On-Device Training

Apr.24, 2025

Acknowledgment: Some slides and materials are adapted from EfficientML, courtesy of Prof. Song Han and the HAN Lab.

On-Device Learning

Learning at the "edge", rather than cloud.

Customization: All systems need to continually adapt to new data collected from the sensors.

Cloud training

New Training Data

Updated Model

Cloud

On-Device Learning

Transfer learning at the "edge", rather than cloud.

- Customization: All systems need to continually adapt to new data collected from the sensors.
- Privacy: Data does not leave the device.

Cloud

Lecture Plan

Today we will discuss:

- 1. Federated learning and the deep leakage from gradients
- 2. Pruning, quantization and knowledge distillation
- 3. Memory bottleneck of on-device training
- 4. Tiny transfer learning (TinyTL)
- 5. Sparse back-propagation (SparseBP)

Lecture Plan

1. Federated Learning and the deep leakage from gradients

- 2. Pruning, quantization and knowledge distillation
- 3. Memory bottleneck of on-device training
- 4. Tiny transfer learning (TinyTL)
- 5. Sparse back-propagation (SparseBP)

On-Device Learning

Federated learning: only share the gradients / weights, user data stays local.

Β.

1.

Users generate personal data on device and perform local training.

- Users generate personal data on device and perform local training.
- Each device update its model using local data for N iterations.

- Users generate personal data on device and perform local training.
- 2. Each device update its model using local data for N iterations.
- 3. Updated models are sent to the server.

- Users generate personal data on device and perform local training.
- Each device update its model using local data for N iterations.
- 3. Updated models are sent to the server.4. Models are averaged on the server and sent back to devices.

The important & private user data NEVER leaves local devices.

Users generate personal data on device and perform local training.

- Each device update its model using local data for N iterations.
- Updated models are sent to the server.
 Models are averaged on the server and sent back to devices.

Users generate personal data on device and perform local training.

- 2. Each device update its model using local data for N iterations.
- 3. Updated models are sent to the server. 4. Models are averaged on the server and sent back to devices.

derive gradients from model and training data.

Gradients

tensor([[[-5.3668e+01, -1.0342e+01, -3.1377e+00], [-7.5185e-01, 1.6444e+01, -2.1058e+01], [-8.7487e+00, -5.0473e+00, -5.5008e+00]],

Can we derive the training data from gradients?

Gradients tensor([[[-5.3668e+01, -1.0342e+01, -3.1377e+00], [-7.5185e-01, 1.6444e+01, -2.1058e+01], [-8.7487e+00, -5.0473e+00, -5.5008e+00]],

If that is possible, then sharing the <u>gradient</u> is not safe!

Existing Work of Gradient Inversion

Membership Inference [Shokri 2016]

Given gradients, it's possible to find whether a data point belongs to the batch.

Property Inference [Melis 2018]

Given gradients, it's possible to find whether a data point with certain property is in the batch.

Gradients

```
tensor([[[-5.3668e+01, -1.0342e+01, -3.1377e+00],
       [-7.5185e-01, 1.6444e+01, -2.1058e+01],
       [-8.7487e+00, -5.0473e+00, -5.5008e+00]],
```

Exploiting unintended feature leakage in collaborative learning. [Melis 2018] Membership inference attacksagainst machine learning models. [Shokri 2016]

Membership Inference

Whether a record is used in the batch.

Property Inference

Whether a sample with certain property is in the batch.

Existing Work of Gradient Inversion

Membership Inference [Shokri 2016]

Given gradients, it's possible to find whether a data point belongs to the batch.

Property Inference [Melis 2018]

Given gradients, it's possible to find whether a data point with certain property is in the batch. lacksquare

> Gradients contain certain information about the training data. Can we obtain the **raw training data** from **gradient**?

> > Exploiting unintended feature leakage in collaborative learning. [Melis 2018] Membership inference attacksagainst machine learning models. [Shokri 2016]

Deep Leakage from Gradients

Normal Training: forward-backward, update model weights

Deep Leakage from Gradient. [Zhu et al, NeurIPS 2019]

Deep Leakage Attack: forward-backward, update the dummy data

Deep Leakage from Gradients

Deep Leakage Attack via Gradients Matching

Only gradients are shared between malicious attacker and normal users. But, this action indeed **leaks the privacy**!

Deep Leakage from Gradient. [Zhu et al, NeurIPS 2019]

Deep Leakage Attack Results Attack on Vision Model (bs=1)

Deep Leakage Attack Results Attack on Vision Model (bs=8)

Initial

Middle Stage

Fully Leaked

Ground Truth

Deep Leakage Attack Results

Attack on Language Model (BERT, Masked Language Model)

Iters=0: tilting fill given **less word **itude fine **nton overheard living vegas **vac **vation *f forte **dis cerambycidae ellison **don yards marne **kali

Iters=10: tilting fill given **less full solicitor other ligue shrill living vegas rider treatment carry played sculptures lifelong ellison net yards marne **kali

Iters=20: registration, volunteer applications, at student travel application open the; week of played; child care will be glare.

Iters=30: registration, volunteer applications, and student travel application open the first week of september. child care will be available

Original text: Registration, volunteer applications, and student travel application open the first week of September. Child care will be available.

Unmatched words are marked with red.

Defense Strategy for Deep Leakage

Gaussian and Iaplacian noise

Defense Strategy for Deep Leakage

Gradient compression

Besides compression, DGC[2] further applies local accumulation to obfuscate gradients thus better protect users' privacy.

1 Deep Leakage from Gradient. [Zhu et al, NeurIPS 2019] 2 Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training [Lin et al, ICLR 2018]

esNet50	Top-1	Defendablity
ne-ratio:0%	75.96%	No
ratio:99% [2]	76.15% (+0.19%)	Yes

Gradient compression[2], can effectively prevent deep leakage while preserving accuracy.

Lecture Plan

- 1. Federated learning and the deep leakage from gradients
- 2. Pruning, quantization and knowledge distillation
- 3. Memory bottleneck of on-device training
- 4. Tiny transfer learning (TinyTL)
- 5. Sparse back-propagation (SparseBP)

In general, we could formulate the pruning as follows:

 $\arg\min_{\mathbf{W}_{P}} L(\mathbf{x}; \mathbf{W}_{P})$

subject to

 $\|\mathbf{W}_p\|_0 < N$

- *L* represents the objective function for neural network training;
- **x** is input, **W** is original weights, \mathbf{W}_P is pruned weights;
- $\|\mathbf{W}_p\|_0$ calculates the #nonzeros in W_P , and N is the target #nonzeros.

Pruning Happens in Human Brain

Optimal Brain Damage [LeCun *et al.*, NeurIPS 1989] Learning Both Weights and Connections for Efficient Neural Network [Han *et al.*, NeurIPS 2015]

Make neural network smaller by removing synapses and neurons

Pruning Ratio (Parameters Pruned Away)

60%	70%	80%	90%	100%

Make neural network smaller by removing synapses and neurons

Pruning Ratio (Parameters Pruned Away)

Make neural network smaller by removing synapses and neurons

• Pruning

Learning Both Weights and Connections for Efficient Neural Network [Han et al., NeurIPS 2015]

• Pruning+Finetuing

Pruning Ratio (Parameters Pruned Away)

Make neural network smaller by removing synapses and neurons

Learning Both Weights and Connections for Efficient Neural Network [Han et al., NeurIPS 2015]

Make neural network smaller by removing synapses and neurons

Neural Network	#Parameters		
	Before Pruning	After Pruning	Reduction
AlexNet	61 M	6.7 M	9 ×
VGG-16	138 M	10.3 M	12 ×
GoogleNet	7 M	2.0 M	3.5 ×
ResNet50	26 M	7.47 M	3.4 ×
SqueezeNet	1 M	0.38 M	3.2 ×

Efficient Methods and Hardware for Deep Learning [Han S., Stanford University]

What is Quantization?

Quantization is the process of constraining an input from a continuous or otherwise large set of values to a discrete set.

The difference between an input value and its quantized value is referred to as quantization error.

Original Image

16-Color Image

Neural Network Quantization

Weight Quantization

weights (32-bit float)

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

Neural Network Quantization

Weight Quantization

weights (32-bit float)

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

weights (32-bit float)

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

32/N × smaller Deep Compression [Han et al., ICLR 2016]

= 20 B

reconstructed weights (32-bit float)

2.00	-1.00	1.50	0.00
0.00	0.00	-1.00	2.00
-1.00	2.00	0.00	-1.00
2.00	0.00	1.50	1.50

quantization error

0.09	0.02	-0.02	0.09
0.05	-0.14	-0.08	0.12
0.09	-0.08	0	-0.03
-0.13	0	0.03	-0.01

Fine-tuning Quantized Weights

-0.07

-0.02

0.01

-0.02

Fine-tuning Quantized Weights

Deep Compression [Han et al., ICLR 2016]

K-Means-based Weight Quantization Accuracy vs. compression rate for AlexNet on ImageNet dataset

Quantization Only

Model Size Ratio after Compression

Deep Compression [Han et al., ICLR 2016]

0		 }

14% 17% 20%

K-Means-based Weight Quantization Accuracy vs. compression rate for AlexNet on ImageNet dataset

Model Size Ratio after Compression

K-Means-based Weight Quantization Accuracy vs. compression rate for AlexNet on ImageNet dataset

Model Size Ratio after Compression

Before Quantization: Continuous Weight

After Quantization: Discrete Weight

After Quantization: Discrete Weight after Retraining

Distillation: Tiny models are hard to train

Tiny models underfit large datasets

Question: Can we help the training of tiny models with large models?

Network Augmentation for Tiny Deep Learning [Cai et al., ICLR 2022]

Illustration of knowledge distillation

Distilling the Knowledge in a Neural Network [Hinton *et al.*, NeurIPS Workshops 2014]

Intuition of knowledge distillation

	Logits	Probabilities	
Cat	5	0.982	$\frac{\exp(5)}{\exp(5) + \exp(1)}$
Dog	1	0.017	exp(1) exp(5) + exp(1)

	Logits	Probabilities
Cat	3	0.731
Dog	2	0.269

The student model is less confident

Intuition of knowledge distillation

	Logits	Probabilities
Cat	5	0.982
Dog	1	0.017

	Logits	Probabilities
Cat	3	0.731
Dog	2	0.269

Intuition of knowledge distillation

Concept of temperature

A larger temperature smooths the output probability distribution.

Formal Definition of KD

Neural networks typically use a softmax function to generate the **logits** z_i to class **probabilities** $p(z_i, T) = \frac{\exp(z_i/T)}{\sum_i \exp(z_i/T)}$. Here, i, j = 0, 1, 2, ..., C - 1, where C is the number of classes. T is the

temperature, which is normally set to 1.

The goal of knowledge distillation is to align the class probability distributions from teacher \bullet and student networks.

Matching output logits

Distilling the Knowledge in a Neural Network [Hinton *et al.*, NeurIPS Workshops 2014] Do Deep Nets Really Need to be Deep? [Ba and Caruana, NeurIPS 2014]

What else to match other than output logits?

Matching intermediate weights

Matching intermediate features

Minimizing maximum mean discrepancy between feature maps

Intuition: teacher and student networks should have similar **feature** distributions, not just output probability distributions.

Like What You Like: Knowledge Distill via Neuron Selectivity Transfer [Huang and Wang, arXiv 2017]

Lecture Plan

- 1. Federated learning and the deep leakage from gradients
- 2. Pruning, quantization and knowledge distillation

3. Memory bottleneck of on-device training

- 4. Tiny transfer learning (TinyTL)
- 5. Sparse back-propagation (SparseBP)

Memory (Activation)

141GB

Storage (Weights)

~TB/PB

Mobile Al

4GB

256GB

Memory (Activation)

141GB

Storage (Weights)

~TB/PB

4GB	320kB
256GB	1MB

Cloud Al

Memory (Activation)	141GB
Storage (Weights)	~TB/PB

• We need to reduce both weights and activation to fit DNNs for On-Device Training

STWSZ College
Tiny Al
320kB
1MB

Training Memory is the Key Bottleneck

• Edge devices have tight memory constraints. The training memory footprint of neural networks can easily exceed the limit.

Training Memory is the Key Bottleneck

Question: Why training memory is much larger than inference?

Answer: Because of intermediate activations

Forward:
$$\mathbf{a}_{i+1} = \mathbf{a}_i \mathbf{W}_i$$

Backward: $\frac{\partial L}{\partial \mathbf{W}_i} = \mathbf{a}_i^T \frac{\partial L}{\partial \mathbf{W}_i}$

- Inference does not need to store activations, training does.
- Activations grows linearly with batch size, which is always 1 for inference.
- Even with bs=1, activations are beyond memory limit of many edge devices.

+ \mathbf{b}_i

 ∂L

 a_{i+1}

Activation is the Memory Bottleneck in CNNs

Activation is the main bottleneck for CNN training

Activation (MB)

Activation is the Memory Bottleneck in CNNs

- Activation is the main bottleneck for CNN training.
- MobileNets focus on reducing the number of parameters or FLOPs, while the main bottleneck does not improve much.

- Full: Fine-tune the full network. Better accuracy but highly inefficient.
- Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.

#Trainable Param (M) cy but highly inefficient. fficient but the capacity is limited

- Full: Fine-tune the full network. Better accuracy but highly inefficient.
- Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.
- BN+Last: Fine-tune the BN layers and the last layer. Parameter-efficient.

Question: Is <u>BN+Last update</u> or <u>Last-only update</u> enough for on-device transfer learning?

K for the Price of 1: Parameter-efficient Multi-task and Transfer Learning [Mudrarkarta et al., ICLR 2019]

- Full: Fine-tune the full network. Better accuracy but highly inefficient.
- Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.
- BN+Last: Fine-tune the BN layers and the last layer. Parameter-efficient, but the memory saving is limited.

- Full: Fine-tune the full network. Better accuracy but highly inefficient.
- Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.
- BN+Last: Fine-tune the BN layers and the last layer. Parameter-efficient, but the memory saving is limited. Significant accuracy loss.

Lecture Plan

- 1. Federated Learning and the deep leakage from gradients
- 2. Pruning, quantization and knowledge distillation
- 3. Memory bottleneck of on-device training
- 4. Tiny transfer learning (TinyTL)
- 5. Sparse back-propagation (SparseBP)

Updating Weights is Memory-Expensive

Fine-tune bias only

Forward: $\mathbf{a}_{i+1} = \mathbf{a}_i \mathbf{W}_i + \mathbf{b}_i$

Backward:
$$\frac{\partial L}{\partial \mathbf{W}_i} = \mathbf{a}_i^T \frac{\partial L}{\partial \mathbf{a}_{i+1}}, \qquad \frac{\partial L}{\partial \mathbf{b}_i} = \frac{\partial L}{\partial \mathbf{a}_{i+1}} = \frac{\partial L}{\partial \mathbf{a}_{i+2}} \mathbf{W}_{i+1}^T$$

- Updating weights requires storing intermediate activations
- Updating biases does not, is memory-efficient

TinyTL: Fine-tune Bias Only

Fine-tune bias only

Freeze weights, only fine-tune biases => save 12x memory

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]

TinyTL: Fine-tune Bias Only

Freeze weights, only fine-tune biases => save 12x memory, but also hurt the accuracy

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]

- Add lite residual modules to increase model capacity
- Key principle keep activation size small

- Add lite residual modules to increase model capacity
- Key principle keep activation size small
 - 1. Reduce the resolution

- Add lite residual modules to increase model capacity
- Key principle keep activation size small
 - 1. Reduce the resolution
 - 2. Avoid inverted bottleneck

- Add lite residual modules to increase model capacity
- Key principle keep activation size small
 - 1. Reduce the resolution
 - 2. Avoid inverted bottleneck

(1/6 channel, 1/2 resolution, 2/3 depth => ~4% activation size)

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]

TinyTL: Memory-Efficient Transfer Learning

- Full: Fine-tune the full network. Better accuracy but highly inefficient.
- Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.
- BN+Last: Fine-tune the BN layers and the last layer. Parameter-efficient, but the memory saving is limited. Significant accuracy loss.
- TinyTL: fine-tune bias only + lite residual learning: high accuracy, large memory saving TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]

TinyTL (ours)

TinyTL: Up to 6.5x Memory Saving

TinyTL • Fine-tune BN+Last [1] × Fine-tune Last [2] + Fine-tune Full Network [3]

• TinyTL provides up to 6.5x memory saving without accuracy loss.

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]

Backbone: ProxylessNAS-Mobile, Scanning over different resolutions

Lecture Plan

- 1. Federated learning and the deep leakage from gradients
- 2. Pruning, quantization and knowledge distillation
- 3. Memory bottleneck of on-device training
- 4. Tiny transfer learning (TinyTL)
- 5. Sparse back-propagation (SparseBP)

Dense, Full Back-Propagation

biases ★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★ 3x3 B3 7x7 B3 3x3 weights

Updating the whole model is **too expensive**:

• Need to save all intermediate activations (quite large)

Forward:
$$\mathbf{a}_{i+1} = \mathbf{a}_i \mathbf{W}_i + \mathbf{b}_i$$

Backward: $\frac{\partial L}{\partial \mathbf{W}_i} = \mathbf{a}_i^T \frac{\partial L}{\partial \mathbf{a}_{i+1}}, \qquad \frac{\partial L}{\partial \mathbf{a}_i} = \frac{\partial L}{\partial \mathbf{a}_{i+1}} \mathbf{w}_i^T$

- Inference does not need to store activations, training does.
- Activations grows linearly with batch size.

TinyTL: Reduce Memory, Not Parameters for Efficient On-Device Learning [Cai et al, NeurIPS 2020]

Model: ProxylessNAS-Mobile

Sparse Learning

Do We Have Brain to Spare? [Drachman DA, Neurology 2004] 2 Peter Huttenlocher (1931–2013) [Walsh, C. A., Nature 2013]

Slide Inspiration: Alila Medical Media

Last-Layer-Only Back-Propagation

biases ₩B3 5x5 ₩B3 5x5 MB3 5x5 **W** MB3 5x5 MB6 5x5 MB3 5x5 MB3 5x5 weights **MB3** 7x MB3 MB3 MB6 MB3

Updating only the last layer is cheap

- No need to back propagate to previous layers
- But, accuracy drops significantly

TinyTL: Reduce Memory, Not Parameters for Efficient On-Device Learning [Cai et al, NeurIPS 2020]

Model: ProxylessNAS-Mobile

Bias-Only Back-Propagation

Updating the only the bias part

- No need to store the activations
- Back propagating to the first layer.

 $d\mathbf{W} = f(\mathbf{X}, d\mathbf{Y})$ $d\mathbf{b} = f(d\mathbf{Y})$

Model: ProxylessNAS-Mobile

Use sparse back-propagation to train the model

• Some layers are not as important as others

Use sparse back-propagation to train the model

- Some layers are not as important as others
- Some channels are not as important as others

Use sparse back-propagation to train the model

- Some layers are not as important as others
- Some channels are not as important as others
- No need to back-propagate to the early layers

Use sparse back-propagation to train the model

- Some layers are not as important as others
- Some channels are not as important as others
- No need to back-propagate to the early layers
- Only need to store and compute on a subset of the activations.

Comparison

(a) Full back-propagation

MB3 3x3 MB3 5x5 MB6 5x5 5x5 3x3 MB6 7x MB3 MB3 MB3 MB1 MB3 MB3 MB3 MB3 (b) Last-only back-propagation

★ MB3 (+ ← MB3 MB3 MB3 MB3 MB3 MB6 MB3 MB6 ← **MB3** MB3 (c) Bias-only back-propagation

MB3 7x7 MB3 3x3 MB6 5x5 (d) Sparse layer/Sparse tensor back-propagation MB3 MB3 MB1

Find Layers to Update by Contribution Analysis

Which layer to update?

- The activation cost is high for the starting layers; the weight cost is high for the later layers; the \bullet overall memory cost is low for the middle layers.
- We update biases for the later layers (related to activation only), and weights for the intermediate ${ \bullet }$ layers (related to activation and weights)

Contribution Analysis

Which layer to update?

- Contribution Analysis: fine-tune <u>only one layer</u> on a downstream task to measure the accuracy improvement (Accuracy) as contributions.
- Only fine-tune the layers with large Accuracy (contributes more to performance)

CNN model (MobileNetV2)

Different models prefer *different* layers for fine-tuning

- MobilenetV2 prefers **first depth-wise conv**.
- BERT prefers **QKV** projection and first FFN layers.

Contribution Analysis Which layer to update?

Use evolutionary search to find the sparse back-propagation scheme. lacksquare

$$k^*, \mathbf{i}^*, \mathbf{r}^* = \max_{k, \mathbf{i}, \mathbf{r}} (\Delta \operatorname{acc}_{\mathbf{b}[:k]} + \sum_{i \in \mathbf{i}, r \in \mathbf{r}} \Delta \operatorname{acc}_{\mathbf{W}i, r})$$

• Thus we can train the model on the edge with low memory cost while achieving high accuracy.

s.t. Memory $(k, \mathbf{i}, \mathbf{r}) \leq \text{constraint}$

Accuracy of Sparse Back-Propagation

Well maintains the accuracy

- The accuracy on DistillBERT and BERT is average from GLUE Benchmark. ${}^{\bullet}$
- The accuracy on MCUNet, MobilenetV2, ResNet-50 is average from TinyTL Benchmark.
- Sparse-BP demonstrates on-par performance with Full-BP on both vision and language tasks.

Sparse BP: Lower Memory, Higher Accuracy

Sparse back-propagation can achieve higher transfer learning accuracy using **4.5-7.5x** smaller extra memory.

Takeaways

- 1. Gradient is not safe to share. Staying local is important.
- 2. Three techniques to make model smaller: pruning,
- quantization and knowledge distillation.
- 3. CNN's training memory bottleneck is the activation.
- 4. Efficient transfer learning with bias-only and lite-residual.
- 5. Full-update is too expensive and using sparse back-
- propagation for on-device training.

References

- Return of the devil in the details: Delving deep into convolutional nets [Chatfield. 2014]
- Do better imagenet models transfer better? [Kornblith. 2019]
- TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al. NeurIPS 2020]
- K for the Price of 1: Parameter-efficient Multi-task and Transfer Learning [Mudrarkarta et al., ICLR] 2019]
- Do We Have Brain to Spare? [Drachman et al. 2004] \bullet
- Peter Huttenlocher (1931–2013) [Walsh. 2013]
- MCUNet: Tiny Deep Learning on IoT Devices [Lin et al 2020]

