
On-Device Training

Apr.24, 2025

Acknowledgment: Some slides and materials are adapted from EfficientML，courtesy of Prof. Song Han and the HAN Lab.

https://hanlab.mit.edu/courses/2024-fall-65940

On-Device Learning

● Customization: AI systems need to continually adapt to new data collected from the sensors.

User Edge

New and Sensitive

Data

Cloud

Cloud training

New Training Data

Updated Model

2

• Learning at the "edge", rather than cloud.

On-Device Learning

●

User Edge Cloud

Customization: AI systems need to continually adapt to new data collected from the sensors.

Privacy: Data does not leave the device.●

New and Sensitive

Data

On-device training

Cloud training

data is not sent to the

cloud for privacy:

e.g. code, enterprise data

• Transfer learning at the "edge", rather than cloud.

3

Lecture Plan

Today we will discuss:

1. Federated learning and the deep leakage from gradients

2. Pruning, quantization and knowledge distillation

3. Memory bottleneck of on-device training

4. Tiny transfer learning (TinyTL)

5. Sparse back-propagation (SparseBP)

4

Lecture Plan

1. Federated Learning and the deep leakage from gradients

2. Pruning, quantization and knowledge distillation

3. Memory bottleneck of on-device training

4. Tiny transfer learning (TinyTL)

5. Sparse back-propagation (SparseBP)

5

On-Device Learning
Federated learning: only share the gradients / weights, user data stays local.

6

Background of Federated Learning
FedAvg Algorithm

1. Users generate personal data on device

and perform local training.

7

Background of Federated Learning
FedAvg Algorithm

1. Users generate personal data on device

and perform local training.

2. Each device update its model using

local data for N iterations.

8

Background of Federated Learning
FedAvg Algorithm

1. Users generate personal data on device

and perform local training.

2. Each device update its model using

local data for N iterations.

3. Updated models are sent to the server.

9

Background of Federated Learning
FedAvg Algorithm

1. Users generate personal data on device

and perform local training.

2. Each device update its model using

local data for N iterations.

3. Updated models are sent to the server.

4. Models are averaged on the server and

sent back to devices.

10

Background of Federated Learning
FedAvg Algorithm

1. Users generate personal data on device

and perform local training.

2. Each device update its model using

local data for N iterations.

3. Updated models are sent to the server.

4. Models are averaged on the server and

sent back to devices.

11

The important & private user data NEVER leaves local devices.

Background of Federated Learning
FedAvg Algorithm

1. Users generate personal data on device

and perform local training.

2. Each device update its model using

local data for N iterations.

3. Updated models are sent to the server.

4. Models are averaged on the server and

sent back to devices.

The important & private user data never leaves local devices.

Rethink the Safety of Gradients

Pred: cat Pred: dog

Convolutional Neural Networks

……

……

Loss

13

Rethink the Safety of Gradients

Pred: cat Pred: dog

Convolutional Neural Networks

……

……

Gradients
tensor([[[[-5.3668e+01, -1.0342e+01, -3.1377e+00],

[-7.5185e-01, 1.6444e+01, -2.1058e+01],

[-8.7487e+00, -5.0473e+00, -5.5008e+00]],

Loss

derive gradients from model and training data.

14

Rethink the Safety of Gradients

Pred: cat Pred: dog

Convolutional Neural Networks

……

……

Gradients
tensor([[[[-5.3668e+01, -1.0342e+01, -3.1377e+00],

[-7.5185e-01, 1.6444e+01, -2.1058e+01],

[-8.7487e+00, -5.0473e+00, -5.5008e+00]],

?

Loss

Can we derive the training data from gradients?

15

Rethink the Safety of Gradients

Pred: cat Pred: dog

Convolutional Neural Networks

……

……

Gradients
tensor([[[[-5.3668e+01, -1.0342e+01, -3.1377e+00],

[-7.5185e-01, 1.6444e+01, -2.1058e+01],

[-8.7487e+00, -5.0473e+00, -5.5008e+00]],

Private

16

Public

Loss

If that is possible, then sharing the gradient is not safe!

?

Rethink the Safety of Gradients
Existing Work of Gradient Inversion

Membership Inference [Shokri 2016]

• Given gradients, it’s possible to find whether a data point belongs to the batch.

Property Inference [Melis 2018]

• Given gradients, it’s possible to find whether a data point with certain property is in the batch.

tensor([[[[-5.3668e+01, -1.0342e+01, -3.1377e+00],

[-7.5185e-01, 1.6444e+01, -2.1058e+01],

[-8.7487e+00, -5.0473e+00, -5.5008e+00]],

Gradients Membership Inference
Whether a record is used in the batch.

Exploiting unintended feature leakage in collaborative learning. [Melis 2018]

Membership inference attacksagainst machine learning models. [Shokri 2016]

17

Property Inference
Whether a sample with certain property is in the batch.

Rethink the Safety of Gradients

Exploiting unintended feature leakage in collaborative learning. [Melis 2018]

Membership inference attacksagainst machine learning models. [Shokri 2016]

18

Existing Work of Gradient Inversion

Membership Inference [Shokri 2016]

• Given gradients, it’s possible to find whether a data point belongs to the batch.

Property Inference [Melis 2018]

• Given gradients, it’s possible to find whether a data point with certain property is in the batch.

Gradients contain certain information about the training data.

Can we obtain the raw training data from gradient?

Deep Leakage from Gradients

Pred: cat

Deep Learning
Model

Loss

Gradients

Normal Training:

forward-backward, update model weights

Pred: [random]

Deep Learning
Model

Loss

Gradients

Deep Leakage Attack:

forward-backward, update the dummy data

Dummy input

MSE

Dummy labelLabel

Deep Leakage from Gradient. [Zhu et al, NeurIPS 2019]

19

Deep Leakage from Gradients
Deep Leakage Attack via Gradients Matching

Only gradients are shared between malicious attacker and normal users.

But, this action indeed leaks the privacy!

Normal Participant

Differentiable Model Pred Loss [0, 1, 0]
F(x, W)

r W

Malicious Attacker Try to match

r W 0

Differentiable Model
Pred’ Loss’ [0.2, 0.7, 0.1]

F(x’, W)

@D/@X
D = ||∇W 0 — ∇W||2 @D/@Y

The Leakage Process

Deep Leakage from Gradient. [Zhu et al, NeurIPS 2019]

20

Deep Leakage Attack Results
Attack on Vision Model (bs=1)

Deep Leakage from Gradient. [Zhu et al, NeurIPS 2019]

21

Deep Leakage Attack Results
Attack on Vision Model (bs=8)

Deep Leakage from Gradient. [Zhu et al, NeurIPS 2019]

22

Deep Leakage Attack Results

Deep Leakage from Gradient. [Zhu et al, NeurIPS 2019]

23

Attack on Language Model (BERT, Masked Language Model)

Iters=0: tilting fill given **less word **itude fine **nton overheard living vegas **vac **vation *f forte **dis

cerambycidae ellison **don yards marne **kali

Iters=10: tilting fill given **less full solicitor other ligue shrill living vegas rider treatment carry played sculptures

lifelong ellison net yards marne **kali

Iters=20: registration , volunteer applications , at student travel application open the ; week of played ; child

care will be glare .

Iters=30: registration, volunteer applications, and student travel application open the first week of september .

child care will be available

Original text: Registration, volunteer applications, and student travel application open the first week of

September. Child care will be available.

Unmatched words are marked with red.

Defense Strategy for Deep Leakage
Gaussian and laplacian noise

0 800 1000 1200600
Iterations

original

gaussian-10—4

gaussian-10—3

gaussian-10—2

gaussian-10—1

200 400

0.000

0.025

0.050

0.075

0.100

0.125

0.150

G
ra

d
ie

n
t

M
at

ch
 L

o
ss

Deep Leakage

Leak with artifacts

No leak

“G” denotes gaussian noise, “L” denotes laplacian noise

Simply applying noise cannot prevent deep leakage unless

we allow significant accuracy drop (purple and red lines)

Deep Leakage from Gradient. [Zhu et al, NeurIPS 2019]

24

Defense Strategy for Deep Leakage
Gradient compression

0 200 400 600 800 1000 1200
Iterations

0.000

0.025

0.050

0.075

0.100

0.125

0.150

G
ra

d
ie

n
t

M
at

ch
 L

o
ss

original

prune-ratio-1%

prune-ratio-10%

prune-ratio-20%

prune-ratio-30%

prune-ratio-50%

prune-ratio-70% Deep Leakage

Leak with artifacts

No leak

Gradient compression[2], can effectively prevent

deep leakage while preserving accuracy.

Prune-ratio:0% 75.96% No

Prune-ratio:99% [2]
76.15%

（+0.19%）
Yes

ResNet50 Top-1 Defendablity

Besides compression, DGC[2] further applies local accumulation to

obfuscate gradients thus better protect users’ privacy.

1 Deep Leakage from Gradient. [Zhu et al, NeurIPS 2019]

2 Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training [Lin et al, ICLR 2018]

26

Lecture Plan

1. Federated learning and the deep leakage from gradients

2. Pruning, quantization and knowledge distillation

3. Memory bottleneck of on-device training

4. Tiny transfer learning (TinyTL)

5. Sparse back-propagation (SparseBP)

26

Neural Network Pruning

• In general, we could formulate the pruning as

follows:

WP

subject to

• L represents the objective function for

neural network training;

• x is input, W is original weights, WP is

pruned weights;

∥Wp∥0 calculates the #nonzeros in WP, and N is

the target #nonzeros.
•

arg min L(x; WP)

∥Wp∥0 < N

x x

arg min L(x; W)
W

arg min L(x; WP)
WP

s . t .∥WP∥0 ≤ N

27

Pruning Happens in Human Brain

Time

Peter Huttenlocher (1931–2013) [Walsh, C. A., Nature 2013] Slide Inspiration: Alila Medical Media

28

Number of Synapses

Newborn 2-4 years old AdultAdolescence

15000 synapses

2500 synapses

per neuron [1]

per neuron [1]

7000 synapses

per neuron [2]

Data Source: 1, 2Do We Have Brain to Spare? [Drachman DA, Neurology 2004]

Neural Network Pruning
Make neural network smaller by removing synapses and neurons

before pruning after pruning

pruning

synapses

pruning
neurons

Optimal Brain Damage [LeCun et al., NeurIPS 1989]
Learning Both Weights and Connections for Efficient Neural Network [Han et al., NeurIPS 2015]

29

Neural Network Pruning
Make neural network smaller by removing synapses and neurons

A
c
c

u
ra

c
y
 L

o
s
s

0.5%

0.0%

-0.5%

-1.0%

-1.5%

-2.0%

-2.5%

-3.0%

-3.5%

-4.0%

-4.5%

50% 60% 70% 80% 90%

Pruning Ratio (Parameters Pruned Away)

40% 100%

Train Connectivity

Learning Both Weights and Connections for Efficient Neural Network [Han et al., NeurIPS 2015]

30

Neural Network Pruning
Make neural network smaller by removing synapses and neurons

A
c
c

u
ra

c
y
 L

o
s
s

0.5%

Pruning

0.0%

-0.5%

-1.0%

-1.5%

-2.0%

-2.5%

-3.0%

-3.5%

-4.0%

-4.5%
40% 50% 60% 70% 80% 90% 100%

Pruning Ratio (Parameters Pruned Away)

Train Connectivity

Prune Connections

Learning Both Weights and Connections for Efficient Neural Network [Han et al., NeurIPS 2015]

31

Neural Network Pruning
Make neural network smaller by removing synapses and neurons

A
c
c

u
ra

c
y
 L

o
s
s

0.5%

0.0%

-0.5%

-1.0%

-1.5%

-2.0%

-2.5%

-3.0%

-3.5%

-4.0%

-4.5%

40% 50% 60% 70% 80% 90%

Pruning Ratio (Parameters Pruned Away)

100%

Pruning Pruning+Finetuing

Train Connectivity

Prune Connections

Train Weights

Learning Both Weights and Connections for Efficient Neural Network [Han et al., NeurIPS 2015]

32

Neural Network Pruning
Make neural network smaller by removing synapses and neurons

A
c
c

u
ra

c
y
 L

o
s
s

40% 50% 60% 70% 80% 90%

Pruning Ratio (Parameters Pruned Away)

100%

Pruning Pruning+Finetuing Iterative Pruning and Finetuing

0.5%

0.0%

-0.5%

-1.0%

-1.5%

-2.0%

-2.5%

-3.0%

-3.5%

-4.0%

-4.5%

Train Connectivity

Prune Connections

Train Weights

Learning Both Weights and Connections for Efficient Neural Network [Han et al., NeurIPS 2015]

33

Neural Network Pruning
Make neural network smaller by removing synapses and neurons

Efficient Methods and Hardware for Deep Learning [Han S., Stanford University]

34

Neural Network

#Parameters

Before Pruning After Pruning Reduction

AlexNet 61 M 6.7 M 9 ✕

VGG-16 138 M 10.3 M 12 ✕

GoogleNet 7 M 2.0 M 3.5 ✕

ResNet50 26 M 7.47 M 3.4 ✕

SqueezeNet 1 M 0.38 M 3.2 ✕

What is Quantization?

The difference between an input value and its quantized value
is referred to as quantization error.

Quantization [Wikipedia]

Quantization is the process of constraining an input from a

continuous or otherwise large set of values to a discrete set.

Original Image 16-Color ImageContinuous Signal Quantized Signal

time

Signal Quantization Error

35

Neural Network Quantization

36

Weight Quantization
weights

(32-bit float)

2.09 -0.98 1.48 0.09

0.05 -0.14 -1.08 2.12

-0.91 1.92 0 -1.03

1.87 0 1.53 1.49

Neural Network Quantization
Weight Quantization

weights
(32-bit float)

2.09 -0.98 1.48 0.09

0.05 -0.14 -1.08 2.12

-0.91 1.92 0 -1.03

1.87 0 1.53 1.49

2.09, 2.12, 1.92, 1.87

2.0

37

K-Means-based Weight Quantization

Deep Compression [Han et al., ICLR 2016]

38

2.09 -0.98 1.48 0.09

0.05 -0.14 -1.08 2.12

-0.91 1.92 0 -1.03

1.87 0 1.53 1.49

weights
(32-bit float)

K-Means-based Weight Quantization

2.09 -0.98 1.48 0.09

0.05 -0.14 -1.08 2.12

-0.91 1.92 0 -1.03

1.87 0 1.53 1.49

weights
(32-bit float)

3 0 2 1

1 1 0 3

0 3 1 0

3 1 2 2

cluster index
(2-bit int)

2.00

1.50

0.00

-1.00

3:

2:

1:

0:

centroids

cluster

storage
32 bit × 16

= 512 bit = 64 B
= 20 B

indexes

2 bit × 16

= 32 bit = 4 B

codebook

32 bit × 4

= 128 bit = 16 B

3.2 × smaller

Assume N-bit quantization, and #parameters = M >> 2N.

32 bit × M

= 32M bit

N bit × M

= NM bit

32 bit × 2N

= 2N+5 bit

32/N × smaller

2.00 -1.00 1.50 0.00

0.00 0.00 -1.00 2.00

-1.00 2.00 0.00 -1.00

2.00 0.00 1.50 1.50

Deep Compression [Han et al., ICLR 2016]

39

reconstructed weights
(32-bit float)

0.09 0.02 -0.02 0.09

0.05 -0.14 -0.08 0.12

0.09 -0.08 0 -0.03

-0.13 0 0.03 -0.01

quantization error

K-Means-based Weight Quantization
Fine-tuning Quantized Weights

2.09 -0.98 1.48 0.09

0.05 -0.14 -1.08 2.12

-0.91 1.92 0 -1.03

1.87 0 1.53 1.49

weights
(32-bit float)

3 0 2 1

1 1 0 3

0 3 1 0

3 1 2 2

cluster index
(2-bit int)

2.00

1.50

0.00

-1.00

3:

2:

1:

0:

centroids

cluster

Deep Compression [Han et al., ICLR 2016]

40

-0.03 -0.01 0.03 0.02

-0.01 0.01 -0.02 0.12

-0.01 0.02 0.04 0.01

-0.07 -0.02 0.01 -0.02

gradient

K-Means-based Weight Quantization
Fine-tuning Quantized Weights

2.09 -0.98 1.48 0.09

0.05 -0.14 -1.08 2.12

-0.91 1.92 0 -1.03

1.87 0 1.53 1.49

weights
(32-bit float)

3 0 2 1

1 1 0 3

0 3 1 0

3 1 2 2

cluster index
(2-bit int)

2.00

1.50

0.00

-1.00

3:

2:

1:

0:

centroids

cluster

-0.03 -0.01 0.03 0.02

-0.01 0.01 -0.02 0.12

-0.01 0.02 0.04 0.01

-0.07 -0.02 0.01 -0.02

group by

-0.03 0.12 0.02 -0.07

0.03 0.01 -0.02 r

0.02 -0.01 0.01 0.04 -0.02

-0.01 -0.02 -0.01 0.01

gradient

0.04

0.02

0.04

-0.03

1.96

1.48

-0.04

-0.97

fine-tuned
centroids

educe

×lr

Deep Compression [Han et al., ICLR 2016]

41

K-Means-based Weight Quantization
Accuracy vs. compression rate for AlexNet on ImageNet dataset

A
c
c
u
ra

c
y
 L

o
ss

-4.5%

0.5%

0.0%

-0.5%

-1.0%

-1.5%

-2.0%

-2.5%

-3.0%

-3.5%

-4.0%

2 % 5 % 8 % 11 % 14 %

Model Size Ratio after Compression

17 % 20 %

Quantization Only

Deep Compression [Han et al., ICLR 2016]

42

K-Means-based Weight Quantization
Accuracy vs. compression rate for AlexNet on ImageNet dataset

A
c
c
u
ra

c
y
 L

o
ss

-4.5%

0.5%

0.0%

-0.5%

-1.0%

-1.5%

-2.0%

-2.5%

-3.0%

-3.5%

-4.0%

2 % 5 % 8 % 11 % 14 %

Model Size Ratio after Compression

17 % 20 %

Pruning Only Quantization Only

Deep Compression [Han et al., ICLR 2016]

43

K-Means-based Weight Quantization
Accuracy vs. compression rate for AlexNet on ImageNet dataset

A
c
c
u
ra

c
y
 L

o
ss

-4.5%

0.5%

0.0%

-0.5%

-1.0%

-1.5%

-2.0%

-2.5%

-3.0%

-3.5%

-4.0%

2 % 5 % 8 % 11 % 14 %

Model Size Ratio after Compression

17 % 20 %

Pruning + Quantization Pruning Only Quantization Only

Deep Compression [Han et al., ICLR 2016]

44

Before Quantization: Continuous Weight

C
o
u

n
t

Weight Value
Deep Compression [Han et al., ICLR 2016]

45

After Quantization: Discrete Weight

C
o
u

n
t

Weight Value
Deep Compression [Han et al., ICLR 2016]

46

After Quantization: Discrete Weight after

Retraining

Weight Value
Deep Compression [Han et al., ICLR 2016]

47

C
o
u

n
t

Distillation: Tiny models are hard to train
Tiny models underfit large datasets

70

73

76

79

50 60 70 80 90 100

44

46

48

50

42
100 110 120 130 140 150

Training curve for ResNet50 Training curve for MobileNetV2-Tiny

Train. Acc. Val. Acc. Train. Acc. Val. Acc.
82 52

Question: Can we help the training of tiny models with large models?

Network Augmentation for Tiny Deep Learning [Cai et al., ICLR 2022]

48

Illustration of knowledge distillation

Distilling the Knowledge in a Neural Network [Hinton et al., NeurIPS Workshops 2014]

Input

Logits

Logits

Distillation

Loss

Teacher Network

Student Network

Classification

Loss

49

Intuition of knowledge distillation
Matching prediction probabilities between teacher and student

Logits Probabilities

Cat 5 0.982

Dog 1 0.017

Logits Probabilities

Cat 3 0.731

Dog 2 0.269

exp(5)

exp(5) + exp(1)

exp(1)

exp(5) + exp(1)

The student
model is less

confident

Teacher Network

Student Network

50

Intuition of knowledge distillation
Matching prediction probabilities between teacher and student

Logits Probabilities

Cat 5 0.982

Dog 1 0.017

Logits Probabilities

Cat 3 0.731

Dog 2 0.269

Teacher Network

Student Network

51

Intuition of knowledge distillation
Concept of temperature

Logits
Probabilities

(T=1)

Probabilities

(T=10)

Cat 5 0.982 0.599

Dog 1 0.017 0.401

Teacher Network

exp(5/1)

exp(5/1) + exp(1/1)

exp(5/10)

exp(5/10) + exp(1/10)

A larger temperature smooths the output probability distribution.

52

Formal Definition of KD

• Neural networks typically use a softmax function to generate the logits zi to class probabilities

. Here,i, j = 0,1,2,...,C − 1, where is the number of classes. is the

temperature, which is normally set to 1.

• The goal of knowledge distillation is to align the class probability distributions from teacher

and student networks.

ip(z , T) =
exp(zi /T)

∑
j

exp(zj /T)

53

Distilling the Knowledge in a Neural Network [Hinton et al., NeurIPS Workshops 2014]

C T

Matching output logits

Input

Layer

1
Logits

Distillation

Loss

Classification

Loss

Distilling the Knowledge in a Neural Network [Hinton et al., NeurIPS Workshops 2014]

Do Deep Nets Really Need to be Deep? [Ba and Caruana, NeurIPS 2014]

Layer

2

Layer

N

…

Layer

1

Layer

2

Layer

N
Logits

Teacher Model

54

Student Model

Cross entropy loss:

𝔼(−pt log ps);

L2 loss:

t s
2
2E(∥p − p ∥)

…

What else to match other than output logits?
Matching intermediate weights

Knowledge Distillation: A Survey [Gou et al., IJCV 2020]

Input

Layer

1
Logits

Classification

Loss

Layer

2

Layer

N

…

Layer

1

Layer

2

Layer

N
Logits

Teacher Model

Student Model

Distillation

Loss

55

…

Matching intermediate features
Minimizing maximum mean discrepancy between feature maps

• Intuition: teacher and student networks should have similar feature distributions, not just output

probability distributions.

Teacher Model

Input

56

Layer

1
Logits

Classification

Loss

Like What You Like: Knowledge Distill via Neuron Selectivity Transfer [Huang and Wang, arXiv 2017]

Layer

2

Layer

N

…

Layer

1

Layer

2

Layer

N… Logits

Student Model

KD

Loss

KD

Loss
Match intermediate feature maps

Lecture Plan

1. Federated learning and the deep leakage from gradients

2. Pruning, quantization and knowledge distillation

3. Memory bottleneck of on-device training

4. Tiny transfer learning (TinyTL)

5. Sparse back-propagation (SparseBP)

57

On-Device Training is Challenging
Memory size is too small to hold DNNs

Cloud AI Mobile AI

Memory (Activation)

Storage (Weights)

4GB

256GB~TB/PB

141GB

58

On-Device Training is Challenging
Memory size is too small to hold DNNs

Cloud AI Mobile AI Tiny AI

Memory (Activation)

Storage (Weights)

141GB 4GB

256GB

320kB

1MB~TB/PB

59

On-Device Training is Challenging
Memory size is too small to hold DNNs

Cloud AI Mobile AI Tiny AI

Memory (Activation)

Storage (Weights) ~TB/PB

4GB

256GB

320kB

1MB13,000x

smaller

1,000,000x

smaller

141GB

60

On-Device Training is Challenging
Memory size is too small to hold DNNs

Cloud AI Mobile AI Tiny AI

Memory (Activation)

Storage (Weights)

141GB 4GB

256GB

320kB

1MB~TB/PB

• We need to reduce both weights and activation to fit DNNs for On-Device Training

61

Training Memory is the Key Bottleneck

0

125

250

375

500

452

20

M
b

V
2

M
e

m
o

ry
 F

o
o

tp
ri

n
t
(M

B
)

Inference

Batch Size = 1

Training

Batch Size = 8

• Edge devices have tight memory constraints. The training memory footprint of

neural networks can easily exceed the limit.

MCU: 2MB

Raspberry Pi 1 DRAM

256MB

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]

62

Training Memory is the Key Bottleneck

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]

63

ai+1 = aiWi + bi

∂Wi

∂L ∂L
= aT

i ∂ai+1

Forward:

Backward:

Answer: Because of intermediate activations

• Inference does not need to store activations, training does.

• Activations grows linearly with batch size, which is always 1 for inference.

• Even with bs=1, activations are beyond memory limit of many edge devices.

Question: Why training memory is much larger than inference?

Activation is the Memory Bottleneck in CNNs

0
Param (MB) Activation (MB)

• Activation is the main bottleneck for CNN training

200

400

MbV2-1.4ResNet-50

800

600

6.9x larger

Activation is the

main bottleneck,

not parameters.

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]

65

Activation is the Memory Bottleneck in CNNs

• Activation is the main bottleneck for CNN training.

• MobileNets focus on reducing the number of parameters or FLOPs,

while the main bottleneck does not improve much.

0

200

400

600

ResNet-50 MbV2-1.4

800

The main bottleneck does

not improve much.

6.9x larger

Activation is the

main bottleneck,

not parameters.

4.3x

Param (MB) Activation (MB)

1.1x

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]

66

Parameter-Efficient Transfer Learning in CNNs

10

20

13x
68

77

ResNet-50 (Full) ResNet-50 (Last)

95 30

86

Significant
accuracy

degradation!

59

50 0
Cars Top1 (%) #Trainable Param (M)

• Full: Fine-tune the full network. Better accuracy but highly inefficient.

• Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.

ResNet-50 (BN+Last) TinyTL (ours)

67

Parameter-Efficient Transfer Learning in CNNs

10

20

68

77

ResNet-50 (Full) ResNet-50 (Last) ResNet-50 (BN+Last)

95 30

86

TinyTL (ours)

12x

59

50 0
Cars Top1 (%) #Trainable Param (M)

• Full: Fine-tune the full network. Better accuracy but highly inefficient.

• Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.

• BN+Last: Fine-tune the BN layers and the last layer. Parameter-efficient.

Question: Is BN+Last update or Last-only update enough for on-device transfer learning?

K for the Price of 1: Parameter-efficient Multi-task and Transfer Learning [Mudrarkarta et al., ICLR 2019]

68

Parameter-Efficient Transfer Learning in CNNs

200

400

600

59

68

77

86

ResNet-50 (Full) ResNet-50 (Last) ResNet-50 (BN+Last)

95 800

TinyTL (ours)

1.8x Parameter-efficiency
does not translate to

K for the Price of 1: Parameter-efficient Multi-task and Transfer Learning [Mudrarkarta et al., ICLR 2019]

69

memory-efficiency
(12x vs 1.8x)

50 0
Cars Top1 (%) Memory Cost (MB)

• Full: Fine-tune the full network. Better accuracy but highly inefficient.

• Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.

• BN+Last: Fine-tune the BN layers and the last layer. Parameter-efficient, but the

memory saving is limited.

Parameter-Efficient Transfer Learning in CNNs

200

400

600

59

68

77

86

ResNet-50 (Full) ResNet-50 (Last) ResNet-50 (BN+Last)

95 800

TinyTL (ours)

1.8x

12%

50 0
Cars Top1 (%) Memory Cost (MB)

• Full: Fine-tune the full network. Better accuracy but highly inefficient.

• Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.

• BN+Last: Fine-tune the BN layers and the last layer. Parameter-efficient, but the

memory saving is limited. Significant accuracy loss.

70

Parameter-efficiency
does not translate to
memory-efficiency

(12x vs 1.8x)

Lecture Plan

1. Federated Learning and the deep leakage from gradients

2. Pruning, quantization and knowledge distillation

3. Memory bottleneck of on-device training

4. Tiny transfer learning (TinyTL)

5. Sparse back-propagation (SparseBP)

71

Updating Weights is Memory-Expensive

ai+1 = aiWi + bi

∂Wi

∂L ∂L
= aT , ∂bi∂ai+1 ∂ai+1 ∂ai+2

∂L ∂L ∂L
= = WT

i+1

Forward:

Backward:

• Updating weights requires storing intermediate activations

• Updating biases does not, is memory-efficient

6C, R 6C, R

1x1 Conv

feature map

 fixed params

1x1 Conv Depth-wise Conv

Fine-tune bias only

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]

72

weight

bias

C, R C, R

i

TinyTL: Fine-tune Bias Only

6C, R 6C, R

1x1 Conv

fmap not in memory

 fixed params

1x1 Conv Depth-wise Conv

Fine-tune bias only

0

80

160

240

320

Full

400

BN+Last Bias+Last

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]

73

Memory Cost (MB)

12x

smaller

Freeze weights, only fine-tune biases

=> save 12x memory

C, R C, R

weight

bias

TinyTL: Fine-tune Bias Only

6C, R 6C, R

1x1 Conv

fmap not in memory

 fixed params

1x1 Conv Depth-wise Conv

80

160

240

320

Full

400

BN+Last

12x

smaller

C, R C, R

76

82

88

Fine-tune bias only

Bias+Last Full

94

0 70
Memory Cost (MB) Cars Top1 (%)

Freeze weights, only fine-tune biases

=> save 12x memory, but also hurt the accuracy

BN+Last Bias+Last

16.3%

acc loss

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]

74

weight

bias

TinyTL: Lite Residual Learning

fmap in memory fmap not in memory

learnable params fixed params

6C, R 6C, R

1x1 Conv1x1 Conv Depth-wise Conv

Fine-tune bias only
1x1 Conv

Lite residual learning

• Add lite residual modules to increase model capacity

• Key principle - keep activation size small

UpsampleDownsample Group Conv

C, 0.5R C, 0.5R

weight bias

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]

75

TinyTL: Lite Residual Learning

fmap in memory fmap not in memory

learnable params fixed params

6C, R 6C, R

1x1 Conv1x1 Conv Depth-wise Conv

Fine-tune bias only
1x1 Conv

Lite residual learning

• Add lite residual modules to increase model capacity

• Key principle - keep activation size small

1. Reduce the resolution

UpsampleDownsample Group Conv

C, 0.5R C, 0.5R

weight bias

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]

76

TinyTL: Lite Residual Learning

fmap in memory fmap not in memory

learnable params fixed params

6C, R 6C, R

1x1 Conv1x1 Conv Depth-wise Conv

UpsampleDownsample Group Conv

Fine-tune bias only
1x1 Conv

C, 0.5R C, 0.5R

Lite residual learning

• Add lite residual modules to increase model capacity

• Key principle - keep activation size small

1. Reduce the resolution

2. Avoid inverted bottleneck

weight bias

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]

77

TinyTL: Lite Residual Learning

fmap in memory fmap not in memory

learnable params fixed params

6C, R 6C, R

1x1 Conv1x1 Conv Depth-wise Conv

Fine-tune bias only
1x1 Conv

Lite residual learning

• Add lite residual modules to increase model capacity

• Key principle - keep activation size small

1. Reduce the resolution

2. Avoid inverted bottleneck

(1/6 channel, 1/2 resolution, 2/3 depth => ~4% activation size)

UpsampleDownsample Group Conv

C, 0.5R C, 0.5R

weight bias

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]

78

TinyTL: Lite Residual Learning

fmap in memory fmap not in memory

learnable params fixed params

ith mobile inverted bottleneck block

6C, R 6C, R

1x1 Conv1x1 Conv Depth-wise Conv

Fine-tune bias only
1x1 Conv UpsampleDownsample Group Conv

C, 0.5R C, 0.5R

weight bias

80

160

240

320

400

Full BN+Last

Lite residual learning

Bias+Last LiteResidual+Bias+Last

76

0 70
Memory Cost (MB) Cars Top1 (%)

79

82

88

94

Only 5MB

Memory Overhead

11.6% higher accuracy

TinyTL: Memory-Efficient Transfer Learning

200

400

600

6x

50 0
Cars Top1 (%) Memory Cost (MB)

• Full: Fine-tune the full network. Better accuracy but highly inefficient.

• Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.

• BN+Last: Fine-tune the BN layers and the last layer. Parameter-efficient, but the

memory saving is limited. Significant accuracy loss.

• TinyTL: fine-tune bias only + lite residual learning: high accuracy, large memory saving

59

68

77

86

ResNet-50 (Full) ResNet-50 (Last) ResNet-50 (BN+Last) TinyTL (ours)

95 800

1.8x

12%

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]

80

TinyTL: Up to 6.5x Memory Saving

45

55

65

75

85

95

0 75 150 225

Training Memory (MB)

300

TinyTL Fine-tune BN+Last [1] Fine-tune Last [2] Fine-tune Full Network [3]

C
a

rs
 A

c
c

100 200 300

Training Memory (MB)

88

90

92

94

96

98

0 400

F
lo

w
e

rs
 A

c
c

65

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]

81

69

73

77

81

85

0 100 200 300

Training Memory (MB)

400

F
o

o
d

 A
c
c

4.6x saving
4.5x saving

• TinyTL provides up to 6.5x memory saving without accuracy loss.

Backbone: ProxylessNAS-Mobile, Scanning over different resolutions

Lecture Plan

1. Federated learning and the deep leakage from gradients

2. Pruning, quantization and knowledge distillation

3. Memory bottleneck of on-device training

4. Tiny transfer learning (TinyTL)

5. Sparse back-propagation (SparseBP)

82

Dense, Full Back-Propagation

Updating the whole model is too expensive:

• Need to save all intermediate activations (quite large)

Forward: ai+1 = aiWi + bi

M
B

1
 3

x
3

M
B

3
 5

x
5

M
B

3
 3

x
3

M
B

3
 7

x
7

M
B

3
 3

x
3

M
B

3
 5

x
5

M
B

3
 5

x
5

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

3
 5

x
5

M
B

6
 5

x
5

M
B

3
 5

x
5

M
B

3
 5

x
5

M
B

3
 7

x
7

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

3
 7

x
7

M
B

6
 7

x
7

F
C

biases

weights

83

Model: ProxylessNAS-Mobile

• Inference does not need to store activations, training does.

• Activations grows linearly with batch size.

TinyTL: Reduce Memory, Not Parameters for Efficient On-Device Learning [Cai et al, NeurIPS 2020]

∂Wi

∂L ∂L
Backward: = aT ,

∂ai
i ∂ai+1 ∂ai+1

∂L ∂L
= wT

i

Sparse Learning

7000 synapses

per neuron [2]

1 Do We Have Brain to Spare? [Drachman DA, Neurology 2004]
2 Peter Huttenlocher (1931–2013) [Walsh, C. A., Nature 2013] Slide Inspiration: Alila Medical Media

Time
Newborn 2-4 years old AdultAdolescence

15000 synapses

per neuron

2500 synapses

per neuron [1]

[1]

K-12 education

Synapses are getting “sparse"

during adolescence

84

Last-Layer-Only Back-Propagation

M
B

1
 3

x
3

M
B

3
 5

x
5

M
B

3
 3

x
3

M
B

3
 7

x
7

M
B

3
 3

x
3

M
B

3
 5

x
5

M
B

3
 5

x
5

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

3
 5

x
5

M
B

6
 5

x
5

M
B

3
 5

x
5

M
B

3
 5

x
5

M
B

3
 7

x
7

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

3
 7

x
7

M
B

6
 7

x
7

F
C

Updating only the last layer is cheap

• No need to back propagate to previous layers

• But, accuracy drops significantly

Model: ProxylessNAS-Mobile

biases

weights

Significant
accuracy

degradation!

0

80

160

240

320

400

Full Last

94

Bias+Last

50

TinyTL: Reduce Memory, Not Parameters for Efficient On-Device Learning [Cai et al, NeurIPS 2020]

85

61

72

83
12x

smaller

Bias-Only Back-Propagation

Updating the only the bias part

• No need to store the activations

• Back propagating to the first layer.

M
B

1
 3

x
3

M
B

3
 5

x
5

M
B

3
 3

x
3

M
B

3
 7

x
7

M
B

3
 3

x
3

M
B

3
 5

x
5

M
B

3
 5

x
5

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

3
 5

x
5

M
B

6
 5

x
5

M
B

3
 5

x
5

M
B

3
 5

x
5

M
B

3
 7

x
7

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

3
 7

x
7

M
B

6
 7

x
7

F
C

Model: ProxylessNAS-Mobile

dW = f(X, dY)

db = f(dY)

Still a
performance

gap

0

80

160

240

320

400

Full Last

94

Bias+Last

Memory Cost (MB)
50

TinyTL: Reduce Memory, Not Parameters for Efficient On-Device Learning [Cai et al, NeurIPS 2020]

86

61

72

83

Cars Top1 (%)

Sparse Back-Propagation

M
B

1
 3

x
3

M
B

3
 5

x
5

M
B

3
 3

x
3

M
B

3
 7

x
7

M
B

3
 3

x
3

M
B

3
 5

x
5

M
B

3
 5

x
5

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

3
 5

x
5

M
B

6
 5

x
5

M
B

3
 5

x
5

M
B

3
 5

x
5

M
B

3
 7

x
7

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

3
 7

x
7

M
B

6
 7

x
7

F
C

Sparse layer backpropagation

87

Model: ProxylessNAS-Mobile
Use sparse back-propagation to train the model

• Some layers are not as important as others

Sparse Back-Propagation

M
B

1
 3

x
3

M
B

3
 5

x
5

M
B

3
 3

x
3

M
B

3
 7

x
7

M
B

3
 3

x
3

M
B

3
 5

x
5

M
B

3
 5

x
5

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

3
 5

x
5

M
B

6
 5

x
5

M
B

3
 5

x
5

M
B

3
 5

x
5

M
B

3
 7

x
7

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

3
 7

x
7

M
B

6
 7

x
7

F
C

Sparse layer backpropagation

Sparse tensor backpropagation

Model: ProxylessNAS-Mobile

88

Use sparse back-propagation to train the model

• Some layers are not as important as others

• Some channels are not as important as others

Sparse Back-Propagation

M
B

1
 3

x
3

M
B

3
 5

x
5

M
B

3
 3

x
3

M
B

3
 7

x
7

M
B

3
 3

x
3

M
B

3
 5

x
5

M
B

3
 5

x
5

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

3
 5

x
5

M
B

6
 5

x
5

M
B

3
 5

x
5

M
B

3
 5

x
5

M
B

3
 7

x
7

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

3
 7

x
7

M
B

6
 7

x
7

F
C

Sparse layer backpropagation

Sparse tensor backpropagation

Backpropagation stops here

Use sparse back-propagation to train the model

• Some layers are not as important as others

• Some channels are not as important as others

• No need to back-propagate to the early layers

89

Model: ProxylessNAS-Mobile

Sparse Back-Propagation

M
B

1
 3

x
3

M
B

3
 5

x
5

M
B

3
 3

x
3

M
B

3
 7

x
7

M
B

3
 3

x
3

M
B

3
 5

x
5

M
B

3
 5

x
5

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

3
 5

x
5

M
B

6
 5

x
5

M
B

3
 5

x
5

M
B

3
 5

x
5

M
B

3
 7

x
7

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

3
 7

x
7

M
B

6
 7

x
7

F
C

Sparse layer backpropagation

Sparse tensor backpropagation

Backpropagation stops here

Use sparse back-propagation to train the model

• Some layers are not as important as others

• Some channels are not as important as others

Model: ProxylessNAS-Mobile

Reduce by 4x

Activation to store: (N, M)

FLOPs: (M * H * N)

G.T

X

(dW).T

=

(H, N) (N, M) (H, M)dy

dw
:

Activation to store: (N, 0.25 * M)

FLOPs: (0.25 * M * H * N)

G.T

X

(dW).T

=

(H, N) (N, M) (H, M)

X

(dw).T

dy

dw
:

90

• No need to back-propagate to the early layers

• Only need to store and compute on a subset of the activations.

Comparison

M
B

1
 3

x
3

M
B

3
 5

x
5

M
B

3
 3

x
3

M
B

3
 7

x
7

M
B

3
 3

x
3

M
B

3
 5

x
5

M
B

3
 5

x
5

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

3
 5

x
5

M
B

6
 5

x
5

M
B

3
 5

x
5

M
B

3
 5

x
5

M
B

3
 7

x
7

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

3
 7

x
7

M
B

6
 7

x
7

F
C

M
B

1
 3

x
3

M
B

3
 5

x
5

M
B

3
 3

x
3

M
B

3
 7

x
7

M
B

3
 3

x
3

M
B

3
 5

x
5

M
B

3
 5

x
5

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

3
 5

x
5

M
B

6
 5

x
5

M
B

3
 5

x
5

M
B

3
 5

x
5

M
B

3
 7

x
7

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

3
 7

x
7

M
B

6
 7

x
7

F
C

M
B

1
 3

x
3

M
B

3
 5

x
5

M
B

3
 3

x
3

M
B

3
 7

x
7

M
B

3
 3

x
3

M
B

3
 5

x
5

M
B

3
 5

x
5

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

3
 5

x
5

M
B

6
 5

x
5

M
B

3
 5

x
5

M
B

3
 5

x
5

M
B

3
 7

x
7

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

3
 7

x
7

M
B

6
 7

x
7

F
C

M
B

1
 3

x
3

M
B

3
 5

x
5

M
B

3
 3

x
3

M
B

3
 7

x
7

M
B

3
 3

x
3

M
B

3
 5

x
5

M
B

3
 5

x
5

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

3
 5

x
5

M
B

6
 5

x
5

M
B

3
 5

x
5

M
B

3
 5

x
5

M
B

3
 7

x
7

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

3
 7

x
7

M
B

6
 7

x
7

F
C

(a) Full back-propagation

91

(b) Last-only back-propagation

(c) Bias-only back-propagation

(d) Sparse layer/Sparse tensor back-propagation

Find Layers to Update by Contribution Analysis

92

Which layer to update?

•

•

The activation cost is high for the starting layers; the weight cost is high for the later layers; the

overall memory cost is low for the middle layers.

We update biases for the later layers (related to activation only), and weights for the intermediate

layers (related to activation and weights)

Contribution Analysis

Different models prefer different layers for fine-tuning

• MobilenetV2 prefers first depth-wise conv.

• BERT prefers QKV projection and first FFN layers.

-4%

5%

0

Δ
 A

c
c
u

ra
c
y

Point-wise conv

Depth-wise conv

5 10 15 20 25 30 35 40

Layer Index

-14%

-7%

0%

7%

0 10 20 30 40

Layer Index

50 60 70

QKV pr ojection

FFN 1

Out pr

FFN

ojection
2

Δ
 A

c
c
u

ra
c
y

Which layer to update?

• Contribution Analysis: fine-tune only one layer on a downstream task to measure the accuracy

improvement (Accuracy) as contributions.

• Only fine-tune the layers with large Accuracy (contributes more to performance)

CNN model (MobileNetV2) Transformers (BERT)

14% 14%

93

Contribution Analysis
Which layer to update?

• Thus we can train the model on the edge with low memory cost while achieving high accuracy.

14%

12%

10%

8%

6%

4%

2%

0%

-2%

-4%

0 5 10 30 35 40

update all channels
update 1/2
update 1/4
update 1/8

First point-wise conv contributes more

B
es

t
Δ
ac
c

30

34

38

42

46

50

0 5000 10000 15000

#sampled backward configs

15 20 25

#sampled backward configs

(a) Contribution analysis (a) Evolution Search

• Use evolutionary search to find the sparse back-propagation scheme.

20000

evolutionary
random

faster and better

94

Accuracy of Sparse Back-Propagation
Well maintains the accuracy

•

•

•

The accuracy on DistillBERT and BERT is average from GLUE Benchmark.

The accuracy on MCUNet, MobilenetV2, ResNet-50 is average from TinyTL Benchmark.

Sparse-BP demonstrates on-par performance with Full-BP on both vision and language tasks.

70 %

80 %

90 %

100 %

90.3
88.5

74.8

81.7

77.1

87.887.3

78.1

72.8 72.7

Distill-BERT BERT MCUNet MobilenetV2 ResNet-50

90.5
89.2

74.1

81.8

76.9

Full BP Bias Only Sparse BP

95

Sparse BP: Lower Memory, Higher Accuracy

Sparse back-propagation can achieve higher transfer learning accuracy

using 4.5-7.5x smaller extra memory.

96

Takeaways

1. Gradient is not safe to share. Staying local is important.

2. Three techniques to make model smaller: pruning,

quantization and knowledge distillation.

3. CNN’s training memory bottleneck is the activation.

4. Efficient transfer learning with bias-only and lite-residual.

5. Full-update is too expensive and using sparse back-

propagation for on-device training.

97

References

98

•

•

•

Return of the devil in the details: Delving deep into convolutional nets [Chatfield. 2014]

Do better imagenet models transfer better? [Kornblith. 2019]

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al.

NeurIPS 2020]

K for the Price of 1: Parameter-efficient Multi-task and Transfer Learning [Mudrarkarta et al., ICLR

2019]

Do We Have Brain to Spare? [Drachman et al. 2004]

Peter Huttenlocher (1931–2013) [Walsh. 2013]

MCUNet: Tiny Deep Learning on IoT Devices [Lin et al 2020]

•

•

•

•

	Default Section
	Slide 1: On-Device Training
	Slide 2: On-Device Learning
	Slide 3: On-Device Learning
	Slide 4: Lecture Plan
	Slide 5: Lecture Plan

	Federated Learning
	Slide 6: On-Device Learning Federated learning: only share the gradients / weights, user data stays local.
	Slide 7: Background of Federated Learning
	Slide 8: Background of Federated Learning
	Slide 9: Background of Federated Learning
	Slide 10: Background of Federated Learning
	Slide 11: Background of Federated Learning
	Slide 12

	Gradient Leakage
	Slide 13: Rethink the Safety of Gradients
	Slide 14: Rethink the Safety of Gradients
	Slide 15: Rethink the Safety of Gradients
	Slide 16: Rethink the Safety of Gradients
	Slide 17: Rethink the Safety of Gradients
	Slide 18: Rethink the Safety of Gradients
	Slide 19: Deep Leakage from Gradients
	Slide 20: Deep Leakage from Gradients Deep Leakage Attack via Gradients Matching
	Slide 21: Deep Leakage Attack Results Attack on Vision Model (bs=1)
	Slide 22: Deep Leakage Attack Results Attack on Vision Model (bs=8)
	Slide 23: Deep Leakage Attack Results
	Slide 24: Defense Strategy for Deep Leakage Gaussian and laplacian noise
	Slide 25: Defense Strategy for Deep Leakage Gradient compression

	Pruning
	Slide 26: Lecture Plan
	Slide 27: Neural Network Pruning
	Slide 28: Pruning Happens in Human Brain
	Slide 29: Neural Network Pruning
	Slide 30: Neural Network Pruning Make neural network smaller by removing synapses and neurons
	Slide 31: Neural Network Pruning Make neural network smaller by removing synapses and neurons
	Slide 32: Neural Network Pruning Make neural network smaller by removing synapses and neurons
	Slide 33: Neural Network Pruning Make neural network smaller by removing synapses and neurons
	Slide 34: Neural Network Pruning Make neural network smaller by removing synapses and neurons

	Quantization
	Slide 35: What is Quantization?
	Slide 36: Neural Network Quantization
	Slide 37: Neural Network Quantization
	Slide 38: K-Means-based Weight Quantization
	Slide 39: K-Means-based Weight Quantization
	Slide 40: K-Means-based Weight Quantization
	Slide 41: K-Means-based Weight Quantization
	Slide 42: K-Means-based Weight Quantization Accuracy vs. compression rate for AlexNet on ImageNet dataset
	Slide 43: K-Means-based Weight Quantization Accuracy vs. compression rate for AlexNet on ImageNet dataset
	Slide 44: K-Means-based Weight Quantization Accuracy vs. compression rate for AlexNet on ImageNet dataset
	Slide 45: Before Quantization: Continuous Weight
	Slide 46: After Quantization: Discrete Weight
	Slide 47: After Quantization: Discrete Weight after Retraining

	Knowledge Distillation
	Slide 48: Distillation: Tiny models are hard to train Tiny models underfit large datasets
	Slide 49: Illustration of knowledge distillation
	Slide 50: Intuition of knowledge distillation Matching prediction probabilities between teacher and student
	Slide 51: Intuition of knowledge distillation Matching prediction probabilities between teacher and student
	Slide 52: Intuition of knowledge distillation Concept of temperature
	Slide 53: Formal Definition of KD
	Slide 54: Matching output logits
	Slide 55: What else to match other than output logits? Matching intermediate weights
	Slide 56: Matching intermediate features

	Memory bottleneck of on-device training

	Slide 57: Lecture Plan
	Slide 58: On-Device Training is Challenging Memory size is too small to hold DNNs
	Slide 59: On-Device Training is Challenging Memory size is too small to hold DNNs
	Slide 60: On-Device Training is Challenging Memory size is too small to hold DNNs
	Slide 61: On-Device Training is Challenging Memory size is too small to hold DNNs
	Slide 62: Training Memory is the Key Bottleneck
	Slide 63: Training Memory is the Key Bottleneck
	Slide 65: Activation is the Memory Bottleneck in CNNs
	Slide 66: Activation is the Memory Bottleneck in CNNs
	Slide 67: Parameter-Efficient Transfer Learning in CNNs
	Slide 68: Parameter-Efficient Transfer Learning in CNNs
	Slide 69: Parameter-Efficient Transfer Learning in CNNs
	Slide 70: Parameter-Efficient Transfer Learning in CNNs
	Slide 71: Lecture Plan
	Slide 72: Updating Weights is Memory-Expensive
	Slide 73: TinyTL: Fine-tune Bias Only
	Slide 74: TinyTL: Fine-tune Bias Only
	Slide 75: TinyTL: Lite Residual Learning
	Slide 76: TinyTL: Lite Residual Learning
	Slide 77: TinyTL: Lite Residual Learning
	Slide 78: TinyTL: Lite Residual Learning
	Slide 79: TinyTL: Lite Residual Learning
	Slide 80: TinyTL: Memory-Efficient Transfer Learning
	Slide 81: TinyTL: Up to 6.5x Memory Saving
	Slide 82: Lecture Plan
	Slide 83: Dense, Full Back-Propagation
	Slide 84: Sparse Learning
	Slide 85: Last-Layer-Only Back-Propagation
	Slide 86: Bias-Only Back-Propagation
	Slide 87: Sparse Back-Propagation
	Slide 88: Sparse Back-Propagation
	Slide 89: Sparse Back-Propagation
	Slide 90: Sparse Back-Propagation
	Slide 91: Comparison
	Slide 92: Find Layers to Update by Contribution Analysis
	Slide 93: Contribution Analysis
	Slide 94: Contribution Analysis
	Slide 95: Accuracy of Sparse Back-Propagation
	Slide 96: Sparse BP: Lower Memory, Higher Accuracy
	Slide 97: Takeaways
	Slide 98: References

