data set of size N = 100. What generalization error can we

achieve with 90% confidence if the model set has a VC dimension off 1?

6. GENERALIZATION ABILITY OF INFINITE MODEL SETS 45

From our earlier bounds we can see the generalization error is

ϵ =

√
8

N
log

4((2N)dvc + 1)

δ

=

√
8

100
log

(
4(201)

1− .9

)
= 0.848

So the actual risk of the optimal model h∗ can be bounded as

R[h∗] ≤ R̂D[h
∗] + 0.848

with a 90% confidence level. Note that this is a poor generalization error

since it will be close to 1 if R[h∗] = 0. To do better we would need to

increase the size of the dataset. In particular, if we repeat the above compu-

tation with a dataset of size N = 104, then the true risk and empirical risk

would be within 0.1 of each other.

As a second example, let us consider a model set with VC dimension

dvc = 3. How big must the dataset be to achieve a generalization error

ϵ < 0.1 with a confidence o 90%? This can be answered by finding the

sample complexity, Nϵ,δ of the model set. Our equation for the model set,

however, says

Nϵ,δ ≥
8

0.12
log

(
4(2Nϵ,δ)

3 + 4

0.1

)
Note that Nϵ,δ is on both sides where it appears through the log function

on the righthand side. This makes it difficult to solve for Nϵ,δ in closed

form. So we adopt a recursive strategy that uses the method of successive

approximation to find Nϵ,δ. This method computes a sequence {Nk}∞k=0 of

approximations that converge to Nϵ,δ as k → ∞. If we are given the kth

estimate, Nk, of the sample complexity, we compute the k + 1 element of

the sequence as

Nk+1 =
8

ϵ2
log

(
4((2Nk)

dvc + 1)

δ

)
In the limit as k →∞, we have Nk → Nϵ,δ.

46 2. GENERALIZATION - A STATISTICAL APPROACH

Using this recursive strategy on our example we first let N0 = 1000 and

compute

N1 =
8

0.12
log

(
4(2000)3 + 4

0.1

)
= 21193

The next element of the sequence is

N2 =
8

0.12
log

(
4((2(21193))3 + 4

0.1

)
= 28522

After a couple more recursions we get a value of about Nϵ,δ ≈ 29299. So

we would need about 30 thousand samples in the dataset. It is interesting

to see how these sample complexity bounds scale with the VC dimension.

If we compute Nϵ,δ in this example for a range of vdc, we get the following

table. This bound therefore suggests that the number of samples is approxi-

dvc 1 2 3 4 5 6

Nϵ,δ 10946 19897 29299 38997 48915 59008

mately proportional to the VC dimension with a proportionality constant of

104. This is not what has been observed in practice. In particular, [AM12]

suggests this proportionality constant should be closer to 10.

When a model set has finite VC dimension, then we can use it to bound

the model set’s generalization error. T One model set for which the VC

dimension is a useful bound is the class of linear machines (i.e. percep-

trons). The VC dimension for a linear classifier with inputs in Rn is n + 1,

essentially the number of parameters. One can show that a linear machine

known as a support vector machine can have a small VC dimension. So this

suggests that if our problem can be solved using linear machines, then we

have useful analytical tools for estimating the generalization error.

VC dimension, however, does not appear to be as useful in bounding

the generalization ability of deep neural networks [ZBH+21]. Deep neural

networks with ReLu activations have a VC dimension of O(WL log(W))

where W is the number of weights and L is the number of layers [BHLM19].

7. BIAS-VARIANCE TRADEOFF AND EARLY STOPPING 47

This suggests that deep neural networks have an extremely large VC dimen-

sion and based on the preceding example, one might expect this model class

to generalize poorly. This is, in fact, not really what has been observed in

practice [ZBH+21].

In training neural network models it is common practice to take the

dataset, D, and split it into a training set, Dtrain and a testing set, Dtest.

We select an optimal model h∗ that minimizes the empirical risk on the

training data, Dtrain, and then we evaluate the empirical risk of that model

on the testing data, Dtest. The basic idea is that the testing data’s empiri-

cal risk will be a good approximation of the optimal model’s true risk. As

we will discuss in the next section, VC theory predicts that if we plot test

and training risk as a function of VC dimension, these curves should have

the shape shown on the lefthand plot of Fig.5. The U -shaped testing risk

suggests there is an optimal complexity to the model set and the tradeoff

needed to find that optimal model set is called the bias-variance tradeoff.

In practice, however, we often see the double descent curve shown on the

right hand side of Fig. 5. This curve shows the test risk begin decreasing

after a certain point and acheiving test risks that are smaller than what were

predicted using the VC theory. This double descent phenomenon is why

deep neural networks work much better as the models get deeper and more

complex. It is not predicted by statistical learning theory, but is a well ac-

knowledged aspect of these models in practice. Why this should be the case

is still an open research question [BHMM19, LC22].

7. Bias-Variance Tradeoff and Early Stopping

VC theory predicts that the optimal model’s true risk can be bounded above

as

R[h∗] ≤ R̂D[h
∗] + Ω(N, dvc, δ)

48 2. GENERALIZATION - A STATISTICAL APPROACH

FIGURE 5. Curves for training risk (dashed line) and test

risk (solid line). (left) The classical U-shaped risk curve

arising from the bias-variance tradeoff. (right) The double

descent risk curve, which incorporqtes the U-shaped risk

curve (classical regime) with the observed behavior from us-

ing high capacity model classes. The models to the right of

the interpolation threshold have zero training risk.

where the generalization error is

Ω(N, dvc, δ) =

√
8

N
log

(
4((2N)dvc + 1)

δ

)
In general, we expect R̂D[h

∗] to decrease in a monotone manner with VC

dimension since the model is getting large enough to actually memorize the

dataset. On the other hand, the error term Ω will increase monotonically

with dvc. This means that if we plot both the empirical risk R̂D[h] and the

error term Ω as a function of dvc we get the curves shown in Fig. ??. The

dashed line represents an upper bound on the true risk R[h] and it has the

characteristic U shape that was mentioned in the preceding section.

The U -shaped phenomenon seen in Fig. 6 is called the bias-variance

tradeoff. The U -shape of the curve means that there is an optimal VC di-

mension, d∗vc, for the model set that will have the lowest actual risk. This op-

timal VC dimension divides the true risk plot into two sections; one where

dvc < d∗vc and the other where dvc > d∗vc. The true risk for dvc < d∗vc will

be larger because the model set is not rich enough to capture the statistical

7. BIAS-VARIANCE TRADEOFF AND EARLY STOPPING 49

FIGURE 6. The upper bound on the optimal model’s true

risk as a function of the model set’s VC dimension.

variations in the dataset. So this larger error is generated by a ”bias” in-

herent in the model set. In this case, we say the model underfits the data.

The true risk for the other region where dvc > d∗vc has a larger error because

the model set has too many degrees of freedom. In particular it means the

model is so complex that it can actually ”memorize” the training data and

thereby capture meaningless statistical fluctuations. So this case is match-

ing the ”variance” of the data arising from noise and we say that the model

overfits the data. One of the key challenges in the practical training of neural

network models lies in formulating a training pipleline that controls model

overfitting and underfitting in a manner that allows us to identify the ”best”

model.

In general, however, we do not directly control a model set’s VC dimen-

sion. The VC theory provides a convenient way of explaining why man-

aging the complexity of the model set leads to the bias-variance tradeoff.

But the VC dimension is only one way of characterizing model complexity.

The U-shape change in R[h] as a function of vdc seen in Fig. 6 can be seen

as exploring the model space along the direction of vdc. But there may be

50 2. GENERALIZATION - A STATISTICAL APPROACH

other ways of exploring the model space that are easier to work with. In the

following discussion we introduce one such method that is known as early

stopping [YRC07].

Early stopping is based on the idea that stochastic gradient descent (SGD)

learning also represents a way of exploring the model space. Stochastic

gradient descent is an algorithm that updates the weights, w, of a neural

network model using the equation

wk+1 ← wk − η
∂R̂D(w)

∂w

where η > 0 is called the learning rate and R̂D(w) is a noisy estimate of

the true risk’s gradient with respect to weights w. That ”noise” originates in

the fact that we are using the empirical risk rather than true risk to compute

the gradient. What this means is that if we start from wk and then do a

series of SGD updates using a batch of the samples in the dataset, we are

doing a random walk through the model space. So after going through a

complete epoch of samples, we have actually explored a region of the model

space about the original wk. As we continue performing additional training

epochs, we explore larger and larger subsets of the model space. In other

words, our search using this noisy gradient descent scheme is generating a

sequence of model sets that are increasing in complexity because they are

getting larger and larger. In accordance with the VC theory, this means that

we should also see the same sort of U -shaped behavior in the empirical risks

computed on statistically independent training and testing sets. This is, of

course, exactly what we saw in the previous chapter’s training curves.

This view of training as a search through successively larger model sets

means that we can expect the empirical risk and true risk of the kth model

to have the characteristic U -shape we saw in Fig. 6. The only difference

being that now the x-axis of our plot as shown in Fig. 7 is the number of

training epochs, rather than the model set’s VC dimension. Unlike the VC

analysis, we do not know the bound on the true risk. But we can measure

the empirical risk during training and then evaluate each model we obtain

7. BIAS-VARIANCE TRADEOFF AND EARLY STOPPING 51

initial
model, w

model set after
10 epochs

model set after
20 epochs

FIGURE 7. Early Stopping

at the end of an epoch on a small data set that we have held out from the

training data. We can then take this estimate of the risk on the test data as a

measure of the true risk. This approach to controlling model complexity is

called early stopping and it is the main way that ML engineers use to find

the ”optimal” model that generalizes well.

The use of early stopping to control model complexity requires that we

have a way to estimate the model’s true risk, R[h∗]. Above, we said we can

do this by holding out part of the data from training and use the resulting test

data set to evaluate the model’s loss. So, our training protocol first requires

us to do a gradient update of the current model’s weights using training data,

and then we evaluate the loss of that model using both the training data and

the testing data. The loss over the training data is the empirical risk. The

loss over the testing data is taken as an estimate of the true risk.

Why should the aggregate loss over the testing data be a good estimate

of the true risk? Let R̂(test)[h∗] denote the empirical risk evaluate on the test

52 2. GENERALIZATION - A STATISTICAL APPROACH

data set, D(test) where h∗ minimizes the empirical risk, R̂(train)[h∗] evalu-

ated on the training data set, D(train). When we report R̂D(test) [h∗] as our

estimate for the true risk R[h∗], we are asserting that this reported value has

a smaller generalization error than that reported on the training data. The

reason why this is true is because the model set over which we are eval-

uating the generalization error is now very small. It consists of only one

model, namely h∗. This means we can use our earlier generalization error

result for finite model sets and assert that

R[h∗] ≤ R̂(test)[h∗] +

√
1

2N
log

2

δ

with a confidence 1 − δ. The bound will be much tighter than what we

obtained using the VC dimension.

As an example, consider a dataset with 600 examples. Let us set aside

N (test) = 200 examples for the test data set. We use a learning model set,H
with M = 10000 models and select a model h∗ based on the N (train) = 400

samples not in the test set. Using our earlier Hoeffding bounds we can

estimate the generalization error on R̂(train)[h∗] and R̂(test)[h∗]. In particular,

let us assume we want a 95% confidence level (i.e. δ = 0.05). The training

bound would be

|R̂(train)[h∗]−R[h∗]| ≤ 1

2N (train)
log

(
2M

δ

)
= 0.0322

and the testing bound would be

|R̂(test)[h∗]−R[h∗]| ≤ 1

2N (test)
log

(
2

δ

)
= 0.0092.

So the generalization error on the testing data is an order of magnitude

smaller than that on the training data. This was computed for a finite model

set. But if we consider an infinite model set using deep neural network

that have an extremely large VC dimension, then we could readily conclude

that the testing bound would be orders of magnitude less than the training

bound.

CHAPTER 3

Neural Network Model Sets

Neural network model sets are the basic type of model used in deep learn-

ing. As discussed in chapter 1, there were three waves of neural network

research that marked the emergence of three different types of neural net-

work models; the perceptron, the artificial neural network or multi-layer

perceptron, and deep neural networks. This chapter reviews all of these

models and discusses methods that are used to train a model to minimize

the empirical risk on a given dataset.

1. Perceptron

The perceptron is a linear machine of the form

hw,b(x) = σ(wTx+ b)

where σ : R → R is a monotone increasing activation function, w ∈ Rn

is a vector of real valued weights, b ∈ R is a real valued bias, and x ∈ Rn

is the input sample from the dataset. We refer to such models as linear

because the arugment to the activation function is a linear function of the

input x. Note that if we let w =

[
b

w

]
and x =

[
1

x

]
, then we can rewrite

the model as hw(x) = σ(wTx). Sometimes this ”unbiased” form is more

convenient to use in describing neural network models and their training

algorithms. So we may switch back and forth between the two represents

of the perceptron. The following subsections discuss how perceptrons are

trained to solve binary classification, linear regression, and logistic regres-

sion problems.
53

54 3. NEURAL NETWORK MODEL SETS

Binary Classification with Perceptron: Let us see how a perceptron that

uses a ”sgn” activation function works on the binary classification problem.

In this case the inputs are vectors x ∈ Rn and the targets are −1 or +1. We

assume a model set whose models are

hw(x) = sgn(wTx)

and we take the loss function to be

L(y, hw(x)) = 1 (y ̸= hw(x))

so the loss is 1 if the predicted class hw(x) disagrees with the actual target,

y, for that input and is zero otherwise.

FIGURE 1. Linearly Separable Data Set

As we discussed in chapter 1, we can visualize the dataset and model

as shown in Fig. 1. Each dataset input sample is shown as a point in an

R2 input space. The model, hw(x), is associated with a hyperplane {x ∈
R2 : wTx = 0} that is characterized by the weigth vector w ∈ R2. For this

weight we can draw a hyperplane that is also called a discriminant surface

so that input samples lying on the side of that hyperplane pointed to by w

are classified +1 and those on the other side of the hyperplane are classified

as−1. For the dataset shown in Fig. 1 we note that all of the +1 samples are

classified correctly by the given model. Any dataset for which there exists

1. PERCEPTRON 55

a weight vector w for which the perceptron, hw(·), correctly classifies every

dataset sample is said to be linearly separable.

Training of this perceptron model for the binary classification problem

can be accomplished using the perceptron learning algorithm (PLA). This

algorithm is initialized with a randomly selected weight vector, w, and two

data matrices X ∈ Rn×N and Y ∈ RN formed from the inputs and targets

of the training dataset D = {(xk, yk)}Nk=1. The data matrices are

X =
[
x1 x2 · · · xN

]
, Y =

y1

y2
...

yN

The algorithm recursively computes an update to the weight vector. If we

let w denote the weight vector in the kth recursion of the algorithm, then the

algorithm selects a sample (xℓ, yℓ) from the dataset and if input xℓ’s target,

yℓ, is correctly predicted by hw(xℓ), then the weight w is left unchanged.

If, on the other hand, the input xℓ is misclassified by the perceptron (i.e.

hw(xk) ̸= yℓ), then the algorithm updates the weight. We can therefore

write the update as

w ←

{
w + ηyℓxℓ if yℓwTxℓ < 0

w if yℓwTxℓ ≥ 0

The hyperparameter η is called the algorithm’s learning rate. The PLA

algorithm converges in a finite number of steps if the training dataset is

linearly separable.

Perceptron Training for Linear Regression: Let us examine how the per-

ceptron model might be used to solve a linear regression problem. In this

case the input samples, xk ∈ Rn and the targets are real numbers

yk = g(xk) + nk

where g : Rn → R is an unknown function and {nk}∞k=0 is a sequence of

i.i.d random variables with zero mean and finite variance. The models use

56 3. NEURAL NETWORK MODEL SETS

a linear activation function (σ(y) = y) so that the model’s prediction is

hw(x) = wTx

where w ∈ Rn is the weight vector. Our problem is to find an optimal

set of weights that minimize the empirical risk on the dataset {(xk, yk)}Nk=1

defined with respect to the squared error loss function

L(y, hw(x)) = (y − hw(x))
2

The optimal weights can be computed in closed form as follows. Note

that in terms of the data matrices, X and Y, we introduced before that the

empirical risk of model hw on D will be

R̂D[hw] =
1

N
|Xw −Y|2

This is a quadratic function so the optimal weight occurs when the gradient

of R̂D[hw] with respect to w is zero. In other words, w∗, satisfies

0 = ∇wR̂D[hw] =
2

N

(
XTX−XTY

)
Assuming XTX is invertible then the optimal weight is

w∗ = (XTX)−1XTY

Note that we can also solve for w∗ in a recursive manner using an algo-

rithm known as the recursive least squared (RLS) algorithm. This algorithm

is numerically more stable than the closed form formula since it does not

have to invert the potentially large matrix XTX. In particular, we note that

XTX =
N∑
k=1

xkx
T
k

So if we consider the sequence of matrices formed from the recursion

Ak = Ak−1 + xkx
T
k

1. PERCEPTRON 57

then one can show using the Sherman-Morrison formula1 that the sequence

of the matrix inverses of A satisfy the recursion

A−1
k+1 = A−1

k −
A−1

k xk+1x
T
k+1A

−1
k

1 + xT
k+1A

−1
k xk+1

We can then use this recursion to generate a sequence of weights wk that

converge to the optimal w∗. That recursion is

wk = wk−1 + Lk(yk − wT
k−1xk)

Lk =
Pkxk

1 + xT
kPk−1xk

Pk = Pk−1 −
Pk−1xkx

T
kPk−1

1 + xT
kPk−1xk

with initial condition P0 = diag(p0) with p0 ≫ 0 and w0 is randomly

selected. The algorithm is usually referred to as the recursive least squares

or RLS algorithm [SL87].

Perceptron Training for Logistic Regression: Logistic regression is a re-

laxed form of binary classification where the model estimates the proba-

bility that the input sample is ”in-class”. In this case the optimal model

is chosen to minimize an empirical risk based on the binary cross-entropy

function

L(y, hw(x)) = −y log(hw(x))− (1− y) log(1− h(x))

and the model set is a perceptron hw(x) = σ(wTx) whose activation func-

tion is the softmax function

σ(s) =
es

1 + es

Finding the optimal model, h∗ that minimizes the empirical risk is usu-

ally done through stochastic gradient descent. Let D = {(xk, yk)}Nk=1 be

1Sherman-Morrison Formula: (A+ uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

58 3. NEURAL NETWORK MODEL SETS

the training dataset. The empirical risk we wish to minimize is

R̂D[hw] = −
1

N

N∑
k=1

ML(yk, hw(xk))

where L(·, ·) is the binary cross-entropy function. The gradient of the em-

pirical risk is

∇wR̂D[hw] = −
1

N

N∑
k=1

∇wL(yk, hw(xk))

Because we are using a softmax activation function, one can show that 1−
σ(s) = σ(−s) and dσ(s)

ds
= (1 − σ(s))σ(s). This allows us to write the

gradient of the loss function as

∇wL(yk, hw(xk)) = xk(yk − σ(wTxk))

So when doing a gradient update of the weight vector, w, we can proceed

by taking the gradient of L(yk, hw(xk) for each sample (xk, yk) in the data

set and then update the weight for k = 1, . . . , N as

w ← w − η

N

N∑
k=1

xk(yk − σ(wTxk))

A single pass of this algorithm through all of the data samples is called a

training epoch.

2. Multi-layer Perceptrons and Deep Neural Networks

The perceptron appeared in the 1960’s. The 1980’s saw the development

of the multi-layer perceptron, which was simply a perceptron with an addi-

tional hidden layer between the perceptron’s input and output layer. A deep

neural network is simply a multi-layer perceptron with more than one hid-

den layer. This section establishes some of the conventions used in describ-

ing deep neural networks formed by adding multiple hidden layers between

the inputs and outputs. We will use directed graphs and layered abstractions

to describe these models.

2. MULTI-LAYER PERCEPTRONS AND DEEP NEURAL NETWORKS 59

FIGURE 2. Directed Graph Representation of Sequential

Neural Network

A neural network’s graph abstraction is shown in Fig. 2. This network

has two hidden layers (though it could have more) and uses the activation

function σ : R → R. The layers are labeled ℓ = 0, 1, 2, . . . , L with the 0th

layer being the input layer and layer L being the output layer. The remaining

layers, (0 < ℓ < L) are called hidden layers. The dimension of layer ℓ is

denoted as d(ℓ) where that layer has d(ℓ)+1 nodes labeled 0, 1, . . . , d(ℓ). The

zeroth node in the layer is called a bias node with no input and an output of

1. Every edge is directed from a node in, say, layer ℓ to a node in the next

layer ℓ+ 1.

Each edge is labeled with a weight, Let us zoom in on a single edge of

the graph in Fig. 2. This edge is shown on the bottom right hand corner of

the figure and depicts an edge that originates in layer ℓ − 1 and terminates

at the jth node in layer ℓ. The output of node i in layer ℓ − 1 is denoted as

x
(ℓ−1)
i . The output is multiplied by the weight w(ℓ)

ij to create the input s(ℓ)j

into the jth node of layer ℓ. That input is then passed through the activation

function, σ, to create the jth node’s output x(ℓ)
j .

60 3. NEURAL NETWORK MODEL SETS

While sequential neural networks are often depicted using directed graphs,

this depiction becomes cumbersome when we consider much larger net-

works. Moreover for deep neural network such visual depictions of directed

graph are inconvenient for representing special layers such as convolutional

layers. For large deep neural networks it is more convenient to use a lay-

ered abstraction. The layered abstraction collects all input signals into the

nodels 1, . . . , d(ℓ) of layer ℓ into a vector s(ℓ) =
[
s
(ℓ)
1 , . . . , s

(ℓ)

d(ℓ)

]T
. It col-

lects all output signals from nodes, 0, 1, . . . , d(ℓ) of layer ℓ into the vector

x(ℓ) =
[
x
(ℓ)
0 , x

(ℓ)
1 , . . . , x

(ℓ)

d(ℓ)

]T
. The weights of the ℓth layer are collected

into a (d(ℓ−1) + 1)× d(ℓ) matrix

W(ℓ) =

w

(ℓ)
01 w

(ℓ)
02 · · · w

(ℓ)

0d(ℓ)

w
(ℓ)
11 w

(ℓ)
12 · · · w

(ℓ)

1d(ℓ)

...
...

...

w
(ℓ)

d(ℓ−1)1
w

(ℓ)

d(ℓ−1)2
· · · w

(ℓ)

d(ℓ−1)d(ℓ)

With these matrix-vector objects, the relationships between inputs to layer

ℓ can be related to the outputs of layer ℓ − 1 feeding into the activation

function as

s(ℓ) =
[
W(ℓ)

]T
x(ℓ−1)

and the ℓth layer’s output are then

x(ℓ) =

[
1

σ(s(ℓ))

]

FIGURE 3. Layered Abstraction for Sequential Neural Net-

works

These matrix-vector relationships are more conveniently depicted in the

layered abstraction shown in Fig. 3. All of the hidden layers (i.e. 0 < ℓ <

2. MULTI-LAYER PERCEPTRONS AND DEEP NEURAL NETWORKS 61

L) have the same structure. The 0th nodal layer takes inputs xk from the

dataset and the Lth layer has no bias node and outputs the nodal layer vector

x(L) as the neural network’s output hw[x
(0)] in response to input x(0) with

networks weights w being formed from all layered weight matrices W(ℓ).

The layered abstraction in Fig. 3 is the abstraction used in most deep

learning libraries such as TensorFlow and PyTorch. TensorFlow and Py-

Torch are two of the most popular libraries used at the time this chapter was

written. This book restricts its attention to TensorFlow. The following script

shows how TensorFlow’s Keras API would be used instantiate a neural net-

work Model object for a multi-class classification problem. The input is a

vector representing an image and the output is a vector whose components

are the probabilities of each class.

from tensorflow import keras

from tensorflow.keras import layers

inputs = keras.Input(shape=(28*28))

x = layers.Dense(512,activation="relu")(inputs)

outputs = layers.Dense(10,activation="sigmoid")(x)

model = keras.Model(inputs=inputs,outputs=outputs)

model.summary()

The output generated by this Python script is shown. below

Metal device set to: Apple M1

systemMemory: 16.00 GB

maxCacheSize: 5.33 GB

Model: "model"

Layer (type) Output Shape Param #

===

input_1 (InputLayer) [(None, 1, 784)] 0

dense (Dense) (None, 1, 512) 401920

dense_1 (Dense) (None, 1, 10) 5130

62 3. NEURAL NETWORK MODEL SETS

===

Total params: 407,050

Trainable params: 407,050

Non-trainable params: 0

FIGURE 4. Layered Abstrac-

tion for Neural Networks

The preceding script first imported the

Keras library and the associated sublibrary

of Layers built into that library. In this

example we only use the Dense layer ab-

straction which connects all inputs through

weights to all outputs. The input layer has

28 × 28 = 784 nodes and it outputs a

rank-2 tensor of shape (1, 784). The hid-

den layer in this model has 512 outputs. It

is a dense layer that maps each input plus

the bias to an output. So the total number

of trainable weights in the first layer will be

(784 + 1) × 512 = 401, 920. The last layer is a dense layer taking 512 in-

puts onto 10 outputs. Again the bias term is active in this layer so the total

number of trainable weights is (512 + 1) × 10 = 5130. The summary()

method displays these layers and their shapes. Fig. 4 graphically illustrates

this sequential neural network model in terms of the three layers used to

define it (Input, Dense, Dense).

The preceding script simply scopes out the model object. To fully instan-

tiate the model, we need to configure how it is trained. This configuration

involves specifying the type of SGD optimizer to be used, the loss func-

tion, and the data to be used for training and testing. This is done through

the model object’s compile method. The following script configures the

model to be trained using the RMSprop optimizer and the loss function is

sparse categorical crossentropy. This particular loss function is used for

multi-class classification problems where the system target is specified as

an integer rather than a hot-encoded vector. SGD training seeks to minimize

2. MULTI-LAYER PERCEPTRONS AND DEEP NEURAL NETWORKS 63

the empirical loss function. But since this model was created for a multi-

class classification problem, we are not really interested in characterizing

performance in terms of ”crossentropy”. We are instead interested in the

classification error, so the last argument of our compile method specifies

classification accuracy (percentage of correct classifications) as the metric

that we want to keep track of during training.

model.compile(optimizer = "rmsprop",

loss = "sparse_categorical_crossentropy",

metrics = ["accuracy"])

The last step in training is to use the model object’s fitmethod. Train-

ing is done using a batched SGD algorithm. Recall that this means that the

training data set is partitioned into batches of a given size. The following

script trains the model for 5 epochs on the specified training data assuming

a batch size of 128 samples.

model.fit(train_x, train_y, epochs = 5, batch_size = 128)

After the model has been trained, we need to estimate the model’s actual

risk. As mentioned before this is done by computing the empirical risk over

a test set that is independent of the training set. We use the model object’s

evaluate method to do this

test_loss, test_acc = model.evaluate(test_x, test_y,verbose=0)

train_loss, train_acc = model.evaluate(train_x,train_y, verbose=0)

print(f"Test Accuracy: {test_acc:.3f}, Training Accuracy: {train_acc:.3f}")

print(f"Test Loss: {test_loss:.3f}, Training Loss {train_loss:.3f}")

In my case we obtained a test accuracy of 98.3%. As expected the train-

ing accuracy is very high, 99.8%. This is greater than the testing accuracy.

The testing loss was 0.070 and the training loss was 0.006. Clearly while

we train to minimize loss, these small loss values say little about the actual

classification accuracy, this is why our training process also keeps track of

the model’s training and testing accuracy after each training epoch.

64 3. NEURAL NETWORK MODEL SETS

FIGURE 5. Ring Data for HW 1

The preceding discussion demon-

strated the use of TensorFlow/Keras

deep learning libraries to instan-

tiate, train, and evaluate a deep

neural network model. These are

Python libraries that makes use of

class objects to instantiate mod-

els, optimizers, loss functions, and

datasets. What I’d like to do in

the rest of this section is provide a

deeper look at how some of the class objects are built. This will be of in-

terest to us because at some point one often needs to customize an existing

library class object for their particular application. The following discus-

sion walks through a simple class objects for a sequential model and its

dense layers. I’ll be solving a logistic regression problem using the Ring

Data in HW1. This data file creates a numpy array with shape (3, 2000).

It is a matrix whose kth column is the vector

[
xk

yk

]
with xk ∈ R2 being

the kth input and yk being a binary class target that takes values of 0 or 1.

Fig. 5 illustrates the ring dataset, by scatter plotting the input vectors, xk,

and coloring each input as blue for class 1 and green for class 0.

Python is an objected oriented programming (OOP) language. Keras
uses the Python class objects to instantiate objects used in building a neural
network model. There are, in particular, two basic classes we need to de-
velop; the layers class and the model class. The Model class objects
are essentially lists of Layer class objects. The class uses an init

method to instantiate a class instance. The class uses the call method
to make that class instance callable. The following Python script is for a
simple SequentialModel class

def __init__(self, layers):

self.layers = layers

def __call__(self, inputs):

2. MULTI-LAYER PERCEPTRONS AND DEEP NEURAL NETWORKS 65

x = inputs

for layer in self.layers

x = layer(x)

return x

@property

def weights(self):

weights = []

for layer in self.layers:

weights += layer.weights

return weights

As can be readily seen from this script, the class constructor simply cre-

ates a ”list” that holds pointers to the Layer objects. The call

then allows that model to be executed by simply taking the output gener-

ated by one layer in the list to the next layer in the list. The class object

also uses a property decorator to add a function that we can use to fetch the

model’s current set of weights. This decorator is used during training of the

model.

The other major class of interest to us will be the DenseLayer class.

This class instantiates a single layer in a network whose inputs are con-

nected to the outputs in a dense manner. In particular, the layer’s outputs is

the tensor

σ(Wx+ b)

where W is a matrix of trainable weights, b is a vector of trainable biases,
x is the input vector (tensor), σ is the activation function. The following
script is for the DenseLayer class object

class DenseLayer:

def __init__(self, input_size, output_size, activation):

self.activation = activation

w_shape = (input_size, output_size)

w_initial = tf.random.uniform(w_shape, minval=0,maxval=.1)

66 3. NEURAL NETWORK MODEL SETS

self.W = tf.Variable(b_initial)

def __call_(self, inputs):

return self.activation(tf.matmul(inputs, self.W)+self.b)

@property

def weights(self):

return [self.W, self.b]

Our class constructor simply initializes the persistent objects needed to

compute this output and randomly initializes the weights. A close look at

the call methods shows that it computes the output σ(Wx + b). The

class also includes a property decorator that is used by our training method

to fetch and update the classes weights.

A model is instantiated by first instantiating the DenseLayer objects
comprising the layers of our model. We then list the pointers to these
DenseLayer objects and use that to instantiate a SequentialModel
object

n_hidden = 16

relu_act = tf.nn.relu

smax_act = tf.nn.softmax

layer1 = DenseLayer(2, n_hidden, relu_act)

layer2 = DenseLayer(n_hidden, 2, smax_act)

model = SequentialModel([layer1, layer2])

This script instantiates a neural network that takes a rank-2 tensor input

and maps it to a hidden layer of 16 nodes. The second dense layer then maps

the outputs of the hidden layer to two nodes. We use a softmax activation

on the last layer because we are solving a logistic regression problem in this

case. In particular, we are using the ring data from the first HW assignment

as the inputs.

2. MULTI-LAYER PERCEPTRONS AND DEEP NEURAL NETWORKS 67

One of the first thing we would like to do with a model is to evaluate
its accuracy on the dataset D = (X,Y). In this case X is a rank-2 ten-
sor whose rows are the components of the input sample vectors in the ring
dataset. The rank-1 tensor Y are the class targets that in this dataset take
values of 0 or 1. The following script evaluates the accuracy of the model
before training

def evaluate(model, X,Y):

Yhat = model(X).numpy()

preds = np.zeros(len(Y))

indx1 = np.where(Yhat[:,0]< 0.5)

preds[indx1] = 1

matches = (Y==preds)

accuracy = matches.mean()

return accuracy

accuracy = evaluate(model,X,Y)

In my original version of this script the untrained model had an accuracy

between 15%. So we want to train it and then see if the accuracy improves.

Model training is done through the fit function. This functions imple-

ments the backpropagation algorithm described above. In practice, we use

a computational approach called automatic differentiation (to be described

below) to evaluate the model’s empirical risk gradient on a given dataset.

Automatic differentiation constructs a computation gtraph that records the

order of numerical operations performed when computing the model’s out-

put. Automatic differentiation then takes the computation graph and uses it

to compute the gradient of the empirical risk for a specific sample from the

dataset.

TensorFlow provides the GradientTape object to perform automatic
differentiation. The following code illustrates how the GradientTape
object is instantiated and then used in the fit function.

68 3. NEURAL NETWORK MODEL SETS

def loss_function(Y, Yhat):

scce = tf.keras.losses.sparse_categorical_crossentropy

per_sample_losses = scce(Y,Yhat)

loss = tf.reduce_mean(per_sample_losses)

def fit(model, X,Y,n_epochs, lr):

Yhat = model(X)

history = [loss_function(Y, Yhat)]

for epoch in range(n_epochs):

with tf.GradientTape() as tape:

Yhat = model(X)

loss = loss_function(Y,Yhat)

gradients = tape.gradient(loss, model.weights)

for g,w in zip(gradients, model.weights):

w.assign_sub(g * lr)

history = np.vstack((history,loss))

if epoch%100 == 0:

print(f"epoch {epoch}: loss = {loss: .2f}")

history = fit(model, X_train, Y_train, X_test,Y_test, 1000, .1)

The fit function goes through n epochs training epochs. Within

that training for loop we see the GradientTape object instantiated as

tape. This tape is the computation and it is generated by the commands

within the indented section of code after tapewas instantiated. Essentially,

what the object does is record the mathematical operations performed in

executing those functions. Once the GradientTape object has finished

recording these operations, we call the object’s gradient method to au-

tomatically compute the gradient of the loss function with respect to the

model.weights. These gradients are then used to update the weights in

the model using a standard gradient descent update with learning rate lr.

The fit function is then called, trains the model for 1000 epochs and then

plots the training loss as a function of training epoch. The figure 6 also

shows the model predictions and attains a final accuracy of 90%.

3. UNIVERSAL APPROXIMATION ABILITY 69

FIGURE 6. Training Results on Ring Data

3. Universal Approximation Ability

The universal approximation theorem [Cyb89] asserts that any continuous

function f on a compact set can be uniformly approximated to an accuracy

ϵ by a sequential neural network. A formal statement of this theorem is

given below and an outline of the proof provided below.

THEOREM 2. If the activation function in a neural network,

hw(x) =
N∑
k=1

αkσ(w
T
k x+ bk),

is sigmoidal then the model set of all such neural networks is dense in C(In)

(the space of continuous functions defined on In = [0, 1]n).

The proof of this theorem rests on concepts from Functional Analysis,

where the model set, H is viewed as a linear subspace of a normed linear

space of functions. A linear space abstracts the fundamental properties of a

vector space so we can apply those properties to other types of mathematical

objects. A normed linear spaces associates a measure of ”length” to its

elements. In this theorem, we consider the space of continuous functions

whose inputs take values on the n-dimensional unit cube. The norm we take

70 3. NEURAL NETWORK MODEL SETS

is the supremum-norm that we denote as

∥h∥ = sup
x∈[0,1]n

|h(x)|

where |h(x)| is the absolute value of the model’s, h, output.

The theorem says that the model set H formed from sigmoidal neural

networks with a single hidden layer is dense in the linear space of contin-

uous functions, C(In). For a set, H, to be dense in C(In) means that any

limit point of an infinite sequence of functions in H is a function in the

C(In). In particular, let f be any function in C(In), then this means there is

a sequence of models {hn}∞n=1 in H such that for any ϵ > 0 there exists N

such for all n > N we have ∥hn − f∥ < ϵ. In other words, any continuous

function can be approximated arbitrarily closely by a model inH.

The proof of this theorem is in Cybenko’s paper [Cyb89]. This paper

assumes that integration of functions in C(In) is done with respect to a

regular measure, µ. A measure is a set-valued function that maps any subset

of In onto a positive real number. Intuitively we can view a measure as

a probability distribution or an area function. Requiring the measure to

be ”regular” simply means we avoid pathological measures. We use such

measures to generalize our notion of integration. Cybenko’s paper proves

that the sigmoidal activation function σ is discriminatory. This means that

if ∫
In

σ(wTx+ b)dµ = 0

for all w ∈ Rn and b ∈ R, then the measure, µ, itself is identically zero.

Once this has been established, then the proof of the main theorem follows

as a consequence of the Hahn-Banach and Riesz representation theorem.

In particular, let H ⊂ C(In) and note that H is a linear subspace of

C(In). Now consider the closure,H of model setH. IfH is dense in C(In),

thenH = C(In), so we will prove the theorem’s assertion by contradiction.

3. UNIVERSAL APPROXIMATION ABILITY 71

In particular we suppose thatH ̸= C(In) and prove that assertion generates

a contradiction.

If our assumption is true, then the Hahn-Banach theorem allows us to

assert there exists a bounded linear functional, called L, such that L(H) =
L(H) = 0 but that L ̸= 0. The Riesz representation theorem says we can

that write functional L as

L[h] =

∫
In

h(x)dµ

for some measure µ and any h ∈ C(In). Since by definition any neural

network, h, is a member ofH and since L is identically zero onH we have∫
In

h(x)dµ = 0

But the sigmoidal activation function is discriminatory and so the measure

µ ≡ 0. This conclusion, however, contradicts our determination that L ̸= 0

because

µ = 0⇒
∫
In

h(x)dµ = 0, for all h ∈ C(In)

This contraction arose because we assumed H ̸= C(In). So the assumption

is false, and H = C(In) which meansH is dense in C(In).

The universal approximation theorem does not tell us how to construct

this approximation, it merely says such an approximation exists. The result

was important because it clearly demonstrated that the model set of neural

networks was more ”expressive” than the earlier perceptron model set. A

concrete example of this expressiveness is given below for the XOR func-

tion.

Consider the target function, f : R2 → {−1, 1}, shown in Fig. 7. This

target function realizes a Boolean XOR function and it cannot be written as

a perceptron sgn(wTx). This function, however, may be decomposed into

two perceptrons realizing the hyperplanes shown in Fig. 7. The output is

then obtained by combining the outputs from these perceptrons.

72 3. NEURAL NETWORK MODEL SETS

FIGURE 7. Boolean XOR Target Function

In particular, let us characterize these two perceptrons as

ŷ1(x;w1) = sgn(wT
1 x), ŷ2(x;w2) = sgn(wT

2 x).(16)

The target function’s output is +1 when only one of the perceptron outputs

equals +1 and is zero otherwise. This output can, therefore be characterized

as

f(x) = ŷ1(x) (¬ŷ2(x)) + (¬ŷ1(x)) ŷ2(x)(17)

where multiplication is an AND operation, addition is an OR operation,

and ¬ denotes negation (NOT). The elementary logic operations of AND

and OR can be realized using the following perceptron models,

OR(ŷ1, ŷ2) = sgn(ŷ1 + ŷ2 + 1.5)

AND(ŷ1, ŷ2) = sgn(ŷ1 + ŷ2 − 1.5)
(18)

We will find it convenient to represent the functions in equation (18) as a

directed graph.

We use the graphs in Fig. 8 to show how one constructs a graph for the

MLP realizing the XOR target function. Since addition represents an OR

operation, we can view f in equation (17) as the OR of two inputs ŷ1(¬ŷ2)

3. UNIVERSAL APPROXIMATION ABILITY 73

FIGURE 8. LEFT: graph for OR function, RIGHT: graph for

AND function

and (¬ŷ1)ŷ2. We therefore take the OR perceptron in Fig. 8 as the top layer

of our MLP. This graph is shown in Fig. 9(left) as an OR graph whose input

nodes are labeled ŷ1(¬ŷ2) and (¬ŷ1)ŷ2.

FIGURE 9. LEFT: top OR layer of MLP, RIGHT: AND per-

ceptrons feeding into top layer of MLP

Each input to the OR graph in Fig. 9(left) is obtained by taking AND

operations on the two inputs. So we concatenate these two AND graphs

with the OR graph as shown in Fig. 9(right). Note that some of the weights

have a negative sign to realize the AND of an input with the other input’s

negation. Fig. 9(right) has taken these two AND graphs and collapsed them

into one since they have the same input nodes.

We generate the MLP’s graph by recognizing that the inputs ŷ1 and ŷ2

are outputs of the two perceptrons in equation (2). These perceptrons may

also be represented as graphs with inputs nodes x1 and x2. The edges of this

graph are weighted by the vectors, w1 and w2. We concatenate these two

74 3. NEURAL NETWORK MODEL SETS

graphs with the ones in Fig 9(right) and collapse graphs for the two percep-

trons into a single graph since they have the same inputs. This yields the

graph shown in Fig. 10. Note that this MLP has two hidden layers and so we

see that any logic function’s MLP can be represented as a graph constructed

by composing the elementary graphs for AND and OR functions.

FIGURE 10. Multilayer Perceptron Model for XOR target

function

4. BackPropagation

Backpropagation [RHW86] may be seen as an extension of the stochastic

gradient descent algorithms used for training perceptrons. Backpropagation

is also a gradient descent algorithm that uses the chain rule for differentia-

tion to find the gradient of the empirical risk when the model has multiple

hidden layers. This section explains the backpropagation algorithm for deep

neural networks with L layers using the notational conventions from section

2 of this chapter.

Backpropagation first initializes the weights in each layer, W(ℓ), to ran-

dom variables and then these weights are updated using a gradient descent

update

W(ℓ) ←W(ℓ) − η∇W(ℓ)R̂D[hW]

4. BACKPROPAGATION 75

whereD = {(xk, yk)}Nk=1 is the training dataset andW =
{
W(1),W(2), . . . ,W(L)

}
is the collection of weights parameterizing the model. We will derive the

gradient for the empirical risk

R̂D[W] =
1

N

N∑
k=1

(hW(xk)− yk)
2

assuming the loss function is the square prediction error, L(y, x) = (y −
hW(x))2.

The gradient of the empirical risk with respect to layer ℓ’s weights is

∂R̂D[hW]

∂W(ℓ)
=

1

N

N∑
k=1

∂L(yk, xk)

∂W(ℓ)
.

Let us define the sensitivity vector, δ(ℓ), for layer ℓ to be the gradient of the

loss with respect to input signal s(ℓ).

δ(ℓ)
def
=

∂L(yk, xk)

∂s(ℓ)
.(19)

We use the chain rule of differentiation on the jth component of δ(ℓ) to get

δ
(ℓ)
j =

∂L(yk, xk)

∂x
(ℓ)
j

·
∂x

(ℓ)
j

∂s
(ℓ)
j

= σ′
(
s
(ℓ)
j

)
· ∂L(yk, xk)

∂x
(ℓ)
j

(20)

where σ′(s) = dσ(s)
ds

. An expression for the partial derivative of L with

respect to x
(ℓ)
j is again obtained using the chain rule,

∂L

∂x
(ℓ)
j

=
d(ℓ+1)∑
k=1

∂s
(ℓ+1)
k

∂x
(ℓ)
j

· ∂L

∂s
(ℓ+1)
k

=
d(ℓ+1)∑
k=1

w
(ℓ+1)
jk δ

(ℓ+1)
k .(21)

Inserting equation (21) into equation (20) gives

δ
(ℓ)
j = σ′(s

(ℓ)
j)

d(ℓ+1)∑
k=1

w
(ℓ+1)
jk δ

(ℓ+1)
k .(22)

The sum is the matrix-vector product of W(ℓ+1) with the sensitivity vector

δ(ℓ+1) with the 0th row being deleted since the gradient with respect to the

bias is zero. So we can rewrite equation (22) in matrix-vector form as

δ(ℓ) = σ′(s(ℓ))⊗
[
W(ℓ+1)δ(ℓ+1)

]d(ℓ)
1

(23)

76 3. NEURAL NETWORK MODEL SETS

where [W(ℓ+1)δ(ℓ+1)]d
(ℓ)

1 contains components 1, . . . , d(ℓ) (i.e. excluding the

bias term) of the vector W(ℓ+1)δ(ℓ+1) and ⊗ denotes component-wise mul-

tiplication of similarly shaped tensors.

From the expression for the sensitivity, δ(ℓ)j , we can now examine how

the gradient of loss, L, with respect to the weight would be computed. We

again use the chain rule to write

∂L

∂w
(ℓ)
ij

=
∂s

(ℓ)
j

∂w
(ℓ)
ij

· ∂L

∂s
(ℓ)
j

= x
(ℓ−1)
i · δ(ℓ)j .

This is the component-wise equation for the loss’ gradient with respect to

layer ℓ’s weights. When we rewrite this in matrix-vector form we get

∂L

∂W(ℓ)
= x(ℓ−1)(δ(ℓ))T .(24)

So we can see that the sensitivity vector plays a critical role in determine

this gradient.

Note that if the activation function is σ(s) = tanh(s), then

σ′(s(ℓ)) =
[
1− x(ℓ) ⊗ x(ℓ)

]d(ℓ)
1

.

In the following this simplifies the expressions used in computing the gra-

dient. If a different activation function is used, then those simplifications

cannot be used.

So the gradient of the empirical risk used to update the ℓth layer’s weights

will be

∇W(ℓ)R̂D[hW] =
1

2N

N∑
k=1

[
∂L

∂W(ℓ)

]
(xk,yk)

=
1

2N

N∑
k=1

[
x(ℓ−1)(δ(ℓ))T

]
(xk,yk)

.(25)

where the last equation was obtained from equation (24). What this shows

is that the gradient for the weights in the ℓ layer are computed from the

output, x(ℓ−1), of the ℓ − 1st layer and the sensitivity, δ(ℓ), of the squared

error to changes in the input of the ℓth layer.

4. BACKPROPAGATION 77

These two quantities, x(ℓ−1) and δ(ℓ) in the backpropagation equation

(25) are computed recursively in two stages. The first stage is called forward

propagation. It uses the input to the network, xk, from the data set, D, to

compute the input/output signals (s(ℓ),x(ℓ)) in each layer ℓ = 1, . . . , L using

the recursion

s(ℓ) =
[
W(ℓ)

]T
x(ℓ−1)

x(ℓ) =

[
1

σ(s(ℓ))

]
(26)

for ℓ = 1, 2, . . . , L with the initial condition being

x(0) =

[
1

xk

]
.(27)

The second stage computes the loss sensitivities using equation (23)

δ(ℓ) = σ′(s(ℓ))⊗
[
W(ℓ+1)δ(ℓ+1)

]d(ℓ)
1

(28)

for ℓ = L− 1, L− 2, . . . , 1 where the terminal condition is

δ(L) =
∂L

∂s(L)
= 2(x(L) − yk)σ

′(s(L))(29)

where yk is the target for the kth sample in the data set. This is a backward

recursion that starts at ℓ = L − 1 and uses those results to compute for

ℓ = L−2 and so on until we get back to δ(1). Because this computation is a

backward pass, it is referred to as backpropagation. It is from this backward

pass that the backpropagation algorithm takes its name.

Once the forward pass equations (26-27) and backward pass equations

(28-29) have been completed, then the weights in each layer are updated as

W(ℓ) ←W(ℓ) − η

2N
x(ℓ−1)(δ(ℓ))T .(30)

This forward, backward, and weight update are done for each data sample,

(xk, yk) in the data set, D.

Let us walk through a simple example to make the preceding description

of the backpropagation algorithm more concrete. The initial network with

78 3. NEURAL NETWORK MODEL SETS

randomized weights is shown in Fig. 11. There is a scalar input, x = 2 and

a scalar output y = 1 in the dataset. The network has two hidden layers

with d(1) = 2 and d(2) = 1. The initial weight matrices are

FIGURE 11. Forward Propagation Graph for Example

W(1) =

[
0.1 0.2

0.3 0.4

]
, W(2) =

[
0.2 1 −3

]
, W(3) =

[
1 2

]
.

The forward pass of the algorithm first generates

x(0) =

[
1

x

]
=

[
1

2

]
.

This is multiplied by the weight matrix W(1) to get s(1)

s(1) = W(1)x(0) =

[
0.1 0.3

0.2 0.4

][
1

2

]
=

[
0.7

1

]
.

We then pass s(1) through the activation functions to get

x(1) =

 1

tanh(s
(1)
1)

tanh(s
(1)
2)

 =

 1

tanh(0.7)

tanh(1)

 =

 1

0.60

0.76

 .

4. BACKPROPAGATION 79

These outputs are then passed through W(2) to produce s(2) in the second

layer

s(2) = W(2)s(1) =
[
0.2 1 −3

] 1

0.60

0.76

 = −1.48

and passing this through the activation function gives

x(2) =

[
1

tanh(s(2))

]
=

[
1

−0.90

]
.

The input to the last layer is,

s(3) = W(3)x(2) =
[
1 2

] [1

−0.90

]
= −0.80

which when passed through the last layer’s activation function gives

h(x) = tanh(s(3)) = tanh(−0.8) = −0.66.

With the forward pass complete, we now have {(x(ℓ), s(ℓ)} for ℓ = 1, 2, 3

that are needed for the backward pass. The backward pass computes the risk

sensitivity with respect to each input signal, s(ℓ), starting from the predicted

output h(x) and comparing it to the actual target, y. This gives,

δ(3) =
∂L

∂s(3)
= 2(x(3) − y)σ′(s(3))

= 2(x(3) − y)(1− (x(3))2)

= 2(−0.66− 1)(1− (−.66)2) = −1.855.

The next sensitivity is computed as

δ(2) =
∂L

∂s(2)
= σ′(s(2))⊗

[
(W(3))T δ(3)

]d(2)
1

= ([1− .992]) · 2 · −1.855 = −0.69

80 3. NEURAL NETWORK MODEL SETS

and the final sensittivity is

δ(1) =
∂L

∂s(1)
= σ′(s(1))⊗

[
(W(2))T δ(2)

]δ(1)
1

=

[
0.634

0.4199

]
⊗

[
−.694
2.083

]
=

[
−0.44
1.67

]
.

This backward chain of computations may be visualized in Fig. 12 using

the results of the forward pass. Note that this graph has the same structure

as the forward pass’ graph. The main differences are the removal of the bias

nodes and the reversed direction of the computational flow.

FIGURE 12. Backward Propagation to compute sensitivities

δ(ℓ)

Now that we have the sensitivities we can compute the gradient of the

risk with respect to each weight matrix, W(ℓ),

∂L

∂W(1)
= x(0)(δ(1))T =

[
−0.44 −0.88
−0.88 1.75

]

∂L

∂W(2)
= x(2)(δ(2))T =

 −0.69−0.42
−0.53

∂L

∂W(3)
= x(2)(δ(3))T =

[
−1.85
1.67

]
.

5. AUTOMATIC DIFFERENTIATION 81

These are the gradients computed with respect to the given data point x = 2

and y = 1. We would then use these vectors computed above to update the

weights w = {W(1),W(2),W(3)} in our neural network.

Our development of the backpropagation equations extends the original

treatment in [RHW86] to a deep network with multiple layers [AM12].

Writing out these equations by hand is tedious and certainly not how we go

about training deep network with millions of trainable parameters. Apply-

ing back propagation to deep neural networks requires an efficient compu-

tational approach that can automate how the backpropagation equations are

generated. This method is known as automatic differentiation [BPRS18]

and is the subject of the next section.

5. Automatic Differentiation

Automatic differentiation [BPRS18] is an algorithmic method for comput-

ing the gradient of a function that can be represented as an equation of the

form

z = f(x1, x2, . . . , xn)

where xi are input variables (i = 1, . . . , n) or parameters and for which the

function, f , can be parsed into a sequence of binary or unary operations.

Such functions can be represented as graph data structures which then pro-

vide the basis for computing the output z for a specific set of inputs (x1 to

xn). In our case, we use these graph data structures to compute the gra-

dient of f for use in the backpropagation algorithm. Note that automatic

differentiation is not the same as computing the gradient using symbolic

computation. Symbolic tools such as Mathematica compute algebraic ex-

pressions for the gradient. In our case, we are computing the numerical

value of the gradient for a specific input/output sample, (xk, yk).

82 3. NEURAL NETWORK MODEL SETS

To illustrate what we mean by a graph data structure representing the

equation, let us consider the function

z = f(y, x) = y −max(0, w · x+ b)

where y and x are input variables representing a sample’s target and input.

The other variables, w and b are parameters or weights. We may decompose

this function into a list of nodes labeled with a node name and an expression

formed by the unary or binary action on other node names or input variables.

Nodes can either be designated as

• source nodes: These are nodes whose expression is in terms of

input variables/parameters.

• sink nodes: These are nodes whose node name is not use anywhere

else in the list.

• hidden nodes: These are nodes whose node name is used by other

nodal expressions and its nodal expression uses symbols from other

nodes.

These nodes are then used to build a graph whose vertex (nodal) set consists

of the listed nodes and whose edge set consists of edges from node vi to

node vj if vi appears in the expression for vj . For our given function, this

generates the graph shown in Fig. 13.

This graph can be used to automate the computation of f(x, y, w, b) by

simply setting the values in the source nodes to their appropriate values and

then traversing the graph. The graph and its nodes can be easily created by

parsing out the operator tokens in the equation’s expression.

This graph can also be used to compute the derivative of the function

with respect to various source node variables. The evaluation is done at a

specific set of values that the source nodes were initialized to. So let us

consider our original graph in Fig. 13 with the initial inputs being w = 2,

x = 1, b = 1 and y = 5. The left side of Fig. 14 shows the value of

5. AUTOMATIC DIFFERENTIATION 83

FIGURE 13. Computation Graph for z = y−max(0, w ·x+
b)

the hidden nodes and sink nodes generated by traversing the graph. These

values are shown in the circle attached to each node.

FIGURE 14. (left) forward pass through computation graph

(right) backward pass through computation graph

To compute the gradient we need to calculate the partial derivatives of

each hidden node variable and the sink node with respect to the nodes feed-

ing that node. There are 4 hidden nodes, v5, v6, v7, and v8. The sink node

84 3. NEURAL NETWORK MODEL SETS

is v9. For instance, if we consider the node v5, it has two nodes, v1 and v2

feeding it. So there are two derivatives to consider. Letting u(x) be the unit

step function, we get

∂v5
∂v1

=
∂(v1v2)

∂v1
= v2,

∂v5
∂v2

=
∂(v1v2)

∂v2
= v1.

Repeating this for the other hidden nodes gives

∂v6
∂v5

= ∂(v5+v3)
∂v5

= 1 ∂v6
∂v3

= ∂(v5+v3)
∂v3

= 1
∂v7
∂v6

= ∂(max(0,v6))
∂v6

= u(v6)
∂v8
∂v4

= ∂(v4−v7)
∂v4

= 1 ∂v8
∂v7

= ∂(v4−v7)
∂v7

= −1
∂v9
∂v8

= ∂(v8)
∂v8

= 1

.

We are going to compute the gradients of the output z with respect to

the two parameters b and w. We first take the original graph and create the

subgraph shown on the right side of Fig. 14. This subgraph reverses the

directions of all edges that form a connected path from the sink node v9

to the source nodes (v4 and v1) we want to take the gradient with respect

to. An edge of this subgraph that goes from node vi to vj is labeled with

an expression for the partial derivative ∂vi
∂vj

that we computed above. The

partial derivative, ∂z
∂b

is then obtained by traversing the path from v9 to v3.

Letting u(x) denote the step function we get

∂z

∂b
=

∂v9
∂v8
· ∂v8
∂v7
· ∂v7
∂v6
· ∂v6
∂v3

= 1×−1× u(v6)× 1

= 1×−1× 1× 1 = −1 .

The partial derivative, ∂z
∂w

is then obtained by traversing the path from v9 to

v1. This gives us

∂z

∂w
=

∂v9
∂v8
· ∂v8
∂v7
· ∂v7
∂v6
· ∂v6
∂v5
· ∂v5
∂v1

= 1×−1× u(v6)× 1× v2

= 1×−1× 1× 1× 1 = −1 .

5. AUTOMATIC DIFFERENTIATION 85

The results from these computations are shown in the white squares at-

tached to each node.

The backpropagation algorithm for deep neural networks is implemented

using the computational graphs shown above. This is much more computa-

tionally efficient then direct computation of the backprop equations because

the construction and traverse of the computational graph is extremely effi-

cient. For this reason, automatic differentiation provides a computationally

efficient way to compute gradients for large-scale neural networks with 10’s

of thousands or millions of parameters to update.

TensorFlow/Keras provides the GradientTapeAPI for automatic dif-

ferentiation. It is a Python object of global scope that records the tensor

operations run inside it in the form of a computational graph (what Tensor-

Flow refers to as a ”tape”). This graph is then used to retrieve the gradient

of any output with respect to any variable or set of variables (i.e. instances

of the tf.Variables class).

import tensorflow as tf

W = tf.Variable(tf.random.uniform((2,2)))

b = tf.Variable(tf.zeros(2,)))

x = tf.random.uniform((2,2))

#create GradientTape object and read out the operations

used to compute y

with tf.GradientTape() as tape:

y = tf.matmul(x,W) + b

#use the GradientTape object (graph) to

#compute derivative of y with respect to [W, b]

grad_of_y_wrt_W_and_b = tape.gradient(y, [W, b])

The preceding code segment computes the gradients for y = WX + b

where W,X ∈ R2×2 and b ∈ R2 with respect to W and b for randomly

chosen initial input, x and initial weights and biases. The backpropaga-

tion algorithm is configured by the model object’s compile method.

86 3. NEURAL NETWORK MODEL SETS

This method generates the GradientTape object for the model and the

fitmethod uses the GradientTape object to update the model weights.

While we have discussed simple steepest gradient descent updates in equa-

tion (30), in fact that update can be done in many different ways to speed up

convergence, manage overfitting, and avoiding local minima. These weight

optimizers are also configured by the compile method and will be dis-

cussed in greater detail below. The GradientTape API is often used

by the ML engineer when they are interested in visualizing the ”meaning”

of activated features in the model. We often have to use them when we

need to customize the backpropagation algorithm. We will cover this use

of GradientTape objects when we discuss deep learning for computer

vision applications.

6. Mini-Batch Gradient Descent Training

Backpropagation is a gradient descent algorithm. In other words, it updates

the weights, w, of the model hw ∈ H through the recursion

w ← w − η∇wR̂D[hw](31)

where

R̂D[hw] =
1

N

N∑
k=1

L(hw(xk), yk)(32)

is the model’s empirical risk evaluated over the data set D = {(xk, yk)}Nk=1

and L(hw(xk), yk) is the loss in using the model to predict the target, yk,

from the input, xk.

The key thing to note is that the weight was updated in equation (32)

using all N samples in the data set, D. Computing the gradient using equa-

tion (32) is computationally expensive since N is usually very large (104

samples). So in practice, we compute the gradient based on a subset of

the full data set. In particular, we randomly partition D into batches of

size Nb < N . This will result in N0 =
⌈

N
Nb

⌉
batches. Let Dj denote the

6. MINI-BATCH GRADIENT DESCENT TRAINING 87

jth minibatch. The first N0 − 1 batches have Nb elements of the origi-

nal data set, so we can represent Dj = {(xjk , yjk)}
Nb
k=1 where {jk}Nb

k=1 are

the indices for the samples in the original data set D. The N0th batch has

Nx = N − Nb(N0 − 1) samples in it. We would then update the weights

using the following update

w ← w − η∇wR̂k[hw](33)

for k = 1, . . . , N0 − 1 where

R̂k[hw] =
1

Nb

Nb∑
k=1

L(hw(xjk), yjk).(34)

Mini-batch gradient methods converge more quickly than methods using

the entire dataset for each weight update. A training epoch is completed

after we have cycled through all batches in the full dataset. Mini-batch

training in equation (33) therefore has N0 weight updates per epoch. The

original gradient descent update in equation (31) may be seen as having a

batch size of Nb = N and so there is only a single update of the weight per

epoch. So the mini-batch methods where Nb < N are faster because they

update the weight more times in a single epoch.

There is, of course, a cost associated with using mini-batch algorithms.

Because mini-batch algorithms compute the empirical risk’s gradient using

only a portion of the data set samples, it means that R̂k[hw] in equation

(34), is only an estimate of the empirical risk in equation (32). In particu-

lar, since the batches are randomly generated, this means that R̂k[hw] is a

random variable and so the gradient in equation (33) is a noisy version of

the gradient of the empirical risk. This randomness turns our original gradi-

ent descent algorithm into a stochastic gradient descent (SGD) algorithm.

This noise level is inversely proportional to batch size. If batch size is too

small, then the gradient updates are very noisy and the SGD algorithm may

not converge. For larger batch sizes the algorithm will converge and jump

around a minimum value. One advantage of SGD algorithms is that the

noise introduced using the mini-batch can actually help perturb the weights

88 3. NEURAL NETWORK MODEL SETS

out of local minima and may therefore achieve a lower loss than would be

seen with updates where the batch is the entire data set.

We can illustrate this impact of batch size on the earlier example from

chapter 1. In that case we trained a convolutional neural network to solve

the digit recognition task on the MNIST data set. We partitioned the train-

ing and testing data into batches of size 1000, 500, and 100. We then trained

a model for 100 epochs using each batched data set and computed the loss

on a similarly batched testing data set. The resulting training loss and vali-

dation loss as a function of epoch are shown in Fig. 15. The left hand plot

shows that the training loss decreases more quickly when we train with the

smaller batch sizes. The right hand plot shows that the validation loss has

greater variation (noise) for the smaller batch sizes.

FIGURE 15. Training and Testing Loss as a function of

training epoch for various batch sizes

CHAPTER 4

Training Pipelines for Deep Learning

Training pipelines or workflows are the procedures used to train a neural

network model that can generalize beyond its training data. Generalization

means that if the model minimizes the data set’s empirical risk, that the

actual risk for the model is also close to the empirical risk. Deep neural

networks, however, have a very large VC dimension and this suggests that

such models can memorize all of the samples in the data set and yet perform

poorly on samples that are not in the training data. We say that such models

overfit the training data. On the other hand, selecting a model set of limited

capacity may underfit the training data by performing poorly on training

data. One of the chief issues faced in neural network training is finding that

sweet spot between overfitting and underfitting the data.

How well a model fits its data is influenced by many factors. Clearly

the size of the data set is one of these factors. We saw before that we can

control overfitting by limiting the number of epochs we train for. The model

architecture and the number of nodes in each hidden layers will impact

overfitting. Optimizer hyper-parameters such as learning rate can influence

overfitting. We can also control overfitting by augmenting the loss function

with a regularization kernel that constrains the model’s weights. There are,

therefore, a large number of tools for controlling model overfitting. ML

engineers must exercise some degree of ”engineering” judgement in how

they use these tools to train deep neural networks.

The training process should be viewed as a series of “experiments” in

which training a model for a fixed number of epochs is an experiment

whose training curves provide guidance in selecting the model parameters

89

90 4. TRAINING PIPELINES FOR DEEP LEARNING

and optimizer hyper-parameters used in the next training experiment. This

chapter’s objective is to provide some insight into how these training ex-

periments are done in practice, thereby establishing a standard workflow to

be followed in solving deep learning problems. This chapter uses a single

running example to illustrate the proposed workflow. The example applica-

tion was first presented in chapter 1. It is concerned with the development

of an app that takes the image of a handwritten digit and determines which

digit between 0 to 9 it is an image of. This chapter shows how the training

workflow in Fig. 1 is used to select a sequential neural network model for

this problem.

ML-APP
Concept

Learning-by-Example
Problem Formulation

Collect Data
inputs/targets

Prepare Data for
Neural Network Model

Determine Model
Performance Baseline

Partition Data into
Training, Validation,
and Testing Data sets

initial model
optimizer
selection

Train for multiple epochs
on training data,

evaluate on validation data

Use Learning Curves to
Diagnose Overfitting

Data set not representative

Model Set not Appropriate

evaluate model
on

Testing Dataset

Problem
Formulation

Dataset
Preparation

Model
Selection

Model
Deployment

Construct
Inference

Model

Deploy on
hardware
platform

evaluate on
hardware
platofrm

FIGURE 1. Deep Learning Application Development Work-

flow

The workflow in Fig. 1 has four distinct stages.

(1) Problem Formulation takes a customer’s app concept and maps it

to the learning-by-example problem described in chapter 1.

(2) Data Preparation involves collecting and preparing the data used

in the neural network model. We use the data to identify a “base-

line” model whose performance level our trained model will need

4. TRAINING PIPELINES FOR DEEP LEARNING 91

to beat. This stage of the training process also partitions the avail-

able data in a partial or p-training dataset, validation dataset and

test dataset.

(3) Model Selection starts with an initial model architecture and op-

timizer configuration and then uses a mini-batch optimizer on the

p-training dataset to fit (train) the model for several epochs. The

model’s loss and performance metric are evaluated after each train-

ing epoch on the p-training and validation datasets. The resulting

training history is plotted as a function of epoch to form that train-

ing session’s training curves. The training curves are used to diag-

nose whether the model is overfitting the p-training data and that

diagnosis is used to suggest changes to the model architecture, p-

training and validation datasets, optimizer hyper-parameters, and

the problem’s reward function. We then re-train the modified model

to generate a new set of training curves and proceed in this matter

until we have a model that no longer overfits the p-training data

and whose performance metric on the validation dataset is deemed

to be acceptable.

(4) Model Deployment is the final stage of our workflow. This stage

evaluates the model’s performance on the test dataset to assess how

well the model should work in practice. We then prepare an infer-

ence version of our model that strips out the training portion of the

code and rewrites that model to run on the platform used in our

application. This inference version of the model is then evaluated

in the field to see how well it actually performs with respect to the

training model’s performance on the test dataset.

This chapter is primarily concerned with the first three stages of the pro-

posed workflow: problem formulation, data preparation, and model selec-

tion. The remainder of this chapter uses the digit classification application

to illustrate how these workflow stages are followed in practice.

92 4. TRAINING PIPELINES FOR DEEP LEARNING

1. Problem Formulation

The problem formulation stage of ML app development forces the devel-

oper to clearly identify how the customer’s application maps to the learning-

by-example framework described in chapter 1. In particular, the developer

wants to form a clear understanding of what the ”system” is that generated

the available data , have a precise understanding of the loss function used

during training, and have a good metric for evaluating the trained model’s

performance.

This section illustrates the problem formulation stage using the hand-

written digit recognition application from chapter 1. The customer for this

application is the United States Postal Service (USPS). The USPS wants

an app that can scan the handwritten address on a letter’s envelope and then

use that scanned image to automatically sort where that letter should go. We

can break down this problem into the task of segmenting out each character

from an image of the address, classifying which character the segmented

image represents, and then outputting a string of characters for the address.

As a starting point, we focus on the problem of classifying the image of

a single scanned digit as being either 0, 1, . . . , 9. The idea being that if

our app performs well on this test problem, we can expand our training to

any character in the address. The customer asks for a prototype application

whose classification accuracy is at least 99%.

A customer’s description of their problem may not always be some-

thing that can be directly solved using deep learning. To see whether the

USPS application is a deep learning (DL) app, we map it to the learning-by-

example problem framework in chapter 1. The system in this problem gen-

erates the data setD = {xk, yk}Nk=1 of N samples. The kth input sample, xk,

is the scanned image of a digit obtained from a random sampling of letters

that the USPS has processed. The kth target sample, yk ∈ {0, 1, 2, . . . , 9},
is the classification of the input image xk as a digit (0, 1, . . . , 9) where the

classification was performed by a human observer. The randomness in the

1. PROBLEM FORMULATION 93

targets comes from the fact that several different human observers are used

to classify the available input images.

The model set, H, consists of sequential neural network models, h :

X → [0, 1]10, that map scanned images, x ∈ X , of handwritten digits onto

a real 10-dimensional vector, h(x), whose components are real numbers in

the interval [0, 1]. The input images are typically encoded as tensors. In

our case, we are using sequential neural networks models similar to those

described in chapter 3, so the inputs are vectors (rank-1 tensors) whose

components are real valued and represent the value of one of the image

pixels. The input set, therefore, will be taken to be X = Rn where n is the

number of pixels in an image. The ith component (i = 1, . . . , 10) of the

vector, hi(x) ∈ [0, 1] is an estimate of the probability that the input image,

x, would have been classified as the digit i− 1 by the human observer.

Note that the target set, Y , for dataset samples consists of the integers

0, 1, . . . , 9 whereas the model’s range space consists of 10-dimensional real

vectors. These are distinctly different sets because we are treating our

learning-by-example problem as a multi-class logistic regression problem

where the model predicts the probability of a given the input being in a

specified class. We will therefore train the model using the sparse categor-

ical cross entropy function discussed in chapter 3.

L(yk, h(xk)) = −
1

10

10∑
j=1

1(yk = j − 1) log(hj(xk)).

The performance metric we use is the model’s classification accuracy. In

particular, given a model’s prediction, h(x) for a given input image, x, the

model’s ”classification”, ŷ(x) ∈ {0, 1, . . . , 9} of the input will be

ŷ(x) = (argmax
i

hi(x))− 1.

Namely, the predicted class is based on which component of the model’s

output vector has the largest value. The performance metric for the model

94 4. TRAINING PIPELINES FOR DEEP LEARNING

would then be the expected value of the classification error,

model accuracy = Ex,y {1 [y = ŷ(x)]} ≈ 1

N

N∑
k=1

1 [yk = ŷ(xk)]

where the second term estimates that accuracy from samples (xk, yk) in the

available dataset.

Accuracy, however, is an average measure a classifier performance with

respect to its correct classifications. In many applications, especially multi-

class problems, we are interested in the per class accuracy and the likelihood

of the classifications being incorrect. Such measures are better presented

using a confusion matrix.

In a two class problem, the confusion matrix is shown on left side of

Fig. 2. This shows a 2 by 2 grid. The x-axis represents the true target

classifications and the y-axis represents the model predictions. In this case

there are two classes; True (1) and False (0). Let y denote the true target

and ŷ denote the model’s prediction, then the cells contain the

• True Positive rate, TP = E {ŷ = 1 | y = 1}
• False Positive rate, FP = E {ŷ = 1 | y = 0}
• True Negative rate, TN = E {ŷ = 0 | y = 0}
• False Negative rate, FN = E {ŷ = 0 | y = 1}

In many cases these cells are shaded to denote the value of the rate. While

we defined these rates in terms of expected values, the rates in the cells are

actually estimates based on the empirical average of correct and false pre-

dictions for each class. While we show this for a binary classification prob-

lem, it can clearly be generalized to the multi-class case, thereby providing

a more complete view of the classifier’s performance than is provided by

the single ”accuracy” metric.

You can quickly draw a confusion matrix in Python using the seaborn
library. The following script draws such a heat map for a 4 class set of
statistics. The resulting confusion matrix is shown on right side of Fig. 2

2. DATA PREPARATION 95

pr
ed

ic
te

d
va

lu
e

target value

True (1)

False (0)

True (1) False (0)

TP
true positive

TN
true negative

FP
false positive

FN
false negative

FIGURE 2. (left) Binary Class Confusion Matrix - (right) 4

class Confusion Matrix

import seaborn

import numpy as np

import matplotlib.pyplot as plt

data = [[65, 20, 10, 15],[10, 80, 10,],

[20, 30, 40,0],[10, 10,10, 70]]

ax = seaborn.heatmap(data, xticklabels=’0123’,yticklabels=’0123’,

annot = True, square = True, cmap=’Blues’)

ax.set_xlabel(’Target’)

ax.set_ylabel(’Predicted’)

plt.show()

2. Data Preparation

Data preparation is one of the most time consuming stages in developing

a DL application. This stage involves the collection of the data as well

as pre-processing the data so it can be directly used by a neural network

model. Neural networks expect real-valued tensor inputs and the available

data may not initially be in this form. For us, this stage will also include

determining a baseline performance level that our trained models should

beat, partitioning the available data into p-training, validation and testing

data sets, and using Dataset objects to pre-batch the datasets so they can

96 4. TRAINING PIPELINES FOR DEEP LEARNING

be more quickly fetched during the model training. This section illustrates

the data preparation stage for the handwritten digit recognition application.

The database to be used in this application is the MNIST database. MNIST

is a large database of scanned images of handwritten digits (0 − 9). The

database contains 60, 000 training images and 10, 000 testing images. All

images are 28× 28 monochrome images where each pixel is an unsigned 8

bit integer (data type unint8) taking values 0−255. Each sample, (xk, yk),

in the database consists of a scanned image xk ∈ X = {1, 2, . . . , 255}28×28

and a target, yk ∈ Y = {0, 1, . . . , 9}. The MNIST database is included in

Tensorflow. The script in Fig. 3 contains the code used to load the MNIST

database and it displays one randomly drawn sample from that database.

FIGURE 3. Script and Output Loading the MNIST database

and randomly selecting a single sample out

The script in Fig. 3 shows that the shape of the training input tensor,

train x, is (60000, 28, 28) and that the shape of the training set’s target

tensor, train y is (60000,). So the training input is a rank-3 tensor con-

taining all of the scanned input images. The training target is a rank-1 tensor

constraining all targets in the training database. The script randomly selects

a single sample and displays the input image as a greyscale map, labeling it

with the associated target label.

2. DATA PREPARATION 97

Note, however, that the input and target drawn from the database

cannot be directly used as inputs to a neural network. One issue is that

the pixel values are unsigned 8-bit integers and the neural network model

expects inputs that are real-valued floating point numbers. The other issue

arises because of the model set we chose. That model set contains deep se-

quential neural networks as described in chapter 3. Those models expected

inputs that are floating point vectors rather than 28 × 28 integer matrices.

We will therefore need to reshape and retype our training/testing samples to

fit these conventions.

print(f"train_x shape = {train_x.shape}, train_x dtype = {train_x.dtype}")

train_x = train_x.reshape(60000,28*28).astype("float32")/255

test_x = test_x.reshape(10000,28*28).astype("float32")/255

print(f"train_x shape = {train_x.shape}, train_x dtype = {train_x.dtype}")

Another important step in data preparation is developing a baseline model

whose performance can be easily evaluated on the training data to provide

a baseline performance level that our ”trained” models should beat if they

are learning anything. This would indicate that our model actually learned

something new during training. For the MNIST database, we can develop a

baseline model for each digit class by taking the images for each class and

computing an ”average” image for the classes. We then use that ”baseline”

model to classify all samples in the dataset by selecting the class whose

”baseline image” is closest to the actual input image. The resulting em-

pirical accuracy is then taken as the baseline performance level our trained

models must beat. Fig. 4 shows a script used to generate this ”average”

model for the MNIST classes.

The images in Fig. 4 are the average baseline images for each digit class.

We classify each sample in the dataset by taking the difference between the

average baseline class image and the given image input. We treat the image

as a vector and compute a “norm” of the resulting error vector. Note that the

choice of norm greatly impacts how good our baseline model’s prediction

errors will be. We consider two well known norms; the RMSE (root mean

98 4. TRAINING PIPELINES FOR DEEP LEARNING

FIGURE 4. Script Generating Baseline Class Images for

MNIST dataset

squared error) and MAE (mean amplitude error). These two norms are

defined as follows. Let x̂k denote the baseline image for the kth class, then

RMSE(k) =

√√√√ 1

N

N∑
i=1

(x̂k − xk)2,

MAE(k) =
1

N

N∑
i=1

|x̂k − xk| .

Our baseline model’s classification is then the class whose RMSE or MAE

is smallest. The following script compute the total accuracy of our baseline

model with respect to the RMSE and MAE norms. We see that the RMSE

norm gives the highest total accuracy of 80%. So when we train our neural

network on the dataset, we know our model is learning something if it can

beat the 80% achieved using the MAE norm for classification.

def mae_dist(a,b):

return np.absolute(a-b).mean()

def rmse_dist(a,b):

2. DATA PREPARATION 99

MSE = np.square(np.subtract(a,b)).mean()

return np.sqrt(MSE)

total_accuracy = 0

class_accuracy = np.zeros(10)

nsamples = 60000

for indx in range(nsamples):

input = train_x[indx,:,:]

target = train_y[indx]

error = np.zeros(10)

for k in range(10):

baseline = baseline_maps[k,:,:]

#error[k] = mae_dist(baseline,input)

error[k] = rmse_dist(baseline,input)

prediction = np.argmin(error)

if target==prediction:

total_accuracy+=1/nsamples

class_accuracy[target]+=1/class_cnt[target]

norm total acc 0 1 2 3 4 5 6 7 8 9

RMSE 81% 87% 97% 76% 77% 82% 64% 86% 83% 71% 79 %

MAE 65% 82% 99% 45% 60% 68% 25% 77% 76% 38% 73%

TABLE 1. MNIST Baseline Model’s Accuracy Performance

The development of a baseline model is a critical step in the pipeline be-

cause it identifies what performance level we are trying to ”beat” with our

model. The preceding example used a simple statistical model based purely

on the dataset. . Finally, the most common baselines are those developed

by other researchers for the same dataset. These prior baseline models are

actually the outcomes of another research group and being able to demon-

strate that you ”beat” the best prior model is critical in getting your results

accepted in major machine learning conferences.

The final step is optional, but the TensorFlow library allows one to pack-

age the data in the Dataset objects that were introduced in chapter 1.

Dataset objects have a number of methods that facilitate rescaling the data

100 4. TRAINING PIPELINES FOR DEEP LEARNING

input, shuffling the inputs, and pre-batching the data. Pre-batching parti-

tions all of the available data into batches of a fixed size that can be pre-

fetched during training. This speeds up the training process. The following

script instantiates a training and testing dataset object and pre-batches them

so we can train more quickly.

import tensorflow as tf

train_ds = tf.data.Dataset.from_tensor_slices((train_x, train_y))

train_ds = train_ds.batch(32)

test_ds = tf.data.Dataset.from_tensor_slices((test_x, test_y))

test_ds = test_ds.batch(32)

for input,target in train_ds:

print(f"shape of batched input = {input.shape}")

print(f"shape of batched target = {target.shape}")

break

The output from this script fetches a single batch from the batched dataset

object and checks its shape. We see that the input batches have shape

(32, 784) and the target batches have shape (32,). So each tensor repre-

sents a full batch of inputs and targets.

3. Model Selection

Model Selection is the third stage of the ML workflow in Fig. 1. This stage is

concerned with training a model that has good performance metrics while

not overfitting the training data. This stage is inherently an experimental

process in which each training session is viewed as an experiment. The

experiment’s hypothesis is that a specified initial model and training con-

figuration will lead to a model with good performance and little overfitting.

If the experiment’s results invalidate the hypothesis, then we modify the

model architecture or change the training configuration to achieve a better

outcome. We then perform another training session and continue in this

manner until we have a model that performs well and does not overfit the

training data.

3. MODEL SELECTION 101

The specific steps taken in this stage are shown in Fig. 1. These steps first

involve partitioning the available training data into a partial or p-training

data set and a validation data set. We then instantiate an initial model as a

TensorFlow Model object. We use the compile method to configure the

training optimizer. Finally we use the fit method to train the model for

a fixed number of epochs. At each epoch, the fit method evaluates the

loss and performance metrics on both the p-training and validation datasets.

We plot the resulting p-training/validation curves and use them to assess

whether the model’s performance is acceptable and whether it is overfitting

the training data.

If the model is unacceptable, we can either change the available train-

ing data, modify the model architecture, or reconfigure the optimizer we

used for training. Modifying the model architecture may be done through

changing the number of hidden layers or nodes in each layer. One could

also choose a specialized architecture such as a convolutional neural net-

work, recurrent neural network, generative neural network, or transformer.

Changing the dataset is usually done to increase the amount of training

data. This may be accomplished by changing the validation split or using

a sophisticated validation scheme such as k-fold cross validation. Recon-

figuring the optimizer involves adjusting the type of optimizer (RMSprop

versus Adam) and its hyper-parameters (learning rate). In general, these

modifications require some degree of experience and judgement on the part

of the developer. As a result this stage of the training workflow is also very

time intensive.

The model selection stage starts with a database that has already been

partitioned into a training and testing dataset. The testing dataset is reserved

for evaluation of this stage’s final model. This testing is done in the last

stage of the workflow (Model Deployment). The training dataset is further

partitioned into a ”partial” or p-training dataset and a validation dataset.

We use the fit method to train the model for a fixed number of epochs on

the p-training dataset. Each epoch generates a new model and the loss and

102 4. TRAINING PIPELINES FOR DEEP LEARNING

performance metrics for that sequence of models is evaluated on both the

p-training and validation data for each training epoch.

This procedure generates the history of the loss and performance metric

as a function of training epoch. We plot these histories as a function of

epoch to obtain the training curves for our model. As explained in section

7 of chapter 2, each epoch expands the set of models we are searching

through, thereby increasing the effective model set’s complexity. So the

longer we train the model, the larger the searched model set becomes and

this can lead to overfitting of the training data. Overfitting occurs when the

training curves show the validation loss increasing away from the p-training

loss. If overfitting begins to occur after only a few epochs, this can suggest

that our initial model was too complex or else that we don’t have enough

training data. Training curves, therefore, play a critical role in diagnosing

whether our training session is generating models that overfit the training

data. The rest of this section illustrates how we use training curves for the

handwritten digit application described above.

Model selection for the handwritten digit app starts by instantiating an

initial sequential model and then training that model for several epochs to

obtain its training curves. We start with a subset of the MNIST database,

using only 10,000 samples from the database’s training set and then con-

struct the dataset objects for the p-training and validation datasets assuming

a batch size of 32. We will assume a 10% validation split; namely 10%

of the available data is partitioned out of the training data for validation

purposes.

from tensorflow.keras.datasets import mnist

import tensorflow as tf

(train_x, train_y), (test_x, test_y) = mnist.load_data()

train_x = train_x[:10000,:,:]

train_x = train_x.reshape(10000, 28*28).astype("float32")/255

train_y = train_y[:10000]

train_ds = tf.data.Dataset.from_tensor_slices((train_x,train_y))

3. MODEL SELECTION 103

train_ds.batch(32)

validation_split = 0.10

train_ds_size = len(list(train_ds))

val_ds_size = int(val_split*train_ds_size)

ptrain_ds_size = train_ds_size-val_ds_size

ptrain_ds = train_ds.take(ptrain_ds_size)

val_ds = train_ds.skip(ptrain_ds_size).take(val_ds_size)

For our initial model, we select a sequential network with two Dense

hidden layers of 512 and 64 nodes, respectively, using ReLU activation

functions. The output layer is Dense with 10 nodes and a softmax acti-

vation function. The input layer will have 28 × 28 = 784 nodes with a

linear activation function. We use the compile method to configure an

RMSprop training optimizer and to declare the loss function as a sparse

categorical cross-entropy function.

from tensorflow import keras

from tensorflow.keras import layers

inputs = keras.Input(shape=(28*28))

x = layers.Dense(512, activation="relu")(inputs)

x = layers.Dense(64, activation="relu")(x)

outputs = layeres.Dense(10, activation="softmax")(x)

model = keras.Model(inputs=inputs, outputs=outputs)

model.compile(optimizer="rmsprop",

loss = "sparse-categorical_crossentropy",

metrics = ["accuracy"])

The training session uses the fit method to train the model for 50

epochs. The fit method returns a history object which contains the

loss and classification accuracy evaluated on the p-training and validation

data set at each epoch. We use a callback function during training to save

to disk the current epoch’s model if it has the lowest validation loss.

callbacks = [

keras.callbacks.ModelCheckpoint(

filepath="test_model.keras",

104 4. TRAINING PIPELINES FOR DEEP LEARNING

save_best_only = true,

monitor = "val_loss")]

history = model.fit(ptrain_ds, epochs =50,

validation_data = val_ds,

callbacks = callbacks)

The following script then plots the training curves for this training ses-

sion, recovers the best model that was saved to disk through a callback and

evaluate that best model’s accuracy on the validation dataset.

test_model = keras.models.load_modl("test_model.keras")

best_val_loss, best_val_acc = test_model.evaluate(val_ds)

import matplotlib.pyplot as plt

train_loss = history.history["loss"]

val_loss = history.history["val_loss"]

train_acc = history.history["accuracy"]

val_acc = history.history["val_accuracy"]

epochs = range(1, len(train_loss)+1)

ffigure, axis = plt.subplots(1,2)

axis[0].plot(epochs, train_loss, "b--", label = "Training loss")

axis[0].plot(epochs, val_loss, "b", label = "Validation loss")

axis[0].set_title(f"Best Model Val Loss: {best_val_loss: .3f}")

axis[0].legend()

axis[1].plot(epochs, train_acc, "b--", label = "Training Accuracy")

axis[1].plot(epochs, val_acc, "b", label = "Validation Accuracy")

axis[1].set_title(f"Best Model Val Acc: {best_val_acc: .3f}")

axis[1].legend()

The left side of Fig. 5 shows the training curve for the initial model and

datasets that we described above. There are two things to notice about the

loss curves. First, the validation loss begins increasing away from the train-

ing loss after only a couple epochs. This indicates the model is overfitting.

Second, the validation loss and accuracy appear to be very noisy. This can

indicate the validation dataset is too small. The other thing to notice is

that the best model’s validation accuracy is 94.3%. This is well below the

desired accuracy requested by the ML app’s customer.

3. MODEL SELECTION 105

How poor this initial model is becomes apparent when we compare its

training curves to the final model we develop below. The right side of Fig. 5

are the training curves for the model we obtained after making adjustments

to the model architecture, training method, and datasets. In this case, we

see that the best model has a much greater validation accuracy (97.6%) and

that the loss curves do not appear to be noisy or to overfit as quickly as our

initial model did.

FIGURE 5. Left: training curves of initial model - Right:

training curves of final model

Adjusting the model, datasets, and training procedure to achieve a good

final model is done through a series of experiments whose outcomes inform

the next experiment. The left side of Fig. 5 are the results for our initial

model and they suggest the model is overfitting the training data. One rea-

son for modeling overfitting may be that it has more parameters than nec-

essary for the given amount of training data. So let us try a different model

architecture in which there is only one hidden layer of 64 nodes.

from tensorflow import keras

from tensorflow.keras import layers

inputs = keras.Input(shape= (28*28))

x = layers.Dense(64,activation="relu")(inputs)

outputs = layers.Dense(10,activation="softmax")(x)

model = keras.Model(inputs=inputs,outputs=outputs)

model.summary()

106 4. TRAINING PIPELINES FOR DEEP LEARNING

After retraining the smaller model with the same datasets we obtain the

middle set of training curves in Fig. 6. We see that the ”noise” in the vali-

dation curves has disappeared and that the validation loss now exhibits the

characteristic U-shape. In this case, the model begins overfitting around

epoch 10 (rather than immediately) and the best model’s validation accu-

racy is 94%, still too low. One other thing that impacts overfitting is the

amount of training data we have. Our original dataset had 60000 training

samples and we only used 10000 of them. So let us retrain the smaller

model with 30000 samples. The training curves for this model/dataset are

shown on the right hand side of Fig. 6. We see that overfitting still occurs

around epoch 10, but that the best model’s validation accuracy improves to

95.8%.

FIGURE 6. training curves for (left) initial model with two

hidden layers with 512 and 64 nodes and 10000 training

samples, (middle) model with a single hidden layer of 64

nodes and 10000 training samples, (right) single hidden

layer model with 30000 training samples.

We still have an overfitting problem with the model. The last thing we

can try to change is the training procedure. Recall that training ”explores”

the model set and we can manage how that exploration is done by changing

the batch size used in mini-batch gradient descent, changing the optimizer,

or by augmenting the loss function with a regularization component. Let us

try all 3 of these methods and see what happens.

• We will first increase the batch size from 32 to 256. This will slow

down the training process and the results from this experiment are

3. MODEL SELECTION 107

shown on the left side of Fig. 7. This postpones overfitting until

epoch 25 and its best model has a validation accuracy of 96.1%.

• The next thing we can do is modify the loss function by adding

some L2 weight regularization. Essentially, this penalizes mod-

els that whose weight tensors have large L2 norms. We can add

regularization into the layer declaration.
inputs = keras.Input(shape= (28*28))

x = layers.Dense(64,

kernel_regularizer = regularizers.l2(0.001),

activation="relu")(inputs)

outputs = layers.Dense(10,activation="softmax")(x)

model = keras.Model(inputs=inputs,outputs=outputs)

The middle plot in Fig. 7 shows that this flattens out the vali-

dation loss curve, but leaves the best model’s validation accuracy

nearly the same (95.9%). Note that we increased the number of

training epochs since regularization tends to slow down training.

• The final thing we do is introduce a different optimizer. We will

talk about the various optimizers below. We started with the RM-

Sprop optimizer. We now switch to an Adam optimizer when we

compile the model.
model.compile(

optimizer=tf.keras.optimizers.Adam(learning_rate=1.e-3),

loss = "sparse_categorical_crossentropy",

metrics = ["accuracy"])

The left side of Fig. 7 shows training curves that exhibit little

overfitting and with a best model that achieves a validation accu-

racy of 97%. Note that we trained the model for 100 epochs since

the model seems to converge slowly.

The series of experiments whose training curves are in Figs. 6 and 7

depict a steady progression of model improvement. The final training con-

figuration used a model with a single hidden layer of 64 nodes, a training set

with 30000 samples with 10% held out for validation. We used a mini-batch

Adam optimizer with a batch size of 256, a sparse catogorical cross-entropy

loss function with L2 regularization. We know, however, that more training

108 4. TRAINING PIPELINES FOR DEEP LEARNING

FIGURE 7. training curves for simple model with single hid-

den layer of 64 nodes and 30000 training samples, (left)

batch size = 256, (middle) batch size = 256 and L2 regu-

larization, (right) batch size = 256, L2 regularization, and

Adam optimizer

data can greatly improve our model’s accuracy. So we now take the above

training configuration and change it so that all 60000 training samples are

used in the p-training dataset and we take the 10000 testing samples as the

validation dataset. The training curve for this model is shown on the left

side of Fig. 5.

4. Optimizers

Gradient descent is the algorithm used to train deep neural networks. Ev-

ery state of the art Deep Learning framework contains various implementa-

tions of these gradient based optimizers. These algorithms are often used as

black-boxes with few practical explanations regarding their relative strengths

and weaknesses. This section follows [Rud16]’s overview of the various

optimizers used in deep learning frameworks.

There are three variants of the gradient descent algorithm, which differ

in how much data is used to compute the objective function’s gradient. De-

pending on the amount of data, one trades off the accuracy of the parameter

update against the time it takes to perform that update.

4. OPTIMIZERS 109

The classical gradient descent method that we described earlier in our

discussion of backpropagation is also called a batch algorithm. It compute

the gradient of the cost function with respect to the weights, w, using all of

the data in the training dataset.

wk+1 = wk − γ∇wR̂N [w].

Since we compute the gradient of the empirical risk R̂N over the entire

dataset, we just do one update. As discussed above, this means that gradient

descent will be very slow and it is intractable for datasets that do not fit in

memory.

Stochastic gradient descent (SGD) performs a parameter update for each

training example (xk, yk) using the update

wk+1 = wk − γ∇wL(h(xik ;wk), yik)

where the update example (xik , yik) is chosen at random from the data

set. Batch gradient updates may perform redundant computations for large

datasets because many of the samples are very close to each other. Classical

SGD does away with this redundancy by performing one update at a time

for each sample. As discussed above it is usually much faster and can be

used to learn online. Because the sample used for the update is randomly

selected, the gradient estimate in each recursion is very noisy and we may

therefore see large random fluctuations in the objective function as we work

through the recursive steps.

Mini-batch gradient descent combines the batch gradient and classical

SGD algorithm and performs an update for every mini-batch of Nb training

examples

wk+1 = wk − γ∇w

[
1

Nb

Nb∑
i=1

L(h(xki , wk), yki)

]
= wk − γ∇R̂(wk,Dk)

where the collection Dk = {(xki , yki)}
Nb
i=1 is a randomly drawn set of sam-

ples from the full dataset (i.e. Nb ≪ N). This reduces the variance in the

weight updates and can make use of highly optimized matrix optimizations

110 4. TRAINING PIPELINES FOR DEEP LEARNING

that make computing the gradient very computationally efficient. Common

mini-batch sizes range between 50 and 256. Mini-batch gradient descent is

typically what is used in training deep neural networks.

The mini-batch algorithm’s convergence performance faces a number

of issues that are addressed with the variations on the algorithm described

below. These issues are

• It may be hard to find an appropriate learning rate, γ. Convergence

is extremely slow if the learning rate is too small. Convergence

may not occur if the learning rate is too large.

• Learning rate schedules adjust the learning rate during training by

reducing the rate according to a pre-defined schedule or when the

change in the objective begins to stall. These schedules and thresh-

olds, however, are usually defined in advance and do not adapt to

a dataset’s characteristics.

• The same learning rate is often applied to all weights. But if the

data is sparse then we may not want to update all weights with the

same γ.

• If the error function is highly non-convex (common for neural net-

works), then it may be very difficult for the mini-batch algorithm

to escape a saddle points and local minimum since the gradient is

close to zero.

FIGURE 8. Impact of momentum in reducing oscillations in

mini-batch SGD

One enhancement of the minibatch SGD algorithm is to use momentum

[Qia99]. In risk surfaces that form narrow ravines, it is common for the

SGD algorithm’s estimate to oscillate around the smallest sloped part of

4. OPTIMIZERS 111

the ravine and make very slow progress down the ravine. Momentum is

a method that accelerates SGD in the relevant directions and dampens the

oscillations seen in Fig. 8. It does this by adding a fraction η of the update

vector of the past time step to the current update vector

gk = ∇wR̂(wk,Dk)

vk = ηvk−1 + γgk

wk+1 = wk − vk.

The momentum hyperparameter, η is usually set to 0.9. An extremely useful

variation on the preceding momentum algorithm is Nesterov’s accelerated

gradient (also called Nesterov momentum) [Nes83].

gk = ∇wR̂(wk − ηvk−1,Dk)

vk = ηvk−1 + γgk

wk+1 = wk − vk.

This momentum implementation has significantly improved the training

performance for recurrent neural networks.

Another technique for improving optimizer convergence is to adapt the

updates to the slope of the risk function by adapting the learning rate. One

example of such an example is Adagrad [DHS11]. This algorithm adapts

the learning rate by using a larger learning rate for weights that are infre-

quently updated and smaller rates for weights that are often updated. For

this reason, Adagrad is well suited to sparse data. Let v ⊗ w denote the

component-wise multiplication of two equal length vectors v and w. Ada-

grad’s update is shown below

gk = ∇wR̂(wk,Kk)

nk = nk−1 + gk ⊗ gk

wk+1 = wk −
γ

√
nk + ϵ

⊗ gk.

112 4. TRAINING PIPELINES FOR DEEP LEARNING

Note that the learning rate
γ

√
nk + ϵ

is a vector of the same shape as nk.

So this update rule uses a different learning rate for each component of the

weighting vector w. Note that the operations in the update equations are

component-wise vector multiplies, ⊗. Essentially, what Adagrad does is

divide the base learning rate γ for each weight parameter by the sum of the

square of the past gradients for that parameter.

The problem with Adagrad is that this sum is constantly increasing so

that eventually the effective learning rate becomes vanishingly small. RM-

Sprop [TH12] is a variation on Adagrad that replaces the sum in nk with a

decaying mean parameterized by the forgetting factor µ. The update equa-

tions, therefore take the form

gk = ∇wR̂(wk,Dk)

nk = µnk−1 + (1− µ)gk ⊗ gk

wk+1 = wk −
γ

√
nk + ϵ

⊗ gk

where
γ

√
nk + ϵ

is a vector with the same shape as nk. Because the compo-

nent of nk are decaying averages of the past squared gradients, the effective

learning rate does not go to zero asymptotically and can ”adapt” to changes

in the squared gradient as we traverse the weight space.

Adagrad and RMSprop are methods that adapt the learning rate, whereas

the momentum based algorithms prevent the update direction from oscillat-

ing too much. These two techniques are combined in the adaptive moment

estimation (Adam) algorithm [KB14]. Adam combines classical momen-

tum (using a decaying mean instead of a decaying sum) with RMSprop.

Adam’s update equations are given below. In these equations β1 and β2 are

forgetting factors used to smooth the past gradients and squared gradients,

respectively. Hyperparameters βb
1 and βb

2 are constants between (0, 1) used

4. OPTIMIZERS 113

for bias correction terms that offset some instances of algorithm instability.

gk = ∇wR̂(wk,Dk)

mk = β1mk−1 + (1− β1)gk

m̂k =
1

1− βb
1

mk

vk = β2vk−1 + (1− β2)gk ⊗ gk

v̂k =
1

1− βb
2

vk

wk+1 = wk − γ
1√

v̂k + ϵ
⊗ m̂k.

Of the preceding optimizers, Adam and RMSprop are used most often in

deep learning. Let us see how SGD with momentum, Adagrad, RMSprop

and Adam compare to each other on a sentiment classification problem

trained on a set of Movie reviews for the Internet Movie Database (IMDB)

used in [Cho21]. We will discuss this classification in more detail in later

chapters that study natural language processing. The training scripts may

be found in those chapters. The IMDB database is split into 25,000 reviews

for training and 25,000 reviews for testing. Each set is split evenly between

positive and negative reviews. The words in each review are encoded as

integers, where we only encode the first 10,000 words appearing most of-

ten in the reviews. Each review consists of a varying number of words and

cannot therefore be directly used by a neural network expecting an input

vector of fixed dimension. So we will use multi-hot encoding of the integer

encoded review to obtain an input of fixed length. In particular, the input

will be a 10, 000 length vector whose kth component is 1 if a word with

integer index k appears in the review. The kth component is 0 if the word

with index k never appears in the review. The model takes this 10, 000 di-

mensional binary vector and maps it to 0 or 1 to indicate if the review’s

sentiment is “positive” or ”negative”. The following script loads the IMDB

database from TensorFlow’s datasets library, multi-hot encodes the in-

teger encoded reviews and then splits the training data in a ptraining and

validation data set.

114 4. TRAINING PIPELINES FOR DEEP LEARNING

from tensorflow.keras.datasets import imdb

import numpy as np

num_words = 10000

(train_x,train_y), (test_x,test_y) = imdb.load_data(num_words = num_words)

def encode(sequences, dim = 10000):

results = np.zeros((len(sequences), dim))

for i, sequence in enumerate(sequences):

for j in sequence:

results[i,j]=1

return results

train_x = encode(train_x)

train_y = np.asarray(train_y).astype("float32")

We then form the dataset objects using a 40% validation split with a

batch size of 512.

import tensorflow as tf

batch_size = 512

train_ds = tf.data.Dataset.from_tensor_slices(train_x,train_y))

train_ds = train_ds.batch(batch_size)

train_ds_size = len(list(train_ds))

val_split = 0.4

val_size = int(val_split*train_ds_size)

ptrain_size = train_ds_size-val_size

ptrain_ds = train_ds.take(ptrain_size)

val_ds = train_ds.skip(ptrain_size).take(val_size)

We use a simple neural network with one hidden layers of dimension

4 and an ReLU activation function. The output layer is a single node that

is densely connected to the nodes of the second hidden layers and uses a

sigmoid (1 + e−x)−1 activation function. We will train this model using

various optimizers assuming a binary cross-entropy loss function. The fol-

lowing script uses a function encode to build the network and then selects

an optimizer. The following script selects the SGD optimizer with Nes-

terov momentum.

4. OPTIMIZERS 115

from tensorflow import keras

from tensorflow.keras import layers

from tensorflow.keras import optimizers

def build_model(num_input, num_nodes, num_layers):

inputs = keras.Input(shape = (num_input))

x = layers.Dense(num_nodes, activation="relu")(inputs)

for k in range(num_layers-1):

x = layers.Dense(num_nodes, activation = "relu")(x)

outputs = layers.Dense(1, activation = "sigmoid")(x)

model = keras.Model(inputs=inputs, outputs=outputs)

return model

num_input = num_words

num_nodes = 4

num_layers = 1

model = build_model(num_input,num_nodes, num_layers)

learning_rate = 0.001

optimizer = optimizers.SGD(learning_rate, momentum=.1,nesterov=True)

#optimizer = optimizers.Adagrad(learning_rate)

#optimizer = optimizers.RMSprop(learning_rate)

#optimizer = optimizers.Adam(learning_rate)

model.compile(

optimizer = optimizer,

loss = "binary_crossentropy",

metrics = ["accuracy"])

The training curves for these different optimizers are shown in Fig. 9.

This figure has 3 plots, one showing the training/validation loss for SGD/Adagrad,

Adagrad/RMSprop, and RMSprop/Adam, all using the same learning rate

of 0.001. From the figure we see that SGD, even with Nesterov momentum,

learns very slowly with the given learning rate. Adagrad reduces the loss

more quickly than SGD, but it still converges very slowly. If we had chosen

a larger learning rate, these methods would have converged more quickly.

When comparing Adagrad against RMSprop (same learning rate), we see

that RMSprop converges much more quickly and begins to show signs of

overfitting after the eighth epoch. The final training curve in the figure com-

pares RMSprop and Adam for the same learning rate. We see that both have

very similar curves, except for the validation loss after the models begin to

116 4. TRAINING PIPELINES FOR DEEP LEARNING

overfit. In this case, we see that Adam’s validation loss grows more slowly

than RMSprop’s validation loss.

FIGURE 9. Comparison of training curves for various opti-

mizers on a simple model for the IMDB sentiment analysis

problem

Which optimizer should be used? The answer depends on the type of

data and problem you are dealing with. If your input data is sparse, then you

will probably achieve the best results using one of the adaptive learning-rate

methods such as RMSprop or Adam. RMSprop is a simpler extension of

Adagrad that addresses Adagrad’s diminishing learning rates. In the above

example, this was crucial to obtain a reasonable learning rate. It should be

noted that the selection of the optimizer’s hyper-parameters can have a big

impact on the training curves. In practice, ML engineers usually pick an

optimizer whose hyper-parameters they find easy to tune. This tuning of

hyper-parameters in the model, optimizer, and compiler are all critical steps

in model training. Aside from dataset collection/curation, the selection of

hyper-parameters is the most time consuming part of developing a model.

5. Norm Regularizers

Norm regularization is a tool that is used to prevent overfitting. It usually

works by augmenting the objective function (i.e. empirical risk) with an

additional term that penalizes some norm of the weight vector. Penalizing

the weight vector in this way essentially reduces our search of the model

5. NORM REGULARIZERS 117

space,H, to a smaller set whose effective VC dimension is smaller, thereby

preventing overfitting.

To provide a graphic illustration of the benefits of regularization, let us

consider a regression problem that tries fitting samples of a lower order

polynomial function, q(x), with a higher order polynomial. So we consider

the problem of finding the weights {wi}Mi=1 that minimize

J(w) =
N∑
k=1

(
q(xk)−

M∑
j=1

wjx
j
k

)2

where {xk}Nk=1 is a set of N = 10 randomly chosen real numbers in the

interval [−1, 1]. The observations for input xk from the target function are

q(xk) = xk + 0.2x2
k − x3

k + νk where νk is a zero mean i.i.d. random

variable with finite variance. Fig. 10 (left) shows what happens if we select

a polynomial model
∑M

j=1 wjx
j
k of order M = 6 that minimizes the mean

squared error J(w). This is clearly a very poor fit and if we look at the

weight vector w, we see the weights vary over a large range from 0.02 up to

4.0. This large variation in weights is what gives rise to the large variations

seen in the plot.

FIGURE 10. (left) regressor fit using 6th order model with-

out regularization. (righ) regressor fit using 6th order model

using norm regularization on the weight vector and a regu-

larization penalty λ = 0.1

118 4. TRAINING PIPELINES FOR DEEP LEARNING

We will try to address this ”overfitting” by introducing a penalty for the

large weights. The easiest way of doing this is to augment J(w) to

Jλ(w) =
N∑
k=1

(
q(xk)−

M∑
j=1

wjx
j
k

)2

+ λ
M∑
j=1

w2
j

where λ > 0 is a positive real constant we select to adjust how large the

penalty should be on the weight vector’s Euclidean 2-norm. To derive the

optimal weight for this augmented cost, let

X =

1 x1 x2

1 · · · xM
1

1 x2 x2
2 · · · xM

2
...

...
...

...

1 xN x2
N · · · xM

N

 , Y =

q(x1) + ν1

q(x2) + ν2
...

q(xN) + νN

 .

We can then write our augmented objective as

Jλ(w) = |Xw −Y|2 + λ|w|2

Taking the derivative with respect to w and setting to zero gives

(XTXw −XTY) + λw = 0

which we rewrite as [
XTX+ λI

]
w −XTY = 0

Assuming the matrix in the square brace is invertible, our regularized weight

vector would be

wr =
[
XTX+ λI

]−1
XTY

We can then take this formula for the solution as our ”regularized” model.

Fig. 10 (right) shows how well this regularized 6th order model works for

our given problem using a penalty term λ = 0.1. What should be apparent

is that this is a much closer fit to the true target function.

5. NORM REGULARIZERS 119

FIGURE 11. MSE versus the regular-

izing hyperparameter λ

The result in Fig. 10 (right) was

obtained with a penalty term λ =

0.1. One might ask how does this

change if we chose a different λ. In

particular, if λ = 0 then we have

the original problem and so there

should be a large mean squared er-

ror (MSE) for the selected model.

If λ is large, however, we would

expect very small weights and this

suggests the error could again be

large. This means there is probably

a ”optimal” choice for the penalty parameter, λ. Fig. 11 plots the empir-

ical risk, R̂λ(h), and the true risk Rλ(h) for various λ ranging between 0

and 1. This plot indeed shows that the empirical risk increases with λ, but

that the true risk shows a definite minimum for a very small value of the

regularization parameter.

Norm regularization as shown above is a common technique used to

address overfitting in deep neural networks. The particular approach we

demonstrated on the regression problem is known as L2 regularization since

we augmented the empirical risk function with the Euclidean 2 norm of the

weights. An alternative choice for the norm is the L1 norm. In this case the

augmented cost function takes the form

Jλ(w) =
N∑
k=1

(q(xk)−
M∑
j=1

wjx
j
k)

2 + λ
M∑
j=1

|wj|

= |Xw −Y|2 + λ|w|1

where |w|1 =
M∑
k=1

|wk| is the L1 norm of the vector w. Let us assume that

the data matrix, X, singular value decomposition to write

XTX = UTΣU

120 4. TRAINING PIPELINES FOR DEEP LEARNING

where U is a unitary matrix and Σ = diag(σi) is a diagonal matrix with

non-negative diagonal entries, σi. We then define the new vectors v = Uw

as a new ”weight” vector. This would allow us to write our augmented cost

in terms of the transformed weight as

Jλ(v) =
∣∣∣√Σv −Y

∣∣∣2 + λ|v|1

=
N∑
k=1

[
(
√
σkvk − yk)

2 + λ|vk|
]

Minimizing each term in the above summation shows that

v∗k = sign(yk)max

{
|yk|√
σk

− λ√
σk

, 0

}
Note that if |yk| ≤ λ then the we simply take the weight v∗k = 0. In other

words, L1 regularization has a tendency to zero out those weights for which

the associated input is too small. This leads towards sparse weight repre-

sentations which effectively reduce the number of ”parameters” in the given

model. For this reason, the use of L1 regularizers tends to produce sparse

models whose weights can be seen as identifying ”features” in the given

system.

Let us apply the L2 regularizer to our earlier IMDB example. In this

case, we’ll start with a model with 15 hidden layers of dimension 4. With a

model this deep, we expect it to begin overfitting almost immediately. The

question is whether L2 regularization can postpone overfitting of the model.

In this case, we used a batch size of 300 with the regularization parameter

being λ = 0.01. Fig. 12 show the training curves with and without L2

regularization. The right plot shows the loss curves and here we clearly

see that an appropriate level of L2 regularization controls the amount of

model overfitting. The regularized model’s validation curve does not begin

getting larger as we increase the number of training epochs. As a result the

best validation accuracy achieved by this model is slightly better than that

obtained without regularization (0.855 versus 0.881).

6. DROPOUT REGULARIZATION 121

FIGURE 12. Training and Accuracy Curves for IMDB ex-

ample with L2 regularization

6. Dropout Regularization

Dropout [SHK+14] is one of the most effective and commonly used reg-

ularization techniques for neural networks. Dropout has been shown to be

first-order equivalent to L2 regularization [WWL13]. But perhaps a better

way to understand it [GBC16] is as a very efficient alternative to bagging

predictors [Bre96].

Bagging is a technique for reducing generalization error by combining

several models. The idea is to train several models separately, then have all

models vote on the output for test examples. This may be impractical when

each model is a large neural network since training and validation of such

model is costly in time and memory.

Dropout, on the other hand may be thought of as a way to making bag-

ging practical for ensembles of very large networks. Specifically, dropout

trains the ensemble consisting of all subnetworks that can be formed by re-

moving nonoutput units from an underlying base network. In many deep

neural networks built from linear machines with outputs passing through a

nonlinearity, one can effectively remove a unit from the network by multi-

plying its output value by zero.

122 4. TRAINING PIPELINES FOR DEEP LEARNING

TensorFlow implements the dropout concept by introducing a layer after

the hidden layer. This layer sets the outputs of the hidden layer to 0 with

a frequency of specified rate at each step during training. This layer is

only active during the training of the model. If the model is being used for

inference (testing or validation), then the layer drops no values of the out-

puts. For our earlier IMDB example network, we would therefore declare

the network with dropout as

def build_model_dropout(num_input, num_nodes,num_layers, rate):

inputs = keras.Input(shape = (num_input))

x = layers.Dense(num_nodes, activation="relu")(inputs)

x = layers.Dropout(rate)(x)

for k in range(num_layers-1):

x = layers.Dense(num_nodes, activation="relu")(x)

x = layers.Dropout(rate)(x)

outputs = layers.Dense(1, activation="sigmoid")(x)

model = keras.Model(inputs=inputs,outputs=outputs)

return model

rate = .2

model3 = build_model_dropout(num_input, num_nodes, num_layers, rate)

This example uses 20% dropout after each hidden layer. Fig. 13 shows

that this level of dropout clearly reduces overfitting since the validation loss

no longer has the U-shape where it gets larger for more training epochs.

The validation accuracy achieved with dropout, in this case, is the same as

that obtained without dropout.

7. Diagnosing Model Performance with Training curves

Training curves are widely used diagnostic tools in machine learning for al-

gorithms that learn incrementally. During training time, we evaluate model

performance on both the training and hold-out validation dataset and we

plot this performance for each training epoch. Reviewing training curves

for a model during training is used to diagnose problems with learning, such

7. DIAGNOSING MODEL PERFORMANCE WITH TRAINING CURVES 123

FIGURE 13. Training and Accuracy Curves for IMDB ex-

ample with 20% Dropout

as an underfit or overfit model, as well as whether the training and valida-

tion datasets are suitably representative. This section discusses methods in

which training curves are used to diagnose underfitting or overfitting and to

diagnose issues with data representation. These curves can also be used to

sometimes suggest the type of changes we need to make to improve training

performance. There are three basic conditions we want to identify; underfit,

overfit, or optimal fit. We will take a closer look at each with examples.

Underfit training curves: Underfitting refers to a model that has not ade-

quately learned the training dataset to obtain a sufficiently low training loss.

There are two common signals for underfitting. First, our training loss curve

may show a flat line or noisy values of relatively high loss, indicating that

the model was unable to learn from the training dataset at all. An example

is provided below in Fig. 14 and is common when the model has insufficient

capacity to capture the dataset’s complexity. The recommended solution to

this problem is to first add more observations to the dataset (augmentation).

Another approach is to add a richer set of features to the dataset. If your

model has been regularized, you can reduce the regularization parameter, or

increase model capacity by making the network deeper. An underfit model

may also be identified by training and validation losses that are continuing

to decrease at the end of the plot. This indicates that the model is capable

of further learning and that the training process was halted prematurely. In

124 4. TRAINING PIPELINES FOR DEEP LEARNING

this second case, we simply increase the number of epochs or increase the

learning rate to speed up training.

FIGURE 14. (left) training curve showing underfitting due

to insufficient data or model capacity (right) training curve

showing underfitting due to premature stopping of training.

Overfit training curves: Overfitting refers to a model that has learned the

training dataset too well, including the statistical noise or random fluctua-

tions in the training dataset. The problem with overfitting is that the more

specialized the model becomes to the training data, the less likely it is to

generalize to new data, thereby increasing its generalization error. Over-

fitting is apparent when the training loss continues to decrease while the

validation loss has stopped decreasing has begun to increase. Having a

model overfit is not necessarily a bad thing. It signals that the model has

extracted all of the signal that the particular model could learn. The issues

to be concerned about with overfitting is the magnitude and the inflection

point.

A model that overfits early and has sharp ”U” shape often indicates over-

capacity and/or a learning rate that is too high. This situation is shown in

Fig. 15. The solution involves involves using either weight decay (L2 or L1)

regularization or dropout. One can also address this problem by reducing

the learning rate. One can also simply reduce the number and/or size of the

hidden layers, thereby reducing the complexity of the model set. Often we

can minimize overfitting, but rarely can we completely eliminate it while

7. DIAGNOSING MODEL PERFORMANCE WITH TRAINING CURVES 125

still minimizing our loss. The right side of Fig. 15 shows an example where

we have minimizing overfitting and yet not completely removed it.

FIGURE 15. (left) training curve showing overfitting due to

excess capacity over too high learning rate (right) training

curve shows minimal overfitting.

Optimal Fit training curves:. An optimal fit is the goal of the learning

algorithm. The loss of the model will almost always be lower on the training

dataset than the validation dataset. This means that we should expect some

gap between the training and validation loss training curves. This gap is

referred to as the generalization gap. An optimal fit, therefore, is one where

1) the training loss decreases to a stable constant value, 2) the validation loss

decreases to a stable constant value, and 3) the generalization gap is small.

The left side of Fig. 16 shows an example of a training curve shown an

optimal fit.

Diagnosing Unrepresentative Dataset: training curves can also be used

to diagnose problems with the dataset; namely whether or not the dataset is

representative. An unrepresentative dataset means that the dataset may not

capture the statistical characteristic relative to another dataset drawn from

the same domain, such as between a training and validation dataset. This

can commonly occur if the number of samples in a dataset is too small or

if certain characteristics are not adequately represented. In particular, we

would like to diagnose two cases; whether the training dataset or validation

dataset are unrepresentative.

126 4. TRAINING PIPELINES FOR DEEP LEARNING

FIGURE 16. (left) training curve showing an optimal fit

(right) large generalization gap occurs because validation

has features not present in training dataset.

An unrepresentative training dataset means that the training dataset does

not provide sufficient information to learn the problem, relative to the vali-

dation dataset used to evaluate it. This situation can be identified by a train-

ing and validation training curve that both show improvement, but where

this is a large gap between both curves. The right side of Fig. 16 is an ex-

ample of a training curve where the training dataset is unrepresentative. The

obvious solution is to increase the size of the dataset or to use augmentation

or cross-validation.

Cross-validation or leave-one-out training methods are often used when

when the training dataset is small. The dataset is an i.i.d. sampling of the

joint distribution, Fx(x)Q(y|x), but when the number of samples is small

then the variance in the empirical risk will be large. K-fold cross-validation

is a way that can reduce this variance. K-fold cross-validation consists of

splitting the available data into K partitions, and training a model on K− 1

partitions while evaluating on the one that was left out. The validation score

of the model is then the average of the K validation scores. This is relatively

easy to program as shown in [Cho21] chapter 5.

An unrepresentative validation dataset means that the validation dataset

does not provide sufficient information to evaluate the ability of the model

to generalize. This may occur if the validation dataset has too few examples

7. DIAGNOSING MODEL PERFORMANCE WITH TRAINING CURVES 127

as compared to the training dataset. This case may be identified by a training

curve for training loss that looks like a good fit and a validation loss curve

that shows a great deal of noise with little or no improvement. The left

side of Fig. 17 shows such training curves. The solution is to add more

observations to the validation dataset or perform cross-validation if the size

of the dataset is limited.

Unrepresentative validation datasets may also be diagnosed if the val-

idation loss is lower than the training loss no matter how many training

iterations you perform. In this case, it suggests that the validation dataset

is easier for the model to predict than the training dataset. Common causes

for this situation are

• Information leakage where a feature in the training data has direct

ties to observations and responses in the validation data

• Poor sampling procedures where duplicate observations exist in

the datasets

• Validation dataset contains features with less variance that the train-

ing dataset

Solutions to this problem involve removing duplicate observations, tak-

ing steps to reduce information leakage between training and validation

datasets, making sure that you are randomly sampling observations so that

feature variance is consistent, and performing cross-validation.

128 4. TRAINING PIPELINES FOR DEEP LEARNING

FIGURE 17. (left) validation dataset is too small relative to

training data (right) val loss less training loss suggests infor-

mation leakage between the two datasets.

CHAPTER 5

Convolutional Neural Networks

Convolutional neural networks or CNNs are critical to the success of

computer vision applications such as self-driving cars and facial recognition

systems. They are a special kind of deep neural network whose densely in-

terconnected layers are replaced by more specialized interconnections that

can be viewed as realizing a discrete convolution.

Convolutional neural networks were first introduced by Fukushima in

1983 under the name of neocognitron [FMI83]. Its architecture was in-

spired by a hierarchical model of the nervous system proposed by Hubel

and Weisel after their early study of the cat’s visual cortex [HW62]. In

1989, Yann LeCun used backpropagation along with neocognitron concepts

to propose a model called LeNet which was used for handwritten zip code

recognition by the U.S. Postal Service[LBD+89]. After this initial suc-

cess there was a long lull in neural network research activity until 2012

when Hinton and others at the University of Toronto entered a CNN in the

famous ImageNet challenge and ended up winning that contest[KSH12].

Another major achievement occurred in 2015 when a CNN neural network

called ResNet surpassed human level error rate of 5.1% with an error rate

of 3.57%[HZRS16].

In chapter 4, we used the handwritten digit classification problem with

the MNIST database to illustrate a typical workflow used in developing a

sequential neural network model for the application. In this case, we were

able to obtain a final model that consisted of a single hidden layer with

64 nodes. Our validation testing for that model achieved a classification

129

130 5. CONVOLUTIONAL NEURAL NETWORKS

accuracy of 97%. But recall that in section 4 of chapter 1 we trained an-

other model with a 2D convolutional architecture to obtain a classification

accuracy on the testing data of 93.3%. With some slight tweaks of that ar-

chitecture, we will be able to greatly increase the model’s accuracy to nearly

99%. This chapter introduces the convolutional neural network architecture

and presents examples of its use in several computer vision applications.

1. MNIST Problem Revisited

This section revisits the MNIST problem presented earlier using a variation

of the 2D convolutional neural network (CNN) architecture from section 4

of chapter 1. We will compare it directly against a sequential model with

a single hidden layer of 64 nodes with L2 regularization kernel. We will

train both models on the MNIST dataset, using 30,000 training samples

and 10,000 testing samples. The training dataset will be batched with a

batch size of 256 and will have a 30% validation split. The 2D convolution

network model is instantiated and compiled using the following script

inputs = keras.Input((28,28,1))

x = layers.Conv2D(filters=32, kernel_size=3, activation="relu")(inputs)

x = layers.MaxPooling2D(pool_size=2)(x)

x = layers.Conv2D(filters=64, kernel_size=3, activation="relu")(x)

x = layers.MaxPooling2D(pool_size=2)(x)

x = layers.Conv2D(filters=128, kernel_size=3, activation="relu")(x)

x = layers.Flatten()(x)

outputs = layers.Dense(10, activation="softmax")(x)

model_cnn = keras.Model(inputs=inputs, outputs=outputs)

model_cnn.summary()

import tensorflow as tf

model_cnn.compile(

optimizer=tf.keras.optimizers.Adam(learning_rate=1.e-3),

loss = "sparse_categorical_crossentropy",

metrics = ["accuracy"])

1. MNIST PROBLEM REVISITED 131

The model summary shows the output shape of each layer and the num-

ber of trainable parameters (weights). This model has over 100,000 weights

to train. Note that the output shapes of each layer in the CNN is a rank-3

tensor. The CNN inputs have shape (28, 28, 1) but the output of the first

convolutional layer has shape (26, 26, 32). Recall that tensors are multi-

dimensional matrices. For CNN’s, the first two components of the tensor

are the spatial dimensions of the image. The third component carries ad-

ditional feature information. Since each pixel in the MNIST input image

is a floating point number, the third dimension of the input tensor has only

1 component. The combined convolutional layer and max-pooling layer,

however, do two things. First they downsample the size of the original im-

age from 28 by 28 to 13 by 13 and then they expand the third dimension

from 1 to 32. These 32 additional channels represent features. During the

second wave of neural network research in the 1980’s, these ”features” were

pre-designed by the ML engineer. What is new about our CNN is that it is

learning those features by itself.

We now reshape our data set images to fit into these tensor shapes. The

following script also creates dataset objects from the train and testing data.

We then split the training dataset object into a p-training and validation

dataset.

from tensorflow.keras.datasets import mnist

db_size = 30000

(train_x, train_y), (test_x,test_y) = mnist.load_data()

train_x = train_x.reshape((db_size, 28,28,1)).astype("float32")/255

test_x = test_x.reshape((10000, 28,28,1)).astype("float32")/255

batch_size = 256

train_ds = tf.data.Dataset.from_tensor_slices((train_x, train_y))

train_ds = train_ds.batch(batch_size)

train_ds_size = len(list(train_ds))

test_ds = tf.data.Dataset.from_tensor_slices((test_x,test_y))

test_ds = test_ds.batch(batch_size)

test_ds_size = len(list(test_ds))

132 5. CONVOLUTIONAL NEURAL NETWORKS

val_split = 0.30

train_ds_size = len(list(train_ds))

val_size = int(val_split*train_ds_size)

ptrain_size = train_ds_size-val_size

ptrain_ds = train_ds.take(ptrain_size)

val_ds = train_ds.skip(ptrain_size).take(val_size)

We then fit and save the best CNN with the lowest validation loss. The

accuracy of this ”best” CNN will then be evaluated on the test dataset. Fig. 1

plots the p-training and validation losses for the sequential and CNN model.

The right sided plot shows the validation accuracy of both models as a func-

tion of training epoch. The titles in these plot show that the test accuracy of

the best sequential model was 93.6% whereas the best CNN’s test accuracy

was 98.5%. This shows that clearly the CNN architecture performs better

on the MNIST digit recognition task. The following sections examine the

CNN in more detail.

FIGURE 1. Training curves comparing a sequential neural

network and a 2D CNN’s loss and accuracy as a function of

training epoch.

2. Computer Vision Applications

Computer vision applications were one of the first major success stories for

deep learning. This success rests on the fact that the information in an image

in inherently local and translation invariant. ”Local” means that pixels that

2. COMPUTER VISION APPLICATIONS 133

are close to other are more likely to represent the same object, than pixels

that are at opposite ends of the image. ”Translation Invariant” means that a

pattern of pixels representing a certain feature will carry the same meaning

no matter where it is located in the image. These two aspects of computer

vision allow one to employ neural network architectures that have fewer

weights than Sequential dense models achieving similar levels of accuracy.

In our MNIST application, for example, a single layer dense model could be

trained to achieve a similar (98%) level of accuracy as the 2D convolution

model if it had 2048 nodes and training data set of 60000 samples (rather

than 30000). This sequential model would have about 1,600,000 weights

whereas the 2D convolutional model only had 100,000 trainable weights.

The layer that makes this possible is called a convolutional layer. To help

motivate this layer class, I will first review how image classification has

been traditionally performed in computer vision systems prior to the advent

of deep learning.

Let us consider the problem of tracking a ballistic missile in flight during

its boost phase using a hyper-kinetic projectile that has a vision sensor on

its nose. We want to develop algorithms that can use the image created

by the sensor to identify the point on the missile we wish to hit with the

projectile. The problem has several vision tasks we need to solve. We

first must detect the target in the image and then we must segment out or

localize the target in that image. The target’s image then has to be split

into two parts; the missile body and engine plume. The missile’s engine

will be designated as the projectile’s target and its coordinate passed to the

projectile’s guidance system. Note that this process has to be done every

few tenths of a second because as the projectile flies toward the target, its

image grows in the sensor’s field of view.

The algorithms we can use for this problem involve converting the RGB

image from the sensor into a greyscale image and then using a Sobel edge

filter to create an outline of the missile and its plume. We then use the image

morphological transformations of dilation, fill, and erosion to recover the

134 5. CONVOLUTIONAL NEURAL NETWORKS

brightest spot in the image. That bright spot should be the engine and the

segmented image shown in the final picture of Fig. 2 would be the target

whose coordinates we would pass to the projectile’s guidance system.

FIGURE 2. Image Processing Tasks used to Identify Missile

Engine in Tracking Problem

All of the image transformations shown in Fig. 2 (sobel edge detection,

morphological dilation, fill, and erosion) may be seen as taking a structur-

ing kernel and applying it to the neighborhood of each pixel in the image.

Spatial filtering using the structural kernel is probably the easiest way to

illustrate what we mean. In particular, if we let Ik,ℓ denote the input im-

age’s k, ℓth pixel, and let Ki,j denote the i, jth element of the structuring

kernel (i, j ranges from−M to M), then the filter output’s k, ℓth pixel, Rk,ℓ

2. COMPUTER VISION APPLICATIONS 135

is computing as

Rk,ℓ =
M∑

i=−M

M∑
j=−M

Ki,jIk+i,ℓ+j
def
= K ∗ I.

This is sometimes called a convolution sum, though in reality it is actually

a “correlation” sum. We denote the convolution as the binary operation ∗.
Fig. 3 illustrates how this convolution is realized on a 9 by 9 image, I , which

shows a dark square in the center of the image. The kernel is shown to the

left of the figure has size 3 so that i, j ranges from −1 to 1. The filtered

image resulting from the convolution is shown on the right.

FIGURE 3. Image Convolution/Correlation

Let us look at the sum for the element (k, ℓ) = (0, 1). In this case the

sum is

R0,1 =
1∑

i=−1

1∑
j=−1

Ki,jIi,1+j

= K−1,−1I−1,0 +K−1,0I−1,1 +K−1,1I−1,2

+K0,−1I0,0 +K0,0I0,1 +K0,1I0,2

+K1,−1I1,0 +K1,0I1,1 +K1,1I1,2

= (1×?) + (0×?) + (1×?)

+(0× 0) + (2× 0) + (0× 0)

+(1× 0) + (0× 1) + (1× 1).

136 5. CONVOLUTIONAL NEURAL NETWORKS

Note that several of the terms in the sum are unknown (?). The reason for

this is that the input image pixel (−1, 1) doesn’t exist. There are two ways

we can handle this. One way is to compute no output for the input pixel

(0, 1). If we applied this to all of the pixels, we would end up with an image

whose size would by 7 by 7, rather than 9 by 9. This smaller output image

is shown by the blue square in Fig. 3. The other way of handling this is to

treat the unknown pixel values as 0. This is known as zero padding. The

resulting output would be the full image shown on the right of Fig. 3, a 9 by

9 image.

Let us also compute another output value, this time for input pixel, (3, 3).

In this case the sum is

R3,3 =
1∑

i=−1

1∑
j=−1

Ki,jI3+i,3+j

= K−1,−1I2,2 +K−1,0I2,3 +K−1,1I2,4

+K0,−1I3,2 +K0,0I3,3 +K0,1I3,4

+K1,−1I4,2 +K1,0I4,3 +K1,1I4,4

= (1× 0) + (0× 0) + (1× 0)

+(0× 0) + (2× 1) + (0× 1)

+(1× 0) + (0× 1) + (1× 1)

= 3.

The output matches what we have on the right hand image for pixel (3, 3)

on the output image. We applied this to the rest of the pixels in the input

image to get the output distribution shown on the right side of Fig. 3. From

this we can see that the action of this particular filter kernel was to ”blur”

the original square in the input.

The various computer vision operations of edge detection, morpholog-

ical dilation, fill, and erosion [Ser82, S+99] can all be viewed as various

types of convolutions. The difference being in the ”structuring kernel” and

in the algebraic operations used to apply that kernel to the image. The Sobel

2. COMPUTER VISION APPLICATIONS 137

edge filter uses two different kernels of the form

Kx =

 1 0 −1
2 0 −2
1 0 −1

 , Ky =

 −1 −2 −10 0 0

1 2 1

 .

Applying each kernel to the input image, I , produces output images Rx =

Kx ∗ I and Ry = Ky ∗ I . The final output of the Sobel edge detector

is obtained by combining the resulting images so that the i, j pixel of the

output is the root mean square of the i, jth pixels in Rx and Ry.

The image morphology transformations [Ser82] may also be viewed as

“convolution” in that the structuring kernel, K, is also moved across the

input image, I , as shown in Fig. 3. The difference is that instead of using

multiplication and addition, we use nonlinear set operations on the pixels

after they have been thresholded to be either 0 or 1. The structuring kernel

K is also binary valued and the output is computed based on a set operation

such as the intersection or union of the thresholded image and the kernel.

What should be apparent in both cases is that low-level image processing

tends to be based on convolution-like operations using rather small kernels.

In addition to this we see that the kernel is translation invariant in the sense

that we use the same kernel on all pixels of the input image. This is precisely

what convolutional neural networks attempt to copy. The other thing to

note is that approach to image processing is also similar to how the brain

processes imagery to recognize visual objects. This was discovered in early

studies of the feline visual cortex. As shown in Fig. 4, the brain processes

an image presented by the retina through a sequence of different regions in

the brain that extract ”features” from the input image and combines those

features to interpret what the image is. This layered design is how the CNN

we used in the last lecture was built.

138 5. CONVOLUTIONAL NEURAL NETWORKS

FIGURE 4. For some types of tasks (e.g. for images pre-

sented briefly and out of context), it is thought that visual

processing in the brain is hierarchical: one layer feeds into

the next, computing progressively more complex features.

This is the inspiration for the layered design of modern feed-

forward neural networks.

3. Convolutional Neural Networks

CNN’s take advantage of the fact that the input is an image whose features

are translation invariant (the same no matter where they appear in the im-

age). The CNN model architecture is organized to take advantage of this

translation invariance. To see what is new in the CNN, let us compare it to

a conventional dense sequential neural network. A dense sequential neural

network has a sequence of layers in which all nodes of one layer are con-

nected to all nodes of the next layer. There is no special geometry to how

the nodes are arranged so we can view them as shown on the left of Fig. 5

where the nodes in each layer are just arranged as a linear array.

The layers of a CNN, on the other hand, do have a special geometric

arrangement. In particular, the nodes in a CNN have a three dimensional

3. CONVOLUTIONAL NEURAL NETWORKS 139

spatial arrangement; width, height, and depth as shown on the right side of

Fig. 5. The width (x) and height (y) are referred to as spatial dimensions,

whereas the remaining dimension is referred to as the channel dimension.

The other feature of CNN’s used in classification is that the layer shapes are

arranged so that the input has large spatial dimensions and few channels.

In each subsequent layer, the spatial dimensions decrease and the channel

dimension increases, until the CNN’s output can have a shape dominated

by the channel dimension. In practice, the ”channels” can be thought of as

“image features” that were obtained by ”squeezing” the information out of

the spatial dimensions. This general principle of reducing one set of input

dimensions and growing the ”feature” dimensions is a common principle in

deep learning.

FIGURE 5. The layers of dense sequential networks have no

special geometry. CNNs used for image classification have

an architecture that ”squeezes” (downsamples) the input’s

spatial dimensions and places that information in ”channels”

representing image features.

So if the input tensor is rank-3, rather than rank-2, then how is the con-

volution layer’s computed? In fact it is very similar to what we described

above. In this case, the image is a rank-3 tensor with shape (N,N,M) and

whose i, j, kth element is denoted as Ii,j,k. We let i, j be the spatial dimen-

sions and k be the input channels. Let the filter kernel have a kernel width

of 2MK +1 where MK is a positive integer and a depth of M . If the output

has a shape of (N,N, 1) (assuming zero padding of the spatial dimensions,

140 5. CONVOLUTIONAL NEURAL NETWORKS

then the output of the i, j, 0 element in the output would be

Ri,j,0 =

MK∑
k=−MK

MK∑
ℓ=−MK

M−1∑
m=0

Kk,ℓ,mIi+k,ℓ+j,m.

We can therefore see that the convolution sum is only computed along the

spatial dimensions. The filter kernel is also a rank-3 tensor with an odd

width and height. The number of channels in the kernel is equal to the

number of channels in the input.

We computed this output assuming a single output channel, but as men-

tioned above, CNN layers tend to increase the number of depth channels as

we move deeper into the network. So in general, our output shape should be

(N,N,L) where L is the number of depth channels that we would specify

when defining the model’s architecture. In this case, the filter kernel would

then be a tensor of shape (2MK +1, 2MK +1, L×M). In other words, we

would simply have L additional filter kernels and then stack them up into a

single kernel. The output would then be computed as

Ri,j,ℓ =

MK∑
k=−MK

MK∑
ℓ=−MK

M−1∑
m=0

Kk,ℓ,ℓ∗L+mIi+k,ℓ+j,m.

This computation is a bit easier to visualize in Fig. 6. The left side shows

the input tensor with a shape (7, 7, 3) and an input kernel of shape (3, 3, 3×
128). The output shape is obtained assuming no zero-padding, so the spatial

dimensions are 2 smaller and the depth channel on the output is equal to

128.

FIGURE 6. Convolutional operation on a rank-3 input tensor

3. CONVOLUTIONAL NEURAL NETWORKS 141

Note that in this implementation of the Conv2D layer, the spatial dimen-

sions were only reduced by 2 if we assumed no zero-padding. If we had

used zero-padding then the spatial dimensions would be unchanged. But as

mentioned above, CNN layers also tend to downsample or reduce the num-

ber of spatial channels. If you look back at the CNN example from the last

lecture that reduction was by a factor of two. So clearly CNN models must

also be doing something else to reduce the spatial dimension by so much.

This is done by either specifying a stride to the convolution or by adding

a 2D Max Pooling layer after a convolutional layer without strides. Early

models used the max pooling layer. More recent models tend to use strides

as they do not destroy spatial information in the input tensor as much as the

max pooling layers do.

The purpose of the max-pooling layer is to reduce the spatial size of the

input tensor. The pooling layer acts independently on every channel slice

of the input. Pooling is realized by a passing a filter kernel over the input’s

spatial dimensions. The filter kernel has size M × M and it outputs the

maximum value of the inputs in the kernel window. Rather than applying

the kernel to every pixel, we only apply it to the pixels that are a multiple

of M , thereby reducing the spatial dimensions of the output by a factor of

M . The most commonly used max pooling layer with a pool size of 2 so

that the filter kernels are 2 × 2 and are applied with a stride of 2. These

layers, therefore, downsample the spatial dimensions of the input tensor by

a factor of 2. We can represent this mathematically as follows. Consider an

input of shape (2N, 2N,M) and let us use a max-pooling layer with a pool

size of 2. The (i, j)th output of the max pooling layer (ignoring the depth

dimension) is

Ri,j = max {I2i,2j, I2i−1,2j, I2i−1,2j−1, I2i,2j−1} .

Fig. 7 illustrates how this layer works on an input tensor of size (9, 9). A

pool size of 2 does not divide evenly into 9, so the we simply end up with

an output with the shape of (4, 4). Note that the ”square” shape from the

input is preserved, it is has a smaller spatial extent by a factor of 2.

142 5. CONVOLUTIONAL NEURAL NETWORKS

FIGURE 7. Action of Max Pooling Layer

The second way of downsampling the spatial dimensions of the input

tensor is to simply compute the convolution with a stride of S. Given an

image I with shape (N,N), the convolution sum is only computed on input

pixels (i + kS, j + kS) for where i and j range from 0 to N − 1. This is

easy to incorporate into the Conv2D layer so it is realized directly in the

Conv2D layer’s API. Fig. 8 shows how the output that would have been

generated assuming a stride of 2 with our earlier convolution. We assume

zero-padding here. In this case the shape of the output image is 5 by 5 due

to the zero-padding. The figure shows the progression of kernels computing

the filtered output along the diagonal of the output image.

FIGURE 8. Conv2D with stride = 2

3. CONVOLUTIONAL NEURAL NETWORKS 143

We can now go back to the earlier example where we used a convo-

lutional neural network architecture for MNIST classification. The script

building that model is shown below. This example uses max pooling layers

to realize the downsampling of the spatial dimensions.

from tensorflow import keras

from tensorflow.keras import layers

inputs = keras.Input(shape=(28,28,1))

x = layers.Conv2D(filters=32, kernel_size=3, activation="relu")(inputs)

x = layers.MaxPooling2D(pool_size=2)(x)

x = layers.Conv2D(filters=64, kernel_size=3, activation="relu")(x)

x = layers.MaxPooling2D(pool_size=2)(x)

x = layers.Conv2D(filters=128, kernel_size=3, activation="relu")(x)

x = layers.Flatten()(x)

outputs = layers.Dense(10,activation="softmax")(x)

model = keras.Model(inputs=inputs,outputs=outputs)

We can now use what we discussed above to determine the shape of

each layer’s output. The output from the Input layer is (28, 28, 1). The first

convolutional layer creates 32 filter channels along the depth dimension and

has a kernel size of 3. Since we have not specified zero-padding, the spatial

dimensions of this layer’s outputs will be smaller by 2. The output tensor

from this first Conv2D layer will therefore be (26, 26, 32). The Max Pooling

layer follows the Conv2D layer and therefore its output will downsample

the input shape’s spatial dimensions by a factor of 2. There is no change

to the number of channels. So the output shape from the first max pooling

layer will be (13, 13, 32). In a similar way we can argue that the shape of

the output from the second convolutional layer will be (11, 11, 64) and the

output from the second max pooling layer will be (5, 5, 64). We now pass

this last (5, 5, 64) tensor to a Conv2D layer with 128 filters, a kernel size of

3, and no zero padding. So the final convolutional layer’s output tensor’s

shape will be (3, 3, 128). This is flattened to produce a vector output that has

a length 3×3×128 = 1152. The last dense layer takes this and maps it onto

10 outputs. This checks against the shapes stated in the model summary.

144 5. CONVOLUTIONAL NEURAL NETWORKS

4. Image Classification Task - with limited data

The image classification task seeks to take an image and classifies it into

one of finite number of categories. The MNIST handwritten digit recogni-

tion task is just one example of an image classification task. This section

develops a similar application whose dataset consists of larger images. We

will refer to this as the Oxford Pets dataset and it consists of a large number

of color (RGB) images of cats and dogs like those shown in Fig. 9. This

particular example is drawn from the textbook [Cho21]. We will use this

example to show how we train models when there is a limited amount of

data. The objective is to train a model that can declare whether the input

image is a picture of a cat or dog.

FIGURE 9. Sample Images from the Cat/Dog Data set

In this example we download the dataset from the visual geometry group’s

website at the University of Oxford and place them in a subdirectory (cats-vs-dogs-small)

of the main working directory. This subdirectory has three subdirectories

entitled train, validation, and test containing p-training, valida-

tion, and testing data, respectively. Each subdirectory has two subdirec-

tories entitled cat and dog. The p-training data set has 2000 examples

of cats/dogs (1000 each). The testing set has the same number of exam-

ples. The validation dataset has 1000 examples of cats/dogs (500 each).

Compared to the MNIST dataset, it is clear our Cats/Dog dataset is much

smaller than the MNIST database and this will limit the performance of the

trained models.

4. IMAGE CLASSIFICATION TASK - WITH LIMITED DATA 145

The following script uses one of Keras’ utilities to create dataset ob-

jects for the data. These objects batch the data into batches of size 32. We

use this utility to automatically convert the RGB image files into rank-3

tensors. Each image tensor has shape (180, 180, 3) where the first two di-

mensions are the spatial dimensions and the third dimension contains the

color data for the given pixel. Note that this is much larger than the earlier

MNIST example whose images had shape (28, 28, 1).

from tensorflow.keras.utils import image_dataset_from_directory

import os, shutil, pathlib

base_dir = pathlib.Path("cats-vs-dogs-small")

train_ds = image_dataset_from_directory(

base_dir/"train", image_size = (180,180),

batch_size = 32)

test_ds = image_dataset_from_directory(

base_dir/"test", image_size = (180,180),

batch_size = 32)

val_ds = image_dataset_from_directory(

base_dir/"validation", image_size = (180,180),

batch_size = 32)

With the datasets batched and ready, we can now declare a CNN model.

Because our inputs have a larger shape of (180, 180, 3), we will use a deeper

network. We will use max pooling to downsample the input image.

from tensorflow import keras

from tensorflow.keras import layers

inputs = keras.Input(shape=(180,180,3))

x = layers.Rescaling(1./255)(inputs)

for i in range(4):

x = layers.Conv2D(filters=32*(i+1),

kernel_size = 3, activation="relu")(x)

x = layers.MaxPooling2D(pool_size=2)(x)

x = layers.Conv2D(filters=256, kernel_size=3,

activation="relu")(x)

x = layers.Flatten()(x)

146 5. CONVOLUTIONAL NEURAL NETWORKS

outputs = layers.Dense(1, activation="sigmoid")(x)

model = keras.Model(inputs=inputs,outputs=outputs)

model.summary()

We now compile and fit the model. Since this a binary classification

problem (cat or dog) we use a binary cross-entropy loss function. We will

train with the optimizer RMSprop using the default learning rate parameter

(0.001) with ”classification accuracy” as the metric. We will train the model

for 30 epochs and save the model that has the best validation loss during

training.

model.compile(loss = "binary_crossentropy",

optimizer="rmsprop",metrics = ["accuracy"])

callbacks = [

keras.callbacks.ModelCheckpoint(

filepath = "best_model.keras",

save_best_only = True,

monitor = "val_loss")]

num_epochs = 30

history = model.fit(train_ds, epochs = num_epochs,

validation_data = val_ds,

callbacks = callbacks)

Once training is complete, we recover the stored ”best” model and com-

pute its accuracy on the test dataset (test ds) and plot its training curves.

test_model = keras.models.load_model("best_model.keras")

test_loss, test_acc = test_model.evaluate(test_ds)

print(f"Test Accuracy: {test_acc: .3f}")

import matplotlib.pyplot as plt

ptrain_loss = history.history["loss"]

val_loss = history.history["val_loss"]

epochs = range(1,num_epochs+1)

plt.plot(epochs, ptrain_loss, "b--", label="ptrain_loss")

plt.plot(epochs, val_loss, "b", label="val_loss")

plt.title(f"Cat/Dog Learning Curves (loss) - Test Acc: {test_acc: .3f}")

plt.legend()

4. IMAGE CLASSIFICATION TASK - WITH LIMITED DATA 147

The training curves for this model are shown in Fig. 10. From this curve

we can see that the model begins overfitting almost immediately. As dis-

cussed in chapter 4, this can be due to the dataset being too small or the

model set having too much complexity for the given data. We already

know, however, that there are only 2000 samples in the p-training data, and

since prior experience with MNIST suggests we need 10’s of thousands of

samples for a smaller simpler image of shape (28,28,1), the fact that our

Cat/Dog images are much larger with shape (180,180,3) suggests that per-

haps the problem is that the dataset is too small. We therefore need to find

a way of addressing the issue of training models when there is limited data.

FIGURE 10. Training Curves for First Attempt to Train a

Model for the Cat/Dog Classification Problem - too few p-

training samples

4.1. Data Augmentation - training with limited data: One approach

to train models with limited data sets can be taken when the inputs are im-

ages. In particular, we can augment the original dataset inputs by taking the

images and applying random transformations that create believable looking

images.

TensorFlow/Keras accomplishes this augmentation by adding a data aug-

mentation layer at the start of the model. This layer takes the input image

148 5. CONVOLUTIONAL NEURAL NETWORKS

and transforms it through a sequence of randomly selected base transforma-

tions. These base transformations involve ”flipping” the image across a cho-

sen axis, rotating the image by a random amount, or zooming the image by a

specified factor. The following script creates a new data augumentation

layer by sequentially chaining together these base transformation layers.

Examples of these transformations are shown in Fig. 11.

import tensorflow

from tensorflow import keras

from tensorflow.keras import layers

#this was done on an M1 and uses the CPU

with tensorflow.device("/CPU:0"):

data_augmentation = keras.Sequential([

layers.RandomFlip("horizontal"),

layers.RandomRotation(0.1),

layers.RandomZoom(0.2),

])

import matplotlib.pyplot as plt

plt.figure(figsize=(5,5))

for images, _ in train_ds.take(2):

for i in range(9):

augmented_images = data_augmentation(images)

ax = plt.subplot(3,3,i+1)

plt.imshow(augmented_images[0].numpy().astype(’uint8’))

plt.axis("off")

If we train a new model that uses this data augmentation layer, then the

model never sees the same input twice. But the inputs it does see will still be

correlated because they came from a small number of original images. The

new information created in the transformed images is, therefore, of limited

value because we are only remixing existing information. As a result, this

may still not be enough to combat overfitting. So to further fight off over-

fitting we add some additional regularization. In this case we add dropout

regularization. Note that data augmentation and dropout are only active

during training. So in each epoch when we evaluate the model’s loss and

4. IMAGE CLASSIFICATION TASK - WITH LIMITED DATA 149

FIGURE 11. Examples of Images transformed by the aug-

mentation layer

accuracy on the validation data, the dropout layer and data augmentation

layer are deactivated by the fit method.

from tensorflow import keras

from tensorflow.keras import layers

inputs = keras.Input(shape=(180,180,3))

x = data_augmentation(inputs)

x = layers.Rescaling(1./255)(x)

for i in range(4):

x = layers.Conv2D(filters=32*(i+1),

kernel_size = 3, activation="relu")(x)

x = layers.MaxPooling2D(pool_size=2)(x)

x = layers.Conv2D(filters=256, kernel_size=3,

activation="relu")(x)

x = layers.Flatten()(x)

x = layers.Dropout(0.5)(x)

outputs = layers.Dense(1, activation="sigmoid")(x)

model_aug = keras.Model(inputs=inputs,outputs=outputs)

model_aug.summary()

150 5. CONVOLUTIONAL NEURAL NETWORKS

The training curves for this model with and without data augmentation

are shown in Fig. 12. The red curves are for the original model trained

without data augmentation and the blue curves are for the model trained

using data augmentation with dropout. We see that the augmented model’s

validation loss appears to control the overfitting seen in the red curves. This

validation curve is noisy because we are still evaluating validation loss on a

small validation set without augmentation. Finally, if we compare the two

models’ accuracy on the testing data, we see a significant difference. The

original model’s test accuracy was 72%, whereas the augmented model’s

accuracy was 80%. Clearly data augmentation increased the accuracy of

the trained model, but as mentioned before that increase is limited because

we are simply remixing the information in the original smaller dataset.

FIGURE 12. Training Curves for Second Attempt to Train a

Model for the Cat/Dog Classification Problem - Data Aug-

mentation

4.2. Transfer Learning - training with limited data: Transfer learn-

ing represents another approach used to train a model when there is not

enough data. This approach attempts to transfer the knowledge contained

in one model to another model. The underlying conjecture in this approach

is that the activations in the hidden layers are triggered by features in the in-

put that are common in many different vision applications. So if one takes

a model that was extensively trained on an extremely large dataset, then

one can take the first few layers of that pre-trained model and then retrain

4. IMAGE CLASSIFICATION TASK - WITH LIMITED DATA 151

their features to be used on a different application. In particular, this means

we take the ”base” part of the pretrained model and attach a smaller dense

network on top of it. That dense network is called the model’s head. We

then freeze the weights of the base and only allow the weights of the head

to be retrained by the new data for the new application. Because the head

has fewer weights than the base, this model can be trained with a smaller

dataset.

The justification for using transfer learning in vision applications comes

from the belief that the activations of hidden layers in a neural networks

appear to be structured to represent fundamental features of the input image.

This is shown in Fig. 13 which looks at the ”images” that activate various

neurons at different layers of a CNN. The lowest level neurons appear to

be activated by features that are similar to our Sobel edge detector. The

mid-level layers are activated by more complex shapes within the image.

The high level layers appear to be activated by actual features within the

input image. The idea in transfer learning is that these high level features

are abstractions common to all vision tasks and that all we need to do to use

them is learn how to combine them for a different classification task.

As an example of this approach, we can take a large CNN that was pre-

trained on the ImageNet [RDS+15] dataset (1.5 million labeled images and

1000 different classes). ImageNet contains many animal classes including

different species of cats and dogs. We will use a prior CNN model known

as VGG16 [SZ14] that was pre-trained on Imagenet as our pre-trained con-

volutional base. This VGG16 network is a much larger version of the CNN

we used above and its layers are shown in Fig. 14. In this example we will

take VGG16 as the convolutional base and then train a new classifier on top

of it using our small Cat/Dog dataset.

The VGG16 model is included in Keras. The following script recovers

that model trained on ImageNet. It leaves off the ”top” layer of VGG16, so

152 5. CONVOLUTIONAL NEURAL NETWORKS

FIGURE 13. CNN learns ”features” of the input image

FIGURE 14. VGG16 Model Architecture

we are only recovering the base and we are freezing those weights so they

cannot be changed by subsequent training.

import tensorflow

from tensorflow import keras

from tensorflow.keras import layers

conv_base = keras.applications.vgg16.VGG16(

weights = "imagenet",

include_top = False,

input_shape = (180,180,3))

conv_base.trainable = False

4. IMAGE CLASSIFICATION TASK - WITH LIMITED DATA 153

conv_base.summary()

From the model summary, we see that the top layer’s output is a tensor

with shape (5,5,512). So we have downsampled the original 180 by 180

image to a 5 by 5 image and for each ”pixel” in that downsampled image

we have 512 channels. Each channel may be thought of as a feature. The

basic idea in transfer learning is that the base has been trained on a large

enough dataset so that many of the features specific to our given problem

can be captured by combining a smaller set of the features in the top layer of

the base model. To train a new model for our new dataset, we would simply

extend the ”frozen” convolutional base by adding a dense layer on top of it

and retrain these new top layers only on the new data. The following script

builds this new model using the frozen convolutional base. Note that just as

we did with the earlier 2D convolutional model, we use data augmentation

and dropout to increase the size of the dataset.

import tensorflow

from tensorflow import keras

from tensorflow.keras import layers

with tensorflow.device("/CPU:0"):

data_augmentation = keras.Sequential([

layers.RandomFlip("horizontal"),

layers.RandomRotation(0.1),

layers.RandomZoom(0.2),

])

from tensorflow import keras

from tensorflow.keras import layers

inputs = keras.Input(shape=(180,180,3))

x = data_augmentation(inputs)

x = layers.Rescaling(1./255)(x)

x = conv_base(x)

x = layers.Flatten()(x)

x = layers.Dense(256)(x)

x = layers.Dropout(0.5)(x)

outputs = layers.Dense(1, activation="sigmoid")(x)

model_transfer = keras.Model(inputs,outputs)

model_transfer.summary()

154 5. CONVOLUTIONAL NEURAL NETWORKS

From the summary for model transfer we have nearly 18 million

weights. But most of those weights are in the frozen convolutional basis. In

particular, only 3.27 million of these weights are trainable, so the training of

this model is much faster and can be done with a smaller dataset than would

be required if we were training the entire VGG16 model from scratch. So

we again compile and fit the model for 90 epochs. Fig. 15 shows the training

curves for training a new head on top of the pre-trained VGG16 model.

FIGURE 15. Training Curves for Third Attempt to Train

a Model for the Cat/Dog Classification Problem - Transfer

Learning from ImageNet using VGG16

Fig. 15 compares the training curves for the earlier convolutional model

with augmentation and the model we transferred from a frozen ImageNet

VGG16 base. The blue curves are for the transferred model and the red

curves are for the original model. We see that the transferred model has

a much lower loss function and that it trains much faster than the original

model. This is to be expected because 1) the transferred model is deeper and

was pre-trained with the larger ImageNet dataset and 2) we only used the

Oxford Cat/Dog dataset to retrain the upper layer of the pretrained model.

As a result the transferred model’s best test accuracy was significant better

than that of the best original model; 91% versus 81%.

5. IMAGE SEGMENTATION TASK - U-NET ARCHITECTURE 155

5. Image Segmentation Task - U-net Architecture

Real-life computer vision tasks involve classifying and isolating compo-

nents of that image that drive other high level cognitive functions. This

gives rise to three essential vision tasks illustrated in Fig. 16

• Image classification is a task whose goal is to assign one or more

labels to the entire image.

• Image segmentation is a task that seeks to segment or partition the

image into different areas with each area representing a category.

• Object detection is a task that draws rectangles (also called bound-

ing boxes) around objects of interest in an image and then asso-

ciates each rectangle with a class.

We discussed image classification in the preceding section. This section

confines its attention to image segmentation. The next section takes a quick

look at object detection.

FIGURE 16. Three fundamental computer vision tasks are

image classification, image segmentation, and object detec-

tion

156 5. CONVOLUTIONAL NEURAL NETWORKS

Using deep learning for image segmentation means that we need to se-

lect a suitable neural network architecture that assigns a class to each pixel

in the image, thereby partitioning the image into different zones. In this

section, we work with the Oxford-IIIT Pets dataset. This dataset contains

7390 images of various breeds of dogs and cats together with foreground-

background segmentation masks for each image. A segmentation mask is

also an image with the same spatial dimensions as the input tensor. The

channel vector for a given pixel has, however, only a single component that

takes one of three integer values: 1 (foreground), 2 (background), or 3(con-

tour).

We assume the dataset has already been loaded into a directory that has

a subdirectory images holding the input images as jpg files and another

subdirectory annotations/trimapswith the segmentation masks stored

as png files. The following script creates a sorted tuple of path file names

for the inputs (jpg images) and targets (png masks). We will use these tuples

in building the datasets used in training our model.

import os

input_dir = "Oxford-IIIT-Pets/images/"

target_dir = "Oxford-IIIT-Pets/annotations/trimaps/"

img_size = (160, 160)

num_classes = 3

batch_size = 32

input_img_paths = sorted([

os.path.join(input_dir, fname)

for fname in os.listdir(input_dir)

if fname.endswith(".jpg")

])

target_img_paths = sorted([

os.path.join(target_dir, fname)

for fname in os.listdir(target_dir)

if fname.endswith(".png") and not fname.startswith(".")

])

selected_img = 600

print("Number of samples:", len(input_img_paths))

5. IMAGE SEGMENTATION TASK - U-NET ARCHITECTURE 157

for input_path, target_path in zip(input_img_paths[selected_img],

target_img_paths[selected_img]):

print(input_path, "|", target_path)

The following script displays a randomly selected sample in the dataset

so we can see what the image and masks look like. We use the Keras utility

functios load img to generate a PIL array (Python Imaging Library) that

can then be displayed using matplotlib’s function imshow. This is

done directly for the input image, but special processing has to be done for

the segmentation mask. Since each channel of the segmentation mask is

binary valued to indicate if a pixel is foreground, background, pixel, we

need to convert this into an array that can be displayed by imshow. This

involves first loading the mask into an array and then transforming each

pixel in that array to uint8 type so it represents a grey scale value. This

would generate an array where each pixel has the value of 1, 2, or 3. We

need to rescale these values so they are spread between 0 and 255. So we

map 1 to 0 (black - foreground), 2 to 127 (background - green), and 3 to 254

(contour - yellow). The images for the 397th sample are shown side by side

in Fig. 17

import matplotlib.pyplot as plt

from tensorflow.keras.utils import load_img, img_to_array

import random

figure, axis = plt.subplots(1,2)

axis[0].axis("off")

sample = random.Uniform(len(input_paths))

axis[0].imshow(load_img(input_paths[sample]))

axis[0].set_title(f"input {sample: 4d}")

img = img_to_array(load_img(target_paths[9], color_mode="grayscale"))

normalized_array = (img.astype("uint8") - 1) * 127

axis[1].axis("off")

axis[1].set_title("target")

axis[1].imshow(normalized_array[:, :, 0])

We are now going to split the input and target samples into three mutually

disjoint sets of p-training, validation, and testing samples. Before doing

158 5. CONVOLUTIONAL NEURAL NETWORKS

FIGURE 17. Oxford Pets Database Input and Target Image

this, we shuffle the input paths and target paths tuples because

the original ordering in the directory was sorted alphabetically. This is done

to ensure our datasets are i.i.d. collections of the original database. We then

split these path name tuples into the desired three collections. This leaves us

with 1000 testing damples, 1917 validations samples, and 4473 p-training

samples.

num_test_samples = 1000

num_train_samples = len(input_paths)-num_test_samples

print(f"{num_train_samples: 4d} training samples,

{num_test_samples: 4d} testing samples")

import random

random.Random(1337).shuffle(input_paths)

random.Random(1337).shuffle(target_paths)

train_input_paths = input_paths[:-num_test_samples]

train_target_paths = target_paths[:-num_test_samples]

test_input_paths = input_paths[-num_test_samples:]

test_target_paths = target_paths[-num_test_samples:]

val_split = 0.30

num_val_samples = int(val_split*num_train_samples)

num_ptrain_samples = num_train_samples - num_val_samples

ptrain_input_paths = train_input_paths[:-num_val_samples]

ptrain_target_paths = train_target_paths[:-num_val_samples]

val_input_paths = train_input_paths[-num_val_samples:]

val_target_paths = train_target_paths[-num_val_samples:]

5. IMAGE SEGMENTATION TASK - U-NET ARCHITECTURE 159

We are going to use mini-batch training with a batch size of 32 sam-

ples. This can be done directly using the fit command, but if we presort the

batches before calling the fit method, our training process will be faster.

In the previous lectures we used Keras Dataset object to accomplish this.

In particular we used a method that converted image files in a directory into

the Dataset object. That function, however, assumed a particular structure to

the image directories which is not satisfied by the Oxford Pet dataset. So we

will need to write our own Dataset generator that has been customized for

the Oxford Pet’s directory structure. This dataset generator is built from the

Keras base object Sequence. In particular, we instantiate a Sequence

object that we call OxfordPets. This object returns a batched Dataset

object that can be more efficiently used when fitting a model. The class

definition for this object is given below.

class OxfordPets(keras.utils.Sequence):

"""Helper to iterate over the data (as Numpy arrays)."""

def __init__(self, batch_size, img_size, input_img_paths, target_img_paths):

self.batch_size = batch_size

self.img_size = img_size

self.input_img_paths = input_img_paths

self.target_img_paths = target_img_paths

def __len__(self):

return len(self.target_img_paths) // self.batch_size

def __getitem__(self, idx):

"""Returns tuple (input, target) correspond to batch #idx."""

i = idx * self.batch_size

batch_input_img_paths = self.input_img_paths[i : i + self.batch_size]

batch_target_img_paths = self.target_img_paths[i : i + self.batch_size]

x = np.zeros((self.batch_size,) + self.img_size + (3,), dtype="float32")

for j, path in enumerate(batch_input_img_paths):

img = load_img(path, target_size=self.img_size)

x[j] = img

y = np.zeros((self.batch_size,) + self.img_size + (1,), dtype="uint8")

for j, path in enumerate(batch_target_img_paths):

img = load_img(path, target_size=self.img_size, color_mode="grayscale")

y[j] = np.expand_dims(img, 2)

Ground truth labels are 1, 2, 3. Subtract one to make them 0, 1, 2:

160 5. CONVOLUTIONAL NEURAL NETWORKS

y[j] -= 1

return x, y

Our OxfordPets class consists of 3 methods that are used by Model

class’ fit method. These class methods are the constructor, init , a

method (len) returning the number of batches in the returned Dataset,

and an iterator method (getitem)which returns the next (input,target)

tuple corresponding to a given batch in the dataset. This is, essentially, a

utility that returns an image Dataset object from a directory where the input

and target lie in directories whose paths need to be specified separately. The

following script uses our custom utility to create the p-training, validation,

and testing datasets. Let us check the shape of the tensors returned by our

dataset object by using getitem to fetch one of the batches. We see

that the input batch has shape (32, 160, 160, 3), namely a batch of 32 input

tensors of shape (160, 160, 3). The target batch has shape (32, 160, 160, 1),

namely a batch of 32 target tensors of shape (160, 160, 1). So the targets

supplied to the model will be images whose pixels are encoded with an

integer-valued classification.

batch_size = 32

img_size = (160, 160)

ptrain_ds = OxfordPets(batch_size, img_size,

ptrain_input_paths, ptrain_target_paths)

val_ds = OxfordPets(batch_size, img_size,

val_input_paths, val_target_paths)

test_ds = OxfordPets(batch_size, img_size,

test_input_paths, test_target_paths)

x,y = test_ds.__getitem__(3)

print(x.shape)

print(y.shape)

#(32,160,160,3)

#(32,160,160,1)

We now declare the model architecture used in the segmentation prob-

lem. This model has the encoder-decoder architecture shown in Fig. 16.

The encoder has a pyramidal design that starts from an input tensor with

5. IMAGE SEGMENTATION TASK - U-NET ARCHITECTURE 161

shape (x, y, z) where the spatial dimensions, x and y, are much larger than

the channel dimension z. Each layer in this pyramid is a 2D convolutional

model that down samples the spatial dimensions and increases the num-

ber of channels, so that at the top of the pyramid the channel dimension z

is much larger than the spatial dimensions x, y. In particular, we think of

these many output channels as features in the original image. For the clas-

sification problem, we mapped these features through a Dense layer onto a

rank-1 tensor whose components were the likelihood of the image being of

a particular class.

FIGURE 18. Encoder/Decoder (Unet) architecture used for

Image Segmentation Tasks

In the image segmentation problem our target is another rank-3 tensor

with shape (x, y, z1) where x, y are the same as the original input image’s

spatial dimensions and the z1 represents the number of classes that each

pixel in the image is assigned to. In our Oxford Pet database those target

classes are either 1 (foreground - the cat/dog), 2 (background), or 3 (con-

tour). Since our model’s output must be an image, we cannot use a simple

Dense network on the encoder’s outputs. Instead we use a decoder, which is

an inverted pyramid that upsamples the encoder output’s spatial dimensions

and downsamples its feature channels until we get to the same shape as the

input tensor.

The following script declares our model architecture for this problem.

Note that there are a couple of differences from the model we used in the

image classification problem. The first big difference is that we do not use

the MaxPooling layer. The reason for this is because MaxPooling tends to

162 5. CONVOLUTIONAL NEURAL NETWORKS

destroy local spatial information as we move up the pyramid. This loss of

information will not work well with the decoder. So rather than downsam-

pling through MaxPooling, we will use a stride of 2 to downsample. Note

that this stride is declared directly in the convolutional layer.

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

num_classes = 3

def build_model(img_size, num_classes):

inputs = keras.Input(shape = img_size+(3,))

x = layers.Rescaling(1./255)(inputs)

x = layers.Conv2D(64,3,strides=2,activation="relu",padding="same")(x)

x = layers.Conv2D(64,3,activation="relu",padding="same")(x)

x = layers.Conv2D(128,3,strides=2,activation="relu",padding="same")(x)

x = layers.Conv2D(128,3,activation="relu",padding="same")(x)

x = layers.Conv2D(256,3,strides=2,activation="relu",padding="same")(x)

x = layers.Conv2D(256,3,activation="relu",padding="same")(x)

x = layers.Conv2DTranspose(256,3,activation="relu",padding="same")(x)

x = layers.Conv2DTranspose(256,3,activation="relu",padding="same",strides=2)(x)

x = layers.Conv2DTranspose(128,3,activation="relu",padding="same")(x)

x = layers.Conv2DTranspose(128,3,activation="relu",padding="same",strides=2)(x)

x = layers.Conv2DTranspose(64,3,activation="relu",padding="same")(x)

x = layers.Conv2DTranspose(64,3,activation="relu",padding="same",strides=2)(x)

outputs = layers.Conv2D(num_classes, 1, activation="softmax", padding="same")(x)

model = keras.Model(inputs,outputs)

return model

model = build_model(img_size = img_size, num_classes=3)

model.summary()

import tensorflow as tf

model.compile(

optimizer=tf.keras.optimizers.Adam(learning_rate=1.e-3),

loss = "sparse_categorical_crossentropy")

5. IMAGE SEGMENTATION TASK - U-NET ARCHITECTURE 163

The preceding script follows the sequence of 2D convolutional layers

with a sequence of transposed 2D convolutional layers, Conv2DTranspose.

If we look at the model summary, we see that the input tensor and full

model’s output tensor have the same shape of (160, 160, 3). This stack of

transposed convolutional layers is called the model’s decoder. The purpose

of these transposed layers is to upsample the input, thereby increasing the

spatial dimensions of the output tensor by a factor equal to the layer’s stride

length.

To help explain why we refer to Conv2DTranspose as a “transposed”

layer, let us consider an input map of size 4×4 being convolved with a filter

kernel 3 × 3 with stride 1 and no zero padding. This convolution is shown

in Fig. 19. We rewrite the input and output tensors in this figure by stacking

up their components as

X =

x00

x01

x02

x03

x11
...

x32

x33

, Y =

y00

y01

y10

y11

 .

The convolution in Fig. 19 may then be realized as the matrix-vector multi-
plication Y = WX where W is a block Toeplitz matrix of the form

W =

w00 w01 w02 0 w10 w11 w12 0 w20 w21 w22 0 0 0 0 0

0 w00 w01 w02 0 w10 w11 w12 0 w20 w21 w22 0 0 0 0

0 0 0 0 w00 w01 w02 0 w10 w11 w12 0 w20 w21 w22 0

0 0 0 0 0 w00 w01 w02 0 w10 w11 w12 0 w20 w21 w22

 .

This is a matrix product that may be seen as a linear transformation from

X ∈ R16 vector to a Y ∈ R4 vector, which ”downsample” since Y has

lower dimensionality. Actually a better term might be to say W project X

down to the lower dimensional Y vector. The transposed product would be

X = W TY

164 5. CONVOLUTIONAL NEURAL NETWORKS

where W T ∈ R4×16 is the transpose of our original W matrix given above.

Since it is a linear transformation from R4 to R16, it may be seen as “upsam-

pling” the input Y . Again, a more accurate term might be to say W T lifts

Y into X . The transposed convolution layer is, therefore, a convolutional

layer whose weight tensor has been transposed in a similar way.

FIGURE 19. Convolution Operation

We are now ready to train our encoder-decoder model on the OxfordPets

Dataset objects we have created. In particular, we will train for 20 epochs

using an Adam optimizer with a sparse categorical cross-entropy loss func-

tion. Note that the sparse categorical cross-entropy loss is used because the

classes in the target tensor are encoded as integers rather than one-hot en-

coded vectors. In this script we also saved the history returned by the fit

method as a pickle file. This is done in case we want to generate plots later

on without having to re-train the model.

callbacks = [

keras.callbacks.ModelCheckpoint("tmp/oxford_segmentation_1.keras",

save_best_only=True)]

epochs = 20

history = model.fit(ptrain_ds, epochs=epochs, validation_data = val_ds,

callbacks=callbacks)

import pickle

with open(’history_oxford.pkl’,’wb’) as file_pi:

pickle.dump(history.history, file_pi)

The training curve is shown in Fig. 20. The training curve shows that the

model begins overfitting around the 10th epoch, but that the validation loss

5. IMAGE SEGMENTATION TASK - U-NET ARCHITECTURE 165

remains relatively low throughout the entire training session. This suggests

that the model should perform well.

FIGURE 20. Training Curves for Encoder-Decoder Model

used with Oxford Pets Segmentation Problem

Rather than using something like classification accuracy to measure the

overall model’s performance, we use the Intersection-over-Union metric

(IoU). If we look at two sets, A and B, then

IoU(A,B) =
|A ∩B|
|A ∪B|

.

Namely it is the ratio of the number of elements that are in both A and B

divided by the total number of distinct elements in A or B. We apply this to

the segmentation mask as follows. Recall that the target segmentation mask

has pixels taking values in {1, 2, 3} whereas the output of the model whose

pixels are 3-d vectors where each component’s index is a class and the value

of that component is the probability of that component being the correct

classification. To use IoU we need to threshold the target segmentation

mask so that its pixels are 1 if they are in the foreground (cat/dog) and

zero otherwise. We need to transform the model’s predicted output tensor

into similar binary encoded map. This is done by first identifying which

component in a given pixel’s vector is largest and using that index to identify

the foreground pixels. The following script declare a function eval IoU

166 5. CONVOLUTIONAL NEURAL NETWORKS

to compute the IoU for our particular images. The following script uses this

function to compute the mean IoU metric over the entire testing data set. In

this case, we obtained a mean IoU of 68%, which is considered relatively

good.

test_model = keras.models.load_model("tmp/oxford_segmentation_1.keras")

test_preds = test_model.predict(test_ds)

import matplotlib.pyplot as plt

from tensorflow.keras.utils import load_img, img_to_array

num_samples = len(test_ds)*batch_size

print(f"number of test samples = {num_samples: 4d}")

def eval_IoU(img1,img2):

img1 = img1.astype("uint8")

img1 = (img1==1).astype("uint8")

img2 = (img2==0).astype("uint8")

metric = tf.keras.metrics.IoU(num_classes=2, target_class_ids=[0])

metric.update_state(img1,img2)

return metric.result().numpy()

mean_IoU = 0

#num_test_samples = 10

num_samples = len(test_ds)*batch_size

for i in range(num_test_samples):

img = img_to_array(load_img(test_target_paths[i],

target_size = img_size,color_mode="grayscale"))

Image4 = (img.astype("uint8") - 1) * 127

Image5 = np.argmax(test_preds[i], axis=-1)

Image5 = np.expand_dims(Image5, axis=-1)

pred_IoU = eval_IoU(Image4,Image5)

mean_IoU += pred_IoU/num_test_samples

print(f" mean Test IoU = {int(mean_IoU*100): 3d}%")

To visualize how this IoU metric might be interpreted for the actual im-

ages, we randomly selected three samples from the test data set and then

displayed the 1) original image, 2) the target segmentation mask, and 3)

5. IMAGE SEGMENTATION TASK - U-NET ARCHITECTURE 167

the model’s predicted segmentation mask along with the IoU computed for

that prediction. These images are shown in Fig. 21 with IoU’s ranging from

67% to 85%. The predicted masks appear to be rather close to the target

masks.

figure, axis = plt.subplots(3,3)

for i in range(3):

sample = int(random.uniform(0,num_samples))

Image3 = load_img(test_input_paths[sample],target_size=img_size)

axis[i][0].imshow(Image3)

axis[i][0].axis(’off’)

axis[i][0].set_title(f"input {sample: 4d}")

img = img_to_array(load_img(test_target_paths[sample],

target_size = img_size,color_mode="grayscale"))

Image4 = (img.astype("uint8") - 1) * 127

axis[i][1].imshow(Image4)

axis[i][1].axis(’off’)

axis[i][1].set_title(’target’)

Image5 = np.argmax(test_preds[sample], axis=-1)

Image5 = np.expand_dims(Image5, axis=-1)

axis[i][2].imshow(Image5)

axis[i][2].axis(’off’)

pred_IoU = eval_IoU(Image4,Image5)

axis[i][2].set_title(f’pred IoU: {int(pred_IoU*100): 4d}%’)

5.1. Modern CNN Architectural Patterns: A CNN’s architecture is

the sum of choices that went into creating it: which layers to use, how to

configure them, and in what arrangement to connect them. These choices

define the model space, the space of all possible models that gradient de-

scent can search over, parameterized by the model’s weights. Like feature

engineering, a good model space encodes our prior knowledge about the

particular problem. For instance in using convolutional layers you are as-

suming that the relevant patterns in your image are translation invariant. The

168 5. CONVOLUTIONAL NEURAL NETWORKS

FIGURE 21. Results from Test Data

selection of good model architectures is more art than science. Experienced

machine learning engineers use that ”art” to cobble together high perfor-

mance models. This subsection reviews several architectural features com-

monly found in high performance CNNs such as VGG16 [SZ14], Xception

[Cho17], and U-net [RFB15].

One of the main themes in developing high performance CNNs is the use

of feature hierarchies. This is basically the guiding principle in software ob-

ject oriented design; where good programs are modular and hierarchically

constructed from a library of modules. Deep CNNs take advantage of mod-

ularity, hierarchies, and reuse. The VGG16 base, for instance, was based

on the repeating the following pattern

Conv2D→ Conv2D→ MaxPooling

5. IMAGE SEGMENTATION TASK - U-NET ARCHITECTURE 169

over and over again as shown in Fig. 14.

High performance CNN’s like VGG16 seem to suggest that the deeper

the network is, the better it will perform. This is often seen in practice, but

that performance comes at a cost. Namely, as we stack layers deeper, the

gradient computed by backpropogation become smaller and smaller. This

is called the vanishing gradient problem [Hoc98]. What this means is that

the time it takes to train such networks gets very very long. In fact, train-

ing may appear to stall out if we don’t do something. One approach for

dealing with this problem is to force each function in the chain to be non-

destructive. In other words, we modify the model so it retains a noiseless

version of the input information by simply passing it up to the output. This

is called a residual connection. It requires that we simply add the input to

the network’s output as shown in Fig. 22. The residual connection acts as an

information short cut around the noisy blocks and enables gradient informa-

tion from earlier layers to propagate noiselessly through the network. This

technique was introduced with the ResNet family of models [HZRS16].

FIGURE 22. Residual

Connection around

processing layer

Note that adding the input back to the output

of a block implies that the output should have the

same shape as the input. This is not the case if

your block includes convolutional layers with an

increased number of filters or a max pooling layer.

In such cases, we use a 1 × 1 Conv2D layer with

no activation to linearly project the residual to the

desired output shape. You would also use the con-

trol variable padding-same in the convolution

layers in your target block to avoid spatial down-

sampling due to padding and you’d use strides in

the residual projection to match any downsampling caused by a max pool-

ing layer. For example, if we have a residual block where the number of

filters changes, this would be written as

170 5. CONVOLUTIONAL NEURAL NETWORKS

from tensorflow import keras

from tensorflow.keras import layers

inputs = keras.Input(shape=(32,32,3))

x = layers.Conv2D(32,3, activation="relu")(inputs)

#set aside the residual

residual = x

#this is layer around which we create a residual connection

#the number of filters increases from 32 to 64

#and we use padding ="same" to avoid downsampling

x = layers.Conv2D(64,3, activation="relu", padding="same")(x)

#The residual has only 32 filters so we use a 1 times 1

#Conv2D to project it to the right shape

residual = layers.Con2D(64,1)(residual)

#then we add the residual in to the output

x = layers.add([x, residual])

Normalization is a broad category of methods that seek to make dif-

ferent samples seen by a machine learning model more similar to each

other. This helps the model learn and generalize well to new data. The

most common form of data normalization has already been used, where

we center the data on zero by subtracting the mean and give the data a

unit standard deviation by dividing by its standard deviation. Previous

examples normalized data before feeding it into the model. But we may

also be interested in normalizing the outputs after each layer transforma-

tion. This is what we mean by batch normalization. It is implemented

as another layer, BatchNormalization that was introduced in [IS15].

It adaptively normalizes data even as the mean and variance change over

time during training. During training, it uses the mean and variance of

the current batch of data to normalize samples and during inference (for-

ward prop) it uses an exponential moving average of the batch-wise mean

and variance of the data seen during training. In practice the main effect

of batch normalization appears to be that it helps with gradient propaga-

tion - similar to the residual connections - and allows for deeper networks.

5. IMAGE SEGMENTATION TASK - U-NET ARCHITECTURE 171

The BatchNormalization layer can be used after any layer. Note that

both the Dense and Conv2D layers have a bias vector. Because the nor-

malization step centers the layer’s output about zero, the bias is no longer

necessary and so it can be switched off.

x = ...

x = layers.Conv2D(32,3,use_bias = False)(x)

#remove bias since layer gets normalized

x = layers.BatchNormalization()(x)

x = layers.Activation("relu")(x)

#place activation layer after normalization

The depth-wise separable convolution layer performs a spatial convo-

lution on each channel of its input, independently, before mixing output

channels via a pointwise 1x1 convolution as shown by Fig. 23. This is

equivalent to separating the learning of spatial features and the learning of

channel-wise features. In much the same way that convolution relies on

the assumption that the patterns in images are not tied to specific locations,

depth-wise separable convolution relies on the assumption that spatial lo-

cations in intermediate activations are highly correlated but that different

channels are highly independent. Because this assumption is generally true

for the image representations learned by deep neural networks, it serves as a

useful prior that helps the model make more efficient use of its training data.

Depth-wise separable convolution requires significantly fewer parameters

and involves fewer computations compared to regular convolution, while

having comparable representational power. It results in smaller models that

converge faster and are less prone to overfitting. These advantages become

especially important when you are training small models from scratch with

limited data. When it comes to larger scale models, depth-wise separable

convolutions are the basis of the Xception architecture, a high performance

CNN [Cho17].

172 5. CONVOLUTIONAL NEURAL NETWORKS

FIGURE 23. Depth-wise Separable Convolution

High performance image segmentation models often use many of the

additional refinements discussed above. The U-net model in Fig. 16 incor-

porates all of the features shown above. The script and visualkeras

view of this model are shown in Fig. 24.

FIGURE 24. Advanced Unet Model for Image Segmenta-

tion Problem

6. Object Detection Task

Object detection is the computer vision task for finding objects of interest

in an image. This is more involved than classification, which only tells

you what the main subject of the image is. In object detection we find

multiple objects, classify them, and then locate where they are in the image.

An object detection model predicts bounding boxes, one for each object it

finds, as well as the classification probabilities for each object as shown

below in Fig. 25. It is common for object detection to predict too many

bounding boxes. So each box is also given a confidence score that says

how likely the model thinks this box really contains an object. As a post-

processing step, we then filter out those boxes whose scores fall below a

certain threshold. Object detection is harder than classification. One of the

6. OBJECT DETECTION TASK 173

problems encountered by object detection is that a training image can have

between zero to dozens of objects in it and the model may output more than

one prediction. We therefore need a way for comparing these predictions

against ground-truth.

FIGURE 25. Example of Prediction made by an object de-

tection model

Object detection models may be classified as being two-stage or one

stage. Two stage models such as R-CNN [RHGS15] first generate so-called

region proposals and then makes a prediction for each region. The region

proposals are areas of the image that can potentially contain an object. The

model then makes a separate prediction for each of these regions. This

works very well but is rather slow as it requires running the detection and

classification portion of the model multiple times.

One-stage detectors, on the other hand, require only a single pass through

the neural network and they predict all bounding boxes in this first pass.

This is much faster and more suitable for mobile devices. The most com-

mon example of one stage object detectors are YOLO [RDGF16] and SSD

[LAE+16]. Unfortunately, the research papers for these models leave out

important technical details. So this section is drawn from a recent blog

post[Hol18].

Why object detection is hard? A classifier takes an image as input and

produces a single output, the probability distribution over the classes. But

this only gives you a summary of what is in the image as a whole, it doesn’t

work well when the image has multiple objects of interest. On the image

in Fig. 26, a classifier might recognize that the image contains a certain

174 5. CONVOLUTIONAL NEURAL NETWORKS

amount of “cat-ness” and certain amount of “dog-ness” but that’s the best it

can do.

FIGURE 26. Classification Problem outputs a probability

distribution for the entire image

An object detection model in Fig. 27, on the other hand, will tell you

where the individual objects are by predicting a bounding box for each ob-

ject. Since it can now focus on classifying the thing inside the bounding

box and ignore everything outside, the model is able to give much more

confident predictions for the individual objects. If your dataset comes with

bounding box annotations (the so-called ground-truth boxes), it’s pretty

easy to add a localization output to your model. Simply predict an addi-

tional 4 numbers, one for each corner of the bounding box. Now the model

has two outputs:

• The probability distribution for the classification result, and

• a bounding box regression.

The loss function for the model simply adds the regression loss for the

bounding box to the cross-entropy loss for the classification, usually with

the mean squared error (MSE). You then use SGD to optimize the model as

usual, with this combined loss to produce the output shown below.

The left side of Fig. 28 shows an example prediction using this one-

stage model. It looks reasonable, but how do we measure the accuracy of

the predictor. Scoring how well the predicted box matches ground-truth

is done by computing the IOU or intersection-over-union between the two

bounding boxes. The IOU is a number between 0 and 1, with larger being

6. OBJECT DETECTION TASK 175

FIGURE 27. Object Detection Model outputs a classifica-

tion probability for a bounding box. The bounding box is

determined by a regressor model and the probability is de-

termined by a classifier model, both built on top of a CNN

base.

better. Ideally, the predicted box and the ground-truth have an IOU of 100%,

but in practice anything above 50% is usually considered to be a correct

prediction. For the above example the IOU was 75% and so the boxes are a

good match.

FIGURE 28. One-stage Object Detection - (left) good result

- (right) bad result

Using a regression output to predict a single bounding box gives good

results. However, just like classification does not work well when there

are multiple objects in the image, so this will fail our simple localization

scheme as shown on the right side of Fig. 28. In this case the model can

predict only one bounding box and so it has to choose one of two horses in

the image. But rather than selecting one object, it takes an average which

176 5. CONVOLUTIONAL NEURAL NETWORKS

gives a box somewhere in between the two horses. One might think that

this can be solved by adding more bounding box detectors. But even with

a model that has multiple detectors, we still get bounding boxes that all

end up in the middle of the image. This occurs because the model does

not know which bounding box to assign to object and so it plays it safe by

placing both boxes somewhere in the middle.

One-stage detectors such as YOLO and SSD all solve this problem by

assigning each bounding box detector to a specific position in the image.

That way the detectors learn to specialize on objects in certain locations.

This is done by using a fixed grid of detectors and this is one of the things

that set apart one-stage detectors from the region proposal-based detectors

such as R-CNN.

Let us consider the simplest possible architecture for this kind of model

as shown in Fig. 29. It consists of a base network that acts as a feature ex-

tractor. Like most feature extractors it is typically trained on the ImageNet

dataset. In the case of YOLO, the feature extractor take a 416x416 pixel

impage as input. SSD typically uses 300x300 images. These are larger than

the images used for classification between small details in the image may

be important for correct localization.

FIGURE 29. One-stage Detector Model Architecture con-

sists of a pre-trained feature extraction network followed by

a object detection layer that classifies the images inside each

preset bounding box shown in the output.

7. VISUALIZING WHAT CNNS LEARN - THE PROBLEM OF MODEL INTERPRETABILITY177

The base network can be anything such as Inception, ResNet or YOLO’s

DarkNet. For a mobile application it makes sense to use a small fast archi-

tecture such as MobileNet [SHZ+18]. On top of the feature extractor are

several convolutional layers. These are fine-tuned to learn how to predict

bounding boxes and class probabilities for the objects inside these bound-

ing boxes. This is the object detection part of the model. You can check

Keras website for a notebook tutorial on Object detection using pre-trained

networks. There are numerous other sites around as well.

7. Visualizing what CNNs Learn - the problem of model
interpretability

A fundamental problem when building a computer vision application is that

of interpretability [SWM17]. Why did the classifier make the given classifi-

cation? What were the features that it identified which would be associated

with that class? While one often thinks of a deep network as a black box,

in fact the feature maps of a CNN can be visualized in a manner that allows

us to identify what characteristics of the original image were critical in its

classification. This visualization plays a major role in giving us a way to

interpret how a CNN reached its decision. Three of the most useful visual-

ization methods are

• Visualizing intermediate CNN outputs: This method visualizes the

features selected by successive CNN layers for a specific input.

• Visualizing CNN Filters: This is used to visualize those input pat-

terns responsible for maximizing the output of a particular filter in

the CNN.

• Visualizing Class Activation Mappings (CAM): This is used to un-

derstand which parts of a specific image played a major role in

triggering a particular feature in the CNN.

The following subsections are drawn from [Cho21] to discuss each of these

interpretation methods.

178 5. CONVOLUTIONAL NEURAL NETWORKS

7.1. Visualizing Intermediate Activations: Visualizing intermediate

activations consists of displaying the values returned by various convolution

and pooling layers in a model, given a certain input. The output of a layer

is called its activation. This gives a view into how an input is decomposed

across the different filters learned by the network. We want to visualize fea-

ture maps with three dimensions: width, height, and depth (channels). Each

channel encodes relatively independent features, so the proper way to visu-

alize these feature maps is by independently viewing the contents of every

channel as a 2D image. Let us start by loading the model that we saved

after training a CNN on the Cat/Dog database with data augmentation. Let

us also fetch an input image input img that is not part of our original

Dog/Cat dataset. The script and associated are shown in Fig. 30

FIGURE 30. Script and Image used to visualize CNN fea-

ture activation

To extract the feature maps, we want to look at, we’ll create a Keras

model that takes batches of images as input, and that outputs the activation

of all convolution and pooling layers. We then feed our ”cat” image to this

model which returns the values of the layer activations as a list.

from tensorflow.keras import layers

layer_outputs = []

layer_names = []

for layer in test_model_aug.layers:

if isinstance(layer, (layers.Conv2D, layers.MaxPooling2D)):

layer_outputs.append(layer.output)

layer_names.append(layer.name)

activation_model = keras.Model(inputs=test_model_aug.input, outputs = layer_outputs)

activations = activation_model.predict(input_img)

7. VISUALIZING WHAT CNNS LEARN - THE PROBLEM OF MODEL INTERPRETABILITY179

FIGURE 31. Script and Grid of Convolutional Layer Acti-

vations for Cat Image

For each layer in our list, layer name, we take the activations and

display them on a grid. This is done in the following script and the resulting

activations are shown in Fig. 31.

There are a few things to note

• The first layer acts as a collection of various edge detectors. At that

stage the activations retain almost all of the information present in

the initial picture.

• As you go deeper, the activations become increasingly abstract and

less visually interpretable. They begin to encode higher-level con-

cepts such as ”cat ear” and ”cat eye”. Deeper representations carry

increasingly less information about the visual content of the im-

age and increasingly more information related to the class of the

image.

• The sparsity of activations increases with the depth of the layer: in

the first layer, almost all filters are activated, but in the following

layers, more and more filters are blank. This means that the pattern

encoded by the filter was not present in the input image.

180 5. CONVOLUTIONAL NEURAL NETWORKS

We have just seen an important universal characteristic of the represen-

tations learned by deep neural networks: the features extracted by a layer

become increasingly abstract with the depth of the layer. The activations

of higher layers carry less information about the specific input being seen

and more about the target. A deep neural network effectively acts as an in-

formation distillation pipeline with raw data going in and being repeatedly

transformed so that irrelevant information is filtered out and useful infor-

mation is magnified and refined.

7.2. Visualizing Inputs Triggering CNN Filters: . Another way to

inspect the filters learned by the model is to display the visual pattern that

each filter responds to. This can be done with gradient ascent in the input

space. In particular, we apply gradient descent to the value of the CNN’s

input image so as to maximize the response of a specific filter, starting from

a blank input image. The resulting input image will be one that the chosen

filter is maximally responsive to.

Let us try this with the previous CNN model we trained on the Cat/Dog

dataset. We are going to pick the filter outputs from one of the convolution

layers in our model. From the model.summary() we know these layers

are named conv2d X where X is either blank, 1,2, ,3, or 4. We will look at

the 126th filter for layer conv2d 3 and the 14th filter for layer conv2d 1.

In particular, we need to declare a model that we will call extractor that

goes from the given cat image to the third convolutional layer’s outputs. We

will then use this model to compute the activation levels for that convolu-

tional layer. The following script does this for conv2d 3

#get our image of the cat

img_path = get_file(fname,"cat.jpg",

origin="https://img-datasets/s3.amazonas.com/cat.jpg")

input_img = load_img(img_path, target_size = (180,180))

input_img = img_to_array(input_img)

input_img = np.expand_dims(input_img, axis=0)

#get the model

7. VISUALIZING WHAT CNNS LEARN - THE PROBLEM OF MODEL INTERPRETABILITY181

test_model_aug = keras.models.load_model("best_model_aug.keras")

#create the extractor model

layer_name = "conv2d_3"

nfilt = 126

layer = test_model_aug.get_layer(name = layer_name)

extractor = keras.Model(inputs = test_model.aug.input, outputs = layer.output)

activation = extractor(input_img)

We now define a loss function for the extractor model and then de-

fine a function performing a gradient ascent step.

import tensorflow as tf

def compute_loss(image, filter_index):

activation = feature_extractor(image)

filter_activation = activation[:,:, :, filter_index]

return tf.reduce_mean(filter_activation)

@tf.function

def gradient_ascent_step(image, filter_index, learning_rate):

with tf.GradientTape() as tape:

tape.watch(image)

loss= compute_loss(image, filter_index)

grads = tape.gradient(loss, image)

grads = tf.math.l2_normalize(grads)

image += learning_rate * grads

return image

We then implement the gradient ascent training on a blank input image

using the script in Fig. ?? and then display the image. This should be the

input image that generated the activation pattern seen from our cat image.

The right side of Figure 32 shows this maximizing input. What we notice

is that these filters seem to respond the most to particular textures in the

original image.

The fact that activation of higher level nodes appear to map to ”tex-

tures”, rather than specific cognitive features is interesting. It suggests that

higher level nodes may not really be ”features” that are readily recogniz-

able. Rather it is the pattern of activations in higher level nodes that are

responsible for specific classification outcomes. This observation seems to

182 5. CONVOLUTIONAL NEURAL NETWORKS

FIGURE 32. Maximal Inputs generating filter activations

be at odds with the traditional view that high level nodes in hierarchical

CNNs encode image features. This insight has recently been taken advan-

tage of by a new type of generative model (see chapter 7) called a diffusion

model[HJA20].

7.3. Class Activation Mapping (CAM):. This visualization technique

is used to identify which parts of an image give rise to a classification de-

cision. This technique is called class activation map (CAM) visualization.

It consists of producing heat maps of class activation over input images. A

class activation heat map is a 2D grid of scores associated with a specific

output class, computed for every location of any input image. These val-

ues indicate how important that part of the given image is with respect to

the class under consideration. This is an important technique used in the

non-destructive testing of objects. A manufactured part, for instance, may

be scanned to see if the part is ”acceptable”. This is a binary classification

problem. Classifying the manufactured part as ”unacceptable” might mean

that it should be returned to the assembly line. CAM methods can be used

to identify where the manufactured part was out of specs.

7. VISUALIZING WHAT CNNS LEARN - THE PROBLEM OF MODEL INTERPRETABILITY183

The specific implementation used in [Cho21] is described in the article

[SCD+17]. Grad-CAM consists of taking the output feature map of a con-

volutional layer, given an input image, and weighing every channel in that

feature map by the gradient of the class with respect to the channel. One

may view this as weighting a spatial map by how intensely the input image

activates different channels. We will demonstrate this technique using the

pretrained Xception model.

model = keras.applications.xception.Xception(weights="imagenet")

We consider the image of two African elephants shown in Fig. 33 (left).

Convert this image into a tensor the Xception model can read: the model

was trained on images of size 299x299, preprocessed according to a few

rules described in Keras version of this model. So we need to load the

image, resize it, convert it into a NumPy tensor, and then apply these pre-

processing rules.

img_path = keras.utils.get_file(

fname="elephant.jpg",

origin="https://img-datasets.s3.amazonaws.com/elephant.jpg")

def get_img_array(img_path, target_size):

img = keras.utils.load_img(img_path, target_size=target_size)

array = keras.utils.img_to_array(img)

array = np.expand_dims(array, axis=0)

array = keras.applications.xception.preprocess_input(array)

return array

img_array = get_img_array(img_path, target_size=(299, 299))

Finally we run the pretrained network on the image and decode its pre-

diction vector back to a human-readable format:

preds = model.predict(img_array)

print(keras.applications.xception.decode_predictions(preds, top=3)[0])

#[(’n02504458’, ’African_elephant’, 0.86992675),

#(’n01871265’, ’tusker’, 0.07696861),

#(’n02504013’, ’Indian_elephant’, 0.023537217)]

184 5. CONVOLUTIONAL NEURAL NETWORKS

So the three classes predicted for this image are African elephant (87%),

Tusker (7%), and Indian elephant (2%). We can see which entry of the

prediction vector that was maximally activated is the one correspoding to

the ”African elephant” class at index 386.

np.argmax(preds[0])

386

To visualize which parts of the image are most ”African Elephant”-like,

let us set up the Grad-CAM process. We first create a model that maps the

input image to the activations of the convolutional layer.

last_conv_layer_name = "block14_sepconv2_act"

classifier_layer_names = [

"avg_pool",

"predictions",

]

last_conv_layer = model.get_layer(last_conv_layer_name)

last_conv_layer_model = keras.Model(model.inputs, last_conv_layer.output)

We then create a model that maps the activations of the last convolutional

layer to the final class predictions.

classifier_input = keras.Input(shape=last_conv_layer.output.shape[1:])

x = classifier_input

for layer_name in classifier_layer_names:

x = model.get_layer(layer_name)(x)

classifier_model = keras.Model(classifier_input, x)

Then we compute the gradient of the top predicted class for our input

image with respect to the activations of the last convolutional layer

import tensorflow as tf

with tf.GradientTape() as tape:

last_conv_layer_output = last_conv_layer_model(img_array)

tape.watch(last_conv_layer_output)

preds = classifier_model(last_conv_layer_output)

top_pred_index = tf.argmax(preds[0])

top_class_channel = preds[:, top_pred_index]

7. VISUALIZING WHAT CNNS LEARN - THE PROBLEM OF MODEL INTERPRETABILITY185

grads = tape.gradient(top_class_channel, last_conv_layer_output)

FIGURE 33. Grad-CAM heatmap visualization. (left) raw

image (middle) heatmap (right) heatmap superimposed on

raw image

We now apply pooling and importance weighting to the gradient tensor

to obtain our heat map. We then normalize the heatmap’s values between

0 and 1, display it in middle of Fig. 33 and then superimpose the heatmap

over the original image (left of Fig. 33).

pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2)).numpy()

last_conv_layer_output = last_conv_layer_output.numpy()[0]

for i in range(pooled_grads.shape[-1]):

last_conv_layer_output[:, :, i] *= pooled_grads[i]

heatmap = np.mean(last_conv_layer_output, axis=-1)

heatmap = np.maximum(heatmap, 0)

heatmap /= np.max(heatmap)

plt.matshow(heatmap)

#superimpose heatmap over image

import matplotlib.cm as cm

img = keras.utils.load_img(img_path)

img = keras.utils.img_to_array(img)

heatmap = np.uint8(255 * heatmap)

jet = cm.get_cmap("jet")

jet_colors = jet(np.arange(256))[:, :3]

186 5. CONVOLUTIONAL NEURAL NETWORKS

jet_heatmap = jet_colors[heatmap]

jet_heatmap = keras.utils.array_to_img(jet_heatmap)

jet_heatmap = jet_heatmap.resize((img.shape[1], img.shape[0]))

jet_heatmap = keras.utils.img_to_array(jet_heatmap)

superimposed_img = jet_heatmap * 0.4 + img

superimposed_img = keras.utils.array_to_img(superimposed_img)

save_path = "elephant_cam.jpg"

superimposed_img.save(save_path)

import matplotlib.image as mpimg

img = mpimg.imread("elephant_cam.jpg")

plt.axis("off")

plt.imshow(img)

This seems to show that the ”ear” of the animal was most important in

discriminating between the three possible classes identified above (African

elephant, Tusker, Indian, elephant).

CHAPTER 6

Deep Learning for Natural Language Processing

Recurrent neural network (RNN) and Transformers are used on se-

quenced inputs often appearing in natural language processing applications.

Consider a supervised learning problem in which a sequence of inputs are

used to predict a sequence of outputs. Examples of sequence prediction

tasks include

• Speech-to-text tasks that take a sampled audio waveform of human

speech and outputs the text that was spoken.

• Machine translation takes a sentence in one language and produces

a translation of that sentence into another language

• Time series prediction takes a sequence of input measurements ob-

served from a dynamical system and predicts the next measure-

ment that the system will generate.

This chapter examines methods used to solve sequence prediction problems

using two types of neural network architectures; the recurrent neural net-

work (RNN) [HS97] and the transformer[VSP+17]. These models are a

powerful way of forecasting the future behavior of a complex dynamical

system that might be used to model natural phenomena like the weather or

turbulent flows. These models are also used for natural language process-

ing (NLP); namely working with language created by humans.

This chapter looks at how RNNs and transformers are used in Natural

Language Processing tasks. We start with a simple example in time se-

ries prediction to demonstrate why an RNN is better than a sequential or

even a CNN in forecasting future outputs. We then turn to tasks in Natural
187

188 6. DEEP LEARNING FOR NATURAL LANGUAGE PROCESSING

Language Processing such as Text Classification, Sentiment Analysis, and

Neural Machine Translation (NMT). We illustrate how RNNs were initially

used to solve these problem in 2015-2016. We then introduce a powerful

neural network model called the transformer that appeared in 2017-2018

and has since become the dominant model for NLP tasks.

1. Motivating Example

This section uses an example from time series forecasting to demonstrate

that feedforward sequential and 1D convolutional models do not work well

in forecasting future outputs of a dynamical system. We start with a csv

file of climate data on Kaggle and then extract the data from that file.

import os

fname = os.path.join("datasets/jena_climate_2009_2016.csv")

with open(fname) as f:

data = f.read()

lines = data.split("\n")

print(f"data line headers:\n {lines[0]}")

header = lines[0].split(",")

lines = lines[1:]

print(f"\njena dataset has {len(lines)} data lines")

for line in lines:

print(line)

break

This script creates a list whose entries contain the weather data taken

every 10 minutes from January 1, 2009 to January 1, 2017. Each line of

data has 15 data entries for time of day and various meteorological mea-

surements including pressure, temperature, and such. So the dataset has

144 lines of data for each day over a span of 8 years. We plot one of these

data entries (temperature) over an 8 year and 10 day to get some idea of its

variability at different time scales. Temperature is the the third entry in each

data line. The script and resulting plot are shown in Fig. 1.

1. MOTIVATING EXAMPLE 189

FIGURE 1. Jena Dataset Temperature data over 8 year and

10 day span

Note that not all of the data is relevant to predicting the future temper-

atures. We can see which data entries are most relevant by computing a

correlation matrix for the dataset. This correlation heatmap is shown in

Fig. 2. It shows that pressure (p mbar), temperature (T degC), maximum

vapor pressure (VPmax mbar), vapor pressure deficit (VPdef mbar), spe-

cific humidity (sh g/kg), airtight (rho - specific volume - m/g**3), and wind

velocity (wv m/s) are most highly correlated with temperature (T). So rather

than forming our input tensor from all meteorological measurements we just

use these 7.

FIGURE 2. Correlation Heatmap for Data

We now form the datasets for this problem. In this example, we will split

the available data into a p-training dataset (71%) and the rest will be used

for validation. Note that the lines of data have a strong causal ordering. This

means that future data lines are independent of past data lines. Because we

want the validation data to be independent of the p-training data, we select

190 6. DEEP LEARNING FOR NATURAL LANGUAGE PROCESSING

the validation time series data points after those in the p-training data. We

are also going to normalize the data by subtracting off the mean and dividing

by the standard deviation.

num_ptrain_samples = int(0.7125*len(raw_data))

num_val_samples = len(raw_data)-num_ptrain_samples

print("num_ptrain_samples:", num_ptrain_samples)

print("num_val_samples:", num_val_samples)

mean = raw_data[:num_ptrain_samples].mean(axis=0)

raw_data -= mean

temperature -= mean[1]

std = raw_data[:num_ptrain_samples].std(axis=0)

raw_data /= std

temperature /= std[1]

In forming the datasets, we construct the batches by ”sampling” the

raw data and select an input sequence length. In particular, we decide

to take hourly measurements of the weather over 5 days. Since raw data

was gathered every 10 minutes, this means we sample the time series data

every 6 samples and generate 120 such samples. Our input tensor to our

model will therefore be a rank-2 tensor of shape (120, 7). In other words,

all 7 critical meteorological measurements determined from Fig. 2 will be

used to make our prediction.

Our target will be the temperature one day (24 hours) later. Keras has a

utility that converts lines of time series data into a numpy array. This also

does the sampling and batching. We also shuffle our batches. The following

script creates the three datasets.

sampling_rate = 6

sequence_length = 120

delay = sampling_rate * (sequence_length + 24 -1)

batch_size = 256

ptrain_ds = keras.utils.timeseries_dataset_from_array(

raw_data[:-delay],

targets = temperature[delay:],

sampling_rate = sampling_rate,

1. MOTIVATING EXAMPLE 191

sequence_length = sequence_length,

#shuffle=True,

batch_size = batch_size,

start_index = 0,

end_index = num_ptrain_samples)

val_ds = keras.utils.timeseries_dataset_from_array(

raw_data[:-delay],

targets = temperature[delay:],

sampling_rate = sampling_rate,

sequence_length = sequence_length,

#shuffle=True,

batch_size = batch_size,

start_index = num_ptrain_samples,

end_index = num_ptrain_samples+num_val_samples-delay-1)

Recall that one part of the data preparation phase is computing a baseline

model from the raw data. Our baseline model assumes that the temperature

for the next day is the same as today’s temperature. The following script

does this by taking the normalized samples in dataset and computing the

mean squared error of the current temperature with that one day later. This

computation shows that the MSE over the validation dataset is 0.15 and this

value represents the MSE that our model will have to beat for us to have

confidence that the model has actually learned something.

def baseline_model(dataset):

total_square_err = 0

samples_seen = 0

for samples,targets in dataset:

preds = samples[:,-1,1]

total_square_err += np.sum(np.square(preds-targets))

samples_seen += samples.shape[0]

return (total_square_err/samples_seen)

baseline_val = baseline_model(val_ds)

print(f"Validation MSE: {baseline_val: .2f}")

We now consider three different models, a 1D convolutional model, a

sequential model, and an RNN called a long-short term memory (LSTM)

model. The CNN is a stack of two 1D convolutional layers using max

192 6. DEEP LEARNING FOR NATURAL LANGUAGE PROCESSING

pooling for downsampling. The sequential model has 16 nodes followed by

a dense layer. The LSTM is a stack of two LSTM layers. In both cases,

we use an Adam optimizer with learning rate of 0.001 and we add a L2

regularization kernel with λ = 0.005. We train all 3 models for 20 epochs

using the p-training data and evaluate its performance with respect to MSE

and MAE on the validation dataset.

FIGURE 3. Left - 1D CNN Model, Middle - Seq Model,

Right - LSTM Model

We trained each model for 20 epochs on the p-training data. Fig. 4 shows

the training curves (p-training and validation) for the model’s MSE (loss).

These figures also plot the baseline MSE that was computed above. All of

these models appear to be learning since both the p-training and validation

losses are decreasing functions of training epoch. In all cases, we see the

learning gap (difference between training and generalization loss) get very

small. This indicates that all of the models have been trained to a point

where there is nothing more than can do with the data. However, we see

that the best validation MSE for the CNN model is 0.321 and this is well

above the baseline value of 0.15 we computed earlier. So clearly the CNN

model is not the right architecture to use for the time series data.

2. RECURRENT NEURAL NETWORKS 193

The sequential model’s training curves are shows in the middle plot of

Fig. 4. Again we see that the training error is small. We see that the valida-

tion MSE of the best sequential model is 0.182. This is slightly greater than

the baseline MSE, but it is much better than what we obtained using the

CNN model. This suggests the sequential model with its dense intercon-

nections was able to do a better job of time series prediction. The training

curve for the LSTM is shown on the right of Fig. 4. In this case we see

the validation eventually falls so it is comparable with the baseline MSE. In

fact this is probably the best that any model could have done, for most of the

baseline MSE is due to noise on the signal as we can see in the time series

plots. This RNN model is much better at capturing the sequential causality

in the original time series. The following section discusses this RNN model

in more detail.

FIGURE 4. Training Curves for model MSE. (left) 1D Con-

volutional Model, (middle) Sequential Model, (right) LSTM

model)

2. Recurrent Neural Networks

A recurrent neural network (RNN) is a model architecture where the output

of a hidden node not only depends on the input, but also on the ”past” output

from the hidden node. You can therefore think of an RNN as a dynamical

system in which the activation levels of the hidden layers are the system’s

states. This means that the computation graph of an RNN has self loops in

contrast to the graphs of feedforward sequential models.

194 6. DEEP LEARNING FOR NATURAL LANGUAGE PROCESSING

An RNN’s computation graph is shown below on the right side of Fig. 5.

We assume the input is a sequence of tensors, x(k), being the kth element

of that sequence. This input is multiplied by the input weights, U and

then added to the past activation of the hidden unit, s(k−1), weighted by the

learned matrix W before being passed through the activation function, θ, to

obtain the kth activation level, s(k) of the hidden layer. In other words, the

RNN computes its output h(k) at time k as

s(k) = θ(b+Ws(k−1) +Ux(k))

h(k) = c+Vs(k)
(35)

where b and c are biases and the output layer simply uses a linear activation

function.

The computation graph on the left of Fig. 5 represents equation (35).

These equations are seen in the bottom three nodes of the graph with the

delayed input s(k−1) be obtained through a delay element. The upper two

nodes of this graph illustrate the computation of the loss, L(k), at time k

from the output h(k) and the target y(k).

FIGURE 5. (left) RNN computation graph (right) unfolded

RNN computation graph

2. RECURRENT NEURAL NETWORKS 195

We can also visualize how an RNN computes and trains by unfolding the

computation graph on the left of Fig. 5. This unfolded graph is shown on the

right side of Fig. 5. The unfolded graph is obtained by explicitly expand-

ing out the delay so we show the computations done at each time step. As

seen on the right of Fig. 5, the unfolded graph is, essentially, a feedforward

neural network whose weights are shared between all time steps. Fig. 5

shows this unfolding for an input sequence of length 3. The graphic explic-

itly shows the output h(k) for each input sequence element x(k). This output

is used to compute the model’s loss, L(y(k),h(k)), with respect to the kth

target y(k). This graph represents the forward propagation of the network.

We determine the weights, W, V, and U using the backpropagation algo-

rithm. Since we have an explicit feedforward acyclic computation graph

on the right side of Fig. 5, we can use automatic differentiation to readily

compute the gradient and perform a stochastic gradient descent algorithm.

This approach to training an RNN is often called Backpropagation through

time or BPTT [Wer90].

Note that the run time for the update is O(N) where N is the length of the

input sequence. This, unfortunately, cannot be reduced through paralleliza-

tion because of the sequential nature of the forward computation graph.

Each time step can only be computed after the previous one was computed.

As a result the state computed in the forward pass must be stored until it can

be used in the backward training pass and so the memory cost of training an

RNN is O(N). This means that RNN’s will require more computational re-

sources (memory) for training than a similarly sized sequential feedforward

network.

2.1. LSTM Recurrent Networks. Long Short Term memory networks

(LSTM) [HS97] are a special kind of RNN that have been refined and popu-

larized. LSTMs were routinely used in time-series prediction and language

translation prior to 2017. They are still widely used so it is important to

describe their structure.

196 6. DEEP LEARNING FOR NATURAL LANGUAGE PROCESSING

Let us consider a simple RNN whose output is computed as

h(k) = tanh
(
Ux(k) +Wh(k−1) + b

)
.(36)

In this case we assume that the hidden layer’s activation, s(k) is the model’s

output, h(k−1). When we unfold this part of the forward computation graph

we can the structure shown in Fig. 6 where the computation in equation (36)

is represented by the layer labeled tanh.

FIGURE 6. Simple RNN unfolded

LSTMs also have the chain like structure shown in Fig. 6. The differ-

ence is that the repeating module is more complicated. Instead of having

a single neural network layer (tanh), there are four neural network layers

that interact in the ways shown in the Fig. 7. In this figure, each line car-

ries an entire vector from the output of one node to the inputs of others.

The circles with + or × denote point-wise operations like vector addition

and multiplication, respectively. In this figure the yellow boxes represent

distinct neural network layers with either sigmoidal activation (i.e., σ) or

hyperbolic tangent (tanh) activation.

The key innovation in the LSTM is the idea of a carry state (also some-

times called a ”cell” state). The carry state is information carried by the

horizontal line running across the top of the unfolded LSTM in Fig. 7. The

carry line runs across the top of the entire chain, with only some linear in-

teractions that modulate the information in that line. Each LSTM module

can remove or add information to the carry state through carefully regu-

lated structures called gates. As shown in Fig 7, the gates are composed

2. RECURRENT NEURAL NETWORKS 197

FIGURE 7. Unfolded LSTM

of sigmoid neural net layers and point-wise multiplication operations. The

sigmoid layer outputs numbers in [0, 1] indicating how much of the prior

(k − 1) carry state should be transferred to the current (k) carry state. The

point-wise operations either augment or delete information from the mod-

ule’s carry state. An LSTM has three such gates that we refer to as the

forget, input, and update gates.

FIGURE 8. Forget Gate

The first decision to be made by an LSTM module is to decide what

information that module will discard from the carry line. This decision is

made by a sigmoid layer called the forget gate layer shown in Fig. 8. The

layer looks at the output h(t−1) from module t − 1 and the input, x(t), to

module t. The forget layer then outputs a number between 0 and 1 for each

component of the cell state vector, ct−1 carried over from module t−1. A 1

means keep ”all” of the information in the cell state and 0 means forget the

198 6. DEEP LEARNING FOR NATURAL LANGUAGE PROCESSING

cell state completely. Fig. 8 show that this forget signal, f (t) is computed as

f (t) = σ(Wf ⊙
[
h(t−1), x(t)

]
+ bf)(37)

where Wf and bf are the weighting matrix and bias for the forget gate layer

and ⊙ is the usual tensor product.

FIGURE 9. Input Gate

The next gate is the input gate. It decides what new information to add

into the module’s carry state, c(t). The input gate has two layers; a sig-

moid layer whose output i(t) may be thought of as a gain that decides how

strongly to update each component of the module’s carry state. The actual

information, k(t), used to update that component is determined by the tanh

layer in Fig. 9. This means that the outputs of the two layers for the input

gate can be written as

i(t) = σ
(
Wi ⊙

[
h(t−1), x(t)

]
+ bi

)
(38)

k(t) = tanh
(
Wk ⊙

[
h(t−1), x(t)

]
+ bk

)
(39)

where Wi, bi and Wk, bk are the parameters for the two layers.

It is now time to update the old cell state, c(t−1) into the new cell state,

c(t). We call this the update layer and it is shown in Fig. 10. The previous

steps already decided what to do, we just need to realize those decisions.

This is done by multiplying the old state by f (t) (forget gate activation) to

forget those things we decided to forget earlier. We then add i(t)×k(t) to the

carry state. This new candidate value, k(t), scaled by i(t) to determine how

2. RECURRENT NEURAL NETWORKS 199

FIGURE 10. Update Gate

much we want to add to the module’s carry state. The associated update

equation as shown in Fig. 10 is therefore

c(t) = f (t) × c(t−1) + i(t) × k(t)(40)

where the binary operations + and × are component-wise operations of

addition and multiplication, respectively.

The preceding discussion is a ”heuristic” explanation of how the LSTM

gating process works. This particular interpretation where the module learns

to ”forget” and ”add” information to the carry state provides a convenient

way to understand how long-term dependencies in the time series or se-

quence can be remembered.

Keras has implemented an LSTM layer . That implementation is then

trained using a GradientTape object. This layer was used to build the

two layer LSTM shown in Fig. 3. Stacking LSTM layers is a commonly

used way to avoid overfitting. Google’s original language translation app

(Google Translate) used a stack of seven large LSTMs [Cho21]. Stacking

recurrent layers on top of each others requires that the intermediate layers

return the full sequence of outputs, rather than their output at the last time

step. As shown in Fig. 3, Keras LSTM layer does this through the control

parameter return sequences = True.

200 6. DEEP LEARNING FOR NATURAL LANGUAGE PROCESSING

There are two useful variations on the LSTM that are frequently used;

gated recurrent units (GRU) and bidirectional LSTMs. A GRU [CGCB14,
CVMG+14] may be seen as a simplified version an LSTM whose operation

can again be explained in terms of ”gating layers”. Keras also has a GRU

layer whose API is similar to that of the LSTM layer.

The second type of LSTM is a bidirectional RNN. Note that simple

RNN’s and LSTM process inputs in an order-dependent manner. In other

words, these networks are ”causal” in the sense that the future outputs

are determined solely by the past outputs. There are problems, however,

where the future inputs also influence earlier outputs. This is particularly

true in text and language processing applications [GFS05]. A bidirectional

RNN uses two regular RNNs, one of which processes inputs in the forward

(causal) direction and the other processing inputs in the reverse (anti-causal)

direction. The layer then merges the outputs of these two layers. Keras has

a bidirectional layer that that is cascaded with an RNN layer. So we could

declare such a model as follows, to show how you would use it in your

scripts.

imputs = keras.Input(shape = (sequence_length, raw_data.shape[-1]))

x = layers.Birdirectional(layers.LSTM(16))(inputs)

outputs=layers.Dense(1)(x)

model = keras.Model(inputs,outputs)

3. Natural Langage Processing

Human languages are natural languages. This stands in contrast to the for-

mal languages used to program computers. A formal language is a complete

system in the sense that all expressions in the language satisfy a rigid set of

grammatical rules. Natural languages emerge in an evolutionary manner,

changing over time as the way people use language changes. The grammat-

ical rules in a natural language are often bent or broken in a manner that

would confuse a machine. This freedom of expression is extremely difficult

to capture in a formal language, but neural networks have the capacity to

3. NATURAL LANGAGE PROCESSING 201

capture such ”exceptions to the rule” that formal methods find difficult to

accommodate.

Deep learning does not seek to ”understand” natural language in the way

a human would. Deep learning is used to develop models that accept a frag-

ment (sentence or phrase) of a natural language as input and return some-

thing useful. The main tasks in natural language processing (NLP) are

• Text Classification: determine the topic of a text sentence

• Content Filtering: classify a phrase as “abusive” and remove it

from the sentence.

• Sentiment Analysis: classify whether the text is making a “posi-

tive” or “negative” statement about a topic.

• Neural Machine Translation (NMT): translate a phrase in one lan-

guage to a phrase in a different language.

Classical NLP toolsets were based on decision trees and logistic regres-

sion. But these tools saw slow advances between 1990-2010. In early 2015,

Keras made available the first open source LSTM layer and its introduction

started a massive wave of interest in RNNs. From 2015-2017, RNNs were

the primary tool used for NLP tasks. From 2017-2018, a new architecture

begin to replace RNNs; the transformer [VSP+17]. Today that transformer

plays a key role in popular applications such as ChatGPT [Ope22]. GPT

stands for generative pre-trained transformer which is a pre-trained gener-

ative deep learning model based on the transformer. This section takes a

closer look at deep learning for natural language processing, in particular

for sentiment analysis. The first major thing we need to do is transform the

text string into a numerical tensor that can be used by the neural network.

This task is known as text vectorization.

3.1. Text Vectorization. Deep learning models only process numeric

tensors. So to use neural networks for NLP, we must first transform the text

202 6. DEEP LEARNING FOR NATURAL LANGUAGE PROCESSING

data into a numerical tensor. This is sometimes called text vectorization and

it follows the following sequence of operations

(1) Text Standardization: standardize the text to make it easier to pro-

cess by transforming all letters to lower-case and removing punc-

tuation.

(2) Tokenization: split the text into units called tokens. A token may

be the characters in a word, individual words, or a group or con-

secutive words (phrase).

(3) Vocabulary Indexing: convert the tokens into a numerical ten-

sor. This is often done by indexing all tokens present in the data;

namely associating a number or tensor to each token present in

the data. These numbers/tensors are determined with respect to a

given vocabulary dictionary.

We will now discuss each or these steps in more detail.

Text Standardization: Consider these two sentences:

”sunset came, i was staring at the Mexico sky, Isnt nature spendid?”

”Sunset came, I stared at the Mexican sky, Isn’t nature splendid?”

A human reading both sentences would have little difficulty in understand-

ing what these sentences are trying to say. A computer, however, might find

these sentences difficult to comprehend because of the slight differences in

punctuation and wording that don’t follow the grammatical rules.

Text standardization is a form of feature engineering that erases these

encoding differences. The simplest and most widespread standardization

scheme is to convert all letters to lower case and remove punctuation. This

would convert the two sentences to

”sunset came i was staring at the mexico sky isnt nature splendid”

”sunset came i stared at the mexican sky isnt nature splendid”

3. NATURAL LANGAGE PROCESSING 203

These two sentences are clearly more similar to each other so that when

they are later transformed into numerical vectors, the ”distance” between

them is much smaller.

Tokenization:. Once the text has been standardized, it must be broken up

into units (tokens) that can later be vectorized. Tokenization is done in at

least three different ways:

• Word-level tokenization is where tokens are space-separated sub-

strings. A variant would split words into subwords when applica-

ble such as tokenizing ”staring” into ”star+ing”.

• N -gram tokenization has tokens that are groups of N consecutive

words. For instance, ”the cat” or ”he was” would be 2-grams.

• Character-level tokenization associates each character with a to-

ken. This approach is rarely used.

In general, one either uses word-level or N -tokenization. Which approach

you use usually depends upon the type of text-processing model you are

using. There are two types of text-processing models; sequence models and

bag-of-words models. The sequence model treats the input as a sequence of

tokens. The bag-of-words model treats the input as a set of tokens, discard-

ing their original order. If you are building a sequence model, then you use

word-level tokenization. If you use a bag-of-words model you use N -gram

tokenization.

Vocabulary Indexing:. Once the text has been split into tokens, one needs

to encode each token into a numerical representation. In practice, one does

this by building an index of all terms found in the training dataset (this is

called the vocabulary) and then assigns a unique integer to each term in the

vocabulary. The following Python script shows how this might be done.

vocabulary = {}

for text in dataset:

text = standardize(text)

tokens = tokenize(text)

204 6. DEEP LEARNING FOR NATURAL LANGUAGE PROCESSING

for token in tokens:

if token not in vocabulary:

vocabuary[token] = len(vocabulary)

One then converts that integer in the dictionary vocabulary into a

one-hot vector

def one_hot_encode_token(token):

vector = np.zeros((len(vocabulary),))

token_index = vocabulary(token)

vector[token_index] = 1

In this approach it is common to restrict the dictionary vocabulary to

the top 10,000 or 20,000 most common words in the training dataset.

An important detail in vocabulary indexing is to provide a way to handle

tokens that were not in the training dataset. To handle this exception, one

would also add an “out of vocabulary” index that we abbreviate as [UNK].

In general, one encodes [UNK] as 1 (i.e. the one-hot vector with the first

element set to 1). The numerical index 0 (i.e. the one-hot vector of all zeros)

is reserved for a “mask token” that we treat as a ”blank” or ”empty word”

space. Note that the inputs generated by vocabulary indexing all have the

same dimension. The TextVectorization layer in Keras encapsulates

the preceding Python code.

from tensorflow.keras.layers import TextVectorization

text_vectorization = TextVectorization(output_mode = "int",)

By default, the TextVectorization layer converts to lower-case

and removes punctuation for standardization. This layer ”splits on white-

space” for tokenization. The layer provides controls that allow you to cus-

tomize the standardization and tokenization methods.

We index the vocabulary of a given set of text by calling the adapt()

method of the layer. The input to this method is a Dataset object that

contains the sentences we use in building the vocabulary dictionary. The

input to the adapt() method can also just be a list of Python strings. You

3. NATURAL LANGAGE PROCESSING 205

can retrieve a computed vocabulary via the get vocabulary() method.

This is useful if you need to convert text encoded as integers back into

words. The first two entries in the vocabulary are the mask token and ”out-

of-vocabulary”, [UNK], token described above. Entries in the vocabulary

list are sorted by frequency so that common words like ”the” and ”a” would

come first. The following example illustrates the use of the TextVectoriza-

tion layer in encoding a sentence and then decoding the resulting vector

from tensorflow.keras.layers import TextVectorization

text_vectorization = TextVectorization(output_mode = "int",)

#create a vocabulary for the dataset

dataset = [

" I write, erase, rewrite",

"Erase again, and then",

"A poppy blooms.",]

text_vectorization.adapt(dataset)

#Encode a test sentence using the vocabulary

vocabulary = text_vectorization.get_vocabulary()

test_sentence = "I write, rewrite, and still rewrite again"

encoded_sentence = text_vectorization(test_sentence)

print(encoded_sentence)

#tf.Tensor([7 3 5 9 1 5 10], shape=(7,), dtype=int64)

#decode the sentence using the vocabulary

inverse_vocab = dict(enumerate(vocabulary))

decoded_sentence = " ". join(inverse_vocab[int(i)] for i in encoded_sentence)

print(decoded_sentence)

#i write rewrite and [UNK] rewrite again

The TextVectorization layer in Keras encapsulates the preceding

Python code. This layer performs all three tasks of Text Standardization,

Tokenization, and Vocabulary Indexing. The TextVectorization layer

performs Text Standardization by convert the input string to lower case and

removes punctuation. The layer also provides controls for Tokenization. In

206 6. DEEP LEARNING FOR NATURAL LANGUAGE PROCESSING

particular, we can specify whether we want to tokenize a single word or a

sequence of N consecutive words (i.e. N -gram).

Vocabulary Indexing is done by called the layer’s adapt() method.

The input to the adapt() method is a Dataset object or a list of Python

strings containing the sentences used in building the vocabulary dictio-

nary. You can retrieve the vocabulary index via the get vocabulary()

method. This method is useful if one needs to convert an integer encoded

text string back into words (tokens). Note that the first two vocabulary en-

tries are the mask token and ”out-of-vocabulary” ([UNK]) token described

above. The remaining entries in the vocabulary are sorted by frequency

so that common words like ”the” and ”a” would come first. The follow-

ing script illustrates the use of the TextVectorization layer to encode word

tokens as integers and then decodes the resulting vector.

from tensorflow.keras.layers import TextVectorization

#instantiate encoder

text_encoder = TextVectorization(output_mode = "int")

#create vocabulary index from list of Python strings

dataset = [

"I write, erase, rewrite",

"Erase again, and then",

"A poppy blooms."]

text_vectorization.adapt(dataset)

#Encode a test sentence

vocabulary = text_vectorization.get_vocabulary()

test_sentence = "I write, rewrite, and still rewrite again"

encoded_sentence = text_encoder(test_sentence)

print(encoded_sentence)

#OUTPUT: tf.Tensor([6 2 4 10 1 4 11], shape=(7,), dtype=int64)

#decode encoded test sentence

inverse_vocab = dict(enumerate(vocabulary))

decoded_sentence = " ".join(inverse_vo ab[int(i)] for i in encoded_sentence)

print(decoded_sentence)

#OUTPUT: i write rewrite and [UNK] rewrite again

4. BAG-OF-WORDS VS SEQUENCE MODELS 207

4. Bag-of-Words vs Sequence Models

There are, in general, two types of NLP models: Bag-of-Words or Se-

quences. Bag-of-Word models treat the encoded input as a set of tokens

and ignores the ordering of those tokens in the original input. Sequence

models treat the encoded input as a sequence of inputs where the order of

the tokens plays an important role in the task.

4.1. Bag-of-Words Modeling: This section examines the bag-of-words

modeling approach on the IMDB movie review sentiment analysis prob-

lem introduced in section 4 of chapter 4. Recall that the IMDB database

contains 50,000 highly polarized movie reviews with a 50% split between

training and testing data. In our earlier example, we imported the IMDB

dataset from TensorFlow and the utility we used encoded the words in the

review as integers. In this subsection we want to illustrate how we use the

TextVectorization layer to generate such encodings, so we start from

the ”raw” dataset where the input samples have not been already encoded

as integers.

We assume the raw IMDB dataset has already been downloaded from

Stanford’s AI lab as a compressed tar file.

!curl -O https://ai.stanford.edu/˜amaasd/data/sentiment/aclImdb_v1.tar.gz

The uncompressed tar file consists of a directory aclImdb with two

subdirectories train and text each with subsubdirectories pos and neg

that contain txt files with the reviews. The following script changes that

file structure by creating a validation, val, and a p-training, ptrain, sub-

directory. The script randomly splits the train sentences between the

val and ptrain subdirectories with a 20% validation split. We then use

a TensorFlow utility to generate the p-training, validation, and test datasets

208 6. DEEP LEARNING FOR NATURAL LANGUAGE PROCESSING

directly from these subdirectories. For these created dataset objects, the in-

puts are now TensorFlow tf.string tensors and the targets are int32

tensors encoding values of 0 or 1.

import os, pathlib, shutil, random

from tensorflow import keras

batch_size = 32

nseed = 1337

val_split = 0.2

base_dir = pathlib.Path("datasets/aclImdb")

train_dir = base_dir / "train"

val_dir = base_dir / "val"

ptrain_dir = base_dir / "ptrain"

#copy train files to ptrain and val subdirectories

for category in ("neg", "pos"):

os.makedirs(val_dir / category)

os.makedirs(ptrain_dir / category)

files = os.listdir(train_dir / category)

random.Random(nseed).shuffle(files)

num_val_samples = int(val_split*len(files))

val_files = files[-num_val_samples:]

ptrain_files = files[num_val_samples:]

for fname in val_files:

shutil.copyfile(train_dir / category / fname,

val_dir / category / fname)

for fname in ptrain_files:

shutil.copyfile(train_dir / category / fname,

ptrain_dir / category / fname)

#create dataset objects

ptrain_ds = keras.utils.text_dataset_from_directory(

ptrain_dir, batch_size = batch_size)

val_ds = keras.utils.text_dataset_from_directory(

val_dir, batch_size = batch_size)

test_ds = keras.utils.text_dataset_from_directory(

test_dir, batch_size = batch_size)

The bag-of-words approach treats the tokens for a piece of text as un-

ordered text. For sentiment analysis this simply means we look to see if

4. BAG-OF-WORDS VS SEQUENCE MODELS 209

the sentence contains those ”negative” words that we usually see in a neg-

ative review. We will use the TextVectorization layer to tokenize

single words or pairs of words and then to encode these tokens as multi-hot

encoded binary word vectors. This means we will first assign an integer vo-

cabulary index to the 20,000 most frequent words in the dataset. But rather

than encoding each sentence as a sequence of these vocabulary indices, we

encode it as a 20, 000 length binary vector whose ith entry is 1 if the word

with index i appears in the sentence and is 0 otherwise. We use multi-hot

encodings because our neural network model needs a constant length input

and the length of sentences in the database is variable. The following script

takes the original dataset objects whose inputs were text strings and cre-

ates new dataset objects whose inputs are the multi-hot encoded versions of

those strings.

from tensorflow.keras.layers import TextVectorization

text_encoder = TextVectorization(

ngrams = 1, #2-gram tokenization

max_tokens = 20000, #vocabulary index length 10000

output_mode = "multi_hot"

)

#create vocabulary from training datasets

training_input_text = train_ds.map(lambda x, y:x)

text_encoder.adapt(training_input_text)

#create datasets whose inputs are multi-hot encoded

ptrain_multihot_ds = ptrain_ds.map(

lambda x, y: (text_encoder(x), y),

num_parallel_calls = 4)

val_multihot_ds = val_ds.map(

lambda x, y: (text_encoder(x), y),

num_parallel_calls = 4)

test_multihot_ds = test_ds.map(

lambda x, y: (text_encoder(x), y),

num_parallel_calls = 4)

We now build a dense sequential model with a single hidden layer of 32

nodes (relu activation) that feeds to an output layer with two nodes, one for

each class (pos or neg). We will train it with an Adam optimizer and an

210 6. DEEP LEARNING FOR NATURAL LANGUAGE PROCESSING

L2 regularizer. Because we have two outputs that estimate the likelihood of

the input tensor being pos or neg, we use a sparse categorical crossentropy

loss function. This gives us a model with about 640,000 weights.

def build_model(num_inputs, num_nodes, regularizer):

inputs = keras.Input(shape = (num_inputs,))

x = layers.Dense(num_nodes, activation = "relu",

kernel_regularizer = regularizer)(inputs)

outputs = layers.Dense(2, activation = "sigmoid")(x)

model = keras.Model(inputs=inputs, outputs = outputs)

return model

num_inputs = num_words #20000

num_nodes = 32

lam = 0.005

regularizer = tf.regularizers.l2(lam)

model = build_model(num_inputs, num_nodes, regularizer)

learning_rate = 0.001

optimizer = tf.optimizers.Adam(learning_rate)

model.compile(

optimizer = optimizer,

loss = "sparse_categorical_crossentropy",

metrics = ["accuracy"])

model_summary()

We will train this model using the multi-hot encoded inputs for 10 epochs

and use a callback that saves the model with the smallest validation loss. We

then take the training history and plot the training curves. We reload the

best model saved during training and evaluate the accuracy of that model

on the testing dataset. The plotted training curve is shown on left pane

of Fig. 11 where the best model’s test accuracy was 87%. In looking at

the curve, however, we note that there is little variation in the loss. This

suggests that in spite of the good accuracy level, this model is not really

learning much as we train it since the loss doesn’t go down very much.

callbacks = [

keras.callbacks.ModelCheckpoint(

filepath = "models/bag-of-words-imdb-model.keras",

4. BAG-OF-WORDS VS SEQUENCE MODELS 211

save_best_only = True,

verbose = 1,

monitor = "val_loss")]

num_epochs = 10

history = model.fit(ptrain_multihot_ds, epochs = num_epochs,

validation_data = val_multihot_ds,

callbacks = callbacks)

best_model = keras.models.load_model("models/bag-of-words-imdb-model.keras")

ptrain_loss = history.history["loss"]

val_loss = history.history["val_loss"]

fname = "fig/bag-of-words-imdb-model.png"

plot_training_curves(ptrain_loss, val_loss, best_test_acc,fname)

There are two useful variations on the preceding bag-of-words approach

where we encode additional information into the input tensor. One approach

simply keeps track of how many times a given token appeared in the sen-

tence. The following TextVectorization layer modifies the multi-hot

encoded inputs so the ith component equals the number of times the ith

token appeared in the text.

text_encoder = TextVectorization(

ngrams = 1,

max_tokens = 20000,

output_mode = "count")

Note that some words occur more often no matter what text fragment we

are working with. Examples of such highly occurring words are the arti-

cles ”a” and ”the”. The high occurrence of these works has little relevance

to sentiment analysis. We can reduce the importance of these words by

normalizing their word count with respect to the number of times the token

appears in the entire dataset. This is called term frequency-inverse document

frequency or TF-IDF encoding. We can also use the TextVectorization

layer to generate TD-IDF multi-hot encodings by simply specifying the out-

put mode as tf idf.

212 6. DEEP LEARNING FOR NATURAL LANGUAGE PROCESSING

FIGURE 11. Training results on IMDB sentiment anal-

ysis problem for three different models: (left) bag-of-

words dense sequential model, (center) LSTM model, (right)

Transformer model.

4.2. Sequence Modeling: Word order can matter in text classification

problems. This is why bigrams might be preferred to 1-grams in a bag-of-

words approach. To some extent, N -gram encoding may be viewed as a

form a ”feature engineering”. Modern machine learning practice seeks to

have the model ”learn” what those ”features” are and this is what is done

in the sequence modeling approach, where the model architecture is chosen

to process sequentially ordered tokens. In particular, we will examine two

different sequential models; LSTMs and Transformers. LSTMs are RNNs

that process the vectors in a sequence one vector at a time. Transformers

are models that take the entire sequence as an input. We will also ”learn”

how to map tokens to vectors, rather than simply specifying these vectors

using multi-hot encoding. This is an example of representational learning

where we train our model to ”learn” how to represent the inputs in a lower

dimensional ”latent space”. When this approach is applied to NLP, we refer

to it as word embedding. The following subsection confines its attention to

an LSTM sequential model. The transformer model will be discussed later

in this chapter.

To develop our sequence model, we first start by creating a layer that

learns how to map integer encoded inputs onto lower dimensional real-

valued embedding vectors. We would then feed this sequence of embedding

4. BAG-OF-WORDS VS SEQUENCE MODELS 213

vectors into a stack of neural network layers. These stacks can be formed

from CNN’s or RNNs. We will use a bidirectional LSTM below.

Word embeddings may be seen as establishing a topological structure

on the word tokens that reflects how these words are related back to the

classification task. The metric relationship means that two words whose

”embedding vectors” are ”close” in the metric space and therefore play a

similar role in determining the sentiment of the sentence. Another way of

thinking about this word vector space is that two words whose vectors are

close together are semantically similar to each other. A word embedding,

therefore, is a vector representation of words that maps human language

onto a normed vector space. Whereas the vectors obtained through one-hot

or multi-hot encoding are binary, sparse, and very high dimensional, word

embeddings are low-dimensional floating point vectors.

FIGURE

12. Word

Embedding

Fig. 12 shows how four words might be embedded onto

a 2D plane: cat, dog, wolf, and tiger. The vector represen-

tation chosen here reflects an assumed semantic relation-

ship between these words. Along the x-axis we measure

how ”feline” like the word is. So ”Tiger” and ”cat” have

large x-values (close to 1) along this axis, whereas ”Wolf”

and ”Dog” have low x-values. Along the y-axis we mea-

sure how ”wild” the word is. So along the y-axis, ”Wolf”

and ”Tiger” have high y-values and ”Dog” and ”Cat” have

low y-values.

Word embedding are obtained in two basic ways

• Learn the word embeddings jointly with the main task you care

about. In this case you start with random word vectors and then

learn word vectors the same way you would learn the weights of a

neural network.

• Load pre-trained word embeddings into your model.

214 6. DEEP LEARNING FOR NATURAL LANGUAGE PROCESSING

We first look at how one might ”learn” a word embedding. This is done

using backpropagation and Keras provides an embedding layer for this pur-

pose.

The Embedding layer may be seen as a dictionary that maps inte-

ger indices (which stand for specific words) to dense real-valued vectors.

This layer takes integers as inputs, looks up these integers in an internal

dictionary, and returns the associated vectors. When you instantiate an

Embedding layer, its weights are initially random. During training these

word vectors are gradually adjusted through backpropagation to structure

the space into something that downstream layers can exploit in solving the

task. Once fully trained, the embedding space shows a great deal of the se-

mantic structure for the specific problem you are working on. The follow-

ing example shows how to use the embedding layer in the IMDB sentiment

analysis task. In this case the embedding layer feeds a Bidirectional LSTM

with 32 nodes. We include a dropout layer to handle overfitting and a dense

layer with 2 nodes that estimate the probability of the text input having pos-

itive or negative sentiment. The following script instantiates our model with

an embedding layer generating vectors with an embedding dimension of 32.

We also add dropout to help regularize the model.

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

from tensorflow.keras import optimizers

from tensorflow.keras import regularizers

def build_model(num_tokens,num_nodes,embedding_dim):

inputs = keras.Input(shape = (None,),dtype = "int64")

#embedded = tf.one_hot(inputs, depth=num_tokens)

embedded = layers.Embedding(input_dim=num_tokens,

output_dim = embedding_dim)(inputs)

x = layers.Bidirectional(layers.LSTM(num_nodes))(embedded)

x = layers.Dropout(0.7)(x)

outputs = layers.Dense(2, activation = "sigmoid")(x)

model = keras.Model(inputs=inputs, outputs=outputs)

return model

4. BAG-OF-WORDS VS SEQUENCE MODELS 215

embedding_dim = 32

num_nodes = 32

model = build_model(max_tokens, num_nodes, embedding_dim)

learning_rate = 0.001

optimizer = optimizers.Adam(learning_rate)

model.compile(

optimizer = optimizer,

loss = "sparse_categorical_crossentropy",

metrics = ["accuracy"])

model.summary()

This model has about the same number of weights (650, 000) as our ear-

lier sequential bag-of-words model. The difference, however, lies in how

these weights are used. We train our model using an Adam optimizer and

save the model with the best validation loss. We train the model for 10

epochs and then plot the training curves and compute the best model’s test

accuracy.

callbacks = [

keras.callbacks.ModelCheckpoint(

filepath="models/lstm-imdb-model.keras",

save_best_only = True,

verbose = 1,

monitor="val_loss"

)

]

num_epochs = 10

history = model.fit(ptrain_int_ds, epochs=num_epochs,

validation_data = val_int_ds,

callbacks = callbacks)

test_model = keras.models.load_model("models/lstm-imdb-model.keras")

best_test_loss, best_test_acc = test_model.evaluate(test_int_ds)

ptrain_loss = history.history["loss"]

val_loss = history.history["val_loss"]

fname = "fig/lstm-imdb-model.png"

216 6. DEEP LEARNING FOR NATURAL LANGUAGE PROCESSING

plot_training_curves(ptrain_loss, val_loss, best_test_acc,fname)

The training curve is shown in the middle pane of Fig. 11. The curve

shows that the model is now learning something since the training loss de-

creases much more than it did for the bag-of-words model. We also see that

it begins overfitting relatively early and that the best model’s test accuracy

was about 82%. This is less than our bag-of-words model, but it is still

relatively good.

Sometimes there is so little training data that you cannot use your data

alone to learn an appropriate word embedding of your vocabulary. In such

cases, one can load embedding vectors from a previously learned embed-

ding space. This is similar to using pre-trained networks in computer vision

and then training the remaining top layers for the specific application at

hand. There are various pre-trained word embeddings that you can down-

load and use in a Keras embedding layer. Two of these are Word2vec

[(Go] and GloVe [Sta]. The following example uses GloVe embeddings in

a Keras model. After downloading the GloVe from the website and unzip-

ping it into the directory glove, we first index the embedding word vectors

in the database

import numpy as np

path_to_glove_file = "glove/glove.6B.100d.txt"

#this is a dataset with embedding dimension 100

embeddings_index = {}

with open(path_to_glove_file) as f:

for line in f:

word, coefs = line.split(maxsplit=1)

coefs = np.fromstring(coefs, "f", sep=" ")

embeddings_index[word] = coefs

print(f"Found {len(embeddings_index)} word vectors.")

We then build an embedding matrix to be loaded into an Embedding

layer. This matrix has dimensions max words by embedding dimwhere

the ith entry contains the embedding dim-dimensional vector for the

word of index i in the reference word index.

5. NEURAL ATTENTION AND THE TRANSFORMER MODEL 217

embedding_dim = 100

vocabulary = text_vectorization.get_vocabulary()

word_index = dict(zip(vocabulary, range(len(vocabulary))))

embedding_matrix = np.zeros((max_tokens, embedding_dim))

for word, i in word_index.items():

if i < max_tokens:

embedding_vector = embeddings_index.get(word)

if embedding_vector is not None:

embedding_matrix[i] = embedding_vector

We use a Constant initializer to load the pre-trained embeddings into

an Embedding layer. We then freeze the embedding layer to not change

the word embeddings we imported from the GloVe database. We then train

our model just as we did before. In this case, using the pre-trained data-

base does not help much due to the model architecture. As it turns out,

even though LSTM’s have a carry track to keep long-term dependences,

this carry track may not be enough in the IMDB sentiment analysis task.

In particular, when we look at the past benchmarks on the IMDB task, we

see that the best accuracy values of 92-96% occurred for LSTM, CNN, and

Transformer models that used special ways of handling embedding the in-

puts. Our relatively simple way of using the LSTMs (and later Transformer)

only attained accuracy levels of 85-88%, which is consistent with what we

are seeing in these examples here.

embedding_layer = layers.Embedding(

max_tokens, embedding_dim,

embeddings_initializer = keras.initializers.Constant(embedding_matrix),

trainable=False,

mask_zero=True,)

5. Neural Attention and the Transformer Model

The neural attention mechanism was introduced in 2014 [BCB14, LPM15].

It would provide the basis for a new sequence model architecture known as

the transformer [VSP+17] that would eventually come to dominate NLP

https://paperswithcode.com/sota/sentiment-analysis-on-imdb

218 6. DEEP LEARNING FOR NATURAL LANGUAGE PROCESSING

tasks and be the core model used in today’s large language models found in

ChatGPT. This section introduces the concept of neural attention and shows

how it can be used to form sequence model built from RNN and transformer

layers.

5.1. Neural Attention: Neural attention refers to weighting specific

parts of the input so the model pays more “attention” to those parts. This

idea has already been seen in the max-pooling layers of CNNs and TF-IDF

encoding schemes. Neural attention highlights or downplays specific parts

of the input sequence. It can be used to make features context sensitive.

Recall in a word embedding, a single word is a fixed vector whose rela-

tionship to other word vectors is determined by the basis we use for that

vector space. A ”smart” embedding space provides a different basis repre-

sentation for a word depending on the words (tokens) surrounding it. This

is what we call self-attention. The purpose of self-attention is to modulate

the vector representation of a token by using the representations of related

tokens in the sequence. This produces a context aware representation of the

token. This modulation may be realized by multiplying each component

of the input tensor by a weight called the attention score. In the case of

self-attention, this attention score is, essentially, the autocorrelation of the

sequence with itself.

Let us consider the sentence: ”The train left the station on time”. Now

consider one word in the sentence: ”station”. What kind of station are we

talking about? It could be a radio station or a space station. The self-

attention mechanism clarifies the context in which ”station” is embedded.

The first step is to compute attention scores between the embedding vector

for ”station” and the embedding vector for every other word (token) in the

sentence. We simply use the dot (vector) production of the two embedding

vectors as our attention score since it is easy to compute. In practice, we

also normalize these dot products with a scaling and softmax function to

keep their values in the range from 0 to 1.

5. NEURAL ATTENTION AND THE TRANSFORMER MODEL 219

The second step is to compute the sum of all word vectors in the sen-

tence, weighted by the attention score. Words closely related to ”station”

will contribute more to the sum (including the word ”station” itself), while

irrelevant words will contribute almost nothing to the sum. The resulting

vector is our new representation for ”station”. Namely it is a vector repre-

sentation that includes the corresponding context established by surround-

ing words. So in our example, this means that the new representation in-

cludes a part of the ”train” vector, clarifying the fact that the sentence is

talking about a ”train station” rather than a ”space station”. This process-

ing is shown graphically in Fig. 13, where the matrix of attention scores is

shown by the 2-d matrix. We then extract the vector of scores for ”station”

and add them together to obtain a context-aware vector representation for

the word ”station”.

FIGURE 13. Self-attention: attention scores are computed

between ”station” and every other word in the sentence, and

they are then used to weight a sum of word vectors that be-

comes the ”new” context aware word vector for ”station”.

We repeat this algorithmic process for every word in the text fragment,

producing a new sequence of vectors encoding the fragment. A NumPy

pseudocode makes it apparent how this processing is actually done

def self_attention(input_sequnce):

220 6. DEEP LEARNING FOR NATURAL LANGUAGE PROCESSING

output = np.zeros(shape=input_sequence.shape)

for i, pivot_vector in enumerate(input_sequence):

scores = np.zeros(shape=(len(input_sequence),))

for j, vector in enumerate(input_sequence):

scores[j] = np.dot(pivot_vector,vector.T)

scores /= np.sqrt((input_sequence.shape[1])

scores = softmax(scores)

new_pivot_representation = np.zeros(shape=pivot_vector.shape)

for j, vector in enumerate(input_sequence):

new_pivot_representation += vector*scores[j]

output[i] = new_pivot_representation

return output

Keras has a built-in layer to realize this self-attention mechanism. The

Keras layer MultiHeadAttention, however, has some enhancements

that are often used in practice. The following code shows how this layer

would be instantiated.

num_heads = 4

embed_dim = 256

mha_layer = MultiHeadAttention(num_heads = num_heads, key_dim=embed_dim)

outputs = mha_layer(inputs, inputs, inputs)

The are a couple of interesting aspects of this layer. The first concerns

the fact that we passed three different tensors to the layer; in this case the

same vector, inputs, three times. The second thing concerns what we

mean by multiple heads. Let us discuss both of these items, first focusing

on the reason why the layer takes three inputs.

In most of our prior layer models, we have only considered a single input.

The transformer architecture, however, was originally developed for neural

machine translation (NMT) where you have two sequences: the source se-

quence you want to translate (such as ”How is the weather today?”) and the

target sequence you are converting it to (such as ”¿Qué tiempo hace hoy?”).

A transformer is a sequence-to-sequence model that converts one sequence

into another sequence. The self-attention mechanism performs this conver-

sion as follows

5. NEURAL ATTENTION AND THE TRANSFORMER MODEL 221

This means ”for each token in inputs (A), compute how much the token

is related to every token in inputs (B), and use these scores to weight a

sum of tokens from inputs (C)”. Note that there is nothing that requires

A, B, and C to refer to the same input sequence. In the general case, you

could be doing this with three different sequences that we call the ”query”,

”keys”, and ”values”. The operation then becomes for every element in the

query, compute how much the element is related to every key and use these

scores to weight a sum of values.

outputs = sum(values * pairwise_scores(query, keys)

This terminology comes from search engines and recommender systems.

Imagine that you are typing up a query to retrieve a photo from your collec-

tion – ”dogs on the beach”. Internally, each of your pictures in the database

is described by a set of keywords – ”cat”, ”dog”, ”party”, etc. We call these

”keys”. The search engine will start by comparing your query to the keys

by strength of match - relevance - and it will return the pictures (values)

associated with the top few matches in order of relevance.

Conceptually this is what Transformer-style attention is doing. You have

a reference sequence that describes something you are looking for: the

query. You have a body of knowledge that you are trying to extract in-

formation from: the values. Each value is assigned a key that describes the

value in a format that can be readily compared to a query. You simply match

the query to the keys and then return a weighted sum of the values.

In practice, the keys and the values are often the same sequence. In

NMT, for instance, the query would be the target sequence and the source

sequence would play the role of both keys and values: for each element

of the target (like ”tiempo”), you want to go back to the source (”How’s

222 6. DEEP LEARNING FOR NATURAL LANGUAGE PROCESSING

the weather today?”) and identify bits that are related to it (”tiempo” and

”weather” should have a strong match). So if you are just doing sequence

classification (rather than NMT), then the query, keys and values are all the

same: you are comparing the sequence to itself, to enrich each token with

the context of the whole sentence. This is why the preceding instantiation of

the attention layer passed inputs three times to the MultiHeadAttention

layer.

We refer to this as a ”multi-head” layer because we are generalizing

the original self-attention mechanism introduced in [VSP+17]. The ”multi-

head” label refers to the fact that the output space of the self-attention layer

gets factored into several independent subspaces, each learned separately.

In other words the initial query, key, and value are sent through three inde-

pendent sets of dense projections resulting in three separate vectors. Each

vector is processed through neural attention and the three outputs are con-

catenated back together into a single output sequence. Each subspace is

called a head as shown in Fig. 14.

FIGURE 14. Multi-head Attention Layer

5. NEURAL ATTENTION AND THE TRANSFORMER MODEL 223

Note that this is similar to the way in which we compute different ”chan-

nels” in the depth-wise convolutions found in CNNs. In that case, the output

space of the convolution is factored into many subspaces (one per channel)

that get learned independently. The ”attention” paper [VSP+17] was writ-

ten when the idea of factoring feature spaces into independent subspaces

had been shown to provide a great benefits for computer vision models.

The Multi-headed attention mechanism simply applies that principle to the

self-attention concept.

5.2. Transformer Encoder: . The original transformer model con-

sisted of two parts: an encoder and a decoder. The encoder takes a se-

quence (sentence) and maps it onto a meaning vector. The decoder expands

that meaning vector back into a sentence. This encoder-decoder architecture

works well for neural machine translation (NMT) where the input sequence

is in one language and the output sequence is in a different language. To

solve sentiment analysis or text classification, however, we only need to

focus on the transformer encoder, which is what we do in this subsection.

The transformer encoder is based on a network of dense layers. It uses

the MultiHeadAttention layer to preprocess the text vector inputs. The en-

tire encoder also uses layer normalization and residual connections. Lay-

erNormalization is different from the BatchNormalization used in CNNs.

LayerNormalization normalizes each sequence independently from other

sequences in the batch.

The following script shows how to use the TransformerEncoder

layer in a model for the IMDB sentiment analysis task. We use this in much

the same way we did the LSTM model. This means that we take training

inputs that were integer encoded and pass them through an embedding layer

before passing it to the Transformer. We will use custom TensorFlow layers.

The first custom layer is the embedding layer TokenAndPositionEmbedding.

Self-attention focuses on the relationships between pairs of sequence ele-

ments, so it is blind to whether those relationships occur at the beginning,

224 6. DEEP LEARNING FOR NATURAL LANGUAGE PROCESSING

FIGURE 15. Transformer Encoder

middle, or end of the sentence. Positional embeddings inject information

about a token’s position by adding a position axis to the word vector. The

following class definition creates our position embedding layer as a custom

layer.

@tf.keras.utils.register_keras_serializable()

class TokenAndPositionEmbedding(layers.layer):

def __init__(self, maxlen, vocab_size, embed_dim, **kwargs):

super(TokenAndPositionEmbedding, self).__init__(**kwargs)

self.vocab_size = vocab_size

self.maxlen = maxlen

self.embed_dim = embed_dim

self.token_emb = layers.Embedding(input_dim=vocab_size,

output_dim=embed_dim)

self.pos_emb = layers.Embedding(input_dim=maxlen, output_dim=embed_dim)

def call(self, x):

maxlen = tf.shape(x)[-1]

positions = tf.range(start=0,limit = maxlen, delta = 1)

position = self.pos_mb(positions)

x = self.token_emb(x)

return x + positions

def get_config(self):

config = super().get_config()

config[’vocab_size’] = self.vocab_size

config[’maxlen’] = self.maxlen

config[’embed_dim’] = self.embed_dim

return config

5. NEURAL ATTENTION AND THE TRANSFORMER MODEL 225

The TransformerEncoder is another custom block that we define

in the following script. A block diagram for the Transformer encoder is

shown in Fig. 15. This shows the encoder is passing the input through a

MultiHeadAttention before passing it through a LayerNormalization layer.

This then feeds to a dense sequential core, which in our case consists of a

single dense layer. We use residual connections around the MultiHeadAt-

tention layer and the dense core. The output of the dense core then goes

through one more LayerNormalization layer.

@keras.utils.register_keras_serializable()

class TransformerEncoder(layers.Layers):

def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1, **kwargs):

super(TransformerEncoder, self).__init__(**kwargs)

self.embed_dim = embed_dim

self.num_heads = num_heads

self.ff_dim = ff_dim

self.rate = rate

self.att = layers.MultiHeadAttention(num_heads = num_heads,

key_dim = embed_dim)

self.ffn = keras.Sequential(

[layers.Dense(ff_dim, activation="relu"),

layers.Dense(embed_dim),]

)

self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)

self.layernorm2 = layers.LayerNormalization(epsilon=1.e-6)

self.dropout1 = layers.Dropout(rate)

self.droput2 = layers.Dropout(rate)

def call(self, inputs, training):

attn_output = self.att(inputs, outputs)

attn_output = self.dropout1(attn_output, training = training)

out1 = self.layernorm1(inputs + attn_outputs)

ffn_output = self.ffn(out1)

ffn_output = self.droput2(ffn_output, training=training)

return self.layernorm2(out1 + ffn_output)

def get_config(self):

config = super().get_config()

config[’embed_dim’] = self.embed_dim

config[’num_heads’] = self.num_heads

config[’ff_dim’]] = self.ff_dim

config[’rate’] = self.rate

226 6. DEEP LEARNING FOR NATURAL LANGUAGE PROCESSING

return config

Note that because this is a custom TensorFlow layer, we have to add a

decorator at the start of each layer to register the object as a serializable

object. This allows us to save the model and reload it later. We now use the

Positional Embedding and Transformer Encoder layers in the same way we

did for the LSTM layer

embed_dim = 32

num_heads = 2

ff_dim = 32

inputs = layers.Input(shape=(max_seq_length,))

embedding_layer = TokenAndPositionEmbedding(max_seq_length,

max_tokens, embed_dim)

x = embedding_layer(inputs)

transformer_encoder = TransformerEncoder(embed_dim, num_heads, ff_dim)

x = transformer_encoder(x)

x = layers.GlobalAveragePooling1D()(x)

x = layers.Droput(0.7)(x)

x = layers.Dense(20, activation = "relu")(x)

x = layers.Dropout(0.7)(x)

outputs = layers.Dense(2, activation="softmax")(x)

model = keras.Model(inputs=inputs, outputs =outputs)

model.compile(

optmiizer = "adam",

loss = "sparse_categorical_crossentropy"),

metrics = ["accuracy"])

The resulting model has about the same number of weights as the LSTM

and sequential Bag-of-Words models (650, 000). So these are all models

of comparable ”size”. We then train the model for 10 epochs and save the

model with the best validation loss. We finish up by reloading the best

model and plotting the training curves. The training curves are shown on

the right side of Fig. 11. The transformer’s training curve is similar to that

of the LSTM with a best model testing accuracy of 86%.

callbacks = [

6. SEQUENCE-TO-SEQUENCE LEARNING AND NEURAL MACHINE TRANSLATION227

keras.callbacks.ModelCheckpoint(

filepath="models/transformer-imdb-model.keras",

save_best_only=True,

verbose = 1,

monitor = "val_loss")]

history = model.fit(

ptrain_int_ds,

epochs = 10,

validation_data = val_int_ds,

callbacks = callbacks)

test_model = keras.models.load_model("models/transformer-imdb-model.keras")

best_test_loss, best_test_acc = test_model.evaluate(test_int_ds)

ptrain_loss = history.history["loss’"]

val_loss = history.history["val_loss"]

fname = "fig/transformer-imdb-model.png"

plot_training_curves(ptrain_loss, val_loss, best_test_acc,fname)

6. Sequence-to-sequence learning and Neural Machine Translation

Sequence-to-sequence (seq2seq) models [SVL14, CVMG+14] have en-

joyed great success in NLP tasks such as machine translation, speech recog-

nition, and text summarization. This section introduces seq2seq models and

focuses on their use in Neural Machine Translation (NMT) of which one

of the best examples is Google Translate[Goo]. Traditional phrase-based

translation systems performed their task by breaking up the input sentence

into multiple chunks (phrases) and then translating each chunk (phrase) one

at a time. This usually leads to breaks in the translated sentence (what is

referred to as disfluency). This is not, in general, how humans translate.

Humans read the entire source sentence, understand its meaning, and then

produce a translation based on that meaning. Modern NMT systems such

as Google Translate mimic that approach to language translation.

In particular, a modern NMT system first reads the source sentence using

an encoder to build a ”thought” vector; a sequence of numbers that repre-

sents the sentence’s meaning. It then passes this thought vector through

a decoder that expands the vector into the translated phrase as shown in

228 6. DEEP LEARNING FOR NATURAL LANGUAGE PROCESSING

FIGURE 16. Encoder-decoder architecture - example of a

general approach for NMT. The encoder converts a source

sentence into a ”meaning” vector which is passed through a

decoder to produce a translation.

Fig. 16. This model is called the encoder-decoder architecture. In this

manner, NMT addresses the local translation problem in traditional phrase-

based approaches by capturing long-range dependencies in the language,

e.g. gender agreements, syntax structures, etc and produces a much more

fluent translation than was possible using older phrase-based translation

systems.

FIGURE 17. Sequence-to-sequence learning: the source se-

quence is processed by the encoder is then sent to the de-

coder. The decoder looks at the target sequence so far and

predicts the target sequence offset by one step in the future.

During inference, we generate one target token at a time and

feed it back into the decoder.

The general template behind sequence-to-sequence models is illustrated

in Fig: 17. During training

6. SEQUENCE-TO-SEQUENCE LEARNING AND NEURAL MACHINE TRANSLATION229

• The encoder model turns the source sequence into the ”thought”

vector

• A decoder is then trained to predict the next token i in the target

sequence by looking at both previous tokens (0 to i − 1) in the

target sequence and the entire encoded source sequence.

During inference, we cannot access the target sequence. We are trying to

predict it in a recursive manner in which we generate it one token at a time.

• We first obtain the encoded source sequence from the encoder

• The decoder starts by looking at the encoded source sequence as

well as an initial ”seek” token such as the string ”[START]”, and

uses them to predict the first real token in the sequence.

• The predicted sequence is fed back into the decoder which gener-

ates the next token until we get the the ”[END]” token.

We now turn to examine how RNN’s and Transformer models can be used

to realize sequence-to-sequence learning on a neural machine translation

example.

6.1. Neural Machine Translation. Neural machine translation (NMT)

is an NLP task that takes a source sentence in one language and translates

that sentence into another language. A good example is the website Google

Translate [Goo]

FIGURE 18. Screenshot of Google Translate Website

230 6. DEEP LEARNING FOR NATURAL LANGUAGE PROCESSING

In order to build a model that does something similar to what Google

Translate does, we first need to work with a translation dataset. In particular,

we will use an English-to-Spanish dataset available at www.manythings.org/anki.

The downloaded file will be placed in a subdirectory spa-eng and the file

we need is spa.txt. This text file contains one example per line: an Eng-

lish sentence, followed by a tab character, followed by the corresponding

Spanish sentence. Let us parse the file and then print a randomly chosen

line from the file

text_file = "spa-eng/spa.txt"

with open(text_file) as f:

lines = f.read().split("\n")[:-1]

text_pairs = []

for line in lines:

english, spanish = line.split("\t")

spanish = "[start] " + spanish + " [end]"

text_pairs.append((english, spanish))

import random

print(random.choice(text_pairs))

#output

#("I just don’t want to talk to you.",

’[start] Sencillamente no quiero hablar contigo. [end]’)

Let us now shuffle the lines of this dataset and split them into the usual

p-training, validation, and test sets. In particular, we reserve 15% of the

sentence pairs for validation and 15% for testing.

import random

random.shuffle(text_pairs)

num_val_samples = int(0.15 * len(text_pairs))

num_train_samples = len(text_pairs) - 2 * num_val_samples

train_pairs = text_pairs[:num_train_samples]

val_pairs = text_pairs[num_train_samples:num_train_samples + num_val_samples]

test_pairs = text_pairs[num_train_samples + num_val_samples:]

We are going to prepare two separate TextVectorization layers:

one for English and one for Spanish. We will find it convenient to customize

the way the sentences are preprocessed:

6. SEQUENCE-TO-SEQUENCE LEARNING AND NEURAL MACHINE TRANSLATION231

• We need to preserve the ”[start]” and ”[end]” tokens that we have

inserted. By default the characters [and] would be stripped out.

• Punctuation is different in the Spanish language, since it uses in-

verted question marks. So we will want to strip such characters

out.

import tensorflow as tf

import string

import re

from tensorflow.keras import layers

strip_chars = string.punctuation + "?"

strip_chars = strip_chars.replace("[", "")

strip_chars = strip_chars.replace("]", "")

def custom_standardization(input_string):

lowercase = tf.strings.lower(input_string)

return tf.strings.regex_replace(

lowercase, f"[{re.escape(strip_chars)}]", "")

vocab_size = 15000

sequence_length = 20

source_vectorization = layers.TextVectorization(

max_tokens=vocab_size,

output_mode="int",

output_sequence_length=sequence_length,

)

target_vectorization = layers.TextVectorization(

max_tokens=vocab_size,

output_mode="int",

output_sequence_length=sequence_length + 1,

standardize=custom_standardization,

)

train_english_texts = [pair[0] for pair in train_pairs]

train_spanish_texts = [pair[1] for pair in train_pairs]

source_vectorization.adapt(train_english_texts)

target_vectorization.adapt(train_spanish_texts)

Finally we will turn our data into a tf.data pipeline. We want it to

return a tuple (inputs, targets) where inputs is a dict with two

232 6. DEEP LEARNING FOR NATURAL LANGUAGE PROCESSING

keys, ”encoder inputs” (the English sentence) and ”decoder inputs”

(the Spanish sentence), and target is the Spanish sentence offset by one

step ahead.

batch_size = 64

def format_dataset(eng, spa):

eng = source_vectorization(eng)

spa = target_vectorization(spa)

return ({

"english": eng,

"spanish": spa[:, :-1],

}, spa[:, 1:])

def make_dataset(pairs):

eng_texts, spa_texts = zip(*pairs)

eng_texts = list(eng_texts)

spa_texts = list(spa_texts)

dataset = tf.data.Dataset.from_tensor_slices((eng_texts, spa_texts))

dataset = dataset.batch(batch_size)

dataset = dataset.map(format_dataset, num_parallel_calls=4)

return dataset.shuffle(2048).prefetch(16).cache()

train_ds = make_dataset(train_pairs)

val_ds = make_dataset(val_pairs)

for inputs, targets in train_ds.take(1):

print(f"inputs[’english’].shape: {inputs[’english’].shape}")

print(f"inputs[’spanish’].shape: {inputs[’spanish’].shape}")

print(f"targets.shape: {targets.shape}")

#inputs[’english’].shape: (64, 20)

#inputs[’spanish’].shape: (64, 20)

#targets.shape: (64, 20)

We will now use this data to first train an RNN sequence-to-sequence

model.

6.2. RNN Sequence-to-Sequence Model. Recurrent neural networks

dominated sequence-to-sequence learning from 2015-2017 before being dis-

placed by the Transformer models. They were the basis for many real-world

6. SEQUENCE-TO-SEQUENCE LEARNING AND NEURAL MACHINE TRANSLATION233

translation systems, such as Google Translate circa 2017. It is still worth

examining RNN sequence-to-sequence learning as an easy introduction to

sequence-to-sequence learning and for providing a basis for understanding

why the Transformer model came to overtake RNNs. The simplest way to

use RNNs in sequence-to-sequence modeling is to keep the output of the

RNN at each time step. In Keras, one might do this as follows

inputs = keras.Input(shape=(sequence_length,),dtype="int64")

x = layers.Embedding(input_dim=vocab_size, output_dim=128)(inputs)

x = layers.LSTM(32, return_sequences=True)(x)

outputs = layers.Dense(vocab_size, activation = "softmax")(x)

model = keras.Model(inputs, outputs)

There are, however, two major problems with this approach

• The target sequence must always be the same length as the source

sequence, which is rarely true in practice. Technically, one could

use padding to address this issue.

• Due to the step-by-step nature of RNNs, the model will only be

looking a tokens 0, . . . , N in the source sequence in order to pre-

dict token N in the target sequence. This constraint makes this step

unsuitable for most tasks, and this is particularly true for transla-

tion. As we said before, translating a sentence usually requires

one to read the entire source sentence to understand its meaning,

before going ahead with the translation step.

So the proper way to do sequence-to-sequence translation using RNNs is

shown in Fig. 19. In this case you would first use an RNN as an encoder to

turn the entire source sequence into a single vector (or sequence of vectors).

This vector could be the last output of the RNN or, alternatively, its final

internal state vectors. You would then use this vector (or vectors) as the

initial state of another RNN (i.e. the decoder) which would look at elements

0, . . . , N in the target sequence to predict step N +1 in the target sequence.

234 6. DEEP LEARNING FOR NATURAL LANGUAGE PROCESSING

FIGURE 19. Sequence-to-sequence RNN: an RNN encoder

is used to produce a vector that encodes the entire source

sequence, which is used as the initial state for an RNN de-

coder.

We will implement this simple seq2seq-RNN model using a GRU for

the encoder and decoder. This is done to make the model a bit simpler. The

following code instantiates the GRU-encoder

embed_dim = 256

latent_dim = 1024

source = keras.Input(shape=(None,), dtype="int64", name="english")

x = layers.Embedding(vocab_size, embed_dim, mask_zero=True)(source)

encoded_source = layers.Bidirectional(

layers.GRU(latent_dim), merge_mode="sum")(x)

We now add the decoder as a simple GRU layer that takes its initial state

the encoded source sentence. On top of it we add a Dense layer to produce

for each output step a probability distribution over the Spanish dictionary.

past_target = keras.Input(shape=(None,), dtype="int64", name="spanish")

x = layers.Embedding(vocab_size, embed_dim, mask_zero=True)(past_target)

decoder_gru = layers.GRU(latent_dim, return_sequences=True)

x = decoder_gru(x, initial_state=encoded_source)

x = layers.Dropout(0.5)(x)

target_next_step = layers.Dense(vocab_size, activation="softmax")(x)

seq2seq_rnn = keras.Model([source, past_target], target_next_step)

We now compile and train the model. During training the decoder takes

as input the entire target sequence. But because of the recursive nature of

the RNN, it only looks at tokens 0 to N in the input to predict token N in

6. SEQUENCE-TO-SEQUENCE LEARNING AND NEURAL MACHINE TRANSLATION235

the output which corresponds to the next token in the sequence since the

output is offset by one step. This means we only use information from the

past to predict the future, which makes sense when we use this model for

inference.

seq2seq_rnn.compile(

optimizer="rmsprop",

loss="sparse_categorical_crossentropy",

metrics=["accuracy"])

seq2seq_rnn.fit(train_ds, epochs=15, validation_data=val_ds)

We used accuracy to monitor the validation performance during train-

ing. We get to 64% accuracy, i.e. the model predicts the next word in the

Spanish sequence about 64% of the time. In practice, next-token accuracy

is not a good metric for machine translation models because it makes the

assumption that the correct target tokens from 0 to N are already known

when predicting N + 1. In reality during inference you are generating the

target sequence from scratch which means the preceding tokens may not be

100% correct. In real-world machine translation systems, one uses BLEU

scores [PRWZ02] to evaluate the models. This metric looks at entire gen-

erated sequences and this metric seems to correlate more closely to human

perception of translation quality.

Note that the amount of time taken to train this model was significant. It

usually takes a long time to train RNN NMT models.

We now use our model for inference. We will pick a few sentence in

the test set and check how our model translates them. We will start from

the seek token, ”[start]”, and feed it into the decoder model, together with

the encoded English sentence. We will retrieve the next-token prediction

and re-inject it into the decoder repeatedly, sampling one new target token

at each iteration, until we get to ”[end]”, or reach the maximum sentence

length.

import numpy as np

spa_vocab = target_vectorization.get_vocabulary()

236 6. DEEP LEARNING FOR NATURAL LANGUAGE PROCESSING

spa_index_lookup = dict(zip(range(len(spa_vocab)), spa_vocab))

max_decoded_sentence_length = 20

def decode_sequence(input_sentence):

tokenized_input_sentence = source_vectorization([input_sentence])

decoded_sentence = "[start]"

for i in range(max_decoded_sentence_length):

tokenized_target_sentence = target_vectorization([decoded_sentence])

next_token_predictions = seq2seq_rnn(

[tokenized_input_sentence, tokenized_target_sentence])

sampled_token_index = np.argmax(next_token_predictions[0, i, :])

sampled_token = spa_index_lookup(sampled_token_index)

decoded_sentence += " " + sampled_token

if sampled_token == "[end]":

break

return decoded_sequence

test_eng_texts = [pair[0] for pair in test_pairs]

for _ in range(20):

input_sentence = random.choice(test_eng_texts)

print("-")

print(input_sentence)

print(decoded_sequence(input_sentence))

This inference setup is easy to understand, but is rather inefficient since

we reprocess the entire source sentence and the entire generated target sen-

tence every time we sample a new word. In practice, one would factor the

encoder and the decoder as two separate models and your decoder would

only run a single step at each token-sampling iteration, reusing its previous

internal state.

Here are our translation results. Our model works okay for a toy demon-

stration with a rather small vocabulary dataset. But it still makes many

mistakes.

%who is in this room?

%[start] quien esta en esta habitacion [end]

% GOOGLE TRANSLATE: Quien esta en esta habitacion?

6. SEQUENCE-TO-SEQUENCE LEARNING AND NEURAL MACHINE TRANSLATION237

%That doesn’t sound too dangerous.

%[start] eso no my difficil [end]

%GOOGLE TRANSLATE: eso no suena demasiado peligroso

%No one will stop me.

%[start] nadie me va a hacer [end]

%GOOGLE TRANSLATE: Nadie me detendra

%Tom is friendly.

%[start] tom es un buen [UNK] [end]

%GOOGLE TRANSLATE: Tom es amigable.

6.3. Transformer Sequence-to-Sequence Model. Sequence to sequence

learning is currently done using the Transformer model. Neural attention

concepts allows the Transformer to successfully process sequences that are

considerably longer and more complex than those that RNNs can handle

successfully.

As a human translating English to Spanish, you will not read the English

sentence one word a time, keep its meaning in memory, and then gener-

ate the Spanish sentence one word at a time. That may work for simple

five-word sentences, but is unlikely to work well for an entire paragraph.

Instead, you would want to go back and forth between the source sentence

and your translation in progress, and pay attention to different words in the

source as you are writing down different parts of your translation.

That is exactly what is done with neural attention and Transformers. We

already introduced the Transformer encoder that uses self-attention to pro-

duce context-aware representations of each token in an input sequence. In

a sequence-to-sequence Transformer, the Transformer encoder forms the

front end of the model. The Transformer encoder reads the source sequence

and produces an encoded representation of it. Unlike the previous RNN en-

coder, though, the Transformer encoder keeps the encoded representation

in a sequence format: in other words it keeps a sequence of context-aware

embedding vectors.

238 6. DEEP LEARNING FOR NATURAL LANGUAGE PROCESSING

The second half of the model is the Transformer decoder. Just like the

RNN-decoder, it reads tokens 0, . . . , N in the target sequence and tries to

predict token N +1. But while doing this it uses neural attention to identify

which tokens in the encoded source sentence are most closely related to the

target token it is currently trying to predict. This is somewhat similar to the

way a human translator would do it. Recall the query-key-value model: in a

Transformer decoder the target sequence serves as an attention ”query” that

is used to pay closer attention to different parts of the source sequence (the

source sequence plays the roles of both keys and values).

The Transformer Decoder: Fig. 20 shows the full sequence-to-sequence

Transformer. Notice that the internal structure of the decoder is very similar

to that of the encoder. What you will see, however is an extra self atten-

tion block (MHA/Normalization layers) inserted between the Dense layers

producing the output and the self-attention block processing the target se-

quence. We can implement the Transformer decoder using Keras layer

subclass.

class TransformerDecoder(layers.Layer):

def __init__(self, embed_dim, dense_dim, num_heads, **kwargs):

super().__init__(**kwargs)

self.embed_dim = embed_dim

self.dense_dim = dense_dim

self.num_heads = num_heads

self.attention_1 = layers.MultiHeadAttention(

num_heads=num_heads, key_dim=embed_dim)

self.attention_2 = layers.MultiHeadAttention(

num_heads=num_heads, key_dim=embed_dim)

self.dense_proj = keras.Sequential(

[layers.Dense(dense_dim, activation="relu"),

layers.Dense(embed_dim),]

)

self.layernorm_1 = layers.LayerNormalization()

self.layernorm_2 = layers.LayerNormalization()

self.layernorm_3 = layers.LayerNormalization()

self.supports_masking = True

def get_config(self):

config = super().get_config()

6. SEQUENCE-TO-SEQUENCE LEARNING AND NEURAL MACHINE TRANSLATION239

FIGURE 20. The transformer decoder is similar to the trans-

former encoder, except it features an additional attention

block where the keys and values are the source sequence en-

coded by the transformer encoder. Together the encoder and

decoder form an end-to-end transformer.

config.update({

"embed_dim": self.embed_dim,

"num_heads": self.num_heads,

"dense_dim": self.dense_dim,

})

return config

240 6. DEEP LEARNING FOR NATURAL LANGUAGE PROCESSING

The call() method is almost a straightforward rendering of the con-

nectivity shown in Fig. 20. There is an additional detail that is needed:

causal padding. Causal padding is critical to successfully training sequence-

to-sequence Transformers. Unlike an RNN which looks at its input one step

at a time and thus only has access to inputs 0, . . . , n when generating the

output N + 1st step, the Transformer Decoder is order-agnostic because it

looks at the entire sequence at once. If it were allowed to use its entire in-

put, it would simply learn to copy input step N + 1 to location N in the

output. The model would therefore achieve perfect training accuracy, that

would fail disastrously during the inference phase.

We address this issue by masking the upper half of the pairwise attention

matrix to prevent the model from paying attention to information from the

future. In this way only the tokens 0 to N in the target sequence are used

when generating output token N+1. We do this by adding a causal attention

mask method to the Transformer decoder as shown below.

def get_causal_attention_mask(self, inputs):

input_shape = tf.shape(inputs)

batch_size, sequence_length = input_shape[0], input_shape[1]

i = tf.range(sequence_length)[:, tf.newaxis]

j = tf.range(sequence_length)

mask = tf.cast(i >= j, dtype="int32")

mask = tf.reshape(mask, (1, input_shape[1], input_shape[1]))

mult = tf.concat(

[tf.expand_dims(batch_size, -1),

tf.constant([1, 1], dtype=tf.int32)], axis=0)

return tf.tile(mask, mult)

#implementation of call method

def call(self, inputs, encoder_outputs, mask=None):

causal_mask = self.get_causal_attention_mask(inputs)

if mask is not None:

padding_mask = tf.cast(

mask[:, tf.newaxis, :], dtype="int32")

padding_mask = tf.minimum(padding_mask, causal_mask)

attention_output_1 = self.attention_1(

query=inputs,

value=inputs,

6. SEQUENCE-TO-SEQUENCE LEARNING AND NEURAL MACHINE TRANSLATION241

key=inputs,

attention_mask=causal_mask)

attention_output_1 = self.layernorm_1(inputs + attention_output_1)

attention_output_2 = self.attention_2(

query=attention_output_1,

value=encoder_outputs,

key=encoder_outputs,

attention_mask=padding_mask,

)

attention_output_2 = self.layernorm_2(

attention_output_1 + attention_output_2)

proj_output = self.dense_proj(attention_output_2)

return self.layernorm_3(attention_output_2 + proj_output)

Position Embedding Layer: The second thing that we add into our

implementation of the Encoder-Decoder is a positional embedding layer.

Our sequence-to-sequence models relies on the neural attention mechanism.

Self-attention focuses on the relationships between pairs of sequence ele-

ments so it is blind to whether these relationships occur at the beginning,

middle, or end of the sentence. Position embeddings inject information

about a token’s position by adding a ”position” axis to the word vector. The

problem one might have with a direct implementation of this idea is the

fact that the values along this position axis might be very large. We already

know that an important part about neural network inputs is that we need to

scale them so they all lie in about the same range. The way we usually do

this for positional embedding is by taking the position number and passing

it through a cosine function so it remains in the range [−1, 1]. The following

script shows how we would instantiate such a position embedding layer

class PositionalEmbedding(layers.Layer):

def __init__(self, sequence_length, input_dim, output_dim, **kwargs):

super().__init__(**kwargs)

self.token_embeddings = layers.Embedding(

input_dim=input_dim, output_dim=output_dim)

self.position_embeddings = layers.Embedding(

input_dim=sequence_length, output_dim=output_dim)

self.sequence_length = sequence_length

self.input_dim = input_dim

self.output_dim = output_dim

242 6. DEEP LEARNING FOR NATURAL LANGUAGE PROCESSING

def call(self, inputs):

length = tf.shape(inputs)[-1]

positions = tf.range(start=0, limit=length, delta=1)

embedded_tokens = self.token_embeddings(inputs)

embedded_positions = self.position_embeddings(positions)

return embedded_tokens + embedded_positions

def compute_mask(self, inputs, mask=None):

return tf.math.not_equal(inputs, 0)

def get_config(self):

config = super(PositionalEmbedding, self).get_config()

config.update({

"output_dim": self.output_dim,

"sequence_length": self.sequence_length,

"input_dim": self.input_dim,

})

return config

The end to end transformer is the model we will be training. It maps the

source sequence and the target sequence to the target sequence one step in

the future. It combines the pieces we’ve built so far: Positional Embedding

layers, The Transformer Encoder, and the Transformer Decoder. Note that

both the encoder and decoder are shape invariant, so you could be stacking

many of them to create a more powerful encoder or decoder. The following

example just has a single instance of each.

embed_dim = 256

dense_dim = 2048

num_heads = 8

encoder_inputs = keras.Input(shape=(None,), dtype="int64", name="english")

x = PositionalEmbedding(sequence_length, vocab_size, embed_dim)(encoder_inputs)

encoder_outputs = TransformerEncoder(embed_dim, dense_dim, num_heads)(x)

decoder_inputs = keras.Input(shape=(None,), dtype="int64", name="spanish")

x = PositionalEmbedding(sequence_length, vocab_size, embed_dim)(decoder_inputs)

x = TransformerDecoder(embed_dim, dense_dim, num_heads)(x, encoder_outputs)

x = layers.Dropout(0.5)(x)

decoder_outputs = layers.Dense(vocab_size, activation="softmax")(x)

transformer = keras.Model([encoder_inputs, decoder_inputs], decoder_outputs)

6. SEQUENCE-TO-SEQUENCE LEARNING AND NEURAL MACHINE TRANSLATION243

We now train our model, which does take a long time to train.

transformer.compile(

optimizer="rmsprop",

loss="sparse_categorical_crossentropy",

metrics=["accuracy"])

transformer.fit(train_ds, epochs=30, validation_data=val_ds)

Finally we test our model by using it to translate never-seen-before Eng-

lish sentences from the test set. The setup is identical to what we used

for the sequence-to-sequence RNN model, and so we don’t repeat it here.

Results from this are shown below

This is a song I learned when I was a kid.

[start] Esta es una cancion que aprendi cuando era chico [end]

#Google Translate: Esta es una canción que aprendı́ cuando era niño

She can lay the piano.

[start] ella puede tocar piano [end]

#Google Translate: Ella puede tocar el piano.

It may have rained a little last night.

[start] puede que llueve un poco el pasado [end]

#Google Translate: Puede que haya llovido un poco anoche

CHAPTER 7

Deep Generative Learning

Deep Generative Learning [Fos22] has recently generated considerable

attention due to applications such as DALLE-2 and ChatGPT. Both of these

applications can take a natural language prompt and produce a meaningful

response. The response for ChatGPT is a text response as shown on the left

side of Fig. 1. The response for DALL-E 2 is a picture as shown on the right

side of Fig. 1.

FIGURE 1. Prompt and Response for ChatGPT (left) and

DALL-E 2 (right)

Deep generative learning is a significant departure from the earlier super-

vised learning problems considered in prior chapters. Supervised learning

results in discriminative models since it trains models that are used to dis-

criminate whether a given input lies in a given class or not. Generative
245

https://openai.com/dall-e-2
https://openai.com/blog/chatgpt

246 7. DEEP GENERATIVE LEARNING

learning, on the other hand builds models that generate new samples whose

distribution match that of a given collection of training inputs. Recall that

the system in our learning-by-example problem from chapter 1 generates

input samples, x, that are drawn from an unknown probability distribution

Fx(x). An observer would then create a target, y, by drawing from the con-

ditional distribution Q(y|x). The learning by example problem built models

for Q(y|x). In generative learning, we are building models for Fx(x).

There are several reasons why learning the input distribution, Fx(x),

might be useful. Since the generative model creates samples that were not

in the original dataset, it can be used to augment the original dataset in a

way that is more powerful than the earlier transformation-based data aug-

mentation schemes for CNNs in chapter 5. Generative models can also be

used to identify fundamental features in the input data, thereby providing

reduced order representations for input samples. We can use these reduced

order representations to explore the input data in a way that allows us to

generate new datasets that are biased for or against certain features in the

original dataset. This last part is particularly important for creating ”deep

fakes” using ML and also for addressing issues of fairness and privacy in

surveillance, social and medical systems. Finally, generative models can

also be used to more quickly identify inputs that are inconsistent with the

dataset. This last part is useful in flagging outliers in a real-time data stream

and has obvious real-life applications in autonomous driving.

Until a few years ago, discriminative models were the main driver in

deep learning. This is changing due to recent advances in generative adver-

sarial networks (GAN) [GPAM+14], generative pre-trained transformers

(GPT) [RNS+18] and diffusion models [HJA20]. These model architec-

tures are the drivers behind the applications seen in Fig. 1 that, at least to

the untrained eye, appear to pass the Turing test [Tur09]. As of the writing

of these lectures (2023), generative learning has come to be seen as the next

1. TEXT GENERATION USING GENERATIVE PRE-TRAINED TRANSFORMERS 247

major driver of deep learning technologies due not only to its technologi-

cal breakthroughs but also due to the way it has penetrated the life of lay

society.

The remaining sections of this chapter cover major deep learning archi-

tectures for generative modeling, starting from generative pre-trained trans-

formers (GPT) [RNS+18], variational autoencoders [KW13], generative

adversarial networks (GAN) [GPAM+14], and denoising diffusion prob-

abilistic models (DDPM, also known as diffusion models) [HJA20]. Many

of the scripts shown in this chapter were drawn from [Fos22].

1. Text Generation using Generative Pre-trained Transformers

The preceding chapter 6 showed how one can use RNN’s or Transformers

to predict the next words or next few words in a text fragment. This text

fragment is called a prompt. For instance, if the prompt is ”the cat is on

the”, and the model was trained on a database consisting of the name of

Broadway musicals and plays, then the model would response might be ”hot

tin roof”, followed with an attribution to the playright Tennessee Williams.

Any model that learns the probability of the ”next word” in a text prompt is

called a language model. A language model captures the statistical structure

of the language’s latent space.

Once you have trained such a language model, you can sample from it to

generate new sequences or sentences. This is done by feeding the model an

initial string of text (the prompt) and asking it to generate the next character,

word, or phase. That word or phrase is then added back to the model’s input

data and we repeat the process. This loop allows one to generate sentences

(responses) of arbitrary length that reflect the structure of the data on which

the model was trained. These sentences almost look ”human-like” in their

responses, since they were trained on natural language fragments. Fig. 2

provides a graphic illustration of this recursive approach to generating text.

248 7. DEEP GENERATIVE LEARNING

FIGURE 2. The process of word-by-word text generation

using a language model

When generating text, the way one chooses the next token is critically

important. A naive approach would use a greedy sampling strategy in which

the model always selects the next most likely token. The greedy approach,

however, often generates text that is predictable and may not look like co-

herent language. A more useful sampling strategy would select the next

word in a probabilistic fashion. This is done by sampling from the prob-

ability distribution for the next word. Sampling probabilistically from the

softmax output of the model allows for even unlikely words to be sampled

from time to time, thereby generating more interesting reading sentences

and sometimes exhibiting what one might perceive as ”creativity” since it

selects unexpected words that did not occur in the training data.

In practice, we would control the amount of randomness in the sampling

process. If there is too much randomness, then the sentences become non-

sensical. If there is too little, then the sentences because predictable. We

control randomness by introducing a parameter called the softmax temper-

ature. This temperature parameterizes the entropy of our draws from the

probability distribution. Given a temperature value, a new probability dis-

tribution is computed from the original one. In particular, let f(x) denote

the original density and let T denote the softmax temperature. Then the new

distribution, g(x) would be

g(x) = elog(f(x))/T .

1. TEXT GENERATION USING GENERATIVE PRE-TRAINED TRANSFORMERS 249

We would then sample from g(x), rather than f(x). Higher temperatures

result in sampling distributions of higher entropy producing more surpris-

ing and unstructured sentences, whereas lower temperature results in less

randomness and more predictable generated data.

We will now demonstrate how the softmax temperature impacts sen-

tences generated by a pre-trained transformer model. This is, essentially,

the same transformer that we used before in chapter 6. We refer to the

model as pre-trained because it was trained on a large dataset (in this case

the IMDB movie review dataset). We refer to the model as generative be-

cause we are using the transformer model to generate new movie reviews

from a prompt.

In the last chapter, we built a transformer model for sequence-to-sequence

learning. We trained this model by feeding a source sequence (sentence)

into a transformer encoder and then fed both the encoded sequence and tar-

get sequence into a transformer decoder. The decoder was trained to predict

the next word in the input sentences. Note that for text generation, we really

don’t the encoder. In particular, we will simply feed the same input to both

input channels of the decoder.

In training this model, we used a callback to generate text using a range

of different softmax temperatures after every epoch. This allows us to see

how the generated text evolves as the model begins to converge, as well

as the impact in the sampling strategy. We will seed our training with the

text prompt, ”This movie” so that all of our generated reviews start with

this phrase. This model takes several hours to train and below we’ve shown

shown some of the output generated by the model at the various tempera-

tures.

• WIth temperature = 0.2

This movie film moved attempts far from between com-

edy situations central steve plays west his ultimately af-

fect suit gives key the approach movie to filled progress

250 7. DEEP GENERATIVE LEARNING

life from adventures political humor tragedy humor vi-

olence pathos etc tolerable rookie personalities comedy

cinematography ball original story music telling with how

nice flooded a hollywood

• With temperature = 0.5

This movie movie is at excellent truth funny [UNK] it

is wasnt simply in boring fact history i i thought hated

it it when was i over started [UNK] playing i it mean a

everything tv like look this nothing movie can helicopters

make and tricks better from then horrible on actors

• With temperature 0.7

This movie movie has was musicals only in stars my mr

family hair is this available movie on was a directed lot

by of intervals sensation made retire hundreds after of

playing times todays like youth many people movies be-

lieve the they geniuses put you forth down of to four think

different

• With temperature 1.0

This movie movie sucks was well bad into the town movie

while why one did cant you be get frustrated through

when so you many start people drinking are is hiroshima

attempting and laugh just at because how you you invest

feel in how some terrible episodes movies of should kuro-

sawa try

• With temperature 1.5

This movie is just fantastic so it wonderful didnt tale feel

very and real that life it even was has very a nice soft

score heart to based say on that what though a england

rose bugs the does great a location must animation do to

some show of it my too

2. FEATURE EXTRACTION USING PRINCIPAL COMPONENT ANALYSIS 251

This model, of course, does not have the degree of fluency seen in recent

generative pre-trained transformer (GPT) models, so we are going to exam-

ine more recent GPT models that have proven to be particularly useful in

natural language understanding tasks.

The remainder of this section describes a semi-supervised approach for

fine-tuning pre-trained transformers used in natural language tasks involv-

ing comprehension and summarization. This semi-supervised approach was

first discussed in [RNS+18]. A bidirectional version of Radford’s model

known as BERT (Bidirectional Encoder Representations from Transform-

ers) [?] has proven to be particularly useful and pre-trained BERT mod-

els are now in TensorFlow/Keras model repositories. Another extension

of BERT known as BART adds an autoregressive denoiser to the model,

which makes it particularly useful for language summarization, generaliza-

tion, and comprehension [?].

2. Feature Extraction using Principal Component Analysis

Generative models learn how to generate samples whose distribution match

that of the input samples in the training dataset. This is, essentially, an

unsupervised learning process for there are no targets we can use to guide

the learning process.

One way of learning the input sample distribution would be to learn a

parameterized model of the distribution. For example, let X̂ = {x̂k}Mk=1

denote the collection of input samples, xk ∈ Rn, that were drawn in an i.i.d.

manner from an unknown distribution Fx(x). We could use X̂ to construct

an empirical distribution function

F̂X(x) =
1

M

M∑
k=1

σ(x− x̂k)

252 7. DEEP GENERATIVE LEARNING

where σ : Rn → R is a monotone increasing function from 0 to 1. We

know that this empirical distribution converges almost surely to the true

distribution as M →∞.

The problem we have is that our input samples, xk, have a high dimen-

sionality, thereby meaning we would need an exponentially large number

of input samples to obtain a good empirical estimate of the true distribu-

tion. Our dataset samples, however, will not usually be distributed uni-

formly across all of Rn. In many real-life applications these samples are

concentrated about a smooth lower dimensional surface in Rn called a man-

ifold. These manifolds would have a lower dimensionality than n and the

distribution could therefore be characterized with a smaller set of latent

variables that represent coordinates on the manifold, rather than all of Rn.

We could also think of these latent variables as fundamental features of the

input samples. So we would be learning those features containing most of

the information in the original data points.

This leads to the following approach for generating samples matching

the input sample’s distribution. We would first identify an encoder that

maps the input samples onto this lower dimensional manifold’s latent space

and have a decoder that that takes any vector in the latent space and maps it

to an input sample in Rn. This approach is, essentially, a data compression

scheme where the encoder compresses the ”information” in the input data

and the decoder decompresses the latent variable to recover that informa-

tion. Note that the compression step is usually lossy in the sense that some

information may be irretrevably lost and hence cannot be recovered when

decoding. So the main goal is to find the ”best” encoder/decoder pair from

a given family that minimizes the reconstruction error.

Principal component analysis (PCA) is one way for identifying the lin-

ear features used to encode a set of input samples. The goal of PCA is

to identify a basis set of vectors forming a transformation that projects the

original high-dimensional dataset onto a lower dimensional set of vectors

2. FEATURE EXTRACTION USING PRINCIPAL COMPONENT ANALYSIS 253

that minimizes the reconstruction error. The hope is that this new basis will

optimally filter out ”noise” and reveal hidden structure in the data that will

provide a useful foundation for classification and exploration of the dataset.

To describe this approach more precisely, let the input data samples be

denoted as X = {xk}Mk=1 where xk ∈ Rn is an n-dimensional real-valued

vector for all k. We can concretely represent X as a matrix

X =
[
x1 x2 · · · xM

]
whose columns are the data samples, xk ∈ Rn. This matrix, therefore, lies

in X ∈ Rn×M . Now let P be a linear transformation from Rn to Rm where

m < n. We let the concrete representation of P be an Rm×n matrix. If we

then look at

Y = PX,

we find that Y ∈ Rm×M is a matrix whose columns are the projection of

the columns of X onto the lower m-dimensional latent space. In particular,

we can view

P =

pT1

pT2
...

pTne

 .

This is a stack of m row vectors in which pk ∈ Rn are seen as an alternative

set of basis vectors spanning a subspace that approximates the data vectors

in X.

Note that the projection of X through P may lose information because

the dimensionality of the latent vectors is less than that of the original data

vectors. The covariance matrix of Y is defined as

CY =
1

M
YYT = P

(
1

M
XXT

)
PT = PCXP

T

where CX = 1
M
XXT is the covariance matrix of the original data matrix,

X. Ideally, we want the rows of P to be orthogonal vectors. If this is

254 7. DEEP GENERATIVE LEARNING

the case then CY is a diagonal matrix and we say that the rows of P are

principal components of X.

Note that XXT is a symmetric matrix that can de decomposed as VΛVT

where Λ is a diagonal matrix consisting of the eigenvalues of CX and V is

a matrix of eigenvectors of CX arranged as columns. We can, therefore, see

that if we choose P to be a matrix whose rows are eigenvectors of CX then

CY = VTVΛVTV = Λ.

We have just shown that the principal components of X are the eigenvectors

of CX.

It is common to use singular value decompositions (SVD) to compute

the principal components. SVDs represent the most numerically stable way

of computing such decompositions for large data matrices. For any m × p

matrix, Q, one can prove that there exist m×m and p× p unitary matrices

U and V and a real r × r diagonal matrix Σ such that

Q = U

[
Σ 0

0 0

]
VT .

The matrix Σ has the form

Σ = diag(σ1, σ2, . . . , σr)

where σi ≥ σi+1 for i = 1, . . . , r − 1 and r ≤ min(m, p) is the rank of

matrix Q. The triple, (U,Σ,V) is called the singular value decomposition

of Q. This decomposition is unique and σ1 to σr are called the non-zero

singular values of Q. It can be readily shown that these non-zero singular

values are also the positive roots of the non-zero eigenvalues of QTQ. The

SVD of Q may also be written as

Q = UΣVT =
r∑

i=1

σiuiv
T
i

where ui and vi are the ith rows of U and V, respectively.

2. FEATURE EXTRACTION USING PRINCIPAL COMPONENT ANALYSIS 255

To see how this relates back to PCA, let us consider a data matrix X

whose columns are the data sample vectors that have been centered with

respect to the dataset’s mean. Recall that C = 1
M
XXT is the covariance

matrix of the data matrix. We know the principal components are the eigen-

vectors of CX. Now consider the SVD of the data matrix X = UΣVT . Let

us express the covariance matrix of X in terms of its SVD

XXT = UΣVTVΣUT = UΣ2UT .

We can therefore conclude that

CX =
1

M
UΣUT = UΛUT

where Λ is a diagonal matrix whose diagonal elements are λi =
σ2
i

M
. Since

U is a unitary matrix (i.e. UTU = I) we can readily see that

CXU = UΛ.

This means that the columns of U are the principal components. Since we

defined the PCA transformation P so its rows were the principal component

vectors, we have P = UT . If we then look at transforming all data points

into the PCA coordinates we have

Y = PX = UTUΣVT = ΣVT .

This last result is used in the following example where we use the SVD of

the data matrix to do a PCA of the Fisher iris dataset.

FIGURE 3. Fisher Iris Data set, PCA analysis

256 7. DEEP GENERATIVE LEARNING

We consider a simple example using the SVD to find the principal com-

ponents of Fisher’s iris dataset [Fis36]. This dataset consists of 150 length

and width measurements on the petals and sepals of several species of irises;

setosa (class 0), versicolor (class 1), and virginica (class 2). This means that

we have a feature vector of length 4 for each input sample. We are going

to use the SVD of the data matrix to find the principal components of the

dataset. I used the following MATLAB script to load the iris dataset, scatter

plot the first two features, compute the SVD of the data matrix and then find

the first right singular vectors with the largest singular values. The result is

shown in Fig. 3. The left side shows that the data for the 3 classes are not

well separated. The scatter plot for the two dominant principal components

on the right show a much cleaner separation between the 3 classes.

load irisdata.txt

X = irisdata(:,1:4)’; %150 measurements of length 4

spec = irisdata(:,5)’; %class labels

n = size(X,2);

figure(1)

scatter(X(1,:),X(2,:),30,spec,’filled’)

xlabel("x1");ylabel("x2");

title("scatter plot of 2 raw measurements");

Xmean = mean(X,2); %find mean

A = X - Xmean*ones(1,n); %center the data

[U,S,V] = svd(A, ’econ’) %find SVD of centered data matrix

sigma = diag(S);

C = S(1:2,1:2)*V(:,1:2)’; %principal components of each data point

figure(2);

scatter(C(1,:),C(2,:),30,spec,’filled’)

xlabel(’PC1’);ylabel(’PC2’);

title("scatter plot of 2 PCA features");

3. Autoencoders

An autoencoder is a deep learning model with an encoder-decoder archi-

tecture that takes an input image or text, encodes it over a space of latent

variables, and then decodes that latent vector into the original image. We

3. AUTOENCODERS 257

can see the encoder as compressing the high dimensional input data onto

the lower dimensional latent embedding vector. The decoder then decom-

presses that latent vector back into the original image. A diagram of this

operation is shown below in Fig. 4 where the input is an image from the

fashion MNIST database, the latent vector representation is denoted as z,

and the decoder reconstructs the input image, albeit the reconstructed image

is a bit blurry because our encoder is lossy.

FIGURE 4. Autoencoder architecture

Note that the autoencoder is trained to reconstruct the input image, so

that we train this with the input and target sample being the same image.

This may seem strange at first, but we are not really interested in the output

by itself. Our primary interest is in the latent representation, z, of that

input. This is, therefore, an example of representational learning[BCV13].

The basic idea is that the various coordinates in the latent vector represent

important features in the original image that we can use to topologically

order how similar or different various images in the dataset might be. This

will allow us to generate ”new” images that were not in the original dataset.

The latent vector z is a vector in a low dimensional vector space, Rm. If

the embedding dimension, m, is 2 or 3, we can easily visualize the points

in the dataset and see how various images are ”close” or ”far” apart. Let us

do this for the fashion MNIST database . Fashion-MNIST is a dataset of

clothing images [XRV17]. It consists of a training set of 60,000 examples

and a test set of 10,000 examples. Each example is a 28 by 28 grayscale

image of an item of clothing with a label from one of 10 classes. Example

images with labels from each class are shown in Fig. 5

258 7. DEEP GENERATIVE LEARNING

FIGURE 5. Sample Images from fashion MNIST dataset

We are now going to load the Fashion MNIST dataset and then construct

an autoencoder based on CNNs. The dataset is included in TensorFlow, so

we can load it as follows.

from tensorflow.keras import datasets

(x_train,y_train), (x_test, y_test) = dataset.fashion_mnist.load_data()

We are going to retype the pixel data from uint8 to float32 and

normalize it so it takes values between 0 and 1. We will then zero pad and

expand the shape of the input images so they are all (32, 32, 1). This is done

because our model expects a rank-3 tensor.

import numpy as np

def preprocess(imgs):

imgs = imgs.astype("float32")/255.0

imgs = np.pad(imgs, ((0,0), (2,2), (2,2)), constant_values=0.0)

imgs = np.expand_dims(imgs, -1)

return imgs

x_train = preprocess(x_train)

3. AUTOENCODERS 259

x_test = preprocess(x_test)

We now declare the encoder model. The encoder consists of three 2D

convolutional layers, that use strides to downsample the spatial dimension

of the image and to increase the number of filte channels. The final output

from the last convolutional layer has a shape of (4, 4, 128). This output is

then flatted to (2048) and a dense layer then connects it to the latent variable

space. We will select a latent space with embedding dimension, m, of 2. So

the encoder’s output is simply a two dimensional vector that we can easily

visualize

encoder_input = layers.Input(

shape=(IMAGE_SIZE, IMAGE_SIZE, CHANNELS), name="encoder_input"

)

x = layers.Conv2D(32, (3, 3), strides=2, activation="relu", padding="same")(

encoder_input

)

x = layers.Conv2D(64, (3, 3), strides=2, activation="relu", padding="same")(x)

x = layers.Conv2D(128, (3, 3), strides=2, activation="relu", padding="same")(x)

shape_before_flattening = K.int_shape(x)[1:] # the decoder will need this!

x = layers.Flatten()(x)

encoder_output = layers.Dense(EMBEDDING_DIM, name="encoder_output")(x)

encoder = models.Model(encoder_input, encoder_output)

encoder.summary()

The decoder is a mirror image of the encoder that upsamples the latent

vector from a shape of (2) to a shape of (32, 32, 1). The 2-d latent vector

is expanded through a dense layer to a shape of (2048) and then reshaped

to (4, 4, 128). We then use three transposed 2D convolutional layers to up-

sample the spatial dimensions until we get to the desired output shape.

decoder_input = layers.Input(shape=(EMBEDDING_DIM,), name="decoder_input")

x = layers.Dense(np.prod(shape_before_flattening))(decoder_input)

x = layers.Reshape(shape_before_flattening)(x)

x = layers.Conv2DTranspose(

128, (3, 3), strides=2, activation="relu", padding="same"

)(x)

x = layers.Conv2DTranspose(

260 7. DEEP GENERATIVE LEARNING

64, (3, 3), strides=2, activation="relu", padding="same"

)(x)

x = layers.Conv2DTranspose(

32, (3, 3), strides=2, activation="relu", padding="same"

)(x)

decoder_output = layers.Conv2D(

CHANNELS,

(3, 3),

strides=1,

activation="sigmoid",

padding="same",

name="decoder_output",

)(x)

decoder = models.Model(decoder_input, decoder_output)

decoder.summary()

Now that the encoder and decoder blocks have been declared we can

create the autoencoder model by cascading the two blocks. The resulting

model has 343, 000 trainable parameters.

autoencoder = models.Model(

encoder_input, decoder(encoder_output)

)

autoencoder.summary()

We will use an Adam optimizer with an MSE loss function and then

train the model for only 10 epochs. This model does not really need much

training before it produces a meaningful latent space. Note that training is

done using the images as the targets, rather than the class labels.

autoencoder.compile(optimizer="adam", loss="mse")

history = autoencoder.fit(

x_train,x_train,

epochs=10,

batch_size=100,

shuffle=True,

validation_data=(x_test, x_test),

)

3. AUTOENCODERS 261

We can now visualize how this autoencoder mapped the original dataset

images to the latent space. Recall that our latent space is 2-dimensional,

so every image in the dataset was mapped onto a real-valued 2-vector. The

right side of Fig. 6 shows how each sample in the dataset was embedded in

R2. The dots are colored with the label of the input images class.

FIGURE 6. Fashion-MNIST Latent Space (right) embed-

ding of all dataset samples (left) reconstructed images whose

latent variables are regularly sampled in the 2-d latent space

As we mentioned before, we are not really interested in using the au-

toencoder to reconstruct known inputs. We are really interested in using

the encoder to generate new sample images that were not in the original

dataset. We can do this directly from the latent space by simply taking

any latent vector in R2 and running it through the decoder only using the

following script

grid_width, grid_height = (6, 3)

sample = np.random.uniform(

mins, maxs, size=(grid_width * grid_height, EMBEDDING_DIM)

)

reconstructions = decoder.predict(sample)

262 7. DEEP GENERATIVE LEARNING

The reconstructions were obtained by regularly sampling the latent space

and then running the latent vector through the decoder. The left side of

Fig. 6 shows the ”reconstructed” image for these latent vectors. What we

see is that as we move across the space, that the images ”morph” in a some-

what predictable manner. In practice, this aspect of the autoencoder can

be used to create a biased set of samples that ignore some features in the

original dataset and accentuate others.

There are, however, several issues with the embeddings shown in Fig. 6.

The first thing we notice is that some clothing items are represented over

rather small areas of the latent space, whereas other clothing items cover a

larger area. The other thing we notice is that there are large empty areas

in the latent space that do not represent any actual clothing item. These

observations suggest that if we were to try and ”generate” new samples by

simply sampling the latent space in a uniform manner, that many of the

reconstructions would not match well to any clothing item. This is a well

known problem with autoencoders that we can address through a variation

on the model known as a variational autoencoder or VAE.

4. Variational Autoencoders

In an autoencoder, each input sample maps to a specific point in the latent

space. Variational autoencoders [KW13] map the inputs to a normal distri-

bution centered at a point in the latent space. Because a normal distribution

is completely characterized by its first two moments, we really only need

to map the encoder’s output to two different outputs; the mean vector and

the variance matrix. In general, however, we assume the normal distribu-

tion has a diagonal covariance matrix, so that we really only need to have

the encoder output two vectors, one for the mean of the distribution and the

other for the diagonal of the covariance matrix. Since variance values are

non-negative, however, we will find it more convenient to map to the log

of the variance since this has values between −∞ and ∞. This range of

4. VARIATIONAL AUTOENCODERS 263

mappings fits more nicely with our neural network models. As a result the

variational autoencoder architecture changes from what we showed in Fig. 4

for the autoencoder. Fig. 7 illustrates this change where the latent variables

between the encoder and decoder now are the mean, z mean and the log

of the variance, z log var of the distribution. These two outputs param-

eterize a Normal probability distribution that we then sample to obtain the

actual vector, z, used by the decoder to reconstruct the input image.

FIGURE 7. VAE Model Architecture

We can build the VAE model in much the same way we did for the au-

toencoder. There are, however, some significant differences. The first major

difference is seen in the encoder where the encoder now has three possible

outputs, z mean, z log var, and z. The extra output z is a randomly

drawn sample from the distribution defined by z mean and z log var.

This sampled output, z, is generated by a new Sampling layer class that

we define at the top of the following script.

IMAGE_SIZE = 32

EMBEDDING_DIM = 2

#Sampling Layer

class Sampling(layers.Layer):

def call(self, inputs):

z_mean, z_log_var = inputs

batch = tf.shape(z_mean)[0]

dim = tf.shape(z_mean)[1]

epsilon = K.random_normal(shape=(batch, dim))

return z_mean + tf.exp(0.5 * z_log_var) * epsilon

Encoder

264 7. DEEP GENERATIVE LEARNING

encoder_input = layers.Input(

shape=(IMAGE_SIZE, IMAGE_SIZE, 1), name="encoder_input"

)

x = layers.Conv2D(32, (3, 3), strides=2, activation="relu", padding="same")(

encoder_input

)

x = layers.Conv2D(64, (3, 3), strides=2, activation="relu", padding="same")(x)

x = layers.Conv2D(128, (3, 3), strides=2, activation="relu", padding="same")(x)

shape_before_flattening = K.int_shape(x)[1:] # the decoder will need this!

x = layers.Flatten()(x)

z_mean = layers.Dense(EMBEDDING_DIM, name="z_mean")(x)

z_log_var = layers.Dense(EMBEDDING_DIM, name="z_log_var")(x)

z = Sampling()([z_mean, z_log_var])

encoder = models.Model(encoder_input, [z_mean, z_log_var, z], name="encoder")

encoder.summary()

The decoder is similar to what we used for the autoencoder

Decoder

decoder_input = layers.Input(shape=(EMBEDDING_DIM,), name="decoder_input")

x = layers.Dense(np.prod(shape_before_flattening))(decoder_input)

x = layers.Reshape(shape_before_flattening)(x)

x = layers.Conv2DTranspose(

128, (3, 3), strides=2, activation="relu", padding="same"

)(x)

x = layers.Conv2DTranspose(

64, (3, 3), strides=2, activation="relu", padding="same"

)(x)

x = layers.Conv2DTranspose(

32, (3, 3), strides=2, activation="relu", padding="same"

)(x)

decoder_output = layers.Conv2D(

1,

(3, 3),

strides=1,

activation="sigmoid",

padding="same",

name="decoder_output",

)(x)

decoder = models.Model(decoder_input, decoder_output)

decoder.summary()

4. VARIATIONAL AUTOENCODERS 265

The other big change from our earlier encoder is our choice of loss func-

tion. The autoencoder used MSE or binary cross-entropy for the loss. The

VAE, however, needs to a loss function that helps the latent layer learn the

mean and variance of the normal distributions that each input maps to. This

is accomplished by regularizing the loss function so it penalizes means and

variance that are not close to a unit variance normal distribution. This is

accomplished by taking our loss to be the sum of the reconstruction loss

(measured as before by the MSE between the input and the reconstruction)

and an additional weighted loss term that measures the ”distance” of the

current distribution’s mean/variance against a zero-mean unit variance nor-

mal distribution. This second measure is usually taken to be the Kullback-

Leibler (KL) divergence. The KL divergence for two densities p and q is

defined as

KL divergence = DKL(p, q) =

∫
p(x) log

p(x)

q(x)
dx.

This measure equals zero when p(x) = q(x). In our case, p is the nor-

mal distribution N(z mean,z log var) and q is the normal distribution

N(0, 1) so the KL divergence is

kl loss = −1

2

∑
i

(1 + log(σ2
i)− µ2

i − σ2
i)

where z mean = µ and σ is the diagonal of the covariance matrix. The

actual loss function used to train the VAE adds the KL divergence to the

reconstruction loss

VAE Loss = reconstruction loss + β × KL divergence

where β is a regularization parameter on the KL divergence.

The use of this loss function, however, requires that we build the overall

VAE model as a custom subclass of the Keras Model class. This allows

us to include the computation of the KL divergence and add it to the re-

construction loss through a custom train step method. Note that this

particular model uses binary cross entropy for the reconstruction loss.

266 7. DEEP GENERATIVE LEARNING

class VAE(models.Model):

def __init__(self, encoder, decoder, **kwargs):

super(VAE, self).__init__(**kwargs)

self.encoder = encoder

self.decoder = decoder

self.total_loss_tracker = metrics.Mean(name="total_loss")

self.reconstruction_loss_tracker = metrics.Mean(

name="reconstruction_loss"

)

self.kl_loss_tracker = metrics.Mean(name="kl_loss")

@property

def metrics(self):

return [

self.total_loss_tracker,

self.reconstruction_loss_tracker,

self.kl_loss_tracker,

]

def call(self, inputs):

"""Call the model on a particular input."""

z_mean, z_log_var, z = encoder(inputs)

reconstruction = decoder(z)

return z_mean, z_log_var, reconstruction

def train_step(self, data):

"""Step run during training."""

with tf.GradientTape() as tape:

z_mean, z_log_var, reconstruction = self(data)

reconstruction_loss = tf.reduce_mean(

BETA

* losses.binary_crossentropy(

data, reconstruction, axis=(1, 2, 3)

)

)

kl_loss = tf.reduce_mean(

tf.reduce_sum(

-0.5

* (1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var)),

axis=1,

)

)

total_loss = reconstruction_loss + kl_loss

grads = tape.gradient(total_loss, self.trainable_weights)

4. VARIATIONAL AUTOENCODERS 267

self.optimizer.apply_gradients(zip(grads, self.trainable_weights))

self.total_loss_tracker.update_state(total_loss)

self.reconstruction_loss_tracker.update_state(reconstruction_loss)

self.kl_loss_tracker.update_state(kl_loss)

return {m.name: m.result() for m in self.metrics}

def test_step(self, data):

"""Step run during validation."""

if isinstance(data, tuple):

data = data[0]

z_mean, z_log_var, reconstruction = self(data)

reconstruction_loss = tf.reduce_mean(

BETA

* losses.binary_crossentropy(data, reconstruction, axis=(1, 2, 3))

)

kl_loss = tf.reduce_mean(

tf.reduce_sum(

-0.5 * (1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var)),

axis=1,

)

)

total_loss = reconstruction_loss + kl_loss

return {

"loss": total_loss,

"reconstruction_loss": reconstruction_loss,

"kl_loss": kl_loss,

}

We are now in a position to create the VAE model using our preceding

VAE class object. We compile this with an Adam optimizer and then train

the model for 10 epochs. In this example we used a KL regularization

parameter β = 500.

vae = VAE(encoder,decoder)

optimizer = optimizers.Adam(learning_rate=0.0005)

vae.compile(optimizer=optimizer)

history = vae.fit(

x_train,

268 7. DEEP GENERATIVE LEARNING

epochs=10,

batch_size=100,

shuffle=True,

validation_data=(x_test, x_test),

callbacks=[model_checkpoint_callback, tensorboard_callback],)

The new latent space is shown in Fig. 8. We now see that the classes

are more equally represented in the latent space. The white spaces between

classes appears to be smaller.

FIGURE 8. VAE latent space for fashion MNIST (left) re-

constructions (right) location of sampled points

5. Generative Adversarial Networks

Generative adversarial networks (GAN) [GPAM+14] were first proposed

in 2014. Their introduction stimulated a great deal of interest in generative

learning and led to some of generative learning’s most impressive accom-

plishments. This section introduces a version of the GAN that appeared in

[RMC15].

The GAN takes a game theory approach to learning how to generate new

samples from the system’s input distribution, Fx(x). Game theory envisions

5. GENERATIVE ADVERSARIAL NETWORKS 269

two players who take actions that further their own self interests while hav-

ing the additional impact of interfering with the competing player’s game

performance. The basic idea is that these two players struggle until they

reach a point from which neither player can gain an advantage over the

other. Such points are called Nash equilibria. The GAN’s two players are a

generator and discriminator model. The generator generates samples that

may be seen as ”fake” copies of inputs in the original dataset. The genera-

tor trains itself so its distribution of ”fake” samples matches the distribution,

Fx(x), of inputs in the original dataset. The other player is a discriminator

who takes an input from either the generator or dataset and updates itself so

it can correctly discriminate between ”fake” samples from the generator and

”true” samples from the dataset. Another way of thinking about this game

is that the ”generator” learns to create samples that can ”fool” the discrim-

inator while the discrimnator is learning how to distinguish the generator’s

fake samples from the true ones.

The block diagram in Fig. 9 illustrates how one goes about training a

GAN. At each training step, we randomly select an input for the discrimi-

nator that is chosen from either the training dataset or the Generator, G. The

sample created by the generator is obtained by randomly selecting a latent

vector and then feeding it through the generator. The sample from the train-

ing set is obtained by randomly sampling that dataset. The discriminator,

D, then classifies the input as being either ”fake” or ”true”. Since the trainer

knows if the sample is fake or not, we can compute the loss function for the

given sample and then use that sample’s loss to drive a backpropagation

update of the generator and the discriminator.

Let us now describe the training process in a more formal manner. Let

Pz(z) denote the distribution of a latent vector drawn from the latent space.

The chosen latent vector is used by the generator to create an output x̂ that

has a distribution Fx̂(x̂). Let Fx(x) denote the distribution of the training

270 7. DEEP GENERATIVE LEARNING

FIGURE 9. GAN Training

data set’s samples, x. We train the discriminator, D, to maximize its accu-

racy over the ”real” data point, x, by maximizing

Ex [logD(x)] .

Meanwhile for the fake sample, x̂, created from the latent vector z, we train

the generator, G, so the discriminator outputs a probability, D(G((z)), that

is small for “fake” samples and close to 1 for ”real” samples. This means

that the generator is trained to minimize the discriminator’s accuracy on fake

data,

Ez [log(1−D(G(z))] .

So we can now define a loss function that looks like our usual binary

cross entropy function,

L(D,G) = Ex [logD(x)] + Ez [log(1−D(G(z)))]

but now treat it as a function of both D and G.

We pick D to maximize L(D,G) and pick G to minimize L(D,G), so

that these two players are working against each other. We define the equi-

librium (D∗, G∗) as a pair of models for which

L(D,G∗) ≤ L(D∗, G∗) ≤ L(D∗, G).

5. GENERATIVE ADVERSARIAL NETWORKS 271

In other words, the equilibrium produces a loss such that any deviation of

the generator increases the loss and any deviation of the discriminator de-

creases the loss. The equilibrium therefore occurs when no player (D or G)

can gain a clear advantage over the other. What this means is that the up-

date of G and D shown in Fig. 9 is actually done in an alternating manner;

first training G, and then training D, and continuing back and forth in this

manner until we are satisfied with the result.

We now demonstrate the construction and training of a deep convolution

GAN (DC-GAN) used to generate ”fake” images. This Keras implementa-

tion uses the MNIST database since it takes less time to train.

(train_images, train_labels),(_, _) = tf.keras.datasets.mnist.load_data()

train_images = train_images.reshape(train_images.shape[0],

28, 28, 1).astype(’float32’)

train_images = (train_images - 127.5) / 127.5

Normalize the images to [-1, 1]

BUFFER_SIZE = 60000

BATCH_SIZE = 256

Batch and shuffle the data

train_dataset = tf.data.Dataset.from_tensor_slices(train_images)

train_dataset.shuffle(BUFFER_SIZE)

train_dataset.batch(BATCH_SIZE)

The generator uses the Conv2DTranspose layers to upsample and

produce an image from a random noise seed. A dense layer takes this seed

vector as input and upsamples several times using strides to obtain the de-

sired image size (28, 28, 1). This model used a leaky ReLU activation for

most of the layers as this has been shown empirically to work better than

ReLu activation functions. The generator model architecture is shown in

Fig. 10. The discriminator is a CNN image classifier and its model archi-

tecture is shown in Fig. 10.

272 7. DEEP GENERATIVE LEARNING

FIGURE 10. DCGAN generator and discriminator models

We define a separate loss function and optimizer for each model, since

they are trained separately. The discriminator’s loss function quantifies how

well the discriminator is able to distinguish real images from fake images.

It compares the discriminator’s prediction on the real image to an array of

1’s and the prediction on the fake input to zeros. So the discriminator loss

function is a binary cross entropy function,

cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)

def discriminator_loss(real_output, fake_output):

real_loss = cross_entropy(tf.ones_like(real_output), real_output)

fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)

total_loss = real_loss + fake_loss

return total_loss

5. GENERATIVE ADVERSARIAL NETWORKS 273

The generator’s loss quantifies how well it is able to trick the discrimi-

nator. This loss function is simply the cross entropy function

def generator_loss(fake_output):

return cross_entropy(tf.ones_like(fake_output), fake_output)

We also declare two separate optimizers because we are training two

different models. They both use the Adam optimizer, rather than RMSprop.

The learning rate is usually set very small to help stabilize learning and in

some cases the learning rate is changed adaptively.

generator_optimizer = tf.keras.optimizers.Adam(1e-4)

discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)

Training the GAN follows the flow shown in Fig. 9. We therefore have

to write a custom train method for the GAN. This method will call the

following train step function which uses the GradientTape object to

separately compute gradients used in updating the weights of the two mod-

els. Note that the training-step in this implementation trains the discrimina-

tor for one step, and then the generator for one step. In many applications,

however, it has proven to be better to train the generator for several steps

before updating the discriminator.

Notice the use of ‘tf.function‘

This annotation causes the function to be "compiled".

@tf.function

def train_step(images):

noise = tf.random.normal([BATCH_SIZE, noise_dim])

with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:

generated_images = generator(noise, training=True)

real_output = discriminator(images, training=True)

fake_output = discriminator(generated_images, training=True)

gen_loss = generator_loss(fake_output)

disc_loss = discriminator_loss(real_output, fake_output)

gradients_of_generator = gen_tape.gradient(gen_loss,

generator.trainable_variables)

274 7. DEEP GENERATIVE LEARNING

gradients_of_discriminator = disc_tape.gradient(disc_loss,

discriminator.trainable_variables)

generator_optimizer.apply_gradients(zip(gradients_of_generator,

generator.trainable_variables))

discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator,

discriminator.trainable_variables))

Figure 11 shows the generated images obtained after each training epoch.

The 16 randomly generated images start as all identical, but quickly differ-

entiate into figures that ”look” like the numbers in the NMIST database.

epoch 1 epoch 10 epoch 20

epoch 30 epoch 40 epoch 50

FIGURE 11. GAN generated images

Although GANs have been enormously successful in image generation,

these models are notoriously difficult to train. Salimans [SGZ+16] dis-

cussed the difficult of achieving a Nash equilibrium using gradient-descent

procedures. As mentioned above, the alternating nature of the training pro-

cess means that every training step undoes the benefits of the preceding step.

Getting this type of competitive updating to converge is very difficult and

6. DIFFUSION MODELS 275

is one reason why we usually update the generator several steps, before up-

dating the discriminator. Another problem arises when the true distribution,

Fx(x), and the fake distribution Fx̂(x̂) have support on a low dimensional

manifold [AB17]. Many real-world datasets may have training data distri-

butions Fx(x) that appear to be high dimension, but have the actual data

sitting on a lower dimensional manifold. This means that the generator’s

distribution, Fx̂(x̂) will also sit on a low dimensional manifold. Because

both Fx(x) and Fx̂(x̂) are supported on low dimensional manifolds embed-

ded in a high dimensional space, it is highly likely that this two support sets

will be disjoint, thereby making it easy to find a perfect discriminator that

separates real and fake samples all of the time. In this case, the discrimi-

nator will be too strong and this will make it impossible for the generator

updates to converge to the optimal G∗. Several suggestions have been made

to improve training of GANs [SGZ+16, AB17].

6. Diffusion Models

Alongside GANs, diffusion models are one of the most influential gener-

ative modeling techniques for images. Diffusion models now outperform

previous state-of-the-art GANs and have become the go-to choice for gen-

erative modeling engineers in the visual domain. For example, OpenAI’s

DALL-E 2 uses diffusion models to generate the output image after a trans-

former has decoded the user’s prompting text. The breakthrough model ,

known as the denoising diffusion probabilistic model (DDPM) , appeared

in 2020 [HJA20] and demonstrated performance that rivaled that of GANs

across several datasets. Since then the basic DDPM architecture has been

extended in many ways. This section takes a quick look at a version of the

DDPM described in [Fos22] and [YZS+22].

The core idea behind DDPMs is relatively simple - we train a deep learn-

ing model to denoise an image over a series of very small steps. If we start

from pure random noise, in theory we should be able to keep applying the

276 7. DEEP GENERATIVE LEARNING

model until will obtain an image that looks as if it were drawn from the

training set. The DDPM makes use of two Markov chains (see appendix

B) to achieve this. There is a forward chain that perturbs data to noise

and a reverse chain that converts noise back to data. The forward chain

is usually hand-designed with the goal of transforming any data distribu-

tion into a standard Gaussian image. The reverse chain undoes the forward

chain by learning transition kernels parameterized by deep neural networks.

New data points are then generated by first sampling a random vector from

the standard Gaussian, followed by ancestral sampling through the reverse

Markov chain.

We can describe this more formally as follows. Let assume that we have

an input x0 ∈ Fx(x) that was selected from the training dataset’s input

distribution. The forward Markov chain generates a sequence of random

variables, {xk}Tk=0, with transition kernel Q(xt|xt−1). Using the chain rule

of probability and the Markov property, we can factor the joint distribution

of x1, x2, . . . , xT conditioned on the initial input, x0, which we denote as

Q(x1, . . . , xT |x0) into

Q(x1, . . . , xt |x0) =
T∏
t=1

Q(xt |xt−1).(41)

In DDPMs, the transition kernel is handcrafted to incrementally transform

the data distribution x0 ∼ Fx(x) into a tractable prior distribution which

is usually taken to be a standard Gaussian distribution. The most common

choice for the transition kernel is

Q(xt |xt−1) = N(
√

1− βtxt−1, βtI)(42)

where βt ∈ (0, 1) is a hyperparameter chosen ahead of time by the de-

signer. Note that this transition kernel allows us to marginalize the joint

distribution in equation (41) to obtain an analytic form for Q(xt |x0) for all

t ∈ {0, 1, . . . , T}. Specifically if we let αt
def
= 1− βt and αt

def
=

t∏
k=0

αk, then

6. DIFFUSION MODELS 277

we have

xt =
√
αtxt−1 +

√
1− αtϵt−1

=
√
αtαt−1xt−2 +

√
1− αtαt−1ϵ

...

=
√
αtx0 +

√
1− αtϵ

so we can conclude that

Q(xt|x0) = N(
√
ααtx0, (1− αt)I).

This means that given the initial input x0, we can easily obtain a sample xt

by sampling a Gaussian vector ϵ ∼ N(0, I) and applying the above trans-

formation xt =
√
αtx0 +

√
1− αtϵ. When αT ≈ 0, then xT is nearly a

Gaussian distribution and so Q(xT) ≈ N(0, I).

To generate new data samples, DDPMs start by first generating an un-

structured noise vector from the prior distribution and then gradually re-

moving noise through a learned Markov chain running in the reverse direc-

tion. In particular, the reverse Markov chain is parameterized by a prior

distribution P (xT) = N(0, I) because the forward process was constructed

so that Q(xT) ≈ N(0, I). The learnable transition kernel Pw(xt−1 |xt) with

weights w takes the form

Pw(xt−1 |xt) = N(µw(xt, t),Σw(xt, t))

where w denotes the model parameters and the man µw(xt, t) and variance

Σw(xt, t) are parameterized by deep neural networks. With this reverse

Markov chain in hand, we can generate a data sample x0 by first sampling

a noise vector xT ∼ p(xT) and then iteratively sampling from the learnable

transition kernel xt−1 ∼ Pw(xt−1 |xt) until t = 1.

The key to the success of this sampling process is training the reverse

Markov chain to match the actual time reversal of the forward Markov

chain. That is, we have to adjust the parameter w so the joint distribution of

278 7. DEEP GENERATIVE LEARNING

the reverse Markov chain,

pw(x0, x1, . . . , xT)
def
= P (xT)

∏
k = 1TPw(xt−1 |xt)

closely approximates that of the forward process

Q(x0, x1, . . . , xT)
def
= Q(x0)

T∏
k=1

Q(xt |xt−1).

This is achieved by minimizing the Kullback-Leibler (KL) divergence of

these two distributions.

KL(Q(x0, . . . , xT), Pw(x0, . . . , xT))

= −EQ(x0,...,xT) [logPW (x0, . . . , xT)] + const

= EQ(x0,...,xT)

[
− logP (xT)−

T∑
k=1

log
Pw(xt−1 |xt)
Q(xt |xt−1)

]
+ const

≥ E [− logPw(x0)] + const.

The first equation comes from the definition of KL divergence. The sec-

ond equation comes from that fact that both joint distributions are products

of distributions and the last equation is from Jensen’s inequality. The first

term in in the second line is the variational lower bound (VLB) of the log-

likelihood of the data x0, a common objective used for training probabilistic

generative models. The ”const” term contains terms that are independent of

the weights w and hence don’t impact training. The objective of DDPM

training is to maximize the VLB, which is relatively easy because it is a

sum of independent terms and can therefore be estimated efficiently through

Monte Carlo sampling and optimized using stochastic gradient descent.

Notice that we are free to choose a different βt at each time step. The

original DDPM paper [HJA20] used a linear schedule where βt increased

by a fixed increment at each time step. It was later found that a sinusoidal

6. DIFFUSION MODELS 279

schedule worked better [ND21] where

αt = cos2
(
πt

2T

)
.

This gives rise to the following update sampling equation

xt = cos

(
πt

2T

)
x0 + sin

(
πt

2T

)
ϵ

where ϵ is standard Gaussian noise.

We now illustrate the DDPM model following an example in [Fos22].

We’ll be using the Oxford 102 flower dataset on Kaggle. After downloading

the dataset we create the training dataset. Sample images from this dataset

are shown in Fig. 12.

Load the data

train_data = utils.image_dataset_from_directory(

"data/flower-dataset/dataset",

labels=None,

image_size=(IMAGE_SIZE, IMAGE_SIZE),

batch_size=None,

shuffle=True,

seed=42,

interpolation="bilinear",

)

Preprocess the data

def preprocess(img):

img = tf.cast(img, "float32") / 255.0

return img

train = train_data.map(lambda x: preprocess(x))

train = train.repeat(DATASET_REPETITIONS)

train = train.batch(BATCH_SIZE, drop_remainder=True)

Show some flowers from the training set

train_sample = sample_batch(train)

display(train_sample)

Our denoising diffusion model will be based on a U-net architecture

[RFB15]. Before discussing the U-net model in depth, let us look at how

https://www.kaggle.com/c/oxford-102-flower-pytorch

280 7. DEEP GENERATIVE LEARNING

FIGURE 12. Sample Images from Oxford 102 Flower

Dataset

it is trained. Our model will be trained in a custom way so we need to

build it as a subclass of Keras Model class. It is important to note that

our DiffusionModel actually keeps two copies of the U-net model in

it. One is trained using stochastic gradient descent, the other uses an ex-

ponential moving average (EMA) of the weights of the other copy. This is

done because the EMA network is not as susceptible to short-term fluctua-

tions and spikes in the trianing process, therefore making it more robust for

generation of images than the actively trained network. We therefore use

the EMA network when we produce an output from the network. The fol-

lowing script shows the subclassing of DiffusionModel with its special

training step. This script is commented to show what is actually done in the

various steps

class DiffusionModel(models.Model):

def __init__(self):

super().__init__()

self.normalizer = layers.Normalization()

self.network = unet

#clone the unet to create the EMA network

self.ema_network = models.clone_model(self.network)

self.diffusion_schedule = cosine_diffusion_schedule

...

def denoise(self, noisy_images, noise_rates, signal_rates, training):

#use ema-network if we are not training

if training:

network = self.network

else:

network = self.ema_network

#we use the selected network to predict what the noise is in a single step

pred_noises = network(

[noisy_images, noise_rates**2], training = training)

#we then undo the forward diffusion using the predicted noise

pred_images = (noisy_images - noise_rates*pred_noises)/signal_rates

6. DIFFUSION MODELS 281

return pred_noises, pred_images

def train_step(self, images):

#normalize batch of images to be zero mean and unit variance

images = self.normalizer(images, training=True)

#sample the noise to match shape of input images

noises = tf.random.normal(shape=tf.shape(images))

batch_size = tf.shape(images)[0]

#randomly sample diffusion times and use these in the cosine schedule

diffusion_times = tf.random.uniform(

shape=(batch_size,1,1,1), minval=0.0, maxval = 1.0)

noise_rates, signal_rates = self.cosine_diffusion_schedule(

diffusion_times)

#the apply the noise to the image for the forward pass

noisy_images = signal_rates*images + noise_rates*noises

#create a GradientTape object for training

with tf.GradientTape() as tape:

#where we denoise the noisy image by first predicting the noise

and undoing the noising operation with the noise/signal rates

pred_noises, pred_images = self.denoise(

noisy_images, noise_rates, signal_rates, training=True)

#compute the loss and take a gradient step

noise_loss = self.loss(noises, pred_noises)

gradients = tape.gradient(noise_loss, self.network.trainable_weights)

self.optimizer.apply_gradients(

zip(gradients, self.network.trainable_weights)

#update the ema network

for weight, ema_weight in zip(

self.network.weights, self.ema_network.weights):

ema_weight.assign(0.999*ema_weight + (1-0.999)*weight)

return {m.name: m.result() for m in self.metrics}

The model we will use is a U-net model [RFB15]. This model consists

of an encoder and decoder with residual connections between the convo-

lutional layers as shown on left side Fig. 13. This model takes the noise

variance βt and an image x with shape (64, 64, 3) as an input. The out-

put is the model’s prediction of the noise added to the image also with

shape (64, 64, 3). The encoder generates a latent space of size (8, 8, 128)

through a series of DownBlocks. The decoder predicts the noise added to

282 7. DEEP GENERATIVE LEARNING

the image during the forward pass. The decoder consists of a sequence of

upsampling UpBlocks. The layers in the DownBlock, UpBlock, and

ResidualBlock are shown on the right side of Fig. 13.

FIGURE 13. (Left) Unet model (Right) blocks used in Unet

model

This model was trained on the Oxford Flower Dataset using an Adam

optimizer for 50 epochs. We used a batch size of 64 samples. After each

epoch we would take the output generated by denoising a Gaussian image

for 10 different selections. Fig. 14 shows that this models does a very good

job of producing realistic flower images that were not in the original dataset.

Note that we can also interpolate between two points in the latent space

using the following script. The results in Fig. 15 show how this allows us

to smoothly morph one generated into another image.

Interpolation between two points in the latent space

tf.random.set_seed(100)

6. DIFFUSION MODELS 283

FIGURE 14. Reconstructions generated by DDPM model

def spherical_interpolation(a, b, t):

return np.sin(t * math.pi / 2) * a + np.cos(t * math.pi / 2) * b

for i in range(5):

a = tf.random.normal(shape=(IMAGE_SIZE, IMAGE_SIZE, 3))

b = tf.random.normal(shape=(IMAGE_SIZE, IMAGE_SIZE, 3))

initial_noise = np.array(

[spherical_interpolation(a, b, t) for t in np.arange(0, 1.1, 0.1)]

)

generated_images = ddm.generate(

num_images=2, diffusion_steps=20, initial_noise=initial_noise

).numpy()

display(generated_images, n=11)

FIGURE 15. Interpolating between points in the latent space

to morph between images

CHAPTER 8

Deep Learning and Human Society

Deep learning and human society are on a collision course. Deep learning

lies at the heart of self-driving cars. It is essential for many of the conve-

nient applications on our mobile devices. It makes possible voice assistants

(Alexa, Siri) and we rely on it in helping us find directions to our destina-

tion. Deep learning appears regularly in reports that raise warnings regard-

ing implicit racial bias in commercial AI products [RB19], voice concern

over the use of ChatGPT in education [Ope22], and express astonishment

over DALL-E 2 creating art from natural language descriptions [Roo22].

The simple fact is that deep learning applications mimic human behavior in

a manner that appears to pass the Turing test (a.k.a. imitation game)[Tur09]

under non-expert examiners. This fact should give us pause to consider how

this technology might be used in lay society.

This chapter considers issues arising from the use of deep neural net-

works to predict and capture human behavior. In particular, we consider a

scenario involving a health network managing clinics scattered over a wide

geographic area. Each clinic retains data on its local residents that it uses

to diagnose resident health conditions and to form treatment plans for resi-

dents who are classified as being ill. While each clinic focuses on its own

given population of patients, the health network has a different set of con-

cerns for determining treatment plans that should be used by all clinics. In

particular, the health network may be interested in improving treatment ac-

curacy averaged over all clinics, not just over a specific clinic’s population.

With regard to this application we consider three related concerns. The

first concern involves preserving the private (sensitive) information (data)

285

286 8. DEEP LEARNING AND HUMAN SOCIETY

of individual patients. This privacy requirement means that an individual’s

detailed health history be kept by the clinic and not transferred to the health

network server. The natural question then is how can the health network

decide a global model when it does not have access to the all of the pa-

tient data. The second concern is whether it is possible to ”skew” a clinic’s

outcomes by injecting ”false” data when training the clinic’s models. This

his commonly viewed as an issue of ”deep fakes” which has come to the

forefront with recent advances in generative AI. The final concern involves

the training of treatment models that are fair in the sense that treatment

outcomes are statistically independent of some legally protected sensitive

attribute of the population.

The following section discuss these three concerns. We first examine

the problem of adversarial examples [SZS+13, BCM+13] as a means of

disrupting model training. We then examine the notion of differential pri-

vacy [Dwo08] and then discuss a distributed approach known as federated

learning [KMA+21] that trains models that can address the privacy issue.

Finally we discuss the issue of fairness [BHN19], specifically in the context

of federated learning frameworks.

1. Security: Creating Adversarial Examples

Collecting community datasets raises security concerns. One such concern

is with adversarial examples [SZS+13, BCM+13]. These are perturbed

data samples that are injected into a ML system to cause the system to

make a false prediction or categorization. The maliciously perturbed data

may be inputs to an inference version of the model, so the attacker can evade

detection. These perturbed data samples can also be used during online ML

training to compromise an existing model. This use of perturbed data is

sometimes called data poisoning.

1. SECURITY: CREATING ADVERSARIAL EXAMPLES 287

The concern with adversarial examples was kicked off by a surprising

discovery in [SZS+13] that found several ML models, including state-of-

the-art deep networks are vulnerable to adversarial examples. That work

found very slight perturbations of a correctly sampled input could trick the

trained model into making the wrong classification. These adversarial ex-

amples could be generated by slightly perturbing a correctly sampled input

in the training data. Fig. 1 shows a widely known example, where an image

classified as a ”panda” with 57% confidence was perturbed with a slight bit

of noise so that the perturbed image (shown on the right) was classified as

a ”gibbon” with 99% confidence. To the human observer the two images

look nearly identical.

FIGURE 1. Example of an Adversarial Example

What this example shows is that neural network training may not result

in models whose performance is robust to variations in the input data. This

finding is surprising because it calls into question long-standing beliefs that

the activation of a given node in a hidden layer represents a fundamental

”feature” of the input that is necessary for classification. Recall that this is

the approach that traditional image classification uses, where the image is

projected onto a set of pre-engineered features and those features are then

used for image classification and understanding. The existence of adversar-

ial examples for deep learning models suggests that neural network perfor-

mance is not really determined by the activation of these internal ”features”.

288 8. DEEP LEARNING AND HUMAN SOCIETY

One way for addressing this issue is by generating adversarial examples

and then adding those examples to the training data. There are several ways

such adversarial examples can be generated. The following script shows a

particularly simple example based on the MNIST dataset. For this example,

we first have to train a model on the MNIST dataset. The model we are

going to use is specified int he following script

#compile CNN network for MNIST classification

inputs = Input(shape=(28,28,1))

net = Conv2D(32, kernel_size=(3, 3),

activation=’relu’)(inputs)

net = Conv2D(64, kernel_size=(3, 3),

activation=’relu’)(net)

net = MaxPooling2D(pool_size=(2, 2))(net)

net = Dropout(0.25)(net)

net = Flatten()(net)

net = Dense(128, activation=’relu’)(net)

net = Dropout(0.5)(net)

outputs = Dense(10, activation=’softmax’)(net)

mnist_model = Model(inputs=inputs, outputs=outputs,

name=’classification_model’)

mnist_model.compile(optimizer=’nadam’,

loss=’categorical_crossentropy’,metrics=[categorical_accuracy])

We then train this network on the MNIST training data for 100 epochs

and evaluate the trained model’s accuracy on the training and test datasets.

The test accuracy was 98.5% and the training accuracy was 98.6%.

earlyStop = EarlyStopping(monitor=’val_categorical_accuracy’,

min_delta=0, patience=10, verbose=0, mode=’auto’,

baseline=None, restore_best_weights=True)

mnist_model.fit(x_train, y_train, batch_size=128, epochs=100,

verbose=0, validation_data=(x_test, y_test),

callbacks=[earlyStop])

print(mnist_model.evaluate(x_train, y_train))

print(mnist_model.evaluate(x_test, y_test))

#1875/1875 #[==============================] - 11s #6ms/step

- loss: 0.1083 - categorical_accuracy: 0.9860

1. SECURITY: CREATING ADVERSARIAL EXAMPLES 289

[0.10834111273288727,0.9860333204269409]

#

#313/313 [==============================] - 2s 6ms/step

- loss: 0.1168 - categorical_accuracy: 0.9845

[0.11677185446023941, 0.9845000505447388]

To create an adversarial example, we first select an image in the data set

that we want to perturb. We then create an image of pure noise and add it

to the original image. Both of these images are shown in Fig.2.

img = x_train[0:1]

#create noisy version of image

quantized_noise = np.round(np.random.normal(loc=0.0, scale=0.3,

size=img.shape) * 255.) / 255.

noisy_img = np.clip(img + quantized_noise, 0., 1.)

FIGURE 2. Selected image of the digit 5 and its noise per-

turbed version

We now create a CNN network for MNIST classification and then train

it for 100 epochs. The training and test accuracy for the trained model is

over 98%. We now take both images in Fig. 2 and classify them using the

trained model. The correct classification would be 5 and this is indeed what

our classifier declares for both the original and noise perturbed image.

#compile CNN network for MNIST classification

inputs = Input(shape=(28,28,1))

net = Conv2D(32, kernel_size=(3, 3),

290 8. DEEP LEARNING AND HUMAN SOCIETY

activation=’relu’)(inputs)

net = Conv2D(64, kernel_size=(3, 3),

activation=’relu’)(net)

net = MaxPooling2D(pool_size=(2, 2))(net)

net = Dropout(0.25)(net)

net = Flatten()(net)

net = Dense(128, activation=’relu’)(net)

net = Dropout(0.5)(net)

outputs = Dense(10, activation=’softmax’)(net)

mnist_model = Model(inputs=inputs, outputs=outputs,

name=’classification_model’)

mnist_model.compile(optimizer=’nadam’,

loss=’categorical_crossentropy’,metrics=[categorical_accuracy])

#train MNIST classifer

earlyStop = EarlyStopping(monitor=’val_categorical_accuracy’,

min_delta=0, patience=10, verbose=0,

mode=’auto’,

baseline=None, restore_best_weights=True)

mnist_model.fit(x_train, y_train,

batch_size=128, epochs=100, verbose=0,

validation_data=(x_test, y_test),

callbacks=[earlyStop])

print(mnist_model.evaluate(x_train, y_train))

print(mnist_model.evaluate(x_test, y_test))

prediction = mnist_model.predict(img)[0]

predicted_class = np.argmax(prediction)

noisy_prediction = mnist_model.predict(noisy_img)[0]

predicted_noisy_class = np.argmax(noisy_prediction)

We now show how to construct an adversarial example that fools our

MNIST classifier even though to the naked eye it looks very similar to the

correctly classified images in Fig. 2. The basic idea is to create an adversar-

ial model with the architecture shown in Fig. 3. This model has two inputs.

The first is the selected image and the second input is noise. These two im-

ages are added together and then sent through our MNIST model. But what

we are going to do is retrain this so it identifies the noise input patterns that

1. SECURITY: CREATING ADVERSARIAL EXAMPLES 291

give rise to an incorrect classification. In particular, we use a categorical

cross-entropy loss function and we freeze all of the weights except those

generating the adversarial noise. The target for our loss function will be a

”targeted” classification which is what we want the perturbed image to be

classified as. In this example, we set that target to 9, so we are finding the

noise input that when added to the original image causes it to be classified

by the original MNIST model as 9, rather than 5.

FIGURE 3. Adversarial Model Architecture

regularizer = l2(0.01)

loss_function = ’categorical_crossentropy’

model = mnist_model

image = Input(shape=(28,28,1),name=’image’)

one = Input(shape=(1,), name = ’unity’)

noise = Dense(28*28,activation=None,use_bias=False,kernel_initializer=’random_normal’,

kernel_regularizer=regularizer,name=’adversarial_noise’)(one)

noise = Reshape((28,28,1), name=’reshape’)(noise)

net = Add(name=’add’)([noise,image])

net = Activation(’clip’,name=’clip_values’)(net)

outputs = model(net)

adversarial_model = Model(inputs=[image,one], outputs=outputs)

292 8. DEEP LEARNING AND HUMAN SOCIETY

adversarial_model.layers[-1].trainable = False

adversarial_model.compile(optimizer=’nadam’, loss=loss_function, metrics=[categorical_accuracy])

adversarial_model.summary()

#target adversarial classification

target = 9 #non-target

target_vector = np.zeros(10)

target_vector[target] = 1.

#train adversarial image

adversarial_model.fit(x={’image’:img,’unity’:np.ones(shape=(1,1))},

y=target_vector.reshape(1,-1),epochs=10000,verbose=0,

callbacks=[checkpoint])

The resulting perturbed image resulting in an incorrect classification of

”9” was obtained by taking the original 5 image and adding the adversarial

noise obtained during training of the adversarial model. This image indeed

is classified by the MNIST model as 9, but if we look at what that image

is in Fig. 4, we see little difference from the original sampled image of 5.

This example therefore shows how one can generate adversarial examples,

which might be used later in retraining the classifier model so it cannot be

fooled by such examples.

2. Deep Learning with Differential Privacy

Another security concern for community datasets regards the privacy of

individual resident data when the entire dataset is being used to find out

something about the community as a whole. The main concept used to

address this issue with regards to databases is differential privacy [Dwo08].

With regard to databases, differential privacy ensures that the removal or

addition of a single database item does not substantially affect the outcome

of any analysis or query. This provides a mathematically rigorous way to

manage the fact that any query to a statistical database may disclose some

bits of information about individual entries.

2. DEEP LEARNING WITH DIFFERENTIAL PRIVACY 293

FIGURE 4. Misclassified Adversarial Example

Database privacy concerns also appear in deep learning. The neural net-

work is trained on a large dataset and for deep networks, the model’s over-

parametrization means that some attributes of individual data entries may

be disclosed by users of that model. These models should not disclose

private information and one can develop algorithmic techniques for train-

ing [ACG+16] that provide ϵ-differential guarantees for individual dataset

entries. This section first defines the notion of differential privacy for sta-

tistical databases and discusses deep learning methods [ACG+16] with dif-

ferential privacy.

Let us consider a statistical database. A statistic is a quantity computed

from a sample. We suppose a trusted curator gathers sensitive information

from a large number of residents (the sample) with the goal of learning (and

releasing) statistics for the entire population. The problem is to release this

statistical information without compromising the privacy of any individual

resident. We consider an interactive setting in which the curator sits be-

tween the users and the database. Queries from the users and responses to

these queries may be modified by the curator to protect the privacy of the

residents.

294 8. DEEP LEARNING AND HUMAN SOCIETY

We define the notion of differential privacy in the context of this inter-

actively curated statistical database. Intuitively, differential privacy ensure

that the removal or addition of a single database item does not substantially

affect the outcome of any statistical analysis. We can formalize this notion

as follows [Dwo08]. Think of the database as a data matrix whose rows

represent the attribute vectors of individual residents in the community. We

define a randomized mechanism (a.k.a. algorithm)M : D → R that takes

a dataset D ∈ D and randomly maps it to a statistic in R. We say two

datasets D,D′ ∈ D are adjacent if they differ by one entry. We say this

mechanism satisfies (ϵ)-differential privacy if for any two adjacent datasets

D,D′ ∈ D and for any subset S ⊂ R we have

Pr {M(D) ∈ S} ≤ eϵPr {M(D′) ∈ S}

Any mechanism that satisfies this condition should address all concerns that

any resident may have about leaking their personal information. This con-

dition says that if a resident removes his/her data from the dataset, no output

and so no consequences arising from that output will become more or less

likely for the individual. For example, if the database were used by an in-

surer to determine whether or not to insure a resident, then whether or not

the resident is in the database would have a negligible impact on whether

the resident gets insured.

Achieving differential privacy means that we hide the presence or ab-

sence of a single individual. Consider the query ”How many rows in the

database satisfy property P ?” The presence or absence of a single row can

effect the answer by at most 1. So a differentially private mechanism for a

query of this type can be designed by first computing the true answer and

then adding random noise so that for any z, z′ for which |z − z′| = 1, we

have Pr{z} ≤ eϵPr{z′}. To see why this is so, consider any feasible re-

sponse, r. For any m if m is the true answer to the query and the response

is r then the random noise must have value r−m. Similarly, if m− 1 is the

true answer and the response is r, then the random noise must have value

r − m + 1. So for the response to be generated in a differentially private

3. STATISTICAL FAIRNESS IN CLASSIFICATION 295

manner it suffices for

e−ϵ ≤ Pr {noise = r −m}
Pr {noise = r −m+ 1}

≤ eϵ

For deep learning models, one seeks to protect the privacy of the training

data. The neural network model is our “mechanism”. One might attempt

to do this by working with the final parameters after training. In general,

however, one does not have useful tight bounds on how these weights vary

with the training data. A more sophisticated approach aims to control the

influence of the training data during the training process; specifically during

the stochastic gradient descent (SGD) computation. These SGD algorithms

[ACG+16] train a model with parameters θ by minimizing the empirical

loss function L(θ). Each step of the SGD computes the gradient∇θL(θ, xi)

for a random subset of examples, clips the ℓ2 norm of each gradient, com-

pute the average, add noise to protect privacy, and takes a step in the op-

posite direction of this average noisy gradient. At the end we also need to

compute the privacy loss of the mechanism based on the information main-

tained by the curator.

3. Statistical Fairness in Classification

Fairness is a key consideration when machines use algorithms to make

decisions. Fairness is defined with respect to population groups that are

marginalized in a legal or societal manner as a result of demographic fac-

tors (gender, race, age) or socio-economic factors. In particular, it means

that decisions or favorable outcomes provided to groups are independent of

that group is marginalized or not. ”Fairness”, however, has a number of for-

mal definitions. This section examines two statistical measures of fairness

and presents a case study from [BHN19] illustrating their use.

Let us consider a classification problem where we wish to use data sam-

ples, X , to train a model that iners an unknown target Y . The guess that our

model h : X → Y makes will be denoted as Ŷ = h(X). Throughout this

296 8. DEEP LEARNING AND HUMAN SOCIETY

discussion we use capital letters to denote random variables and lower case

letters to denote the values these variables take. We assume that Y ∈ {0, 1}
takes binary values where X can be a mixture of real-valued vectors and

categorical data. The classical learning-by-example problem is to use a fi-

nite dataset {(xk, yk)} of samples and labels to select h that maximizes the

accuracy of the model. Namely we want to maximize Pr
{
Y = Ŷ

}
or to

minimize the classification error, Pr
{
Y ̸= Ŷ

}
.

Accuracy and classification error are not the only criteria we might want

to optimize. In some applications there may be a ”cost” associated with

correct and various incorrect classifications. So it is useful to introduce

additional classification criteria whose predictions, Ŷ , are conditioned on

true label, Y .

Event Condition Description (Pr {event | condition})
Ŷ = 1 Y = 1 True positive rate (TPR)

Ŷ = 0 Y = 1 False negative rate (FNR)

Ŷ = 1 Y = 0 False positive rate (FPR)

Ŷ = 0 Y = 0 True negative rate (TNR)

An optimal classifier is one that minimizes the expected loss E
{
L(Ŷ , Y)

}
,

or what we call the classification. For instance, if we choose a loss function

that takes values L(0, 1) = L(1, 0) = 1 and L(1, 1) = L(0, 0) = 0, then the

optimal classifier is

Ŷ = h(X) =

{
1 if Pr(Y = 1 |X = x) > 1/2

0 otherwise

This classifier has the important property that it is essentially a threshold

test applied to the function

r(x) = Pr {Y = 1 |X = x} = E [Y |X = x]

This function is an example of a risk score and the Neymann-Pearson lemma

tells us that optimal classifiers can generally be written as a threshold test

on this risk score function. The risk score shown above is a natural one and

3. STATISTICAL FAIRNESS IN CLASSIFICATION 297

is sometimes said to be Bayes optimal since it minimizes the square loss

E(Y − r(x))2 among all possible real-valued risk scores, r(X).

In the optimal classifier, we chose a threshold of 1/2 to ensure we get

the exact same number of false positives and false negatives. But there

are applications where a false positive is significantly more costly than a

false negative. In such applications we may want to move threshold away

from 1/2 to reflect the difference in cost. Each choice of threshold results

in a different true positive rate and false positive rate and it is common

to plot a threshold classifier’s TPR vs FPR for various threshold to trace

out a curve known as the Receiver Operating Characteristic (ROC). The

”predictiveness” of a classifier may be measured by the area under the ROC

curve (AUC) with an area of 1/2 corresponding to random guessing.

We now to consider classifiers that discriminate on the basis of mem-

bership in specific groups of the population. US law recognizes certain

protected categories that include race, set, religion, disability status, and

place of birth. In many classification tasks the feature vectors, X implicitly

or explicitly encode an individual’s status in a protected category. Let use

use the letter A to denote a random variable capturing various membership

in these protected categories. We refer to A as a sensitive attribute. The

choice of sensitive attributes may have profound consequences for popu-

lation groups since the outcome of our classifier impacts how we allocate

resources to these groups.

Some believe that by removing or ignoring sensitive attributes from the

dataset, we can ensure the classifier is impartial. In a typical dataset, how-

ever, many features may be slightly correlated to the sensitive attribute. For

example, membership in the website pinterest is slightly correlated to

whether the member is female. While this correlation is too small to reli-

ably deduce a given individual is female, when taken with a large number

of other slightly correlated features, the likelihood of declaring the individ-

ual’s gender becomes much greater. So simply removing ”overt” features

298 8. DEEP LEARNING AND HUMAN SOCIETY

associated with a sensitive attribute may not be sufficient to ensure impar-

tiality. In training the classifier, it will identify how best to combine all

available features in a way that maximizes its classification accuracy. As

a result, simply removing ”overt” attributes from the dataset will rarely be

sufficient to ensure the classifier is ”fair”.

There are two main ways in which statistical non-discrimination criteria

are formalized. Formally, these criteria are properties of the joint distribu-

tion of the sensitive attribution A, the target variable, Y , the prediction Ŷ (or

score, R) and in some cases the features, X . This means we can decide if a

non-discrimination criterion is satisfied by looking at the joint distribution

of these random variables. We will look at two specific non-discrimination

criteria; independence and separation.

Let us consider the sensitive attribute, A, and the score, R. We say these

two variables satisfy independence if A ⊥ R which means A and R are sta-

tistically independent. When applied to a binary classifier Ŷ , independence

corresponds to the condition

Pr
{
Ŷ = 1 |A = a

}
= Pr

{
Ŷ = 1 |A = b

}
for all groups a and b. This is sometimes referred to as demographic parity

or group fairness. If we think of event Ŷ = 1 as ”acceptance”, the condition

requires the acceptance rate to be the same in all groups. In some case, it is

useful to relax the independence condition with a slack variable ϵ > 0 such

that

Pr
{
Ŷ = 1 |A = a

}
≥ Pr

{
Ŷ = 1 |A = b

}
− ϵ

Independence has been studied in many papers on fairness in machine

learning. It can be argued, however, that classifiers that satisfy indepen-

dence can still be ”unfair”. To illustrate why this might be the case, image

a company that hires individuals from group a in a highly diligent manner,

say at rate p. On the other hand the company may be somewhat careless or

less diligent in vetting individuals from group b while still maintaining the

3. STATISTICAL FAIRNESS IN CLASSIFICATION 299

same hiring rate, p. What it means is that those hired from group a may

be much more qualified for hiring whereas those from group b may not.

This apparent disparity in hiring practices can lead to discontent as those in

group a feel they were not treated ”fairly”.

One way of addressing this issue is to acknowledge that there is a differ-

ence in accepting a true positive and true negative. In this case, the target

variable, Y gives a sense that the individual with feature X is qualified to be

accepted. So our notion of fairness needs to include both R,A, and the tar-

get Y . In particular, we say threse three random variables satisfy separation

if R ⊥ A |Y . In other words R and A are conditionally independent with

respect to Y . For a binary classifier, separation is equivalent to requiring

that for all groups, a and b that

Pr
{
Ŷ = 1 |Y = 1, A = a

}
= Pr

{
Ŷ = 1 |Y = 1, A = b

}
Pr
{
Ŷ = 1 |Y = 0, A = a

}
= Pr

{
Ŷ = 1 |Y = 0, A = b

}

Independence therefore quires that the true positive rate (TPR) is the same

for both groups and the true negative reate (TNR) is also the same for both

groups. These measures are sometimes referred to as equal opportunity

(EO) measures.

This idea of equalizing error rates across groups has been controversial.

Much of this controversy revolves about the fact that an optimal predictor

need not have equal error rates in all groups. Specifically, when the propen-

sity of positive outcomes differs between groups, an optimal predictor will

generally have different error rates. In such cases, enforcing equality of er-

ror rates may lead to predictors that perform worse in some groups than it

could be and way may then argue that this too is ”unfair”. One response

to this criticism can be made by considering who bears the cost of mis-

classification. A violation of separation highlights the fact that different

groups experience different costs of misclassification. There is a concern

300 8. DEEP LEARNING AND HUMAN SOCIETY

that higher error rates coincide with historically marginalized and disad-

vantaged groups, thereby inflicting greater harm on these groups when they

are misclassified.

A binary classifier that satisfies separation mush achieve the same TPR

and same FPR for all groups. We can visualize this condition by plotting

group-specific ROC curves as shown in Fig. ??. We see the ROC curves of

a score displayed for each group separately. The two groups have different

curves indicating that not all tradeoffs between TPR and FPR are achiev-

able in both groups. The tradeoffs that are achievable correspond to the

intersection of the regions enclosed by the curves.

0 1

1

0

TP
R

FPR

randomized
classifies

ROC Curve for Classifier

gr
ou

p
a

group b

FIGURE 5. Randomized classifier from two classifiers

The highlighted region is the feasible region of tradeoffs that we can

achieve in all groups. However, the thresholds that achieve these trade-offs

are, in general, also group specific. In other words, the bar for acceptance

varies by group which means these tradeoffs are not exactly on the ROC

surface, but rather in the interior of the feasible region. Building such clas-

sifiers is usually done through randomization. To see this point, think about

how one might realize trade-offs on the dashed line of the plot. Take one

classifier that accepts everyone. This corresponds to a TPR and FPR of 1.

Take another classifier that accepts no one, resulting in a TPR and FPR of

0. Now construct a third classifier that given an instance, X of features ran-

domly picks and applies the first classifier with probability 1 − p and the

3. STATISTICAL FAIRNESS IN CLASSIFICATION 301

second with probability p. This classifier achieves TPR and FPR rates of

p and thus gives us one point on the dashed line in the plant. In a similar

manner we could have selected any other pair of classifiers (say one from

each of the ROC curves) and randomized between them to achieve a point

in the area under the ROC curve along the dashed line.

Now that we have formally introduced two non-discrimination criteria,

we ask how they might be achieved algorithmically. There are, in general,

three different approach we might follow

• Pre-processing adjusts the features space to be uncorrelated with

the sensitive attribute.

• In-processing works with non-discrimination criterion as a regu-

larization term in the model training process.

• Post-processing adjusts learned classifiers (often using the ran-

domization mechanism described above) to the resulting classifier

is uncorrelated with the sensitive attribute

The three approaches have different strengths and weaknesses.

Pre-processing is a family of methods that transform the feature space

into a representation that is independent of the sensitive attribute. This ap-

proach is agnostic to what we do with these features later on and so it can

ensure independence under any training process on thenew space. The main

criticism of pre-processing is that it requires complete access to the features

and targets, which can impose a privacy issue.

In-processing introduces the non-discrimination criterion as a regular-

ization constraint during model training. Its major issue is that it requires

access to the raw training data and the training pipeline. In addition to this,

the introduction of the regularization constraint may greatly slow down the

convergence of the training algorithm. These are issues of particular con-

cern in federated learning where information is passed back and forth be-

tween a central server and edge clients.

302 8. DEEP LEARNING AND HUMAN SOCIETY

Post-processing refers to the process of taking a trained classifier and ad-

justing it using a randomization procedure to enforce fairness. It is applied

after the training of each group’s classifier. Post processing’s advantage is

that it works with trained classifiers and therefore does not need access to

the raw data. In federated learning platforms, post processing simply trans-

mits group statistics back and forth between the clients and server, which

can be secured under a differential privacy guarantee. In addition to this,

the optimal randomized classifier can usually be obtained by solving a lin-

ear program, thereby making the approach computationally efficient.

CHAPTER 9

Deep Reinforcement Learning

Reinforcement Learning (RL) [SB18] teaches an agent how to act in an

unknown environment. We consider an agent that interacts with an external

environment. The environment is a dynamical system that provides to the

agent, at each time instant, a state and reward in response to the agent’s cur-

rent action. In general, the agent does not know the environment’s reward

function or dynamics. It must learn these things by seeing how the envi-

ronment responds to the agent’s actions. The agent then uses what it learns

about the environment to identify an action policy that selects agent actions

in response to the current environmental state such that the aggregate reward

over a finite time horizon is maximized. Reinforcement learning can there-

fore be seen as trial-and-error learning since it acts and then learns from

the positive and negative consequences of those actions. In addition to this

RL is capable of learning from delayed rewards. This means that there is no

reward until the agent reaches a desired final state. These two things, trial

and error learning and delayed rewards are distinguishing characteristics

of Reinforcement Learning.

The trial and error aspect of RL originated in the psychology of animal

learning [SB81]. It was later recognized [Sut88] that RL could be equipped

with a formal mathematical framework by thinking of it as optimal control

of Markov Decision Processes (MDP). This formal framework for RL relied

on the use of dynamic programming concepts [Bel54]. Dynamic program-

ming is built around the concept of a value function, V : X × T → R, that

maps a dynamical system’s state, x ∈ X , and time t ∈ T onto the optimal

cost (reward) required to move from the initial event (t, x) to a target event

(T, xT). The value function, V (x, t), satisfies a recursive relation known as

303

304 9. DEEP REINFORCEMENT LEARNING

the Bellman equation. The notion of reward in RL mapped easily to this

notion of ”value”, so that one could interpret RL training as approximating

the Bellman equation, thereby providing tremendous insight into how RL

operates.

Neural network learning was originally applied to RL for learning how to

play games such as Backgammon [T+95] and Atari video games [MKS+13].

But its value was quickly recognized for learning to control important real-

life applications such as autonomous driving [CXP+21], datacenter cooling

[LWTG19], traffic light control [APK03], healthcare [YLNY21], and ro-

botics [MKS+15, NKFL18], to name a few. This chapter first examines

how early RL algorithms attempted to solve the Bellman equation. We then

examine a particularly influential deep learning approach to RL called the

deep Q network (DQN) [MKS+13]. We close with looking at the use of

deep neural networks in policy gradient approaches to RL.

1. Finite Markov Decision Processes

Markov Decision Processes consist of a decision maker interacting with

an external environment. The decision maker is usually called an agent.

The agent interacts with an environment by selecting an action that it takes

in the environment. That interaction changes the environment’s state in a

stochastic manner. The environment then responds to this action by passing

its state and a reward back to the agent. This interaction may be viewed

as shown in Fig. 1. The problem is to determine the agent’s action policy

that maximizes the expected total discounted reward that the agent receives

from the environment through its selection of actions.

A formal definition of an MDP is as a tuple, (S,A, p, r, S0, SK) where S

is a finite set of environment states and A is a finite set of agent actions. We

denote the state at time instant k ∈ N as sk and the action at time k as ak.

The sets S0, SK ⊂ S are called the initial and terminal state sets. The map

p : S×A→ P(S) maps the current state action pair (sk, ak) ∈ S×A onto

1. FINITE MARKOV DECISION PROCESSES 305

FIGURE 1. Agent-Environment Interaction

the next state’s, sk+1, through a conditional probability distribution function

p(y |x, a) = Pr {sk+1 = y | sk = x, ak = a} .

This conditional distribution defines the dynamics of the MDP. The other

map, r : S × A × S → R maps the current state-action-next-state triple

(sk, ak, sk+1) onto a numerical reward rk+1 ∈ R.

The agent and environment interact over a sequence of time steps, k =

0, 1, 2, 3, The environmental state at time 0 is in the initial state set S0.

At each time instant k, the agent selects an action ak using a policy, π : S →
P(A). The policy uses the current state, sk, to randomly select the current

action, ak, by sampling from the policy distribution π(ak | sk = s). The

set of all admissible policies will be denoted as Π. The environment takes

the agent’s selected action and returns the environment’s next state, sk+1 ∼
p(· | sk, ak) and the next reward rk+1 = r(sk, ak, sk+1). This interaction,

therefore generates a sequence of state-action-reward triples (SAR) that we

sometimes refer to as the agent’s trajectory

(s0, a0, r1)→ (s1, a1, r2)→ (s2, a2, r3)→ · · · → (sK−1, aK−1, rK)

where the stopping time K occurs when the system state enters the terminal

set, SK for the first time. The terminal time, K, is a random variable called

the stopping time.

Let us give a concrete example of a finite MDP. In a finite MDP the state,

action, and reward sets are all finite. This means that the transition function

p(· | s, a) can be represented as an indexed family of transition matrices. If

306 9. DEEP REINFORCEMENT LEARNING

we assume that there are n states in S = {1, 2, . . . , n} then the transition

matrix for action a ∈ A can be written as

Pa =

p(1 | 1, a) p(2 | 1, a) · · · p(n | 1, a)
p(1 | 2, a) p(2 | 2, a) · · · p(n, | 2, a)

...
...

...

p(1 |n, a) p(2 |n, a) · · · p(n |n, a)

 .

If we then let the current state, sk, be drawn from a probability mass func-

tion that we represent as the row vector

πk =
[
Pr(sk = 1) Pr(sk = 2) · · · Pr(sk = n)

]
then the probability mass function for the next state sk+1 under action a will

be

πk+1 = πkPa.

.

It is common to use a family of labeled directed graphs to visualize the

behavior of the MDP. We now use these directed graphs to illustrate a toy

example.

FIGURE 2. Map of Pubs

Example: We have a friend who travels between four pubs. We assume

the streets connecting the pubs are as shown in Fig. 2. We can model our

friend’s night journey as a Markov decision process with the state space

S = {1, 2, 3, 4, 5}. States 1 − 4 are 4 different pubs. State 5 is home and

the terminal state so that Sk = {5}. The initial state set is S0 = {1, 2, 3, 4},
so our friend always starts in one of the pubs. After having a drink at the

2. OPTIMAL ACTIONS AND THE BELLMAN EQUATION 307

pub, our friend makes a decision to either go to the next pub or to go home.

We therefore have an action space A = {1, 2} where a = 1 is go to the

next pub and a = 2 is go home. This gives rise to two transition probability

matrices, P1 and P2 defined with respect to the street map in Fig. 2.

The action of these transition matrices can be visualized using two di-

rected graphs, one for each action’s transition matrix. The nodes of the

directed graph are the states of the MDP (the four bars and home). The

graphs edges denote which locations are adjacent to each other along the

roadway. If our friend decides to go to the next bar, he traverses the edge

connecting two adjacent bars. If he decides to go home, then he either goes

to the next bar that is one stop closer to home, or he goes directly home. The

directed graphs associated with these two actions are depicted in Fig. 1. In

this figure we have

P1 =

1/2 1/2 0 0 0

1/3 0 1/3 1/3 0

0 1/2 0 1/2 0

0 1 0 0 0

0 0 0 0 1

 , P2 =

0 1 0 0 0

0 0 1/2 1/2 0

0 0 1/2 0 1/2

0 1/2 0 0 1/2

0 0 0 0 1

 .

The directed graph in Fig. 1 has labeled edges. Each edge, (i, j), from state

i to state j is labelled with (p, r) where p is the probability, p(j | i, a) and

r is the reward r(i, a). We label the terminal nodes in SK with a terminal

reward rK of 5.

2. Optimal Actions and the Bellman Equation

The problem is to find an action policy, π : S → P(A) that maximizes the

expected total discounted reward an agent receives from the environment.

The total expected discounted reward (a.k.a. value) for a given policy π is

a function V π : S → R that takes values

V π(s) = Eπ

{
rK(s) +

K−1∑
k=0

γkr(sk, π(sk), sk+1) | s0 = s

}

308 9. DEEP REINFORCEMENT LEARNING

FIGURE 3. Pub Crawl

where K is the stopping time, rK(s) is the reward received for reaching the

terminal state in SK , and γ ∈ (0, 1) is a discounting factor that discounts

the rewards received later along the trajectory. The discounting factor plays

an important role when we consider infinite horizon MDPs. For discounted

infinite horizon problems the value function becomes

V π(s) = Eπ

{
∞∑
k=0

γkr(sk, π(sk), sk+1) | s0 = s

}
.

We seek a policy, π∗ : S → P(A) that is optimal in the following sense

V π∗
(s) ≥ V π(s)

for all s ∈ S and over all possible policies, π ∈ Π. For simplicity we

refer to the value function for the optimal policy as V ∗, rather than V π∗ .

Computing the optimal policy, π∗, is based on an optimal control method

known as dynamic programming. Dynamic programming shows that the

Value function satisfies an equation known as the Bellman equation

V π(s) =
∑
a∈A

π(a | s)
∑
s′∈S

p(s′ | s, a) [r(s, a, s′) + γV π(s′)]

for all s ∈ S. The Bellman equation provides the basis for developing

recursive algorithms that can be used to algorithmically compute V π(s).

2. OPTIMAL ACTIONS AND THE BELLMAN EQUATION 309

The value function can be used to determine the optimal policy π∗. In

particular, we can say

V ∗(s) = max
π∈Π

V π(s)

for all s ∈ S. The optimal policy, π∗, is then the policy that achieves this

maximum. Directly finding π∗ from V ∗(s), however, is difficult to do. It

is more convenient to find the policy, π∗, from the state-action function or

Q-function, Qπ : S × A→ R, for policy π ∈ Π. The state-action function

under π takes the value Qπ(s, a) and it is the expected total reward received

by the agent after it takes action a while in state s. This means that it can

be directly related to the value function V π through the equation

Qπ(s, a) =
∑
a∈A

π(a | s)
∑
s′∈S

p(s′ | s, a) [r(s, a, s′) + γV π(s′)]

The optimal Q-function is then

Q∗(s, a) = max
π∈Π

Qπ(s, a).

But because a ∼ π(a | s) we can readily see that the value of the optimal

policy decision when the current state is s will be

π∗(s) = argmax
a

Q∗(s, a).

thereby allowing one to determine the optimal policy once the optimal Q-

function has been determined.

If the environment’s dynamics are completely known, then the Bellman

equation is a system of simultaneous linear equations where the number of

unknowns equals the cardinality of the state space S. Directly solving this

system of linear equations is difficult due to the high cardinality of the state

space. So we resort to successive approximation methods to find the value

function. In particular, consider a sequence
{
V̂ π
ℓ (s)

}∞

ℓ=0
of functions V̂ π

ℓ :

S → R that are approximations to the true value function V π computed

310 9. DEEP REINFORCEMENT LEARNING

through the recursion

V̂ π
ℓ+1(s)

def
= Eπ

{
r(sk, π(sk), sk+1) + γV̂ π

ℓ (sk+1) | sk = s
}

=
∑
a

π(a | s)
∑
s′∈S

p(s′ | s, a)
[
r(s, a, s′) + γV̂ π

ℓ (s
′)
]

for all s ∈ S. Clearly the actual value function, V π, is a fixed point for the

recursive update. This recursion is convergent provided the discounting rate

γ < 1. The successive approximation algorithm is known as the iterative

policy evaluation.

Once we use this iteration to compute V π for a given policy, π0, we

need to perturb the policy to find a better one. So let us assume for some

state s that instead of picking the action π0(s), we pick an alternate action

a ̸= π0(s). After that we simply continue using the original policy π0. The

state-action value from s under this perturbed policy would be

Qπ0(s, a)
def
= Eπ {r(s, a) + γV π0(sk+1)}

=
∑
s′∈S

p(y | s, a) [r(s, a, s′) + γV π(s′)] .

The key thing is whether this is greater than or less than V π0(s). Clearly

since we can use the above equation to compute Qπ0(s, a), when the policy

is perturbed at time k by using a instead of π0(s). Since there are a finite

number of actions, we compute this value for each a and come up with an

improved policy that uses an a that maximizes Qπ0(s, a). So we end up

with a greedy policy of the form

π1(s) = argmax
a

Qπ0(s, a)

= argmax
a

∑
s′∈S

p(s′ | s, a) [r(s, a, s′) + γV π(s′)] .

Once a policy has been improved using V π0 to obtain π1, we recompute V π1

and improve it again to obtain a better π2. We therefore obtain a sequence
of monotonically improving policies and value functions

π0
eval→ V π0

improve→ π1
eval→ V π1

improve→ π2
eval→ · · · improve→ π∗ improve→ V ∗.(43)

2. OPTIMAL ACTIONS AND THE BELLMAN EQUATION 311

Because a finite MDP only has a finite number of policies, this process

must converge to an optimal policy and an optimal value function after a

finite number of recursions. This search strategy for the optimal policy is

called the Policy Iteration.

Unfortunately, the policy iteration may take many recursions before stop-

ping at an optimal policy. The reason is that the evaluation step is itself a

recursive algorithm that may take many steps to converge. One can improve

the efficiency of this algorithm by truncating the evaluation phase early. In

particular, one can truncate after just one recursive step and then use the

resulting approximate value function to do policy improvement. This ap-

proach is called the Value Iteration and in practice it reduces the overall

complexity of the algorithm.

FIGURE 4. Gym’s Frozen Lake Environment

We will now demonstrate the Value Iteration on a particular MDP prob-

lem using OpenAI’s Gym environment. In particular, we will examine the

“frozen lake process” shown in Fig. 4. This figure shows the state space

S = {0, 1, 2, . . . , 15}, as a 4 by 4 grid of squares representing locations

on a frozen lake. We assume a discrete-time process where each decision

epoch has a period of 1 (i.e. we make a decision after every step). There are

4 actions the agent can take at each epoch, move North (3), East (2), South

(1), or West (0). Because the frozen lake is slippery, the state we reach af-

ter taking a given action is random. In particular, we assume the transition

312 9. DEEP REINFORCEMENT LEARNING

probability p(s′ | s, a), shown in Fig. 4. So, for example, if we were in state

0) and take action 3 to move South (1), we have an equal probability of 1/3

to either say in state 0, move to state 1 or move to state 4. It is the slip-

periness of the icy lake that injects the uncertainty into the outcome of the

action we take.

The frozen lake problem is a finite-horizon problem. But rather than

specifying the horizon time in terms of a fixed final time, K, we determine

that horizon in terms of the first time when the state enters a terminating set

of states. In particular, the states 5, 7, 11, 12, and 15 are terminating states.

When a system enters a terminating state, the process stops and we restart

our agent from the beginning state, 0. In our case, the states, 5, 7, 11 and

12 represent holes in the ice (i.e. the MDP terminates because the agent

has fallen through the surface of the lake). State 15, on the other hand is

a desired terminal state that the agent wants to reach. The terminal reward

function, rK : SK → R, will therefore take different values depending

upon which terminal state we reach. In particular, we have rK(sK) = 0 if

the terminal state is on a hole in the ice (5, 7, 11, or 12) and the reward,

rK , is 1 if the terminal state is 15. The other rewards for the transitions

taken to get to the terminal state r(s, a) are all all zero for the other states.

This means, therefore, that our agent will only get rewarded if it reaches the

desired terminal state. So the agent’s receives delayed rewards because it is

only rewarded for ”successful” runs.

We simulate MDP’s using a toolkit called Gym that was developed by

OpenAI. Let us suppose we are developing an agent that autonomously

drives a car. We cannot train our agent in the ”real-world” because RL

is based on trial-and-error and since errors involve a ”crash”, we don’t want

to do this with real-life automobiles. So we use a software environment that

simulates the behavior of our process and use this simulation environment

to implement RL’s trial-and-error approach to learning. The Gym environ-

ment is just one convenient Python library for developing such simulations.

2. OPTIMAL ACTIONS AND THE BELLMAN EQUATION 313

The Frozen Lake Environment described in Fig. 4 has already been in-

cluded in Gym. The following script loads this environment into a notebook.

import gym

import numpy as np

import matplotlib.pyplot as plt

env = gym.make(’FrozenLake-v1’, render_model=’human’)

We are going to simulate the Frozen Lake environment using a decision

policy, π, that randomly samples the action space in a uniform manner.

We run this for 100 steps and reset the environment every time the state

reaches one of the terminating states or makes the maximum number (100)

of allowed steps. We can render the results on the screen to show our agent

moving across the frozen lake.

num_steps = 100

obs = env.reset()

obs = obs[0]

for step in range(num_steps):

action = env.action_space.sample()

obs, reward, terminate, truncated, info = env.step(action)

env.render

if terminate:

env.reset()

env.close()

So let us demonstrate the Value Iteration on the Frozen Lake environ-

ment. The algorithm will be implemented through the function value iteration.

this function takes the Gym environment, env, the discounting factor, gamma

as inputs. It returns the value function, value, the optimal policy, policy,

and the number of iterations, iter, needed for convergence.

def value_iteration(env, gamma):

num_iterations = 10000

threshold = 1e-20

314 9. DEEP REINFORCEMENT LEARNING

value = np.zeros(env.observation_space.n)

for iter in range(num_iterations):

#value iteration

value_new = np.copy(value)

for s in range(env.observation_space.n):

for a in range(env.action_space.n):

Q[s][a] = sum([prob*(r+gamma*value_new[s_])

for prob, s_, r, _ in env.P[s][a])

value[s] = max(Q[s,:])

#policy improvement

policy = np.zeros(env.observation_space.n)

for s in range(env.observation_space.n):

policy[s] = np.argmax(np.array(Q[s,:]))

#Termination Condition

if (np.sum(np.fabs(value_new-value))<=threshold):

break

return value, policy, iter

This function first sets the maximum number of iterations (max iter)

and the stopping threshold threshold. It then performs one step of the

recursion for the state-action function for each action a

Qπ(s, a) =
∑
s′∈S

p(s′ | a, s) [r(s, π(s), s′) + γV π(s′)] .

The state value function is then obtained by taking the maximum of Q(s, a)

over all a

V π(s) = max
a

Qπ(s, a).

After computing this approximation to V π, the algorithm performs a policy

improvement step. In our code, we use V π to compute the state-action

function and then select the new policy π′, that maximizes Qπ(s, a)

π′(s) = argmax
a

Qπ(s, a)

We then repeat these two steps until we either reach max iter limit or

we reach the accuracy threshold |V k+1 − V k| < threshold. The following

script runs the Value Iteration algorithm for the Frozen Lake environment

2. OPTIMAL ACTIONS AND THE BELLMAN EQUATION 315

and then shows how this policy behaves versus a random policy. We see that

the Value Iteration converged to a tolerance of 10−20 after 1, 372 iterations.

The resulting values and optimal actions are shown in Fig. 5

FIGURE 5. Optimal Policy and Value Function

value, policy, iter = value_iteration(env, 1.0)

print(value)

print(policy)

print(iter)

#[0.82352941 0.82352941 0.82352941 0.82352941 0.82352941 0.

#0.52941176 0. 0.82352941 0.82352941 0.76470588 0.

0. 0.88235294 0.94117647 0.]

#[0. 3. 3. 3. 0. 0. 0. 0. 3. 1. 0. 0. 0. 2. 1. 0.]

#1372

We used the Value Iteration to find a policy for our stochastic Frozen

Lake environment, but we still need to evaluate how well it actually per-

formed. So we used the following script to generate 1000 episodes using

the optimal policy and then rerun for 1000 episodes using a random policy.

episodes = 1000

nb_success = 0

num_steps = 1000

316 9. DEEP REINFORCEMENT LEARNING

value_iteration_policy_active = True

for iter in range(episodes):

if iter%25==0:

print(str(iter)+"-",end="")

state = env.reset()[0]

for iter in range(num_steps):

if value_iteration_policy_active:

action = int(policy[state])

else:

action = env.action_space.sample()

new_state, reward, terminate, truncate, info = env.step(action)

state = new_state

if terminate:

nb_success += reward

break

print(f"Success rate = {nb_success/episodes*100}%")

For the optimal policy we had a success rate of 82%, whereas the random

policy only had a success rate of 3%. So clearly, the value iteration was able

to dramatically improve the agent’s likelihood of safely reaching the desired

terminal state.

3. Learning Optimal Action Policies

The preceding section determine the optimal policy for an MDP assuming

the agent already knows the environment’s state transition probability. In

many cases, the agent does not have this prior knowledge and must learn

its optimal action policy by observing how the environment responds to

the agent’s actions. This section discusses three methods used to learn an

agent’s optimal policy; Monte Carlo methods, Temporal-Difference learn-

ing, and Q-learning. All of these methods rely on a trial-and-error approach

to solving the Bellman equation, the differences lie in how they generate

experimental trials and how they use the outcomes of those trials. These al-

gorithms all learn the state or state-action value function and for this reason

they are called value gradient algorithms.

3. LEARNING OPTIMAL ACTION POLICIES 317

3.1. Monte Carlo Methods: Monte Carlo (MC) methods are compu-

tational methods that use simulations to estimate the likelihood of uncertain

events. MC methods build a simulation model of the environment and then

execute that simulation model starting from multiple initial conditions to

generate several possible process trajectories. Each trajectory is called an

episode and we then average these episodes to estimate the fundamental

statistics of the process.

We use MC methods to solve MDP problems by first constructing a sim-

ulation model of the environment, fixing the agent’s action policy, π, and

then generating a number of different episodes for the environment under

the fixed policy. We use these episodes to estimate the value function and

then use that estimated value function to update the policy. We then repeat

this episodic process until we converge to the optimal action policy.

Formally, let V π(s) denote the value of the environmental state s ∈ S

under a fixed policy π : S → A. We use our simulation model to generate

a set of episodes obtained by following π and passing through the state s.

Each occurrence of state s in an episode is called a visit to s. The state

s may be visited multiple times in the same episode. The first visit to s

refers to the first time an episode passes through state s. The first-visit MC

method estimates V π(s) as the average of the total reward received by the

agent following its first visit to s. Alternatively, we could have averaged

the total reward of the agent after every visit to state s. This would be the

every-visit MC method. Both methods converge to V π(s) as the number of

visits to s goes to infinity. For the first-visit MC method this is an obvious

consequence of the law of large numbers. The every-visit MC’s conver-

gence to V π is more difficult to establish, but one can show that it has a

faster (quadratic) convergence rate than the first-visit method.

The obvious idea is to use either a first or every visit MC method to

estimate V π(s) for a given policy and then apply policy improvement. The

problem with this, of course, is that it takes an intractably long time for this

318 9. DEEP REINFORCEMENT LEARNING

approach to converge to the optimal action policy. Another potential issue

is that our random generation of the episodes may not fully explore the state

space for a complete evaluation of the value function. In other words, it is

possible that our MC simulation only explores an easily accessible portion

of the state space, and that early bias in episode generation biases our future

action policies from exploring other states that may lead to more optimal

paths. For this reason, engineers rarely (if ever) use pure MC methods to

solve MDP problems. Instead we use methods that combine Monte Carlo

methods with the dynamic programming ideas of the preceding section.

3.2. Temporal-Difference (TD) Learning: Temporal difference (TD)

learning combines ideas from Monte Carlo methods and Dynamic Program-

ming. Like MC methods, TD methods use randomly generated episodes

to learn how the environment responds to agent actions. But TD meth-

ods update an agent’s estimate of the value function using the Bellman

equation, rather than simply averaging the total rewards under a fixed pol-

icy. This subsection describes two such TD learning algorithms; SARSA

[RN94, Sut95] and Q-learning [WD92]. The differences between them are

described below.

SARSA Algorithm: The MC methods described in the preceding subsec-

tion first predict the value function for a given policy, and then improve the

policy. Let {sk}∞k=0 denote the episode generated under policy π. Every-

visit MC methods would approximate the value function from state sk in

the episode as

V̂ π(sk)← V̂ π(sk) + α

[
∞∑
ℓ=0

γℓr(sk+ℓ, π(sk+ℓ), sk+ℓ+1)− V̂ π(sk)

]
.

where α controls the size of the update. This update would be computed

at the end of an episode because we have to wait until the end to compute

total reward, gk =
∞∑
ℓ=0

γℓr(sk+ℓ, π(sk+ℓ), sk+ℓ+1). TD learning, on the other

hand uses the Bellman equation to estimate V̂ π(sk) on a step by step basis

3. LEARNING OPTIMAL ACTION POLICIES 319

as we generate the episode. So the simplest type of TD value prediction al-

gorithm would estimate the value function at the kth state, sk, in the episode

as

V̂ π(sk) ← V̂ π(sk)

+α
[
r(sk, π(sk), sk+1) + γV̂ π(sk+1)− V̂ π(sk)

]
.(44)

This update would be computed after the agent using the action π(sk) at

time k has received the updated state, sk+1, and reward rk+1 = r(sk, π(sk), sk+1)

from the environment. So rather than approximating V̂ π after the episode

has finished, the approximation is computed as we are generating the episode.

The TD prediction algorithm in equation (44) can be used to find the

optimal policy. We do this by following the similar strategy portrayed in

equation (43) for the Policy Iteration. We could use the TD-prediction equa-

tion (44) to compute estimates of the value function and then use that value

function to improve the policy. The only issue is that the original Policy

Iteration improved its policy through the Qπ (state-action value function),

rather than the state value function, V π. Estimating the Qπ-function is very

similar to estimating the V π-function. To see this recall that an episode

consists of an alternating sequence of (state,action) pairs and rewards

(sk, ak)→ rk+1 → (sk+1, ak+1)→ rk+2 → (sk + 2, ak+2) · · ·

Now consider sequences from state-action pair to state action pair, and learn

the value of the state-action pairs. Formally, this is identical to the earlier

TD-prediction equation, so we can simply rewrite equation (44) in terms of

an approximation Q̂π function to the state action function Qπ.

Q̂π(sk, ak) ← Q̂π(s,ak)

+α
[
rk+1 + γQ̂π(sk+1, ak+1)− Q̂π(sk, ak)

]
(45)

where ak = π(sk) and rk+1 = r(sk, ak, sk+1). The variables used in equa-

tion (45) are

(sk, ak, rk+1, sk+1, ak+1)

320 9. DEEP REINFORCEMENT LEARNING

and so the Qπ prediction in equation (45) forms the basis of a version of

TD-learning called the SARSA algorithm[RN94, Sut95]. .

Since the SARSA algorithm computes Q̂π directly, we can readily use

Q̂π to improve the policy π by greedily selecting actions that maxmize

Q̂π(s, a). This is called the greedy-SARSA algorithm. It is also called an on-

policy algorithm because the policy it is learning is also used at the same

time to control the process and generate the training data. Unfortunately,

greedy algorithms may not fully explore the state space because of their

preference for always maximizing the approximated Q function. To avoid

this issue we often employ an ϵ-greedy version of the SARSA algorithm

that has the agent randomly select an arbitrary action a ∈ A, rather than

the optimal action, with a probability of ϵ. The ϵ-greedy policy is seen

as providing agents with the capacity to switch between exploration of the

state space (i.e. selecting the random action) and exploitation of the prior

experience embodied in the Q̂π function (i.e. picking the greedy action).

ϵ-greedy SARSA algorithms can be shown to converge with probability 1

to the optimal Q∗ function as long as all state-action pairs are visited an infi-

nite number of times and it converges to the optimal policy provided ϵ→ 0

at a suitable rate.

Q-Learning: One of the early breakthroughs in reinforcement learning was

the development of a TD-algorithm known as Q-learning [WD92]. Q-

learning was an off-policy algorithm that improves a policy not actually

being used to generate the training episodes. For instance an algorithm that

uses a policy that randomly selects actions to learning the optimal Q func-

tion is an example of an off-policy algorithm. Once the optimal Q function

has been determined, one would then use it to derive the optimal policy that

would subsequently be used to control the process. The original off-policy

3. LEARNING OPTIMAL ACTION POLICIES 321

Q-learning algorithm [WD92] relies on the following recursion to approxi-

mate the Q function

Q̂(sk, ak) ← Q̂(sk, ak)

+α
[
rk+1 + γmax

a
Q̂(sk+1, a)− Q̂(sk, ak)

]
(46)

where ak = π(sk) is generated by some policy. In this recursion, the learned

state action function, Q̂, is trying to directly approximate Q∗, rather than Qπ

for a specific policy π being used to generate the episodes. This approach

to TD-learning greatly simplified the convergence analysis of the algorithm,

thereby providing the first convergence proofs for TD-type algorithms[WD92]

We are now going to illustrate Q-learning on the Frozen Lake environ-

ment. As before, we start by initializing Gym’s Frozen Lake Gym environ-

ment.

import gym

import random

import numpy as np

env = gym.make("FrozenLake-v1", is_slippery=True, render_mode="ansi")

env.reset()

We then run the Q-learning algorithm in equation (46) using an ϵ-greedy

policy with α = 0.5, γ = 0.9 and ϵ = 1.0 for 1500 episodes. So this may

be viewed as a partially on-policy version of Q-learning, rather than a fully

off-policy version. The use of the on-policy version does result in much

faster convergence of the algorithm. After each episode we subtract 0.001

from ϵ so that as time goes on we begin to taking policy actions in a more

greedy manner.

We re-initialize the Q-table

qtable = np.zeros((env.observation_space.n, env.action_space.n))

reward_lst[]

Hyperparameters

episodes = 1500 # Total number of episodes

num_steps = 1000

alpha = 0.5

322 9. DEEP REINFORCEMENT LEARNING

gamma = .9

epsilon = 1.0

epsilon_decay = .001

Training

for iter in range(episodes):

s = env.reset()[0]

done = False

if iter%100==0:

print(iter)

for steps in range(num_steps):

#epsilon-greedy

if random.uniform(0,1) < epsilon:

a = env.action_space.sample()

else:

a = np.argmax(qtable[s])

#take a step

s_new, reward, term, trunc, info = env.step(a)

Update Q(s,a)

qtable[s, a] = qtable[s, a] + alpha *

(reward + gamma * np.max(qtable[s_new]) - qtable[s, a])

s = s_new

update success table

if term:

epsilon = max(epsilon - epsilon_decay, 0)

if reward:

print(str(iter)+’ success - ’,end="")

break

reward_list.append(reward)

The following script outputs the learned Q-function, value function and

the optimal policy. The value function and optimal policy are shown on

the left side of Fig. 6. This figure shows that the value function determined

by Q-learning is not the same as that obtained using the Policy Iteration.

The policy iteration value function (left hand side) is the true value func-

tion since it was obtained using our prior knowledge of the state transition

probabilities. If we had run Q-learning for many more iterations, it should

3. LEARNING OPTIMAL ACTION POLICIES 323

converge to the true value function, but that time might be prohibitively

long. Moreover, in looking at the Q-learning value function, we see that it

really only identified a single path around the first ice hole in state 5. What

this shows is that we simply did not run the learning algorithm long enough

to fully explore the state space.

print(’===’)

print(’Q-table after training:’)

print(qtable)

value = np.max(qtable,1)

print(’===’)

print(’Value Function after training:’)

print(value)

print(’===’)

print(’Optimal Policy after training’)

policy=np.argmax(qtable,1)

print(policy)

#===

#Q-table after training:

#[[6.89339870e-02 7.77818251e-03 7.87500113e-03 7.57177488e-03]

[5.57130344e-03 5.15946469e-03 6.46200431e-03 4.71729734e-02]

[6.04461778e-03 6.41147999e-03 6.48856569e-03 2.63501542e-02]

[4.20343071e-03 3.49276892e-03 3.17097517e-03 1.30104292e-02]

[1.39291968e-01 7.88339371e-03 7.20365848e-03 6.53618787e-03]

[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]

[1.82348555e-03 4.69839847e-04 3.35633562e-02 2.44303585e-03]

[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]

[1.61179819e-02 1.22447986e-02 1.26201540e-02 1.80753711e-01]

[2.07325529e-02 3.01033340e-01 1.28806604e-02 1.57001918e-02]

[9.75764351e-02 9.51369934e-03 9.17115126e-03 7.78605619e-03]

[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]

[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]

[7.01654757e-02 5.72436835e-02 3.45159006e-01 7.97923902e-02]

[1.67523873e-01 1.50890356e-01 6.89571115e-01 1.68932401e-01]

[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]]

#===

#Value Function after training:

#[0.06893399 0.04717297 0.02635015 0.01301043 0.13929197 0.

0.03356336 0. 0.18075371 0.30103334 0.09757644 0.

0. 0.34515901 0.68957111 0.]

324 9. DEEP REINFORCEMENT LEARNING

#===

#Optimal Policy after training

#[0 3 3 3 0 0 2 0 3 1 0 0 0 2 2 0]

After learning the optimal Q function, we determine the actual action

policy and then evaluate how well it did. That evaluation generated 1000

episodes and counted the percentage of times the agent successfully reached

the destination. The output from this script showed a 75% success rate,

which is ”close”, though certainly less than the 82% optimal success rate

computed using the value iteration. So that even though our Q-learning

session did not learn the optimal value function, it did learn enough to sig-

nificantly outperform a purely random action policy.

episodes = 1000

nb_success = 0

for iter in range(episodes):

delt = int(episodes/10)

if iter%delt==0:

print(str(iter)+"-",end="")

s = env.reset()[0]

while not done:

a = np.argmax(qtable[s])

s_new, reward, term, trunc, info = env.step(a)

s = s_new

if term:

nb_success += reward

break

#0-100-200-300-400-500-600-700-800-900-

#Success rate = 74.9%

4. DEEP Q LEARNING (DQN) 325

FIGURE 6. Value function and policy obtained using Value-

Iteration for the Frozen Lake environment (right) and Q-

learning (left)

4. Deep Q Learning (DQN)

Notice that the preceding sections discussed Reinforcement Learning with-

out ever referring to neural networks. Deep Reinforcement Learning (DRL)

uses a deep neural network to approximate the optimal state-action value

function, Q∗. In regular Q-learning, the Q∗ function is represented as a ta-

ble. Deep Q learning represents the Q∗ function as a neural network that

maps the environment’s state, s, onto the Q value for each action in the ac-

tion space. A deep Q network agent or DQN agent is one that uses such a

neural network to estimate Q∗.

Neural networks have been used in Reinforcement Learning since 1995

[T+95] where a neural network was used with TD-learning to play backgam-

mon. This early demonstration obtained impressive results by handcrafting

features that simplified the training problem. The significant advance that

sparked recent interest in deep reinforcement learning appeared in 2013

[MKS+13]. That paper demonstrated the use of convolutional neural net-

works called a DQN agent that did not require prior feature engineering.

The DQN agent was trained to play the entire suite of Atari video games.

326 9. DEEP REINFORCEMENT LEARNING

That training was done without prior feature engineering and taught itself

features that could be used for all games made by Atari. The DQN agent

took raw input images from the game’s video screen as input and used that

to select game policies.

FIGURE 7. Performance of DQN on Atari Video Games

[MKS+13]

The DQN agent in [MKS+13] out performed professional human game

testers on many of the Atari games. Fig. 7 was taken from [MKS+13] and

lists those games on which DQN outperformed professional human testers.

The screen image in Fig. 7 showed the raw input image used by the DQN

4. DEEP Q LEARNING (DQN) 327

agent in playing Ms. Pacman. The figure’s performance measure was ex-

pressed as a percentage

100× DQN score - random play score
human score - random play score

.

The figure shows that DQN often performed better than professional game

testers.

The DQN agent can be instantiated as a Python class object to facil-

itate its interaction with Gym. The remainder of this section shows how

this might be done for the FrozenLake environment. The DQN agent is

trained using past agent interactions with the environment that have been

saved into a first-in first-out replay buffer. In particular, each interaction is

represented as a tuple

(sk, ak, rk+1, sk+1)

that represents that environmental reward and state, rk+1 and sk+1, returned

to the DQN agent for taking action ak when the environment is in state

sk. This tuple is popped onto a FIFO queue (the replay buffer) of finite

length. The DQN agent then uses a randomly selected batch of tuples in the

replay buffer for a single step of the backpropagation algorithm updating

the agent’s weights.

The DQN agent takes the current state, s, and outputs the Q∗ value for

each action a ∈ A. This means that the model is trained to solve a multi-

variate regression problem, so the loss function is the mean squared error

(MSE) between the optimal Q function, Q∗, and the model’s estimated Q

value, Q̂. The problem, of course, is that we do not really know the optimal

Q-function. From Bellman’s equation, we know that the optimal Q function

satisfies

Q∗(s, a) = Es′∈s

[
r(s, a, s′) + γmax

a′∈A
Q∗(s′, a′)

]
.

The expectation may be approximated by the sample mean evaluated over

a minibatch of size M drawn from the replay buffer and rather than using

328 9. DEEP REINFORCEMENT LEARNING

Q∗(s′, a′) on the righthand side of the equation we use the current estimated

state-action function Q̂ in the above equation. This means that the loss

function to be minimized by backpropagation has the following form

L(w) =
1

M

M∑
k=1

(
rk+1 + γmax

a′∈A
Q̂w(sk+1, a)− Q̂w(sk, ak)

)2

where w represents the trainable parameters of the neural network and Q̂w

denotes the state-action valued predicted by the neural network with weights

w. In other words the target we are using to train our model is

target = rk+1 + γmax
a′∈A

Q̂w(sk+1, a).(47)

The sample average is computed from a minibatch of tuples, (sk, ak, rk+1, sk+1)

drawn from the replay buffer.

We will now illustrate how one might implement a DQN agent in Python

and Keras. Note that this is not the most efficient implementation of the

DQN agent. Some of the deep learning frameworks like TensorFlow pro-

vide DQN agent modules (i.e. tf agent) that hide most of the functional-

ity of the agent from the user. Our purpose is to show how one might define

an agent class object and then demonstrate its use in solving the FrozenLake

environment provided by Gym.

The first thing we do in our notebook is initialize the FrozenLake envi-

ronment and import the Python modules used in the notebook.

import gym

import random

import numpy as np

import matplotlib.pyplot as plt

from keras.optimizers import Adam

from keras.layers import Dense

from keras.models import Sequential

from collections import deque #queue object for replay buffer

env = gym.make("FrozenLake-v1", is_slippery=False, render_mode=’ansi’)

train_episodes = 1000

test_episodes = 100

4. DEEP Q LEARNING (DQN) 329

max_steps = 300

state_size = env.observation_space.n

action_size = env.action_space.n

batch_size = 32

env.reset()

env.render()

The main thing we need to do is create an Agent class object. This

object will encapsulate the DQN agent to be trained. Aside from the ba-

sic parameters, the replay buffer will be a private object (self.memory)

maintained by the agent object.

class Agent:

def __init__(self, state_size, action_size):

self.memory = deque(maxlen=2500)

self.learning_rate = 0.001

self.epsilon = 1

self.max_eps = 1

self.min_eps = 0.01

self.eps_decay = 0.001/3

self.gamma = 0.9

self.state_size = state_size

self.action_size = action_size

self.epsilon_lst=[]

self.model = self.buildmodel()

The agent object has a number of methods to support its interaction with

the Gym environment. The main actions regarding this interaction are de-

fined below. The buildmodel methods builds the DQN neural network.

In this case our model is a sequential network with two hidden layers. The

hidden layers each have 32 nodes and the number of nodes in the output

layer equals the number of actions. As discussed above, this model is com-

piled using the MSE loss function and in this case we will use an Adam opti-

mizer. The main method used to interact with the environment are action

which implements an ϵ-greedy policy.

def buildmodel(self):

model = Sequential()

model.add(Dense(32, input_dim=self.state_size, activation="relu"))

330 9. DEEP REINFORCEMENT LEARNING

model.add(Dense(32, activation = "relu")

model.add(Dense(self.action_size, activation="linear"))

model.compile(loss = "mse", optimizer = Adam(lr=self.learning_rate))

return model

def action(self, state):

if np.random.rand() > self.epsilon:

return np.random.randint(0,4)

return np.argmax(self.model.predict(state, verbose=0))

def pred(self, state):

return np.argmax(self.model.predict(state, verbose=0))

One of the main jobs of the DQN object is to encapsulate the replay

buffer and provide tools managing the buffer. The replay buffer is instanti-

ated as a private deque object called self.memory. The main methods

working with the replay buffer are

• add memory pops the current tuple (sk, ak, rk+1, sk+1) onto the

buffer.
def add_memory(self, new_state, reward, done, state, action):

self.memory.append((new_state, reward, done, state, action))

• replay is a method that pulls a mini-batch from the replay buffer

and then loops through each tuple in the minibatch to compute the

estimated target using equation (47) and then use that to update

the DQN neural network’s weights. In other words, we perform a

single step of backpropagation for every tuple in the minibatch.
def replay(self, batch_size):

minibatch = random.sample(self.memory, batch_size)

for new_state, reward, done, state, action, in minibatch:

target = reward

if not done:

target = reward +

self.gamma*np.amax(self.model.predict(new_state,verbose=0))

target_f = self.model.predict(state,verbose=0)

target_f[0][action] = target

self.model.fit(state, target_f, epochs=1, verbose=0)

if self.epsilon > self.min_eps:

4. DEEP Q LEARNING (DQN) 331

self.epsilon = (self.max_eps - self.min_eps)*

np.exp(-self.eps_decay*episode)+ self.min_eps

self.epsilon_lst.append(self.epsilon)

The remaining methods for Agent object (load and save) are used to

save or reload the trained model’s weights from a file.

We can now build the DQN agent and begin training it. The main training

loop is shown in the following script. The script executes a number of

episodes. Each episode executes for a fixed number of steps, or until the

agent reaches a terminal state. The agent uses the ϵ-greedy policy based on

the current estimated Q∗ to generate a tuple and that tuple is popped into

the replay buffer. Once the episode is done, we then replay the buffer.

Recall that replaying the buffer really corresponds to using the samples in a

minibatch to update the neural network model weights.

reward_lst=[]

for episode in range(train_episodes):

state= env.reset()[0]

state_arr=np.zeros(state_size)

state_arr[state] = 1

state= np.reshape(state_arr, [1, state_size])

reward = 0

done = False

for t in range(max_steps):

env.render()

action = agent.action(state)

new_state, reward, done, truncate, info = env.step(action)

new_state_arr = np.zeros(state_size)

new_state_arr[new_state] = 1

new_state = np.reshape(new_state_arr, [1, state_size])

agent.add_memory(new_state, reward, done, state, action)

state= new_state

if done:

print(f’Episode: {episode:4}/{train_episodes} and step: {t:4}.

Eps: {float(agent.epsilon):.2}, reward {reward}’)

break

reward_lst.append(reward)

332 9. DEEP REINFORCEMENT LEARNING

if len(agent.memory)> batch_size:

agent.replay(batch_size)

print(’ Train mean % score= ’, round(100*np.mean(reward_lst),1))

We ran this training loop for 1000 episodes. The output from the script

shows the reward obtained from that episode. It is important to note that the

output shows more positive rewards (1.0) as we train longer, thereby indi-

cating that we are learning how to find the FrozenLake’s desired terminal

state.

Once trained, we can then use the trained DQN agent to independently

test how well our learning policy reached the goal.

test

test_wins=[]

for episode in range(test_episodes):

state = env.reset()[0]

state_arr=np.zeros(state_size)

state_arr[state] = 1

state= np.reshape(state_arr, [1, state_size])

done = False

reward=0

state_lst = []

state_lst.append(state)

print(’******* EPISODE ’,episode, ’ *******’)

for step in range(max_steps):

action = agent.pred(state)

new_state, reward, done, truncate, info = env.step(action)

new_state_arr = np.zeros(state_size)

new_state_arr[new_state] = 1

new_state = np.reshape(new_state_arr, [1, state_size])

state = new_state

state_lst.append(state)

if done:

print(reward)

env.render()

break

5. POLICY GRADIENT METHODS - REINFORCE AND ACTOR-CRITIC 333

test_wins.append(reward)

env.close()

print(’ Test mean % score= ’, int(100*np.mean(test_wins)))

In this case we tested the model for 100 episodes and found that the

learned policy was successful 100% of the time. This is to be expected here

because we used the ”deterministic” FrozenLake environment. It is also

worth looking at the training score. This is shown below in Fig. 8. The

training score is the ”reward” received at the end of each episode. What

this shows is that the likelihood of receiving a reward of 1.0 (i.e. getting to

the desired destination) becomes more likelihood the longer we train. This

graph therefore shows that our training procedure is working well.

FIGURE 8. Success rate for DQN agent on FrozenLake

(non-slippery)

5. Policy Gradient Methods - REINFORCE and Actor-Critic

All of the preceding RL algorithms (SARSA, Q-learning, DQN) were based

on first learning the value function and then determining the optimal policy.

These algorithms are therefore referred to as value gradient methods. An-

other approach to RL learns a model for the policy directly. In this case the

policy is written as π(a | s, θ) where θ is a set of parameters that we need

334 9. DEEP REINFORCEMENT LEARNING

to learn. Reinforcement learning algorithms that learn a model for the pol-

icy are called policy gradient methods. In this case we define a performance

measure J(θ) for the policy model and then use gradient ascent to find those

parameters θ that maximize that performance measure

θt+1 = θt + α∇̂θJ(θt)

where ∇̂θJ(θt) is a stochastic estimate whose expectation approximates the

gradient of J(θ). Policy gradient methods are methods that learn a model

for the action policy, π(a|s, θ). Some of these methods methods also train

a model for the value function as well. These algorithms are called actor-

critic methods. All of these algorithms are referred to as policy gradient

methods, whether or not they also learn an approximate value function.

One advantage that policy-gradient methods have over value-gradient

methods is that the approximate policy automatically ”explores” the state

space since the policy π(a|s, θ) is stochastic. This means we don’t have to

use ϵ-greedy strategies whose randomized ϵ move may be really very poor.

Another important advantage of policy gradient methods is that the policy

function π(a|s, θ) may be much simpler than the value function model and

so will be easier to learn. In addition to this, it is somewhat easier to inject

prior information about the process into a control policy than a learned value

function.

The policy function π(a | s, θ) can be parameterized in any way we wish,

we simply need to make sure it is differentiable with respect to its parame-

ters. If the action and state spaces are discrete and not too large, then one

can form a set of parameterized numerical preferences, h(s, a, θ) ∈ R for

each state-action pair. The actions with the highest preference in each state

are given the highest probabilities of being selected using, for example, a

soft max distribution function

π(a | s, θ) = eh(s,a,θ)∑
b e

h(s,b,θ)
.

5. POLICY GRADIENT METHODS - REINFORCE AND ACTOR-CRITIC 335

These preferences, h(s, a, θ), can be parameterized in many ways. They

many be computed by a deep neural network, or they could simply be linear

functions,

h(s, a, θ) = θTx(s, a)

of a predefined set of feature vectors x(s, a). The choice of these prefer-

ence functions therefore represents a way to inject prior information into

the training process that can help reduce the complexity of the learning

problem.

Let us consider an episodic version of a policy gradient method where

the policy is updated after an episode has been completed. We will define

the performance function as the value function from the initial state s0.

J(θ) = V πθ(s0)

where V πθ is the true value function for policy πθ. In the following deriva-

tion we assume no discounting (i.e. γ = 1) because it makes the derivation

much more complicated without providing any greater insight into what is

being done. The basic result we will establish is the policy gradient equa-
tion

∇θJ(θ) ∝
∑
s

µ(s)
∑
a

Qπ(s, a)∇θπ(a| sθ)(48)

where µ(s) is the fraction of time spent in state s over the given episode and

Qπ(s, a) is the state-action value function.

To establish this result it will first be useful to obtain an explicit expres-

sion for µ(s). In particular, let h(s) denote the probability that an episode

begins in state s and let η(s) denote the number of time steps, on average,

the system is in state s in a single episode. We say time is spent in state s

if the episode starts in s or if transitions are made into s from a preceding

state in which time has been spent. This means, therefore, that η(s) satisfies

η(s) = h(s) +
∑
s

η(s)
∑
a

π(a | s)p(s | s, a)

336 9. DEEP REINFORCEMENT LEARNING

for all s ∈ S. This system of equations can be solved for the expected

number of visits, η(s) and the fraction of time spent in each state can then

be written as

µ(s) =
η(s)∑
s′ η(s

′)
, for all s ∈ S.(49)

We will need to use this equation in our derivation of the policy gradient

equation (48).

To simplify notation, our following derivation drops the explicit depen-

dence of π on θ. We first note that the gradient of the value function can be

written in terms of the state action value function.

∇V π(s) = ∇

[∑
a

π(a | s)Qπ(s, a)

]
, for all s ∈ S

=
∑
a

[∇π(a | s)Qπ(s, a) + π(a | s)∇Qπ(s, a)]

=
∑
a

[
∇π(a|s)Qπ(s, a) + π(a|s)∇

∑
s′,r

p(s′, r | s, a)(r + V π(s′))

]

=
∑
a

[
∇π(a|s)Qπ(s, a) + π(a|s)

∑
s′

p(s′|s, a)∇V π(s′)

]
.

We take this last equation and unroll it by expanding out∇V π(s′) to get

∇V π(s) =
∑
a

[
∇π(a|s)Qπ(s, a) + π(a|s)

∑
s′

p(s′|s, a)

∑
a′

[
∇π(a′, s′)Qπ(s′, a′) + π(a′|s′)

∑
s′′

p(s′′|s′, a′)∇V π(s′′)

]]

and if we continue unrolling we finally get

∇V π(s) =
∑
x∈S

∞∑
k=0

Pr(s→ x, k, π)
∑
a

∇π(a|x)Qπ(x, a)

5. POLICY GRADIENT METHODS - REINFORCE AND ACTOR-CRITIC 337

where Pr (s→ x, k, π) is the probability of transitioning from state s to

state x in k steps under policy π. We then obtain

∇J(θ) = ∇V π(s0)

=
∑
s

(
∞∑
k=0

Pr(s0 → s, k, π)

)∑
a

∇π(a|s)Qπ(s, a).

Since the average time spent in state s is η(s) =
∞∑
k=0

Pr(s0 → s, k, π) we

can express the gradient as

∇J(θ) =
∑
s

η(s)
∑
a

∇π(a|s)Qπ(s, a)

=
∑
s′

η(s′)
∑
s

η(s)∑
s′ η(s

′)

∑
a

∇π(a|s)Qπ(s, a).

If we then use equation (49) for µ(s) (the fraction of time spent in s) we

obtain

∇J(θ) =
∑
s′

η(s′)
∑
s

µ(s)
∑
a

∇π(a|s)Qπ(s, a)

∝
∑
s

µ(s)
∑
a

∇π(a|s)Qπ(s, a)

thereby giving us the policy gradient equation (48). We will use this equa-

tion in developing our first policy-gradient algorithm known as REINFORCE

[Wil92].

338 9. DEEP REINFORCEMENT LEARNING

5.1. REINFORCE: Monte Carlo Policy Gradient: Recall from equa-

tion (48) that

∇J(θ) ∝
∑
s

µ(s)
∑
a

Qπ(s, a)∇π(a|s, θ)

= Eπ

[∑
a

Qπ(St, a)∇π(a|St, θ)

]

= Eπ

[∑
a

π(a|St, θ)Q
π(St, a)

∇π(a|St, θ)

π(a|St, θ)

]

= Eπ

[
Qπ(St, At)

∇π(a|St, θ)

π(a|St, θ)

]
= Eπ

[
Gt
∇π(a|St, θ)

π(a|St, θ)

]
where Gt is the total return for the episode. Using this last equation for

∇J(θ) we obtain the following gradient ascent update for the model’s pa-

rameter

θt+1 = θt + αGt
∇π(At|St, θt)

π(At|St, θt)

= θt + αGt ln π(At|St, θt) .

The last equation comes about using the fact that∇ lnx = ∇x
x

.

FIGURE 9. Cart Pole System

5. POLICY GRADIENT METHODS - REINFORCE AND ACTOR-CRITIC 339

We are now going to demonstrate an implementation of the REINFORCE

algorithm on a Cart Pole system [BSA83]. The code in Fig. 9 is used

to set up the cart pole system in the Gym environment. This system is

a benchmark problem in RL learning and in traditional feedback control.

Fig. 9 shows a sideview of the system. The physical system consists of a

4 wheeled cart whose wheels are actuated by a DC servomotor. The ”pen-

dulum” is attached to the cart in a manner that allows it to only move in a

single plane. It is assume there is an optical encoder on the pendulum that

measures the angle θ of the pendulum with respect to the vertical. We also

have an optical encoder on one of the cart’s wheels that measures the angle

of the motor’s shaft. By knowing the radius of the wheels it then becomes

possible to map the motor’s shaft angle onto the cart’s horizontal position,

x. The objective of the problem is to determine the applied force, F , that

the motor must deliver on the cart so the pendulum angle, θ, remains within

a desired neighborhood of the vertical position and such that the cart’s po-

sition, x, remains within a desired box. There are therefore 4 states, θ, θ̇, x,

and ẋ. These dynamic variables satisfy the following second order differ-

ential equations

θ̈ =
(M +m)g sin θ − cos θ

[
F +mℓθ̇2 sin θ

]
(M +m)

ẍ =

(
F +mℓ

[
θ̇2 sin θ − θ̈ cos θ

])
(M +m)

where M is the cart’s mass, m is the mass of the pendulum, g is gravitational

accerlation, F is the force applied to to the cart, and ℓ is the length of the

pendulum.

The objective of the RL agent is to control the cartpole system so the

angular position of the pendulum remains with ±12◦ from vertical and the

linear position of the cart is within ±2.4 meters of its starting position. So

the state space is S ⊂ R4 and the states s are real-valued vectors of di-

mension 4. The force F will be quantized into either move left or move

340 9. DEEP REINFORCEMENT LEARNING

right, with the same constant force. So the action space, A, of this prob-

lem consists of two values (R or L). In particular we will one-hot encode

these actions as

[
1

0

]
or

[
0

1

]
. The reward function will be 1 every time

instant the state stays within the desired bounding box θ ∈ [−12◦, 12◦] and

x ∈ [−2.4, 2.4]. If the states are outside of this box, then the episode is over.

We will also terminate training after 500 time steps, so that the maximum

aggregate reward (return) that can be received is 500. We will implement

the REINFORCE algorithm using Keras/Tensorflow on the Cart Pole envi-

ronment in OpenAI Gym. We will run the REINFORCE algorithm until one

of two termination conditions is satisfied. The first termination condition is

a maximum limit of 1000 on the number of training episodes. The second

termination condition is defined with regard to the kth episode’s running

reward, Rk, defined by the recursion

Rk = 0.05 ∗Gk + (1− 0.05)Rk−1

for k = 1, . . . , 1000 with R0 = 0 and Gk being the aggregate reward (re-

turn) in the kth episode. The second termination condition stops training

when Rk is greater than 99% of the maximum number of steps per episode.

Our notebook for the REINFORCE algorithm starts by creating the cart-

pole environment using the script in Fig. 9. We then define the parameters

for our problem.

state_shape = env.observation_space.shape

action_shape = env.action_space.n

gamma = 0.98 #discounting rate

alpha = 1.e-4 #learning rate of policy gradient update

learning_rate = 0.005 # learning rate for optimizer

max_steps_per_episode = 500

N_EPISODES = 1000

termination_condition = 0.99

We will use a simple neural network to model the action policy. In par-

ticular, we use a sequential model with two hidden layers of 24 and 6 nodes.

These hidden dense layers use a ReLu activation function. The output dense

5. POLICY GRADIENT METHODS - REINFORCE AND ACTOR-CRITIC 341

layer has two nodes (one for the probability of each action) with a softmax

activation function.

model = Sequential()

model.add(Dense(24, input_shape = state_shape, activation="relu"))

model.add(Dense(6, activation="relu"))

model.add(Dense(action_shape, activation = "softmax"))

Rather than using the compile method, we will simply declare an opti-

mizer and then build our own model training routine using the GradientTape

class. We’ll declare several lists for logging the training process. We will

also use a modified MSE loss function called the Huber loss. This loss

function is slightly less sensitive to outliers.

optimizer = keras.optimizers.legacy.Adam(learning_rate=learning_rate)

huber_loss = keras.losses.Huber()

action_probs_history = []

rewards_history = []

episode_reward_history = []

running_reward_history = []

We are now ready to define our main training loop which is a while loop

that we break out of when one of the two termination conditions described

above is satisfied.

running_reward = 0

episode_count = 0

while True:

state = env.reset()[0] #reset the environment

episode_reward = 0

with tf.GradientTape() as tape: #record ops for backprop

for timestep in range(1, max_steps_per_episode+1):

state = state.reshape((1,4))

#sample action from policy

action_probs = model(state) #get action probabilities

action = np.ranodm.choice(action_shape, p=np.squeeze(action_probs))

action_probs_histor.append(tf.math.log(action_probls[0, action]))

#apply sampled action to environment

state, reward, done, trunc, info = env.step(action)

rewards_history.append(reward)

342 9. DEEP REINFORCEMENT LEARNING

episode_reward += reward

if done:

break

#update running reward used for termination

running_reward = 0.05 *episode_reward + (1-0.05)*running_reward

#compute expected value from rewards

returns = []

discounted_sum = 0

for r in rewards_history[::-1]:

discounted_sum = r + gamma * discounted_sum

returns.insert(0,discounted_sum)

#calculate loss values

history = zip(action_probs_history, returns)

actor_losses = []

for log_prob, ret in history:

actor_losses.append(-log_prob * ret)

loss_value = sum(actor_losses)

#compute gradient and update weights

grads = tape.gradient(loss_value, model.trainable_variables)

optimizer.apply_gradients(zip(grads, model.trainable_variables))

action_probs_history.clear()

rewards_history.clear()

#logging

episode_reward_history.append(episode_reward)

running_reward_history.append(running_reward)

episode_count += 1

#termination conditions

if episode_count % 10 == 0:

template = "running/episode reward: {:.2f}/{:.2f} at episode {}"

print(template.format(running_reward, episode_reward, episode_count))

if (episode_count > N_EPISODES):

print("FINISHED! - maxiter")

break

if (running_reward>max_steps_per_episode*termination_condition):

print(f"FINISHED! - termination condition - {episode_count}:{running_reward}")

break

5. POLICY GRADIENT METHODS - REINFORCE AND ACTOR-CRITIC 343

The result from running this script is shown in Fig. 10. This figure plots

the running reward (dashed red line) and the episode rewards (blue dots) for

all episodes. As we can see the RL algorithm has a great deal of variance in

its average reward, but eventually the running reward reached the 99% level

of 495, needed to terminate the session. So this policy gradient algorithm

indeed appears to be learning a control policy that can keep the cartpole

state within the box for nearly 500 time steps.

FIGURE 10. (left) results for REINFORCE (right) results

for Actor-Critic

5.2. Actor-Critic Reinforcement Learning: The policy gradient equa-

tion (48) can be generalized to compare the state-action value function,

qπ(s, a) against a baseline function of state, b(s).

∇θJ(θ) ∝
∑
s

µ(s)
∑
a

(Qπ(s, a)− b(s))∇θπ(a|s, θ).

This baseline can be anything, even a random variable, as long as it is inde-

pendent of the action a. Using arguments similar to derive the REINFORCE

algorithm, we can develop the following policy update

θt+1 = θt + α (Gt − b(St)) lnπ(At|St, θt).

By using a good ”baseline”, one can improve the learning speed. Obviously

the natural choice for the baseline is an estimate of the state value function

344 9. DEEP REINFORCEMENT LEARNING

V̂ (St,w) where w is the weight vector parameterizing that value function

estimate.

Actor-Critic methods use a deep neural network to compute the value

function estimate V̂ (St,w). In particular, one-step actor-critic methods

may be seen as using TD methods to form the estimate V̂ (St,w). In this

case, then the update of the policy takes the form

θt+1 = θt + α
(
Gt:t+1 − V̂ (St,w)

) ∇π(At |St, θt)

π(At |St, θt)

= θt + α
(
Rt+1 + γV̂ (St+1,w)− V̂ (St,w)

) ∇π(At |St, θt)

π(At |St, θt)

= θt + αδt
∇π(At |St, θt)

π(At |St, θt)

where

δt = Rt+1 + γV̂ (St+1,w)− V̂ (St,w).

This equation shows the update performed by the ”policy actor”. The up-

date for the critic estimating V̂ (St,w) is done using a standard TD(0) method.

We can implement an actor-critic algorithm on the cartpole system using

much of the same script we used for the REINFORCE algorithm in the

preceding subsection. The main difference will be the structure of a model

whose base part is used by both the critic and actor. This model is shown

in the following script. The state, s, input is connected through a dense

layer of 64 nodes that is common to both the actor and critic. There is then

one additional dense layer for each actor and critic. So this model has two

different types of outputs; an output representing the action probabilities,

π(a|s) and an output that estimates the state value function V̂ (s).

num_inputs = 4

num_actions = 2

num_hidden = 64

inputs = layers.Input(shape(num_inputs,))

common = layers.Dense(num_hidden, activation="relu")(inputs)

action = layers.Dense(num_actions, activation="softmax")(common)

5. POLICY GRADIENT METHODS - REINFORCE AND ACTOR-CRITIC 345

critic = layers.Dense(1)(common)

model = keras.Model(inputs= inputs, outputs = [action, critic])

The structure of the training loop is very similar to the code we showed

earlier for the REINFORCE algorithm. There is a main while True:

loop that starts by fetching the initial environment state and then uses a

GradientTape object to record the computations done during the run for

at most 500 time steps. We then call the model to generate the actor’s action

probabilities (actor probs) and value function estimate (critic value).

The action probabilities are used to randomly select an action which is then

fed to the environment. The environment then returns the next state (s′), the

reward, and a Boolean flag (done) indicating if the system state fell out-

side of the admissible box. This example uses a modified MSE loss function

for the critic called a Huber loss function. The actor’s loss function is the

same as that used for the REINFORCE algorithm. These loss functions are

less sensitive to outliers. We then compute the gradient and apply it to the

actor/critic model. The full training loop is shown below.

while True: # Run until solved

state = env.reset()[0]

episode_reward = 0

with tf.GradientTape() as tape:

for timestep in range(1, max_steps_per_episode+1):

state = state.reshape((1,4))

action_probs, critic_value = model(state)

critic_value_history.append(critic_value[0, 0])

action = np.random.choice(num_actions, p=np.squeeze(action_probs))

action_probs_history.append(tf.math.log(action_probs[0, action]))

Apply the sampled action in our environment

state, reward, done, trunc, info = env.step(action)

rewards_history.append(reward)

episode_reward += reward

if done:

break

Update running reward to check condition for solving

346 9. DEEP REINFORCEMENT LEARNING

running_reward = 0.05 * episode_reward + (1 - 0.05) * running_reward

Calculate expected value from rewards

returns = []

discounted_sum = 0

for r in rewards_history[::-1]:

discounted_sum = r + gamma * discounted_sum

returns.insert(0, discounted_sum)

Normalize

returns = np.array(returns)

returns = (returns - np.mean(returns)) / (np.std(returns) + eps)

returns = returns.tolist()

Calculating loss values to update our network

history = zip(action_probs_history, critic_value_history, returns)

actor_losses = []

critic_losses = []

for log_prob, value, ret in history:

diff = ret - value #this is where baseline = value

actor_losses.append(-log_prob * diff)

critic uses a Huber loss function

critic_losses.append(

huber_loss(tf.expand_dims(value, 0), tf.expand_dims(ret, 0))

)

Backpropagation

loss_value = sum(actor_losses) + sum(critic_losses)

grads = tape.gradient(loss_value, model.trainable_variables)

optimizer.apply_gradients(zip(grads, model.trainable_variables))

Clear the loss and reward history

action_probs_history.clear()

critic_value_history.clear()

rewards_history.clear()

Log details

episode_reward_history.append(episode_reward)

running_reward_history.append(running_reward)

episode_count += 1

if episode_count % 10 == 0:

template = "running/episode reward: {:.2f}/{:.2f} at episode {}"

print(template.format(running_reward, episode_reward, episode_count))

if (episode_count > NUM_EPISODES):

5. POLICY GRADIENT METHODS - REINFORCE AND ACTOR-CRITIC 347

print("FINISHED! - maxiter")

break

if (running_reward>max_steps_per_episode*termination_condition):

print(f"FINISHED! - termination condition - {episode_count}:{running_reward}")

break

The result from this training run is shown on the right side of Fig. 10.

The dashed red line is the running reward and the blue dots are the episode

rewards. While this run eventually satisfies the 99% termination condition

around the 600th episode, we see that it almost met that termination con-

dition around episode 350, after which the running reward dropped down

until it was able to recover. This type of variability is often seen in these RL

training sessions and they highlight an important weakness of RL policies.

The termination condition simply says that the policy was mostly successful

on a consecutive set of random episodes, but we have no analytical guaran-

tees that the policy will be effective on other samples. In particular, we have

no guarantees that an RL policy will stabilize the dynamic environment in

some well defined sense. This is one of the main open questions around RL

methods, how does one go about stabilizing a policy?

APPENDIX A

Probability Review

Probability plays a major role in understanding how deep learning mod-

els can generalize beyond their training data. This appendix reviews those

probability concepts needed to discuss statistical learning theory.

Let Ω be a set of experimental outcomes. Any subset of Ω is called an event.

The set of all events is the power set 2Ω. Two sets, ω1, ω2 ∈ Ω are mutually

disjoint if ω1∩ω = ∅. For any event ω ∈ 2Ω, we define the event probability

by the function P : 2Ω → [0, 1] such that

P (ω) ≥ 0 and P (Ω) = 1.

Moreover, we require that if ω1 and ω2 are any two mutually disjoint events

then

P (ω1 ∪ ω2) = P (ω1) + P (ω2).

We further restrict our attention to any subset (possibly infinite), F , of 2Ω

that is closed with respect to the binary operations of set union and inter-

section. We refer to F as σ-algebra if for any infinite sequence, {ωk}∞k=1 of

pairwise disjoint events in F that

P

(
∞⋃
k=1

ωk

)
=

∞∑
k=1

P (ωk).

With these notational conventions we refer to the triple (Ω,F , P) as a prob-

ability space.

Given the probability space, (Ω,F , P), a random variable (RV) is a

function x : Ω → R that assigns a real number to every outcome in Ω

349

350 A. PROBABILITY REVIEW

such that the set {ω ∈ Ω : x(ω) ≤ x} has a well defined probability mea-

sure. This means that this set is a measurable event in F . The value of

the random variable for outcome, ω ∈ Ω is denoted as x(ω) where we will

routinely denote random variables as boldfaced letters. The probability of

the event {ω ∈ Ω |x(ω ≤ x} is denoted as Fx(x) = P (x). We can further

show that P (x(ω) =∞) = 0 = P (x(ω) = −∞).

The distribution function of RV x is the function Fx : R → [0, 1] such

that

Fx(x) = P ({ω ∈ Ω |x(ω) ≤ x}) = P (x) = Pr{x ≤ x}.

The derivative of the distribution function

fx(x) =
dFx(x)

dx

is called the probability density function of RV x.

Let x be a random variable defined with respect to probability space

(Ω,F , P) with probability distribution Fx. Let g : R → R be a function

and define the new random variable, y = g(x). The probability distribution

of RV y is

Fy(y) = P ({ω ∈ Ω : g(x(ω)) ≤ y})

if g is invertible then we can readily see that

Fy(y) = P
({

ω ∈ Ω : x(ω) ≤ g−1(y)
})

= Fx(g
−1(y))

which expresses the distribution for y in terms of the distribution for x.

The following example shows that some care must be taken in expressing

Fy in terms of Fx. Let y = ax + b where a and b are real constants. The

analytical form of y’s distribution depends upon whether a is positive or

negative. In particular, one can show that

Fy(y) =

{
P
({

ω : x(ω) ≤ y−b
a

})
= Fx

(
y−b
a

)
if a > 0

P
({

ω : x(ω) ≥ y−b
a

})
= 1− Fx

(
y−b
a

)
if a < 0

.

A. PROBABILITY REVIEW 351

The expected value or mean of RV x is

E(x) def
=

∫ ∞

−∞
xfx(x)dx.

Given RV’s x and y defined over the same probability space, then the mean

of y = g(x) is

E(y) =
∫ ∞

−∞
yfy(y)dy =

∫ ∞

−∞
g(x)fx(x)dx = E(g(x)).

The variance of RV x is

σ2 = var(x)
def
=

∫ ∞

−∞
(x− E(x))2fx(x)dx.

A random variable, x, is said to be normally distributed if its density

function is

N(x ; µ, σ2) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
where E(x) = µ and var(x) = σ2. A jointly Gaussian random variables

x : Ω→ Rn has the density

N(x : µ,Σ) =
1

(2π)n/2
1√
|Σ|

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
where µ = E(x) is the mean vector and Σ = E((x − µ)(x − µ)T) is the

random variable’s covariance matrix.

Let A and B be two events in probability space (Ω,F , P). The condi-

tional probability of event A assuming event B has occurred is

P (A |B)
def
=

P (A ∩B)

P (B)
.

If U = {A1, . . . , An} is a partition of Ω and B is any event in F , then the

total probability of event B is

P (B) =
n∑

k=1

P (B |Ak)P (Ak).

352 A. PROBABILITY REVIEW

Two events A and B are said to be independent if P (A∩B) = P (A)P (B).

The joint probability of two events A and B is denoted as

P (A,B) = P (A)P (B |A).

Bayes theorem states that

P (A |B) =
P (B |A)P (A)

P (B)
.

P (A) is called the a priori probability and P (A |B) is called the a poste-

riori probability. The union bound or Boole’s inequality says that for any

two events we have

P (A ∪B) = P (A) + P (B)− P (A ∩B) ≤ P (A) + P (B).

Stochastic Convergence:. Consider a random vector x =
[
x1 x2 · · · xn

]
.

The characteristic function of this random vector is

Mx(λ) = E
{
ejλx

}
= E

{
ej(λ1x1+···+λnxn)

}
where λ =

[
λ1 · · · λn

]
is a real valued vector in Rn. Note that Mx(λ)

may be seen as the Fourier transform of the random variable’s density func-

tion.

If xk are independent with densities fk(xk), then the density of the sum

z = x1 + x2 + · · ·+ xn

can be easily shown to be

fz(z) = fx1(z) ∗ fx2(z) ∗ · · · ∗ fxn(z)

where g ∗ f denotes the convolution integral of the two densities g and f .

This is easily proven from the fact that the Fourier transform of the density

function is its characteristic function.

We are interested in sequences of random variables because we can view

the data set as a sequence

D = {(xk,yk)}Mk=1

A. PROBABILITY REVIEW 353

that is used to select an estimate for the probability distributions in the sys-

tem. In general, these estimates take the form of sums (sample averages)

and so we are interested in how these series converge as their length gets

large. The notion of convergence we use, however, is a probabilistic one.

There are several notions of stochastic convergence

• Convergence with probability 1 (almost everywhere): There is

a set of outcomes, ω, such that

limxk(ω) = x(ω), as k →∞

exists and the probability of the limiting event is 1.

• Convergence in MS sense:

E
{
(xk − x)2

}
→ 0, as k →∞.

• Convergence in Probability:

P {|xk − x| > ϵ} → 0, as k →∞.

• Convergence in Distribution:

Fxk
(x)→ Fx(x), as k →∞.

The relationship between these notions of convergence are that

MS or AE⇒ Probability⇒ Distribution.

The notions of MS and AE convergence may be too strong to discuss gen-

eralization in machine learning problems. So we use the relaxed notion

of convergence in probability when talking about our ability to generalize

a given model. This probabilistic notion of learning is sometimes called

probably almost correct or PAC learning [Val84].

APPENDIX B

Markov Chains

Markov chains a probabilistic models for trials of random experiments

that allow us to consider when the future evolution of the process depends

on current state, rather than the history leading up to that state. We can

formalize this notion as follows. Let {xk : k ≥ 0} be a sequence of

random variables taking values in a finite set X . Since this is a discrete

finite set we will find it convenient to represent it a set of integer indices,

i.e. X = {1, 2, . . . , n}. Further assume that

P (xk+1 = y |x0 = x0,x1 = x1, · · ·xk = x) = P (xk+1 = y |xk = x) = p(x, y)(50)

for all k ≥ 0 and all states x, y, x0,1 , . . . , xk−1 in X . Then {xk | k ≥ 0} is

called a Markov chain with state space X and an n × n transition matrix

P. Assuming that X can be represented (wlog) as a set of positive integers

{1, 2, . . . , n}, then for any x, y ∈ X we have component in the xth row

and yth column of P equal to the transition probability p(x, y) from state x

to state y. Markov chains, therefore, are stochastic processes whose future

state is dependent only upon the present state.

We may think of the Markov chain (X,P) as a dynamical system where

the ”state” at any time k ≥ 0 is a probability distribution over X . The

characterization of this system’s future behavior starts from an initial dis-

tribution. In particular let πx(k) denote the probability of the MC state

being in state x ∈ X at time instant k. We let π(k) denote the probability

row vector (state) of the process at time k and assuming X is a finite set of

positive integers 1, 2, . . . , n, then

π(k) =
[
π1(k) π2(k) · · · πn(k)

]
355

356 B. MARKOV CHAINS

FIGURE 1. Pub Crawl

and the initial distribution for the MC is π(0).

Note that equation (50) may be viewed as asserting that the conditional

distribution of the random future state, xk+1 depends only on the present

state xk and is statistically independent of the past states x0, . . . ,xk−1.

One may think of a Markov chain as a model for jumping from state x to

state y where each jump is governed by the jump probability p(x, y). Note

that p(x, y) is a probability distribution with respect to y. In other words

p(x, y) ≥ 0 and for all x, y ∈ X we have
∑
y∈X

p(x, y) = 1.

Let us consider an example of a MC. We have a friend who travels be-

tween four pubs. We assume the streets connecting the pubs are as shown in

Fig. 1. We can model our friend’s night journey as a Markov chain with the

state space X = {1, 2, 3, 4}. Assuming that after leaving a pub the friend

travels to the next pub down the road, making a uniformly random decision

which road to follow should there be more than one road, then we obtain

B. MARKOV CHAINS 357

the state transition matrix

P =

0 1 0 0

1/3 0 1/3 1/3

0 1/2 0 1/2

0 1/2 1/2 0

Let us suppose that when his pub crawl starts, our friend’s chooses one of

the 4 pubs in a uniformly random manner so the initial distribution is

π(0) =
[
0.25 0.25 0.25 0.25

]
Let us determine the probability that our friend visits all of the pubs in

order. We can readily see that

P (x0 = 1,x1 = 2,x2 = 3,x3 = 4) = π1(0)p(1, 2)p(2, 3)p(3, 4)

=
1

4
× 1× 1

3
× 1

2
=

1

24

Now let us consider the probability that our friend is at a specified pub

y ∈ 1, 2, 3, 4 after he is done visiting the first one. This probability is

P (x1 = y) =
4∑

x=1

p(x, y) =
4∑

x=1

πxp(x, y)

=
[
π1(0) π2(0) π3(0) π4(0)

]

p(1, y)

p(2, y)

p(3, y)

p(4, y)

this is the product of the probability row vector π(0) with the yth column

of the state transition matrix. We can therefore see that the probability row

vector at the first time instant 1 will be

π(1) = π(0)P

These observations suggest the following theorem

358 B. MARKOV CHAINS

Theorem 1: Let P denote the transition matrix of a Markov chain {xk :

k ≥ 0} with initial distribution π. Then

P (xk = y) = yth entry of πPk

and

P (xk = y |x0 = x) = xyth entry of Pk

Proof:. Assume that X = {1, 2, . . . , n}. Let π(k) be the probability

distribution of states at time instant k ≥ 0. Note that clearly

π(1) = πP

π(2) = π(1)P = πP2

...

π(k) = π(n− 1)P = · · · = πPk

So P (xk = y) is the yth entry of πPk.

Now let π be an elementary vector in the sense that for some x ∈ X we

have πx = 1 and πy = 0 for y ̸= x. We can then see that

πPk =
[
pk(x, 1), . . . , pk(x, n)

]
where pk(x, y) = P (xk = y |x0 = x). Note that beause of the special form

of pi, we have πPk being the xth row of Pk and so pk(x, y) is simply the

xyth entry of Pk. ♢

A Markov chain (X,P) is said to be ergodic or irreducible if it is pos-

sible to eventually get from every state to every other state with a positive

probability. Formally this means that for any pair of states x, y ∈ X there

exists a positive constant, N such that the xyth entry of PN is positive. A

Markov chain is said to be regular if some power, N , of its transition ma-

trix has only positive entries. The following theorem is stated without proof

concerning the asymptotic behavior of regular transition matrices.

B. MARKOV CHAINS 359

Theorem: Let P denote the transition matrix of a regular Markov chain

with finite state space, then there exists a constant n × n matrix W such

that

lim
k→∞

Pk = W

and all rows of W have the same strictly positive probability vector.

Since this theorem ensures all rows of W are identical, we can use this

fact to compute W and provide an interpretation for that common row vec-

tor. This is address in the next theorem which is also presented without

proof.

Theorem: Let P be a transition matrix for a regular finite Markov chain

with state space X = {1, 2, . . . , n}. Then the n× n system of linear equa-

tions given by xP = x has a unique probability row vector solution, w

and this solution is the common row in limk→∞Pk. Furthermore, if π is an

arbitrary probability row vector, then

lim
k→∞

πPk = w

Let Pk(x, y) denote the xyth component of Pk. This theorem therefore

states that the long-run probability of being in state y at time k is

n∑
x=1

πxP
k(x, y)

is approimately equal to the yth entry of w for all y. In addition we see that

if w is the common row vector of W then we also have

wPk = w

for all k ≥ 0. This means that if we start with the initial distribution w,

then this represent an equilibrium or stationary distribution for the Markov

chain.

360 B. MARKOV CHAINS

Note that since w satisfies w = wP, then we can see that w is a left

eigenvector of the state transition matrix with associated eigenvalue 1. We

can use this fact to solve for w.

As an example, consider the Markov chain with transition matrix

P =

 1/2 1/4 1/4

1/2 0 1/2

1/4 1/4 1/2

with state space X = {1, 2, 3}. If we look P2 we get

P2 =

 7/16 3/16 3/8

3/8 1/4 3/8

3/8 3/16 7/16

since all components are positive we know P is regular and so we know

the limiting matrix W exists whose rows all have the same value, w. To

see what this common row vector is we solve the linear algebraic equation

xP = x subject to x being a row probability vector. In other words, x1 +

x2 + x3 = 1 and xi ≥ 0. The system of linear algebraic equations is

x1/2 + x2/2 + x3/4 = x1

x1/4 + x3/4 = x2

x1/4 + x2/2 + x3/2 = x3

Solving this 3 by 3 system we get w = x = [2/5, 1/5, 2/5]

Note that for non-negative ergodic chains, this fundamental limit theo-

rem may fail. We really do need the additional restriction of the chain being

regular. However, for ergodic Markov chains with finite state space there

is still a unique stationary probability vector w such that wP = w. This

means that if we used this w as the initial distribution of the chain, then

the chain’s states would have the same distribution for all future times. For

a regular Markov chain the initial distribution w that satisfies wPk = w

may be seen as a long run probability vector for being in various states. For

B. MARKOV CHAINS 361

ergodic chains, the limits of these individual n-step probabilities may not

exist.

Bibliography

[AB17] Martin Arjovsky and Léon Bottou. Towards principled methods for training

generative adversarial networks. arXiv preprint arXiv:1701.04862, 2017.

[ACG+16] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya

Mironov, Kunal Talwar, and Li Zhang. Deep learning with differential pri-

vacy. In Proceedings of the 2016 ACM SIGSAC conference on computer and

communications security, pages 308–318, 2016.

[AM12] Yaser S Abu-Mostafa. Learning from data: a short course. AMLBook,

2012.

[Ang87] Dana Angluin. Learning regular sets from queries and counterexamples. In-

formation and computation, 75(2):87–106, 1987.

[APK03] Baher Abdulhai, Rob Pringle, and Grigoris J Karakoulas. Reinforcement

learning for true adaptive traffic signal control. Journal of Transportation

Engineering, 129(3), 2003.

[BCB14] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural ma-

chine translation by jointly learning to align and translate. arXiv preprint

arXiv:1409.0473, 2014.

[BCM+13] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim

Šrndić, Pavel Laskov, Giorgio Giacinto, and Fabio Roli. Evasion attacks

against machine learning at test time. In Machine Learning and Knowl-

edge Discovery in Databases: European Conference, ECML PKDD 2013,

Prague, Czech Republic, September 23-27, 2013, Proceedings, Part III 13,

pages 387–402. Springer, 2013.

[BCV13] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learn-

ing: A review and new perspectives. IEEE transactions on pattern analysis

and machine intelligence, 35(8):1798–1828, 2013.

[Bel54] Richard Bellman. The theory of dynamic programming. Bulletin of the

American Mathematical Society, 60(6):503–515, 1954.

363

364 BIBLIOGRAPHY

[BHLM19] Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehra-

bian. Nearly-tight vc-dimension and pseudodimension bounds for piece-

wise linear neural networks. The Journal of Machine Learning Research,

20(1):2285–2301, 2019.

[BHMM19] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling

modern machine-learning practice and the classical bias–variance trade-off.

Proceedings of the National Academy of Sciences, 116(32):15849–15854,

2019.

[BHN19] Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and Machine

Learning: Limitations and Opportunities. fairmlbook.org, 2019. http://

www.fairmlbook.org.

[BK96] Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository,

1996. DOI: https://doi.org/10.24432/C5XW20.

[BLM13] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration

inequalities: A nonasymptotic theory of independence. Oxford university

press, 2013.

[BPRS18] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul,

and Jeffrey Mark Siskind. Automatic differentiation in machine learning: a

survey. Journal of Marchine Learning Research, 18:1–43, 2018.

[Bre96] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[BSA83] Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike

adaptive elements that can solve difficult learning control problems. IEEE

transactions on systems, man, and cybernetics, (5):834–846, 1983.

[CGCB14] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio.

Empirical evaluation of gated recurrent neural networks on sequence mod-

eling. arXiv preprint arXiv:1412.3555, 2014.

[Cho17] François Chollet. Xception: Deep learning with depthwise separable con-

volutions. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 1251–1258, 2017.

[Cho21] Francois Chollet. Deep learning with Python. Simon and Schuster, 2021.

[Cov64] Thomas M Cover. Classification and generalization capabilities of linear

threshold units. Technical report, STANFORD RESEARCH INST MENLO

PARK CA MENLO PARK United States, 1964.

[CVMG+14] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bah-

danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning

phrase representations using rnn encoder-decoder for statistical machine

translation. arXiv preprint arXiv:1406.1078, 2014.

http://www.fairmlbook.org
http://www.fairmlbook.org

BIBLIOGRAPHY 365

[CWV+17] Flavio Calmon, Dennis Wei, Bhanukiran Vinzamuri, Karthikeyan Nate-

san Ramamurthy, and Kush R Varshney. Optimized pre-processing for dis-

crimination prevention. Advances in neural information processing systems,

30, 2017.

[CXP+21] Zhong Cao, Shaobing Xu, Huei Peng, Diange Yang, and Robert Zidek.

Confidence-aware reinforcement learning for self-driving cars. IEEE Trans-

actions on Intelligent Transportation Systems, 2021.

[Cyb89] George Cybenko. Approximation by superpositions of a sigmoidal function.

Mathematics of control, signals and systems, 2(4):303–314, 1989.

[DHS11] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods

for online learning and stochastic optimization. Journal of machine learning

research, 12(7), 2011.

[Dwo08] Cynthia Dwork. Differential privacy: A survey of results. In International

conference on theory and applications of models of computation, pages 1–

19. Springer, 2008.

[Fis36] Ronald A Fisher. The use of multiple measurements in taxonomic problems.

Annals of eugenics, 7(2):179–188, 1936.

[FMI83] Kunihiko Fukushima, Sei Miyake, and Takayuki Ito. Neocognitron: A neu-

ral network model for a mechanism of visual pattern recognition. IEEE

transactions on systems, man, and cybernetics, (5):826–834, 1983.

[Fos22] David Foster. Generative deep learning. ” O’Reilly Media, Inc.”, 2022.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT

press, 2016.

[GFS05] Alex Graves, Santiago Fernández, and Jürgen Schmidhuber. Bidirectional

lstm networks for improved phoneme classification and recognition. In

International conference on artificial neural networks, pages 799–804.

Springer, 2005.

[(Go] Tomas Mikolov (Google). Word2vec. https://code.google.com/archive/p/word2vec.

[Goo] Google. Google translate.

[GPAM+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-

versarial nets. Advances in neural information processing systems, 27, 2014.

[HJA20] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilis-

tic models. Advances in neural information processing systems, 33:6840–

6851, 2020.

366 BIBLIOGRAPHY

[Hoc98] Sepp Hochreiter. The vanishing gradient problem during learning recurrent

neural nets and problem solutions. International Journal of Uncertainty,

Fuzziness and Knowledge-Based Systems, 6(02):107–116, 1998.

[Hol18] Matthijs Hollemans. One-stage object detection. blog post at

https://machinethink.net/blog/object-detection/, June 9, 2018.

[Hop82] John J Hopfield. Neural networks and physical systems with emergent col-

lective computational abilities. Proceedings of the national academy of sci-

ences, 79(8):2554–2558, 1982.

[HPS16] Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in su-

pervised learning. Advances in neural information processing systems, 29,

2016.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

[HW62] David H Hubel and Torsten N Wiesel. Receptive fields, binocular interac-

tion and functional architecture in the cat’s visual cortex. The Journal of

physiology, 160(1):106, 1962.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 770–778, 2016.

[IS15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In International con-

ference on machine learning, pages 448–456. PMLR, 2015.

[KAAS12] Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma.

Fairness-aware classifier with prejudice remover regularizer. In Machine

Learning and Knowledge Discovery in Databases: European Conference,

ECML PKDD 2012, Bristol, UK, September 24-28, 2012. Proceedings, Part

II 23, pages 35–50. Springer, 2012.

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980, 2014.

[KC12] Faisal Kamiran and Toon Calders. Data preprocessing techniques for clas-

sification without discrimination. Knowledge and information systems,

33(1):1–33, 2012.

[KMA+21] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet,

Mehdi Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles,

Graham Cormode, Rachel Cummings, et al. Advances and open problems

in federated learning. Foundations and Trends® in Machine Learning, 14(1–

2):1–210, 2021.

BIBLIOGRAPHY 367

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifi-

cation with deep convolutional neural networks. Advances in neural infor-

mation processing systems, 25, 2012.

[KW13] Diederik P Kingma and Max Welling. Auto-encoding variational bayes.

arXiv preprint arXiv:1312.6114, 2013.

[KW16] Thomas N Kipf and Max Welling. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[LAE+16] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott

Reed, Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox de-

tector. In European conference on computer vision, pages 21–37. Springer,

2016.

[LBD+89] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E

Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation ap-

plied to handwritten zip code recognition. Neural computation, 1(4):541–

551, 1989.

[LC22] Eng Hock Lee and Vladimir Cherkassky. Vc theoretical explanation of dou-

ble descent. arXiv preprint arXiv:2205.15549, 2022.

[LPM15] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effec-

tive approaches to attention-based neural machine translation. CoRR,

abs/1508.04025, 2015.

[LWTG19] Yuanlong Li, Yonggang Wen, Dacheng Tao, and Kyle Guan. Transforming

cooling optimization for green data center via deep reinforcement learning.

IEEE transactions on cybernetics, 50(5):2002–2013, 2019.

[MKS+13] V. Mnih, K. Kvaukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-

stra, and M. Riedmiller. Playting Atari with deep reinforcement learning.

In Workshop in Deep Learning. Neural Information Processing Systems

(NIPS), 2013.

[MKS+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel

Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K

Fidjeland, Georg Ostrovski, et al. Human-level control through deep rein-

forcement learning. nature, 518(7540):529–533, 2015.

[MR89] James L McClelland and David E Rumelhart. Explorations in parallel dis-

tributed processing: A handbook of models, programs, and exercises. MIT

press, 1989.

[ND21] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffu-

sion probabilistic models. In International Conference on Machine Learn-

ing, pages 8162–8171. PMLR, 2021.

368 BIBLIOGRAPHY

[Nes83] Yurii Nesterov. A method for unconstrained convex minimization problem

with the rate of convergence o (1/kˆ 2). In Doklady an ussr, volume 269,

pages 543–547, 1983.

[NKFL18] Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine.

Neural network dynamics for model-based deep reinforcement learning with

model-free fine-tuning. In 2018 IEEE International Conference on Robotics

and Automation (ICRA), pages 7559–7566. IEEE, 2018.

[Ope22] TB OpenAI. Chatgpt: Optimizing language models for dialogue, 2022.

[PRW+17] Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Kleinberg, and Kilian Q

Weinberger. On fairness and calibration. Advances in neural information

processing systems, 30, 2017.

[PRWZ02] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a

method for automatic evaluation of machine translation. In Proceedings of

the 40th annual meeting of the Association for Computational Linguistics,

pages 311–318, 2002.

[Qia99] Ning Qian. On the momentum term in gradient descent learning algorithms.

Neural networks, 12(1):145–151, 1999.

[RB19] Inioluwa Deborah Raji and Joy Buolamwini. Actionable auditing: Investi-

gating the impact of publicly naming biased performance results of com-

mercial ai products. In Proceedings of the 2019 AAAI/ACM Conference on

AI, Ethics, and Society, pages 429–435, 2019.

[RDGF16] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only

look once: Unified, real-time object detection. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 779–788,

2016.

[RDS+15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,

Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-

stein, et al. Imagenet large scale visual recognition challenge. International

journal of computer vision, 115:211–252, 2015.

[RFB15] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional

networks for biomedical image segmentation. In International Conference

on Medical image computing and computer-assisted intervention, pages

234–241. Springer, 2015.

[RHGS15] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: To-

wards real-time object detection with region proposal networks. Advances

in neural information processing systems, 28, 2015.

BIBLIOGRAPHY 369

[RHW86] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learn-

ing representations by back-propagating errors. nature, 323(6088):533–536,

1986.

[RMC15] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representa-

tion learning with deep convolutional generative adversarial networks. arXiv

preprint arXiv:1511.06434, 2015.

[RN94] Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using con-

nectionist systems, volume 37. University of Cambridge, Department of En-

gineering Cambridge, UK, 1994.

[RNS+18] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Im-

proving language understanding by generative pre-training. Preprint, 2018.

[Roo22] Kevin Roose. An ai-generated picture won an art prize. artists aren’t happy.

The New York Times, 2:2022, 2022.

[Ros58] Frank Rosenblatt. The perceptron: a probabilistic model for information

storage and organization in the brain. Psychological review, 65(6):386,

1958.

[Rud16] Sebastian Ruder. An overview of gradient descent optimization algorithms.

arXiv preprint arXiv:1609.04747, 2016.

[S+99] Pierre Soille et al. Morphological image analysis: principles and applica-

tions. Springer, 1999.

[SB81] Richard S Sutton and Andrew G Barto. Toward a modern theory of adap-

tive networks: expectation and prediction. Psychological review, 88(2):135,

1981.

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-

duction. MIT press, 2018.

[SCD+17] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna

Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations

from deep networks via gradient-based localization. In Proceedings of the

IEEE international conference on computer vision, pages 618–626, 2017.

[Ser82] J. Serra. Image Analysis and Mathematical Morphol-ogy. Academic Press,

1982.

[SGZ+16] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec

Radford, and Xi Chen. Improved techniques for training gans. Advances

in neural information processing systems, 29, 2016.

370 BIBLIOGRAPHY

[SHCV19] Prasanna Sattigeri, Samuel C Hoffman, Vijil Chenthamarakshan, and

Kush R Varshney. Fairness gan: Generating datasets with fairness proper-

ties using a generative adversarial network. IBM Journal of Research and

Development, 63(4/5):3–1, 2019.

[SHK+14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and

Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks

from overfitting. The journal of machine learning research, 15(1):1929–

1958, 2014.

[SHZ+18] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and

Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks.

In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 4510–4520, 2018.

[SL87] T. Soderstrom and L. Ljung. Theory and Practice of Recursive Identifica-

tion. MIT Press, 1987.

[SSBD14] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learn-

ing: From theory to algorithms. Cambridge university press, 2014.

[Sta] Stanford. Glove. https://nlp.stanford.edu/projects/glove/.

[Sut88] Richard S Sutton. Learning to predict by the methods of temporal differ-

ences. Machine learning, 3(1):9–44, 1988.

[Sut95] Richard S Sutton. Generalization in reinforcement learning: Successful ex-

amples using sparse coarse coding. Advances in neural information process-

ing systems, 8, 1995.

[SVL14] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learn-

ing with neural networks. Advances in neural information processing sys-

tems, 27, 2014.

[SWM17] Wojciech Samek, Thomas Wiegand, and Klaus-Robert Müller. Explain-

able artificial intelligence: Understanding, visualizing and interpreting deep

learning models. arXiv preprint arXiv:1708.08296, 2017.

[SZ14] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[SZS+13] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru

Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural net-

works. arXiv preprint arXiv:1312.6199, 2013.

[T+95] Gerald Tesauro et al. Temporal difference learning and td-gammon. Com-

munications of the ACM, 38(3):58–68, 1995.

BIBLIOGRAPHY 371

[TH12] Tijmen Tieleman and G. Hinton. Lecture 6.4-rmsprop: divide the gradient

by a running average of its recent magnitude. COURSERA: Neural Net-

works for Machine Learning, 4, 2012.

[Tur09] A. M. Turing. Computing machinery and intelligence (1950). In Parsing the

Turing Test, pages 23–65. Springer (Netherlands), 2009.

[Val84] Leslie G Valiant. A theory of the learnable. Communications of the ACM,

27(11):1134–1142, 1984.

[Vap98] Vladimir Vapnik. Statistical learning theory. Wiley, 1998.

[VDBZ+23] Eva AM Van Dis, Johan Bollen, Willem Zuidema, Robert van Rooij,

and Claudi L Bockting. Chatgpt: five priorities for research. Nature,

614(7947):224–226, 2023.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you

need. Advances in neural information processing systems, 30, 2017.

[VT04] Harry L Van Trees. Detection, estimation, and modulation theory, part I:

detection, estimation, and linear modulation theory. John Wiley & Sons,

2004.

[WD92] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning,

8(3):279–292, 1992.

[Wer90] Paul J Werbos. Backpropagation through time: what it does and how to do

it. Proceedings of the IEEE, 78(10):1550–1560, 1990.

[WH60] Bernard Widrow and Marcian E Hoff. Adaptive switching circuits. Techni-

cal report, Stanford Univ Ca Stanford Electronics Labs, 1960.

[Wil92] Ronald J Williams. Simple statistical gradient-following algorithms for con-

nectionist reinforcement learning. Machine learning, 8:229–256, 1992.

[WWL13] Stefan Wager, Sida Wang, and Percy S Liang. Dropout training as adap-

tive regularization. Advances in neural information processing systems, 26,

2013.

[XRV17] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel im-

age dataset for benchmarking machine learning algorithms. arXiv preprint

arXiv:1708.07747, 2017.

[XYZW18] Depeng Xu, Shuhan Yuan, Lu Zhang, and Xintao Wu. Fairgan: Fairness-

aware generative adversarial networks. In 2018 IEEE International Confer-

ence on Big Data (Big Data), pages 570–575. IEEE, 2018.

[YLNY21] Chao Yu, Jiming Liu, Shamim Nemati, and Guosheng Yin. Reinforce-

ment learning in healthcare: A survey. ACM Computing Surveys (CSUR),

55(1):1–36, 2021.

372 BIBLIOGRAPHY

[YRC07] Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. On early stopping

in gradient descent learning. Constructive Approximation, 26(2):289–315,

2007.

[YZS+22] Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue

Zhao, Yingxia Shao, Wentao Zhang, Bin Cui, and Ming-Hsuan Yang. Dif-

fusion models: A comprehensive survey of methods and applications. arXiv

preprint arXiv:2209.00796, 2022.

[ZBH+21] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol

Vinyals. Understanding deep learning (still) requires rethinking generaliza-

tion. Communications of the ACM, 64(3):107–115, 2021.

[ZVRG17] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rogriguez, and Kr-

ishna P Gummadi. Fairness constraints: Mechanisms for fair classification.

In Artificial intelligence and statistics, pages 962–970. PMLR, 2017.

	Preface
	Chapter 1. Introduction - Learning by Example
	1. Problem Statement
	2. Types of Learning-by Example Problems
	2.1. Binary Classification:
	2.2. Regression Problem:
	2.3. Logistic Regression

	3. Neural Network Model Sets
	3.1. Perceptron:
	3.2. Multi-layer Perceptron:
	3.3. Deep Neural Networks:

	4. Deep Learning Software Libraries

	Chapter 2. Generalization - a statistical approach
	1. Infeasibility of Perfect Learning
	2. PAC Learning
	3. Concentration Inequalities
	4. Generalization Ability of Finite Model Sets
	5. Growth Function for Infinite Model Sets
	6. Generalization Ability of Infinite Model Sets
	7. Bias-Variance Tradeoff and Early Stopping

	Chapter 3. Neural Network Model Sets
	1. Perceptron
	2. Multi-layer Perceptrons and Deep Neural Networks
	3. Universal Approximation Ability
	4. BackPropagation
	5. Automatic Differentiation
	6. Mini-Batch Gradient Descent Training

	Chapter 4. Training Pipelines for Deep Learning
	1. Problem Formulation
	2. Data Preparation
	3. Model Selection
	4. Optimizers
	5. Norm Regularizers
	6. Dropout Regularization
	7. Diagnosing Model Performance with Training curves

	Chapter 5. Convolutional Neural Networks
	1. MNIST Problem Revisited
	2. Computer Vision Applications
	3. Convolutional Neural Networks
	4. Image Classification Task - with limited data
	4.1. Data Augmentation - training with limited data:
	4.2. Transfer Learning - training with limited data:

	5. Image Segmentation Task - U-net Architecture
	5.1. Modern CNN Architectural Patterns:

	6. Object Detection Task
	7. Visualizing what CNNs Learn - the problem of model interpretability
	7.1. Visualizing Intermediate Activations:
	7.2. Visualizing Inputs Triggering CNN Filters:
	7.3. Class Activation Mapping (CAM):

	Chapter 6. Deep Learning for Natural Language Processing
	1. Motivating Example
	2. Recurrent Neural Networks
	2.1. LSTM Recurrent Networks

	3. Natural Langage Processing
	3.1. Text Vectorization

	4. Bag-of-Words vs Sequence Models
	4.1. Bag-of-Words Modeling:
	4.2. Sequence Modeling:

	5. Neural Attention and the Transformer Model
	5.1. Neural Attention:
	5.2. Transformer Encoder:

	6. Sequence-to-sequence learning and Neural Machine Translation
	6.1. Neural Machine Translation
	6.2. RNN Sequence-to-Sequence Model
	6.3. Transformer Sequence-to-Sequence Model

	Chapter 7. Deep Generative Learning
	1. Text Generation using Generative Pre-trained Transformers
	2. Feature Extraction using Principal Component Analysis
	3. Autoencoders
	4. Variational Autoencoders
	5. Generative Adversarial Networks
	6. Diffusion Models

	Chapter 8. Deep Learning and Human Society
	1. Security: Creating Adversarial Examples
	2. Deep Learning with Differential Privacy
	3. Statistical Fairness in Classification

	Chapter 9. Deep Reinforcement Learning
	1. Finite Markov Decision Processes
	2. Optimal Actions and the Bellman Equation
	3. Learning Optimal Action Policies
	3.1. Monte Carlo Methods:
	3.2. Temporal-Difference (TD) Learning:

	4. Deep Q Learning (DQN)
	5. Policy Gradient Methods - REINFORCE and Actor-Critic
	5.1. REINFORCE: Monte Carlo Policy Gradient:
	5.2. Actor-Critic Reinforcement Learning:

	Appendix A. Probability Review
	Appendix B. Markov Chains
	Bibliography

