
Training Workflows for Deep Learning

Department of Electrical Engineering
University of Notre Dame, USA

week 6,7,8 (updated: November 8, 2023)

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
1 / 50

Deep Learning Workflows

We want to train a neural network model that can generalize beyond
its training data.

Deep neural networks, however, have a very large VC dimension and
this suggests that such models can memorize all of the samples in the
data set and yet perform poorly on samples that are not in the
training data. We say such models overfit the training data.

On the other hand, selecting a model that performs poorly on the
training data is said to underfit the training data.

The main problem in model training is to find that sweet spot
between underfitting and overfitting.

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
2 / 50

Deep Learning Workflows

The training process is a series of experiments whose results guide
one in searching through the model set for this sweet spot.
This series of experiments form the training workflow.

Figure: Deep Learning Application Development Workflow

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
3 / 50

Deep Learning Workflows

Problem Formulation takes a customer’s app concept and maps it
to the learning-by-example problem described in chapter ??.

Data Preparation involves collecting and preparing the data used in
the neural network model. We use the data to identify a “baseline”
performance level that our trained model will need to beat. This
stage of the training process also partitions the available data in a
partial or p-training dataset, validation dataset and test dataset.

Model Selection starts with an assumed model architecture and
optimizer configuration and then uses a mini-batch optimizer on the
p-training dataset to fit (train) the model for several epochs. The
model’s loss and performance metric are evaluated after each training
epoch on the p-training and validation datasets. The resulting
training history is plotted as a function of epoch to form that training
session’s learning curves.

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
4 / 50

Deep Learning Workflows

Model Modification: The learning curves are used to diagnose
whether the model is overfitting the p-training data and that
diagnosis is used to suggest changes to the model architecture,
p-training and validation datasets, optimizer hyper-parameters, and
the problem’s reward function. We then re-train the modified model
to generate a new set of learning curves and proceed in this matter
until we have a model that no longer overfits the p-training data and
whose performance metric on the validation dataset is deemed to be
acceptable.
Model Deployment is the final stage of our workflow. This stage
evaluates the model’s performance on the test dataset to assess how
well the model should work in practice. We then prepare an inference
version of our model that strips out the training portion of the code
and rewrites that model to run on the platform used in our
application. This inference version of the model is then evaluated in
the field to see how well it actually performs with respect to the
training model’s performance on the test dataset.

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
5 / 50

Problem Formulation

Problem Formulation forces the developer to clearly identify how the
customer’s application maps to the learning-by-example framework. We
illustrate using the handwritten digit recognition application.

The customer is the USPS and they want an app scans the
handwritten address on a letter and uses that scanned image to
automatically sort where the letter should go.

The basic tasks of this problem are:
1 segmenting out each character in the address
2 Classifying which the character
3 outputting a string for the address.

We focus on the problem of classifying a single scanned digit,
assuming it is a digit 0, 1, . . . , 9.

The customer asks for a prototype application of this streamlined
problem with classification accuracy of at least 99%.

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
6 / 50

Problem Formulation

Not all problems are deep learning problems. We need to map our
problem statement to learning by example

System: the system generates a data set D = {xk , yk}Nk=1 of N samples.
The input sample, xk , is the scanned image of a digit. The target sample is
the classification of the input image xk as a digit (0, 1, . . . , 9) where the
classification was performed by a human observer.

The model set, H, consists of sequential neural network models,
h : X → [0, 1]10, that map scan images, x ∈ X , of handwritten digits onto a
real 10-dimensional vector, h(x), whose components are real numbers in the
interval [0, 1].

The loss function will be sparse categorical cross entropy function

L(yk , h(xk)) = − 1

10

10∑
j=1

1(yk = j − 1) log(hj(xk))

Our performance metric is classification accuracy.

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
7 / 50

Data Preparation

Data preparation is one of the most time consuming stages in developing a
DL application. This stage involves the collection of the data as well as
pre-processing the data so it can be directly used by a neural network model.

This stage also includes partitioning the data into a p-training, validation,
and testing dataset, as well as generating a Dataset object to pre-batch the
datasets.

This stage often includes generating a baseline performance metric from the
training data, that represents the metric to beat.

We show how these steps for the MNIST database problem.

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
8 / 50

MNIST database

MNIST is a large database of scanned images of handwritten digits (0− 9).
It has 60,000 training images and 10,000 testing images.

All input samples are 28× 28 monochrome images of a digit whose pixels
are uint8.

The target is an integer between 0, . . . , 9.

The database can be obtained from TensorFlow

Figure: Script and Output Loading the MNIST database and randomly
selecting a single sample out

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
9 / 50

Data Preparation

Note that the input tensor’s shape is (60000, 28, 28), so our input is a 28 by
28 pixel image with only a single channel. The data type is uint8.

We will be using a dense model that expects a floating point input which is
a vector. So we need to reshape the input image into a vector.

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
10 / 50

Data Preparation

Baseline model whose performance is easily
evaluated on the training data.

The baseline model’s performance represents
what our actual model must beat if we are to
demonstrate that the model learned anything
during training.

For MNIST, the baseline is the ”average”
image computed for each class.

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
11 / 50

Data Preparation

Classify each image in dataset by seeing which baseline it is closest to.

Distance is measured by RMSE or MAE

RMSE(k) =

√√√√ 1

N

N∑
i=1

(x̂k − xk)2

MAE(k) =
1

N

N∑
i=1

|x̂k − xk |

Best average performance of baseline is 47% with respect to MAE.

norm total acc 0 1 2 3 4 5 6 7 8 9
RMSE 81% 87% 97% 76% 77% 82% 64% 86% 83% 71% 79 %
MAE 65% 82% 99% 45% 60% 68% 25% 77% 76% 38% 73%

Table: MNIST Baseline Model’s Accuracy Performance

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
12 / 50

Data Preparation

Final step is to construct a Dataset object of the training and testing data.

Dataset objects are iterators that pre-batch the data so it is easier for our
training method (fit) to fetch a batch of data used by backpropagation.

We fetch a single batch from the Dataset object and check its shape. Input
batches are (32, 784) and target is (32,).

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
13 / 50

Model Selection

Model selection is concerned with training a model that has good
performance metric while not overfitting the training data.

This is an experimental process in which each training session is viewed as
an experiment. The experiment’s hypothesis is that a specified model
architecture and training configuration will have good performance and little
overfitting.

If the results invalidate the hypothesis, then we modify the model
architecture or training configuration to achieve a better outcome in the
next training session.

We continue in this manner until we are satisfied that the model performs
well and does not overfit.

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
14 / 50

Model Selection

The first step is to partition the available training data into a partial or
p-training data set and a validation data set.

We then instantiate the model as a TensorFlow Model and use the compile
method to configure the training optimizer.

Finally we use the fit method to train the model for a fixed number of
training epochs.

At each epoch, the fit model computes the loss and performance metrics
for the p-training and validation datsets.

We then plot the p-training/validation curves to assess whether model
performance is acceptable and whether it is overfitting the training data.

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
15 / 50

Model Selection

If we do not find an acceptable model in a training session, then we either
change the training data, model architecture, or reconfigure the optimizer,
and then try again.

Model architecture may be modified by changing number of layers, type of
layers, number of nodes in each layer, changing activation functions

Changing the data is usually done by increasing the amount of training data.
This can be accomplished by changing the validation split or using a more
sophisticated k-fold cross validation scheme.

Reconfiguring the optimizer involves adjusting the type of optimizer
(RMSprop versus Adam), the optimizer’s hyper-parameters (learning-rate,
momentum weight, etc.

One can also change the loss function being used by adding in some sort of
regularization

There are many ways this adjustment can be made and this means the
model selection process is very time consuming.

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
16 / 50

Model Selection (MNIST)

Model selection for the MNIST application starts by instantiating a
sequential model and then training that model for several epochs.

In this case, I started with a subset of MNIST data (10000 training and
testing samples)

I then construct Dataset objects for p-training and validations assuming a
batch size of 32.

I assumed a 10% validation split.

<latexit sha1_base64="4bjw0m64GQZCWAezF7EO7iJFJsA=">AAAEYHicbVNdb9MwFM3aAsNsbIM3eLE2ISVTMUmmwjQJaRI88Dgk9iG1VeQ4TmvVcSL7thCq/kneeOCFX4LTZF3XYSnK9T3nnvthOy6kMOD7v7da7c6jx0+2n6JnO7vP9/YPXlyZfKoZv2S5zPVNTA2XQvFLECD5TaE5zWLJr+PJpwq/nnFtRK6+QVnwYUZHSqSCUbCu6KA1mw9MRqVEg5iPhJpbcmyxbIFSnWcYuDK5TmX+nUy4poYkFGw6MFhkRa4BZ8oWiZrNHRtTgyFFyAVNhYp+dHFtlF4Xu8ANLF3Vv/Twx1qFyJwmUZXA9VATZ7HG6p8Fvl3ds+7Z8CFKNDdjWnC3JuHw9Dg89Qg1VdPuoS2Jwkl46L0Le70mulxFl432EDVQYiosXTZLPtcdk2oeUd1hZKRg3Lir7m6b81YCxE6Rjd2T0ENoRqVI6oEbe6hgxX0S+CtuZMRPjrF1S67c6tTdW8gq2ug1TsUSCtzKuxQ7vqfioeK+6m2Pzf7tmhq64+I1HgE64W6xIVvH4aaCFddMRLHJrQXWEnlowFWydrUWKNo/8om/XPihETTGkdOsi2j/1yDJ2TTjCpikxvQDv4DhnGoQTPIFGkwNLyib0BHvW1PRjJvhfPlAFviN9SQ4zbX9FOCldz1iTjNjyiy2zIzC2GxilfN/WH8K6elwLlQxtReD1YnSqcSQ4+ri4URozkCW1qBMC1srZmOqKQP7JqshBJstPzSuQhK8J72v4dF52Ixj23ntHDquEzgfnHPni3PhXDqs9afdbu+0d9t/O9udvc5BTW1tNTEvnXur8+ofV+dmXw==</latexit>

from tensorflow.keras.datasets import mnist

import tensorflow as tf

(train_x, train_y), (test_x, test_y) = mnist.load_data()

train_x = train_x[:10000,:,:]

train_x = train_x.reshape(10000, 28*28).astype("float32")/255

train_y = train_y[:10000]

train_ds = tf.data.Dataset.from_tensor_slices((train_x,train_y))

train_ds.batch(32)

validation_split = 0.10

train_ds_size = len(list(train_ds))

val_ds_size = int(val_split*train_ds_size)

ptrain_ds_size = train_ds_size-val_ds_size

ptrain_ds = train_ds.take(ptrain_ds_size)

val_ds = train_ds.skip(ptrain_ds_size).take(val_ds_size)

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
17 / 50

Model Selection - MNIST

Select sequential model with two Dense layers of 512 and 64 nodes,
respectively, using ReLu activation.

Output layer is Dense with 10 nodes and softmax actigation.

Input layer has 28× 28 = 784 nodes with linear activation.

We compile model using RMSprop optimizer (default settings) and declare a
sparse categorical cross-entropy loss function.

<latexit sha1_base64="bTWiqvWpW5bqRKRf//O0trLTNeg=">AAADwXicfVJLaxsxEF7bfaTbl9MeexFrCuviLl7TpL64BNJDeyikUCcB2xitPGsLSyshaVNvF//JXkr/TbUPh8QJHRAazTef5tOMIsmoNv3+30az9eDho8cHT9ynz56/eNk+fHWuRaoIjIlgQl1GWAOjCYwNNQwupQLMIwYX0fq0wC+uQGkqkh8mkzDjeJnQmBJsbGh+2PiTTzXHjLnTCJY0yW1yZDG+dWMlODKQaKFiJn4iyqVQBq1BYb0PBmV0l8JwZku6Lk1kajQaVZzga3H09QpLGPmD4bvBsNt1N2hno5oXfLbXgn8UDnoIE0OvSqkjTwFLva5fXfof4vGHe3mbritSUwsqCbBjhP3bDC1iw/GmInGxAHb9hm/FqdYwqrYequ8d1XvXrUgBEVxSBr6QtqH0FygrhmuphPR6bqWdCV3o8bTESsN7OxZYCmXHw+ZEWQwSY9Oz63wOxqIFZeJhQlKFSebNuu4UksWN2W3debvTD/qlobtOWDsdp7azefv3dCFIym1FwrDWk7AvzSzHylDCYOtOUw0SkzVewsS6CeagZ3n5A7forY0sUCyUXYlBZfQmI8dc64xHNpNjs9L7WBG8D5ukJh7O8rLRkJCqUJwyZAQqvjNaUAXEsMw6mChqtSKywrYrpviBtgnh/pPvOueDIDwOjr4POieDuh0HzhvHc3wndD46J84X58wZO6T5qblo8mbSOm3RlmypKrXZqDmvnVvWyv8BBfUsrA==</latexit>

from tensorflow import keras

from tensorflow.keras import layers

inputs = keras.Input(shape=(28*28))

x = layers.Dense(512, activation="relu")(inputs)

x = layers.Dense(64, activation="relu")(x)

outputs = layeres.Dense(10, activation="softmax")(x)

model = keras.Model(inputs=inputs, outputs=outputs)

model.compile(optimizer="rmsprop",

loss = "sparse-categorical_crossentropy",

metrics = ["accuracy"])

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
18 / 50

Model Select - MNIST

Training sessions uses fit method to train model for 50 epochs.

The fit method returns a history object that will e used to plot training
curves. It uses a callback function to save the model with the lowest
validation loss.

<latexit sha1_base64="wtMgiPmdO3XsGDgDC7S+vn4Cmcg=">AAADOHicbVJNa9tAEF2pX6n65bTHXhabggNByIa0vQQCufTSkkKdBGwjVqtRvHg/xO7IYIR/Vi/9Gb2VXnpoKb32F3RlmWAnncsO772Z2X2zWSmFwyT5FoR37t67/2DvYfTo8ZOnzzr7z8+dqSyHETfS2MuMOZBCwwgFSrgsLTCVSbjI5qcNf7EA64TRn3BZwlSxKy0KwRl6KN0PPtQTp5iU0SSDK6FrL848p1YR92jG+NzRYzqOaBNzsMzF10T83uQgT2fA56URGvutqo1CSCgZzo67CA5T1UjjdYPu4bbOsQWkWSMxWi79LLQV7CiU0QKN9VR3wWQqjXPdg+m2IqIzb5WxTXk7qBDYL9EyodPcHVIoDZ/5hxwlO50p9Q1F3nrhD+brmxG+ZFe27cV1fhBNQOdbjq2iKO30kjhZB72dDDZJj2ziLO18neSGVwo0csmcGw+SEqc1syi4hFU0qZy3kc/ZFYx9qpkCN63Xi1/RVx7JaeG9KYxGuka3K2qmnFuqzCuVX4W7yTXg/7hxhcXbaS10WSFo3g4qKknR0OYX0VxY4OjXlQvGrfB3pXzGLOPo/1pjwuDmk28n58N48Do++jjsnQw3duyRl6RL+mRA3pAT8o6ckRHhwefge/Az+BV+CX+Ev8M/rTQMNjUvyE6Ef/8BJwX0yg==</latexit>

callbacks = [

keras.callbacks.ModelCheckpoint(

filepath="test_model.keras",

save_best_only = true,

monitor = "val_loss")]

history = model.fit(ptrain_ds, epochs =50,

validation_data = val_ds,

callbacks = callbacks)

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
19 / 50

Model Selection - MNIST

This shows that the model begins overfitting almost immediately and the best

model has a validation accuracy of 94%.

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
20 / 50

Model Selection - MNIST

Since the original model overfits

very early, we will make changes.

One reason for overfitting is

because the model is too complex.

So let us try this again using a

simpler model with a single hidden

layer of 64 nodes.

Overfitting starts after 10 epochs, but the validation accuracy doesn’t
change much.

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
21 / 50

Model Selection - MNIST

Another reason for overfitting
is that the datasets are too
small. We originally trained
with 10,000 samples. Now let
us increase this to 30,000
samples.

Model Accuracy improves to 95.8%

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
22 / 50

Model Selection - MNIST

We can change how training is
done by changing batch size,
reconfiguring the optimizer, or
augmenting the loss with a
regularization component.
Let us first increase batch size
from 32 to 256.

We now see a significant change in the validation loss, indicating that we
are beginning to control overfitting. We also see that the accuracy has
now improve to 96.1%

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
23 / 50

Model Selection - MNIST

We now try adding an L2
regularizer. This is done by
declaring the regularization
kernel in the layer definition.
<latexit sha1_base64="hZ0oKZylrCZmE78GUYJKkEHxzW8=">AAADHXicbVJNi9NAGJ7ErzV+bFePXoYWIZESkqhrL4UFPawHYQW7u9CWMpm+bYfOTMLMZGkN/SNe/CtePCiyBy/iv3HSBul294Uwz/vxvPO8bybNOdMmiv467q3bd+7e27vvPXj46PF+4+DJqc4KRaFHM56p85Ro4ExCzzDD4TxXQETK4Sydv63yZxegNMvkJ7PMYSjIVLIJo8TY0OjAeVkOtCCce4MUpkyWtji1ObHymMwLo3EXz0ERHb6vXF/PSA5d7CedF0knCLyFzXOytDeE70Bq8A9ftT28a7aDBD5SMC04UewzKEvb8nTIEz8KoygObmATatjFWm+3qYAXzcDfaAu8rDC1yCsi4qi9TdLZxAiysLxF4IlsDPz/VB8qr27X3Rztumm3PgNvAHK8tZjVqNGqxFaGr4O4Bi1U28mo8XswzmghQBrKidb9OMrNsCTKMMph5Q0KDTmhczKFvoWSCNDDcv13V/i5jYzxJFP2kwavo9uMkgitlyK1lYKYmd7NVcGbcv3CTDrDcj00SLq5aFJwbDJcPRU8Zgqo4UsLCFXMasV0RpTdrN20Z5cQ7458HZwmYXwYvv6YtI6Seh176BlqIh/F6A06QsfoBPUQdb4435wfzk/3q/vd/eVebkpdp+Y8RVfM/fMPoGXzEA==</latexit>

inputs = keras.Input(shape= (28*28))

x = layers.Dense(64,

kernel_regularizer = regularizers.l2(0.001),

activation="relu")(inputs)

outputs = layers.Dense(10,activation="softmax")(x)

model = keras.Model(inputs=inputs,outputs=outputs)

This greatly reduced the overfitting that we say before, but its impact on
model accuracy was small.

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
24 / 50

Model Selection - MNIST

The last thing we try is adding
a different optimizer. We
switch to the ADAM optimizer
with a learning rate of 0.001.
This is declared in the compile
method.

<latexit sha1_base64="b5aN3vuohUlQrKunUWZd0SCqDqQ=">AAACqnicbVFdi9NAFJ3ErzV+dfXRlyFF7MIakoqrL4UVX3wRVrHtSlrCzeSmO3Q+wsxEqKE/zr/gm//GaTfIuuuBgcM59zB3zpSN4Nal6e8gvHX7zt17B/ejBw8fPX4yOHw6s7o1DKdMC23OS7AouMKp407geWMQZClwXq4/7Pz5dzSWa/XVbRpcSlgpXnMGzkvF4Ge3sBKEiBYlrrjq/GzpLbmNpK5QJEzLhgscRdRDN97hP9BMXJ2s0YBN/ko2eV+BHAkEo7haFQYcTrIEX70+Ot6HqdDW0gmNbQPGYuE3wJU2fhNRMOM9VM7oZhP34xKdN3eJPAbGWgNsEy+PogWq6sqa22IwTJN0D3qTZD0Zkh5nxeDXotKslf4+JsDaPEsbt+zAOM4EbqNFa7EBtoYV5p4qkGiX3b7qLX3hlYrW2vijHN2rVxMdSGs3svSTEtyFve7txP95eevqd8uOq6Z1qNjlRXUrqNN092+04gaZExtPgBnud6XsAnwpzncf+RKy60++SWbjJDtJ3nweD0/HfR0H5DmJyYhk5C05JR/JGZkSFrwMPgWzYB4eh1/Cb2F+ORoGfeYZ+Qdh9QfpB87E</latexit>

model.compile(

optimizer=tf.keras.optimizers.Adam(learning_rate=1.e-3),

loss = "sparse_categorical_crossentropy",

metrics = ["accuracy"])

This gave us the best performance yet 97%, and appears to give the best
generalization performance.

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
25 / 50

Weight (Norm) Regularizers

Weight regularization is a tool that is used to prevent overfitting. It
usually works by augmenting the objective function (i.e. empirical
risk) with an additional term that penalizes some norm of the weight
vector.

A norm, ∥w∥, measures the ”length” or ”size” of a vector, w ∈ Rm.
This can be done in many ways. The basic property of any norm is
that

Positive definite: ∥w∥ ≥ 0 and ∥w∥ = 0 if and only if w = 0.
Linear Scaling: ∥αw∥ = |α|∥w∥
Triangle inequality: ∥w1 + w2∥ ≤ ∥w1∥+ ∥w2∥

Common examples of norms are ℓ2, ℓ1, and ℓ∞.

∥w∥ℓ2 =
1

m

m∑
i=1

|wi |2, ∥w∥ℓ1 =
1

m

m∑
i=1

|wi |, ∥w∥ℓ∞ = max
i

|wi |

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
26 / 50

Weight Normalization

We regularize by augmenting the empirical risk with the ℓp-norm of the
weight, w ,

R̂(w) + λ∥w∥ℓp
where λ > 0 is a parameter.

We take the gradient of this augmented risk function and then apply
backpropagation using that gradient.

Penalizing the weight vector in this way essentially reduces our search of the
model space, H, to a smaller set whose effective VC dimension is smaller,
thereby preventing overfitting.

Consider a regression problem that tries fitting samples of a lower order
polynomial function, f (x), with a higher order polynomial.

J(w) =
N∑

k=1

f (xk)−
M∑
j=1

wjx
j
k

2

The observations for input xk with targets
yk = f (xk) + νk = xk + 0.2x2k − x3k + νk

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
27 / 50

Weight Regularization

This is clearly a very poor fit and if we look at the weight vector w , we see the

weights vary over a large range from 0.02 up to 4.0. This large variation in

weights is what gives rise to the large variations seen in the plot.

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
28 / 50

Norm Regularizers

We will try to address this ”overfitting” by introducing a penalty for the
large weights. The easiest way of doing this is to augment J(w) to

Jλ(w) =
N∑

k=1

f (xk)−
M∑
j=1

wjx
j
k

2

+ λ

M∑
j=1

w2
j

To derive the optimal weight for this augmented cost, let

X =

1 x1 x21 · · · xM1
1 x2 x22 · · · xM2
...

...
...

...
1 xN x2N · · · xMN

 , Y =

f (x1) + ν1
f (x2) + ν2

...
f (xN) + νN

write our augmented objective as

Jλ(w) = |Xw − Y|2 + λ|w |2

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
29 / 50

Norm Regularizers

Taking the derivative with
respect to w and setting to
zero gives

(XTXw − XTY) + λw = 0

which we rewrite as[
XTX+ λI

]
w − XTY = 0

Regularized weight vector
would be

wr =
[
XTX+ λI

]−1
XTY

Compute MSE as a function
of the regularization
parameter λ

Shows that we have to
”search” for the best λ.

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
30 / 50

IMDB database

We’ll evaluate our weight regularization on the IMDB database; a set
of text movie reviews that have been classified as ”positive” or
”negative”.

The IMDB database is split into 25,000 reviews for training and
25,000 reviews for testing. Each set is split evenly between positive
and negative reviews.

The words in each review are encoded as integers, where we only
encode the first 10,000 words appearing most often in the reviews.

We therefore encode each text review as a 10000 length binary vector
whose kth component is 1 if the kth most frequency work in all
review appears.

This type of encoding is called multi-hot encoding.

This approach to encoding text is called a bag-of-words model in
which the model correlates specific ”words” appearing in the view
with a positive or negative review.

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
31 / 50

Norm Regularizer -IMDB

Apply the L2 regularizer to our earlier IMDB example. In this case, we’ll start

with a model with 15 hidden layers of dimension 4.

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
32 / 50

Dropout Regularization

Dropout is one of the most effective and commonly used regularization
techniques for neural networks.

Dropout is based on the idea of Bagging:

train several separate models
Have models vote on the output for an input.
This approach is impractical for NN.

Dropout may be seen as a way to make bagging practical for NN. It trains
an ensemble of subnetworks of the main model. Subnetworks are obtained
by removing nodes in non-output layers during training.

In particular, Dropout removes randomly selected non-output nodes from a
layer by setting their weights to zero. This can be realized through a Keras
Layer

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
33 / 50

Dropout Regularization

The dropout layer is only active during training. It is deactivated
when being called through the evaluate or predict methods.

We apply dropout (instead of ℓ2 weight regularization) to our IMDB
problem

Recall that IMDB is a database of ± reviews that we encode using
multi-hot encoding.

<latexit sha1_base64="8yabHJT65YXihiw7133fTnwKXIE=">AAAEInicnVNdixMxFM3O+LGOX1199CW0CFOoQ6eiLkJhQR/0QVjB7i5sy5DJ3GlDM8mQZJYtpb/FF/+KLz4o6pPgjzHzgd1ufVi8Lzk5996Tk5uZOOdMm37/147jXrt+4+buLe/2nbv37rf2HhxpWSgKIyq5VCcx0cCZgJFhhsNJroBkMYfjeP6qzB+fgdJMig9mkcMkI1PBUkaJsVS05+yPY5gysbRFseWylZdAiuOC8STKZAI8SpTMZWF8UWQRE3lheriEwiZ1r0ScLOwJPayIge5LD9uo6jQe4jkoooO35dbXM5KD5dZK3W5VfW7JWiR4DUKDv9bHhBp2VpkdthXwot31a/Ht1sZnZcM/r/OpVHhu7VhzYloL1+VPwsbqfxhotK9yviWaSWzoh5u6mk0zyZK1dDX5v+N7V+6aaw/rpdcID5u1blNgCiXqbs8rjViNYOBVxFOLr/yueOthvTGI5MJnErU6/aBfBd4GYQM6qInDqPVjnEhaZCAM5UTr07Cfm8mSKMMoh5U3LjTkhM7JFE4tFCQDPVlWn/gKP7ZMUr1mKoXBFXuxY0kyrRdZbCszYmb6cq4k/5U7LUy6P1lW9wdB64PSgmMjcfm/4IQpoIYvLCBUMesV0xlR9vXsaMohhJevvA2OBkH4PHj2ftA5GDTj2EWPUBv5KEQv0AF6gw7RCFHno/PZ+ep8cz+5X9zv7s+61Nlpeh6ijXB//wHsjk9y</latexit>

def build_model_dropout(num_input, num_nodes,num_layers, rate):

inputs = keras.Input(shape = (num_input))

x = layers.Dense(num_nodes, activation="relu")(inputs)

x = layers.Dropout(rate)(x)

for k in range(num_layers-1):

x = layers.Dense(num_nodes, activation="relu")(x)

x = layers.Dropout(rate)(x)

outputs = layers.Dense(1, activation="sigmoid")(x)

model = keras.Model(inputs=inputs,outputs=outputs)

return model

rate = .2

model3 = build_model_dropout(num_input, num_nodes, num_layers, rate)

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
34 / 50

Dropout Regularization

We train with the same network (15 layers), but use a dropout rate of
20% on all non-output layers. The results show that dropout has a similar
impact on the training curve as ℓ2 regularization

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
35 / 50

Optimizers

While gradient descent is used to train deep neural networks, this descent
may be realized in many different ways.

The classical steepest gradient descent

wk+1 = wk − γ∇w R̂N(w)

where R̂N(w) is computed with respect to the entire dataset. This is ”slow”
and not practical for datasets that do not fit in memory

Stochastic Gradient Descent (SGD) performs a gradient update for each
training sample (xk , yk)

wk+1 = wk − γ∇wL(h(xik ,wk)yik)

This converges quickly but is very noisy.

Batched SGD a gradient update for a mini-batch, Dk = {(xki , yki)}
Nb

i=1, of
samples

wk+1 = wk − γ∇w

[
1

Nb

Nb∑
i=1

L(h(xki ,wk), yki)

]
= wk − γ∇w R̂(wk ,Dk)

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
36 / 50

Optimizers

Issues with Mini-batch Optimizers

It may be hard to find an appropriate learning rate, γ. Convergence is
extremely slow if the learning rate is too small. Convergence may not occur
if the learning rate is too large.

Learning rate schedules adjust the learning rate during training by reducing
the rate according to a pre-defined schedule or when the change in the
objective begins to stall. These schedules and thresholds, however, are
usually defined in advance and do not adapt to a dataset’s characteristics.

The same learning rate is often applied to all weights. But if the data is
sparse then we may not want to update all weights with the same γ.

If the error function is highly non-convex (common for neural networks),
then it may be very difficult for the mini-batch algorithm to escape a saddle
points and local minimum since the gradient is close to zero.

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
37 / 50

Optimizers - Nesterov Momentum

One improvement to mini-batch SGD uses momentum.

In narrow valleys of objective function, SGD may oscillate and make slow
progress toward the optimal value.

Momentum accelerates this convergence by adding a fraction, η, of the past
update to the current update.

Most useful version of this is Nesteov momentum

gk = ∇w R̂(wk − ηvk−1,Dk)

vk = ηvk−1 + γgk

wk+1 = wk − vk

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
38 / 50

Optimizers - Adagrad

Another approach, Adagrad, adapts the learning rate by using a larger
learning rate for weights that are updated less often.

Adagrad is well suited to sparse data.

gk = ∇w R̂(wk ,Dk)

nk = nk−1 + gk ⊗ gk

wk+1 = wk −
γ

√
nk + ϵ

⊗ gk

Note that the learning rate
γ

√
nk + ϵ

is a vector of same shape as nk .

Essentially, what Adagrad is doing is dividing the base learning rate γ for
each weight parameter by the sum of the square of the past gradients for
that parameter.

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
39 / 50

Optimizers - RMSprop

Problem with Adagrad is that the sum dividing the learning rate is
constantly increasing, so that η eventually becomes vanishingly small and
learning stops.

RMSprop is a variation of Adagrad that has this sum decay over time.

The update equations are

gk = ∇w R̂(wk ,Dk)

nk = µnk−1 + (1− µ)gk ⊗ gk

wk+1 = wk −
γ

√
nk + ϵ

⊗ gk

where
γ

√
nk + ϵ

is a vector with the same shape as nk .

Because the component of nk are decaying averages of the past squared
gradients, the effective learning rate does not go to zero asymptotically and
can ”adapt” to changes in the squared gradient as we traverse the weight
space.

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
40 / 50

Optimizers - Adam

Adagrad and RMSprop are methods that adapt the learning rate, whereas
the momentum based algorithms prevent the update direction from
oscillating too much.

These two techniques are combined in the adaptive moment estimation
(Adam) algorithm

Adam combines classical momentum (using a decaying mean instead of a
decaying sum) with RMSprop.

gk = ∇w R̂(wk ,Dk)

mk = β1mk−1 + (1 − β1)gk

m̂k =
1

1 − βb
1

mk

vk = β2vk−1 + (1 − β2)gk ⊗ gk

v̂k =
1

1 − βb
2

vk

wk+1 = wk − γ
1√

v̂k + ϵ
⊗ m̂k

Of the preceding optimizers, Adam and RMSprop are used most often in
deep learning.

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
41 / 50

Optimizers

<latexit sha1_base64="s6vUe+zkPKR5EpGdSSIkUWtO0ys=">AAAFwXiclVTZbhMxFJ22CRSztfDIi5UIKZHCKFOxCSmoqJWAh0qFrlISRR7PTWrFy8j2tA1RfpIXxN/gWZImaYrAL3N97zl3OfY4jDkzttn8vba+USrfu7/5AD189PjJ063tZ6dGJZrCCVVc6fOQGOBMwolllsN5rIGIkMNZONxL42eXoA1T8tiOYugKMpCszyixztXb3vg17hhBOEedEAZMjh04dDExQX2tBLYgjdJ9rq4wE7HSFg9BE7Mc9DPvFMLJyJX8O0bFrgj7keJQBH0cJoxHPaEi4DWZiB6TcWIbODWlc5rczDPXPyCcrgxjcCvvyf+abmvmgsTgfDdZ6vUcfu28eQJ/33UFtbnkhFp2mWnSqmjgSaVey7MX3L7SeOgKYk3kIGfmqV4F027+o4YDTatcFwVUYothFujBMs2wgVAsmmNmms1EOMgUzHtv5Z/GNHmr+BZEDTbRMufnHjTTzOVL7SulI4NmMzjva3Qzu9sGaFp+9QGuPj+EOBAtmRz0NLHpaTX9ZjNAs0vhPDcXxD/6vF9bIDRc0wKkTUTLDxoSjAWtLlvHOoE6qt6R5VNEBppEi5nuhn8/OIq1iv8V7rKLZWwmhk+ViBmHWnHOq+iNPMaVSTWthEwSPepR7fZuStfFqFJABFjNaIpqVwiliSZ0VOnWUQdkNPfvTlBvq5pqmi582wgKo+oV67C39bMTKZqkslJOjGkHzdh2x0RbRjlMUCcxEBM6JANoO1MSAaY7zl6gCX7pPFH2k/SVtDjzzjPGRBgzEqFDCmIvzHIsda6KtRPbf98dZ3cJJM0L9ROOrcLpc4YjpoFaPnIGoZq5XjG9IE4Vm74sToRgeeTbxumOH7z133zbqe7uFHJsei+8ilfzAu+dt+t98Q69E4+WPpaikijJ8l6ZleOyzqHrawXnubewyuM/aojgow==</latexit>

from tensorflow import keras

from tensorflow.keras import layers

from tensorflow.keras import optimizers

def build_model(num_input, num_nodes, num_layers):

inputs = keras.Input(shape = (num_input))

x = layers.Dense(num_nodes, activation="relu")(inputs)

for k in range(num_layers-1):

x = layers.Dense(num_nodes, activation = "relu")(x)

outputs = layers.Dense(1, activation = "sigmoid")(x)

model = keras.Model(inputs=inputs, outputs=outputs)

return model

num_input = num_words

num_nodes = 4

num_layers = 1

model = build_model(num_input,num_nodes, num_layers)

learning_rate = 0.001

optimizer = optimizers.SGD(learning_rate, momentum=.1,nesterov=True)

#optimizer = optimizers.Adagrad(learning_rate)

#optimizer = optimizers.RMSprop(learning_rate)

#optimizer = optimizers.Adam(learning_rate)

model.compile(

optimizer = optimizer,

loss = "binary_crossentropy",

metrics = ["accuracy"])

Compare SGD with
momentum, Adagrad,
RMSprop and Adam on
IMDB database.

We form dataset objects
using a 40% validation split
with batch size of 512

We train a simple neural
network with one hidden
layer with 4 nodes and ReLU
activation. Output is a single
densely connected node with
sigmoid activation.

We train using various
optimizers assuming binary
cross-entropy loss function.

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
42 / 50

Optimizers

Figure: Comparison of training curves for various optimizers on a simple model for
the IMDB sentiment analysis problem

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
43 / 50

Diagnosing Model Performance - Underfitting

Underfitting refers to a model that has not adequately learned the training

dataset to obtain a sufficiently low training loss.

Figure: (left) learning curve showing underfitting due to insufficient data or model
capacity (right) learning curve showing underfitting due to premature stopping of
training.

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
44 / 50

Diagnosing Model Performance - Overfitting

Overfitting refers to a model that has learned the training dataset too well,

including the statistical noise or random fluctuations in the training dataset.

Figure: (left) learning curve showing overfitting due to excess capacity over too
high learning rate (right) learnin curve shows minimal overfitting.

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
45 / 50

Diagnosing Model Performance - Optimal Fit

An optimal fit, therefore, is one where 1) the training loss decreases to a stable

constant value, 2) the validation loss decreases to a stable constant value, and 3)

the generalization gap is small.

Figure: (left) learning curve showing an optimal fit (right) large generalization gap
occurs because validation has features not present in training dataset.

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
46 / 50

Diagnosing Model Performance - Dataset

An unrepresentative dataset means that the dataset may not capture the

statistical characteristic relative to another dataset drawn from the same domain,

such as between a training and validation dataset.

Figure: (left) validation dataset is too small relative to training data (right)
training/val curves are too correlated, suggesting information leakage between the
two datasets.

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
47 / 50

Summary

Training workflow consists of four steps: problem formulation, dataset
collection/curation, model selection (training), and model deployment.

The training workflow assumes the training data set has been partitioned
into a partial or p-training data set and a valiation data set. The p-training
data is used to minimize the model’s loss function. The validation data is
used to evaluate how well the trained model performed.

The training workflow is recursive in the sense that if the performance on
the validation data is not acceptable, we will go back on change the
”model” or ”dataset”.

After a model has been selected through this recursive process, we evaluate
its performance on a test set that has been held out of training.

The last stage of the workflow (deployment) builds an ”inference” version of
our trained model that can be executed on a target platform.

Data Preparation is one of the most time consuming stages of the workflow.
It involves taking the available data and placing it in a form that can be
used by the model.

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
48 / 50

Summary

Computing a performance ”baseline” is an important step of data
preparation. This ”baseline” model usually takes the performance of the
”average” class inputs as the performance level we need our trained model
to beat.

Training a model is done using mini-batch gradient descent. We usually
prepare for this by loading the data samples into a Dataset object where the
mini-batch sizes have already been built. This is done to speed up training.

Training a model involves taking the p-training data set and using
mini-batch gradient descent to update the model. A training epoch
represents one complete pass through all of the dataset’s mini-batches.

Training and validation metrics computed at each epoch and we plot these
also as a function of training epoch.

Overfitting occurs when the validation loss begins to increase, even through
the p-training loss is still decreasing (as a function of epoch).

We control model overfitting by 1) reducing model complexity, 2) adding
regularization , or 3) changing the optimizer’s hyper-parameters.

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
49 / 50

Summary

Weight decay regularization constrains how large the norm of the weights
can become. We need to set a regularization parameter λ to weight the
penalty of having a large weights. In general, we use either L2 or L1 norms
of the weights.

Dropout regularization is a heuristic regularization approach that works well
in practice. This regularization randomly sets weights in each hidden layer to
0 during training.

RMSprop and Adam are two of the most commonly used optimizers in ML
training.

We use learning curves we need to identify 4 conditions; underfit, overfit,
optimal fit, and unrepresentative data

(ND) Training Workflows for Deep Learning
week 6,7,8 (updated: November 8, 2023)
50 / 50

	Problem Formulation

