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Econometrica, Vol. 47, No. 1 (January, 1979) 

THE OPTIMAL EXPLOITATION OF RENEWABLE RESOURCE 
STOCKS: 

PROBLEMS OF IRREVERSIBLE INVESTMENT1 

BY COLIN W. CLARK, FRANK H. CLARKE, and GORDON R. MUNRO 

This paper studies the effects of irreversibility of capital investment upon optimal 
exploitation policies for renewable resource stocks. It is demonstrated that although the 
long-term optimal sustained yield is not affected by the assumption of irreversibility 
(except in extreme cases), the short-term dynamic behavior of an optimal policy may 
depend significantly upon the assumption. It is suggested that the results may have 
profound implications for problems of rehabilitation of overexploited fisheries and other 
renewable resource stocks. 

1. INTRODUCTION 

THIS PAPER IS CONCERNED with the problem of "non-malleability" of capital and 
the implications thereof for the optimal exploitation of renewable resource stocks 
over time. We use the term "non-malleability" to refer to the existence of 
constraints upon the disinvestment of capital assets utilized in exploiting the 
resource stock (cf. Arrow [1], Arrow and Kurz [2]). 

Previous studies of renewable resource economics have assumed, either expli- 
citly [3] or implicitly [8], that capital stocks were perfectly malleable. It is easy to 
see that this implies that the variable representing the capital stock can be 
eliminated from the analysis. This is no longer possible when capital is assumed to 
be non-malleable, however, with the result that the corresponding optimization 
problem becomes considerably more complex, since it necessarily involves a 
minimum of two state variables. It will be shown that in fact the non-malleability 
assumption has a significant influence on the form of optimal exploitation policies. 
This has long been suspected on intuitive grounds; for example, numerous 
discussions of the practical problems of fishery management created by the 
non-malleability of capital (both physical and human) can be found in the 
literature (e.g. [5, p. 222; 19]). 

In Section 2 we describe the model to be used as the basis for our investigations. 
This model, associated with the names of Gordon [11] and Schaefer [17], has often 
been used in the study of commercial fisheries [8, 10]. In spite of its somewhat 
specialized nature, we are confident that the results will remain qualitatively valid 
for a wide choice of alternative models of renewable resource exploitation. 

In Section 3 we review briefly the case in which capital is perfectly malleable. It 
will be verified that in this case the capital stock variable can indeed be eliminated 
from the analysis and that the capital input can be treated as a flow. The model 
thus reduces to the single-state-variable model studied earlier [8, 10]. 

1 This research has been supported in part by the National Research Council of Canada (Grant 
numbers A-3990 and A-9082), and also by the Donner Canadian Foundation as part of a project on 
"Canada and the International Management of the Oceans" sponsored by the Institute of Inter- 
national Relations, University of British Columbia, Canada, along with the University of B.C. 
Programme in Natural Resource Economics, financed by the Canada Council. The suggestions of the 
referees are gratefully acknowledged. 
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26 c. W. CLARK, F. H. CLARKE, AND G. R. MUNRO 

In Sections 4-6 we introduce three alternative assumptions of non-malleability 
of capital. In Section 4 we deal with the case of perfectly non-malleable capital in 
which the depreciation rate is equal to zero and in which the capital has a 
negligible scrap value. In Section 5 we continue to assume that the scrap value is 
zero, but allow for a positive depreciation rate. In this case we say that capital is 
"quasi-malleable." In Section 6 we allow for a positive unit scrap value, which is 
significantly below the replacement price. 

The material presented in Sections 4-6 is of a descriptive nature. A rigorous 
analytic proof of all our results appears in Section 7. Our proof is based upon a 
method due to Caratheodory [4], which does not seem to have been employed 
previously in economic analysis. 

Inasmuch as our model involves two stock variables (resource stock, capital 
stock) and two control variables (harvest rate, investment rate), it is structurally 
similar to a number of two-sector models of economic growth that have appeared 
in the literature [12, 14]. Such models are known to give rise to relatively complex 
optimal trajectories, frequently involving multiple switches of the control vari- 
ables. Our model is no exception to this rule. On the other hand, our model is 
much less abstract than these growth models. It is an eight-parameter model, each 
parameter representing a measurable biological or economic variable. Because of 
the concrete nature of the model, the bio-economic reasons underlying the form 
of optimal exploitation policies become quite transparent, particularly since we 
are able to express the solution explicitly in synthesized (feedback) form: see 
Figures 1-3. 

2. THE GENERAL MODEL 

For the sake of explicitness we shall henceforth restrict our attention to a 
bio-economic model of the commercial fishery under sole ownership. The bio- 
logical basis of the model is the general production model developed by Schaefer 
[17] and Pella and Tomlinson [15]; the economic basis stems from the work of 
Gordon [11], Crutchfield and Zellner [10], and others (see Clark and Munro [8]). 

The population dynamics of the fishery resource is modeled by the equation 

dix 
(2.1) -= F(x)-qEx, x (O) = x, 

dt 

where x (t) is population biomass at time t, F(x) is the natural growth function, q is 
the catchability coefficient (constant), and E(t) is fishing effort at time t. Regarding 
the natural, or biological, growth function F(x), we shall assume that 

(2.2) F(O)=F(x-)=O, F(x)>O, F"(x)<O for O<x?i. 

In equation (2.1) the rate of harvest h(t) is of the form 

(2.3) h (t) = qE(t)x (t); 

this particular form of the Cobb-Douglas production function is the traditional 
harvest production function employed in fishery rnodels. 
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RENEWABLE RESOURCE STOCKS 27 

The variables x(t) and E(t) of equation (2.1) are subject to the constraints 

(2.4) x(t) >O 

and 

(2.5) ? -< E (t) -< Emax = K(t) 

where Emax is maximum effort capacity and K (t) is the amount of capital invested 
in the fishery at time t. We shall think of K(t) as representing the number of 
"standardized" fishing vessels available to the fishery. Equation (2.5) then asserts 
that the maximum effort capacity equals the number of vessels available, and that 
the actual level of effort employed at any time cannot exceed Emax. 

Possible adjustments to the level of capital are modeled by the equation 

dK 
(2.6) d-=1I-yK, K(O)=K0, dt 

where I(t) is gross investment rate at time t (expressed in physical terms) and y is 
the rate of depreciation (constant). The fish biomass x (t) and capital stock K (t) are 
subject to the constraints 

(2.7) x (t) > 0; K (t) >, O. 

The assumption of non-malleability is embodied in the following constraint: 

(2.8) 0 , I (t) S +oo. 

The case I (t) = +oo allows for instantaneous jump increases in the level of capital. 
Admitting this possibility simplifies the analysis and lets us concentrate on the 
phenomenon of non-malleability of capital. 

As our objective function we employ the discounted net cash flow: 
00 

(2.9) J = } e8t{ph(t)- cE(t)- rI (t)} dt 

where 8 is the instantaneous rate of discount (constant), p is price of landed fish 
(constant), c is operating cost per unit effort (constant), and 7r is price (purchase or 
replacement) of capital (constant). All the parameters of our model, viz q, -y, 8, p, c, 
and ir, are taken as given constants, and all are assumed to be positive, except for 
the depreciation rate y, which we merely assume to be >'0. We shall refer to y = 0 
as the case of perfect non-malleability, and to y >0 as the case of quasi- 
malleability of capital. 

The problem we face is that of determining the optimal effort and investment 
policies E(t), I(t), leading to the maximization of the objective (2.9). In the next 
three sections we describe the solution to this problem, and discuss a variety of 
policy implications of the model. The rigorous justification of this solution is 
provided in Section 7. 
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28 C. W. CLARK, F. H. CLARKE, AND G. R. MUNRO 

In Section 6 we shall discuss an alternative model, in which disinvestment is 
unconstrained, but in which unwanted capital can be sold only as scrap. Let 

v, = unit scrap value of capital (constant); 

we shall assume that 

(2.10) 0 < Ts < T. 

For this model we suppose that gross investment is unrestricted: 

(2. 11) -x oo- I (t) -< +xo. 

However, the objective functional is now replaced by 

00 (2.12) 1 f|e-8'{ ph (t)-cE(t)-+(I (t))} dt 

where 

(2.13) +(I) = 7r1 if I>0, 

The corresponding control problem is as before. 

3. PERFECTLY MALLEABLE CAPITAL 

To set the stage for the more difficult problems generated by non-malleability of 
capital we review briefly the case in which capital is perfectly malleable, in the 
sense that 

(3.1) -x o I (t) S +x 

and that X = rs. The relevant objective functional is (2.9). 
Under this assumption it is clear that for an optimal policy there will never be 

excess harvesting capacity, i.e., we will always have 

(3.2) K(t) = E(t) 

since any unused capacity can immediately be disposed of at the purchase price V. 
Consequently I(t)=K +yK =1F + yE and (2.9) becomes, after integration by 
parts, 

J= { e 8{ ph - cE - v(8 + y)K} dt + rK? 
0 

(3) = |e St {pqx -ctota}E dt + constant 

where 

(3.4) Ctotal = C + (a + Y)I 

represents the total cost per unit of fishing effort. In this expression the term c 
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RENEWABLE RESOURCE STOCKS 29 

denotes unit operating cost, while (8 + y)r can be viewed as the unit "rental" cost 
of capital. 

Thus when capital is assumed to be perfectly malleable, the stock variable K 
can be eliminated entirely from the model (as pointed out earlier by Beddington, 
Watts, and Wright [3]; see also Hadley and Kemp [12, Chapter 6]). The problem 
reduces to the maximization of expression (3.3) subject to the biomass equation 
(2.1) and to constraints (2.4) and (2.5) on x (t) and E(t). But in fact this is precisely 
the problem of the received dynamic model of the commercial fishery [8, 10]. We 
see therefore that the received theory assumes, whether explicitly or implicitly, 
that capital is perfectly malleable. The consequences of relaxing this assumption 
will become clear in the sequel. 

The maximization problem for equation (3.3) subject to (2.1) has a particularly 
simple solution [6, 8]. Namely, there exists an optimal biomass level x=x 
determined by the "modified golden rule": 

(3.*5) F'(x *) _ Ctotal(x *)F(x*) 
p Ctotal(X*) 

where Ctotai(X) denotes unit harvesting costs: 

(3.6) Ctotal(X) = Ctta 
qx 

The left-hand side of equation (3.5) is simply the own rate of interest of the 
resource biomass x*; the second term is referred to as the marginal stock effect 
[8]. As an alternative, equation (3.5) can be written in the form 

(3.7) , 
d {(P -Ctotai(X*))F(X*)}j = p-Ctotai(X*) 

where the left-hand side can be interpreted as the shadow price or imputed 
demand price of the biomass and the right-hand side as the supply price of the 
biomass (see [8, pp. 95-96]). 

The optimal approach to x* from a non-optimal initial biomass level x0 x* is 
the "most rapid" [18] or "bang-bang" [8] approach: 

(3.8) E(t)= JEmax whenever x(t)>x* 
Emin whenever x (t) < x*, 

where in our present model Emin = 0 and Emax is an ad hoc upper bound. 
It is interesting to note in passing the rather extreme policy implications of (3.8). 

Suppose, for example, that the fishery being subject to an optimal management 
policy has hitherto been an open-access fishery with the consequence that 
x(0)<< x*. According to (3.8) the appropriate policy would be the drastic one of 
shutting the fishery down entirely until the biomass has recovered to the level x*. 
(If for political or other reasons not considered here, it is practically impossible to 
shut the fishery down entirely, then condition (3.8) prescribes the reduction of E 
to Emin> 0 until the biomass grows to x*.) 
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30 C. W. CLARK, F. H. CLARKE, AND G. R. MUNRO 

Finally we consider for the sake of future reference the (limiting) case in which 
capital is "free" in the sense that vT = n- = 0. In this case the optimal biomass level 
becomes x = x, where x is determined from the equation 

I (f)F(f) (3.9) F'(x)_- ( =a 
p-(x) 

or 

(3.10) * -{(p -c(x))F(x)}=p-c(x) 8 d1 

where 

C 
(3.11) c(x)=-. 

qx 

Thus operating costs alone are relevant to the determination of i. Assuming 
that x* and x are uniquely determined by these equations we have 

(3.12) < x*. 

The role of the two biomass levels x and x* will become clear in the following 
discussions. 

4. NON-MALLEABLE CAPITAL 

We turn now to the main problem, that of delineating the optimal harvest and 
investment policies under the assumption that capital is non-malleable; see 
equation (2.8). As will become apparent, the form of the solution is complicated 
significantly by this assumption. In this and the next two sections we present a 
description of the optimal solution and a discussion of some of its implications, 
without attempting to give a proof of optimality. The proof is discussed in detail, 
however, in Section 7. 

We commence with the easiest of the non-malleable capital cases, that in which 
capital is perfectly non-malleable. In this section, therefore, we shall assume that 

(4.1) -y=0. 

A. The Unexploited Fishery 

First we consider the case of an initially unexploited fishery resource: 

(4.2) x = x and K? = 0. 

We also assume that x > x*, where x* is defined by equation (3.5), for otherwise 
no development of the fishery proves to be worthwhile. 

Let us refer to Figure 1, which constitutes a feedback control diagram (in the 
x - K state space) for the optimal harvest and investment policy, in the case of 
perfectly non-malleable capital (-y = 0; I > 0). The optimal values of E and I are 
given in this figure as functions of the current state variables x = x (t) and 
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RENEWABLE RESOURCE STOCKS 31 

K = K(t). The arrows in Figure 1 show the time motions (trajectories) of an 
optimally controlled biomass-capital system. 

Notice that there are three classes of optimal policy, which are utilized, 
respectively, in the three subregions R1, R2 (shaded region), R3, viz. 

in R1: E=I=O, 

(4.3) in R2: E=Emax=K, I=0, 

in R3: I = +oo. 

In addition there are certain equilibrium positions, indicated by the heavy curve 
BCD in the figure. The biomass levels x and x* (and the corresponding levels of 
capital K = F(xZ)/qi and K* = F(x*)/qx*) play an important role in the solution. 

Capital, K D 
RI: E=I1=O0 RR: E=K, 1-0 3: V 

K~ 

0-1 1~~~~~~~ L=+c 

x xZ Biomass, x 
FIGURE 1 

The initial point (4.2) lies in region R3. Consequently the optimal policy 
requires a once-and-for-all jump increase in the level of capital, up to the level K 
specified by the "switching curve" o-2. By assumption, this investment is 
completed instantaneously at time t = 0. Note that K > K*, so that the optimal 
level of capital exceeds the long-run optimum level that would prevail under 
conditions of perfect malleability (but not necessarily the short-run optimum). 

Once the investment occurs at t = 0, capital costs cease to be relevant. The 
optimal biomass level thus becomes the "free capital" level, x-. If the optimal 
capital stock is K > K, we set E(t) = K. reducing the biomass stock, x(t), as rapidly 
as possible, until reaching the optimal stock level i. Upon reaching x, we then set 
E = K and henceforth harvest h = F(x) on a sustained-yield basis. In a sense the 
fishery is then "overcapitalized," in that the excess capital K - K is redundant. 
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32 C. W. CLARK, F. H. CLARKE, AND G. R. MUNRO 

The overcapitalization, however, is only ex post and not ex ante, since the initial 
level of capital K is assumed to have been optimally determined. 

Whether in fact K > K, given that x?0 =x, depends on the parameters of the 
model. If K < K, then the optimal biomass level i is not attainable at the effort 
rate E = K. The optimal policy calls for setting E = K for all t >0, and an 
equilibrium level lying between i and x* (see Figure 1) will thus be approached. In 
a sense we are "trapped" in that it neither pays to expand the capital stock 
sufficiently to make i a feasible equilibrium biomass level, nor does it pay to build 
up the biomass level to x*. 

How is the switching curve OC2, which determines the optimal level of capitaliza- 
tion (given that x0 > x*), determined? Consider a point (x, K) in the state space, 
with K >K* and such that (x, K) lies to the right of the line BCD. Let S(x, K) 
denote the "return function," starting at time t = 0 at the point (x, K), and using 
the policy just described, i.e., I=0 for all t-0, and E=K as long as x>x, 
otherwise E = K. Thus S(x, K) is simply the present-value integral 

S(x, K) e|j eat{pqx - c}E(t) dt, 
0 

where E(t) is as above, and x(t) is the corresponding biomass, given by equation 
(2.1). The switching curve O_2 is then determined by the equation 

(4.4) daS(x,K) = 
aK 

Equation (4.4) is simply the usual Keynesian investment rule. 

B. The Overexploited Fishery 

Consider now the case of an initially overexploited fishery: 

(4.5) x?0<x.i 

Clearly a policy of recovery, or rehabilitation, of the fish stock is indicated in these 
circumstances. The only questions to be answered are the extent of the rehabilita- 
tion and the desired speed of recovery. Not surprisingly in light of the previous 
discussion the answers will depend upon the initial level of capital, K?. 

Let it be supposed first that K?> K. The cost of initial investment is a bygone 
and is thus irrelevant to future decisions. Moreover, the capital stock K? is 
abundant in the sense that there is more than sufficient capital to permit us to 
harvest F(x) on a sustained basis. Hence the optimal harvest policy is to set E = 0 
until the biomass has grown to i and then to set E = K, i.e., to harvest F(i) on a 
sustained basis. From our discussion in Section 3 we recognize that at x = i the 
demand price of the biomass is equal to its supply price, given that the only 
relevant effort costs are operating costs. 

Next let it be supposed that K* < K0 < K. (To consider a practical example, the 
fishery may hitherto have been subject to uncontrolled international exploitation, 
but is now encompassed by a coastal state's exclusive economic zone. Internal 
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RENEWABLE RESOURCE STOCKS 33 

political pressures compel the coastal state to exclude all foreign vessels. The 
remaining domestic fleet constitutes K0.) The initial stock of capital is no longer 
abundant, because it is insufficient to harvest F(x) on a sustained basis. The capital 
stock can be built up to K, but only at a cost of IT per unit. Yet, as will be proven in 
Section 7, at every point to the left of x* the demand price of capital, which we 
have characterized as aS(x, K)/aK, will be less than the supply price. Hence 
investment is non-optimal, so that we will be prevented from harvesting on a 
sustained basis at i. We will thus be confronted with an enforced "conser- 
vationist" policy in which the biomass will necessarily rise above i to an 
equilibrium level lying in the "trap" between x and x*. Moreover, as a 
consequence of the coming enforced conservation policy, it will no longer be 
optimal to refrain from harvesting until the biomass has grown to the level i. 
Rather, the optimal policy calls for switching from zero harvesting to maximum 
harvesting as x(t) crosses the switching curve o-1 (see Figure 1). This premature 
switching phenomenon is a common occurrence in linear optimal control 
problems. 

Finally in the case that K0<K* we see that the biomass level eventually 
recovers to the level x = x*. At this moment it becomes optimal to (suddenly) 
increase capital to the level K*, thus establishing a long-run equilibrium at the 
point (x*, K*). 

The switching curve o-1 can be determined by the same method used above for 
0-2. Specifically, for an initial position (x, K) to the left of line ABC, and below 
K = K, let S(x, K) denote the return function corresponding to the policy I= 0, 
E = K as long as x remains below x*, together with an impulse jump in K to K* if 
and when x(t) = x*. The switching curve o-1 is then given by the solution of the 
equation 

aS(x, K) c 
(4.6) ax qx 

where the left-hand side and right-hand side represent the demand price (or 
shadow price) and the supply price of the biomass, respectively. The reason for 
premature switching thus becomes transparent. If we commence at a point to the 
left of o-, with K < K, it will pay to increase the biomass, but not to the same extent 
that it would if capital were abundant. 

It is instructive to compare the above rehabilitation policy with the correspond- 
ing policy in the case of perfect malleability of capital, in which it is optimal to shut 
the fishery down entirely until the biomass has grown to x*. If harvesting capital is 
perfectly non-malleable, the optimal policy is radically altered. It will then never 
pay to refrain from harvesting once the biomass reaches the lower level x. If 
K <K, it will be optimal to commence harvesting at the maximum rate even 
before x(t) reaches i. The ultimate optimal equilibrium biomass level depends 
upon the initial stock of capital K?. 

If capital depreciates at a positive rate, these conclusions must be altered. Let us 
now turn to this more interesting case. 
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34 C. W. CLARK, F. H. CLARKE, AND G. R. MUNRO 

5. QUASI-MALLEABLE CAPITAL 

In this section we consider the case 

(5.1) 'Y > 0; 

we continue to impose the constraint of non-negative gross investment, I - 0. 
Figure 2 is the feedback optimal control diagram for this case. The similarity with 
Figure 1 is apparent, but there are also significant differences. 

As before, the state plane is divided into three control regions R1-R3, and the 
control law (4.3) again applies. The biomass level x is the same as before, but x* 
(which is determined by the total cost Ctotal = c + 7r( +? y)) has moved to the right. 
The most important new feature of Figure 2, however, concerns the dynamic 
behavior of the system. Because of the depreciation of capital, all trajectories 

Capital, K 

\ ..;. >. :..g..<.... . g : Ii / R 3. ......... 

" j g.j-j.;, .,liomass, 

(outside~ of RB) no mov downard wit the pasgi ftm.Itflosta,i 

contrast to the perfectly non-malleable case, the system now tends to a uniquely 
determined long-run equilibrium, at (x*, K*). For this reason, it is appropriate to 
refer to x* as the long-run optimum biomass level, and to x as a (possible) 
short-run optimum biomass level. 

The description and interpretation of the optimal harvest and investment 
policies from any initial position is now straightforward. Two aspects of the 
optimal policy bear emphasizing, however. First note that the switching curve o1 
now meets the line x = x at the point Q above K = K. The implication of this is as 
follows. Consider the system in short-run equilibrium with x = x and (x, K) lying 
above Q. Although the existing stock of capital is abundant, the abundance is 
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RENEWABLE RESOURCE STOCKS 35 

strictly temporary, because of depreciation. Anticipation of the coming "short- 
age" of capital-in the sense that the singular solution x(t)=x will eventually 
become non-feasible-leads to a switch in the harvesting policy at the point Q. 
The switch is to a policy of harvesting at maximum rate (E = K), even though this 
switch will cause x(t) to fall temporarily below the short-run optimum i. 

The second and more important aspect concerns the general problem of 
restoration of an overexploited fishery. Although the optimal restoration policy 
ultimately leads to a long-run equilibrium at x = x* and K = K*, and although this 
equilibrium is the same as for the case of perfectly malleable capital, the 
restoration policies in the two cases are notably different. In the malleable case, 
the optimal restoration policy requires a complete moratorium. In the case that 
capital is quasi-malleable, however, the optimal approach to x* is far more 
gradual. Indeed, after a certain point it will be optimal to harvest at the maximum 
rate with the existing stock of capital. In other words, the disruptive consequences 
of a fishing moratorium can only be considered optimal in the case that fishing 
vessels have viable alternative uses, except that a brief moratorium may be 
optimal if the fish stock is very severely depleted (i.e., to the left of o1). 

6. A MARKET FOR SCRAP 

We turn next to the alternative model specified by equations (2.10)-(2.13). 
Whereas the original model was linear in both control variables E, I, this 
alternative model displays a minor but significant nonlinearity, inasmuch as the 
function / (I) consists of two linear segments of unequal slope r17 and ir, 
respectively. As shown elsewhere [7] in a simpler setting, this nonlinearity gives 
rise to a new type of optimal control ("corner control"), which persists for time 
intervals during which I(t) 0. 

Let xs denote the solution to the equation 

c' ,(x)F(x)8 (6.1) F'(x) p-cs(x) 

where 

(6.2) Cs(x)=c+(0+,Y)n-s x 

Thus x, represents the optimal biomass level for a model of perfectly malleable 
capital with price (purchase price and unit scrap value) equal to rr Since 
0 <irs < 7T we have 

(6.3) i<xs<x*. 

The feedback control diagram for this model is given in Figure 3. This diagram 
is almost identical to that of Figure 2 except for the presence of an additional 
"overlay" disinvestment region R4, bounded by the line x = x. and a new 
switching curve o3. (Depending on parameter values, (J3 may cross a, as shown, or 
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the two curves may fail to intersect.) The optimal harvest and investment policies 
are also identical with those of the previous model, except for (a) initial positions 
(x, K) lying within R4 and (b) initial positions that lead to trajectories that 
penetrate R4, i.e., that hit the line x = x, above the point Q, 

In case (a) the optimal policy requires immediate disinvestment, down to the 
level given by OU3. Following this initial disinvestment, the policy given in Section 5 
is optimal. In case (b), an impulse disinvestment must be undertaken, to the level 
Q, at the instant when x (t) reaches x,. 

The optimal disinvestment policy is thus essentially symmetric to the optimal 
investment policy of region R3. This of course reflects the close symmetry of the 
present model with respect to investment and disinvestment. (Region R2, by the 
way, is an instance of "corner" control mentioned above.) 

Capital, K R4: 1- -. 

R3 

K 

03 

R1 

x x x ~~Biomass, x 

FIGURE 3 

The switching curve _3 is determined from the equation aS/a K r, 
The rationale behind this solution is quite straightforward. At any given time, 

the decision must be taken whether to disinvest, to invest, or to do neither. just as 
investment is indicated when there are "too few" vessels and "too many" fish, so is 
disinvestment indicated only when these conditions are reversed. Like invest- 
ment, disinvestment turns out to be a once-and-for-all decision (there is an 
exception regarding investment, when x(t) returns to x*). If the decision is taken 
not to disinvest, then the optimal policy goes ahead exactly as if the disinvestment 
opportunity did not exist. Disinvestment may occur later, namely if the trajectory 
later hits x = x, above Q,. 
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Let us also note that, because of the disinvestment opportunity, there is now no 
short-run optimal equilibrium biomass level. (In control-theoretic language, x, is 
not a singular solution for this model, although i is such for the previous model.) 
From an arbitrary initial position the system ultimately converges to the same 
long-run equilibrium solution (x*, K*) as in the case of quasi-malleable capital. 

The proof of optimality for this model is outlined in the next section. 

7. PROOF OF OPTIMALITY 

In this section we shall prove that the policy described above is indeed optimal 
for the problem at hand. The method we shall employ is one of verification rather 
than deduction. The solution was arrived at by the study of necessary conditions, a 
knowledge of the solution when K is constant, and a certain amount of trial and 
error. However, we shall not give a detailed account of this procedure; instead we 
simply prove optimality. A word about the necessary conditions: it is not possible 
to apply the Pontryagin maximum principle to the problem, since this principle is 
not valid when the permissible values of the controls (E, I) depend on the current 
value of the state variables (x, K), as they do here (E - K). We used instead the 
more general formulation of "differential inclusions" and some recent results (see 
[9] for a complete discussion) to first observe the existence of the two dis- 
tinguished ("singular") values i and x* (see Section 3 above). 

We remark in passing that the methods developed here should prove useful in 
other control-theoretic problems for which the maximum principle may prove 
inappropriate. For example, an exhaustible resource optimization model similar 
to our model has been discussed by Puu [16]; our method can be used to complete 
and correct the proposed solution for this model. A recent model of capital 
accumulation and durable goods production (Kamien and Schwartz [13]) also has 
a similar structure-and similar properties of optimal policies-to our model; it 
seems likely that our approach could be applied to models of this kind. 

The verification technique we shall employ would be recognized by the expert 
as an adaptation of a classical approach in the calculus of variations sometimes 
labeled "the royal road of Caratheodory" (see, for example, [4]). It has the 
advantage of being simple-minded and elementary. Of course, it depends upon 
knowing the answer in the first place! The basic idea is the following: let a 
harvesting-investment policy be specified from any initial value (x, K), and let the 
resulting net discounted return (see (2.9)) be denoted S(x, K). Suppose that for all 
values of (x, K), for all E in [0, K] and I > 0, the following inequality holds: 

(7.1) 8S(x, K}+E[qxS(x, K)-pqx +c]-F(x)S,(x, K)+,yKSK(x, K) 
+I (3r-SK(x, K)),0 

where S, and SK denote partial derivatives. Under these conditions, we claim that 
the given policy is optimal. To see this, let any other control policy E(t), I(t) be 
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given, with I finite. Then, if (xo, KO) is the starting point, 
00 

j e-t{(pqx - c)E - --rI} dt - S(xo, KO) 
0 

={ e-8t{(pqx - c)E - Irl} dt + l{e-8tS(x(t), K(t))} dt 

00 

= J e -8{(pqx -c)E- -rI-SS(x, K) + SXX + SKK} dt 
0 

= -J e t8'eS+E[qxSx-pqx +c]-F(x)Sx +yKSK +I(1r -SK)} dt 

0 0 (since the integrand is always nonnegative). 

But this says that the return from any other policy does not exceed the return from 
our given policy (it suffices to know this for policies with finite investment rates to 
conclude optimality). 

In summary, one can verify the optimality of a policy by producing a function S 
with the properties mentioned above. We shall now do just this for the policy 
described in the preceding sections. There remains also the task of precisely 
defining the switching curves, and there will be an added complication due to the 
fact that S will sometimes fail to be differentiable along these curves, but the 
underlying idea remains unchanged. 

We assume henceforth that 8, -y > 0 (the case -y = 0 is simpler and can be treated 
with minor modifications). The constraint I : 0 is assumed. We also set q = r = 1, 
which merely amounts to a scaling of the variables E and K, but simplifies the 
notation. We assume that F is twice continuously differentiable and satisfies 
F" <G in the interval (0,x;~), in which F is positive. This says that F is strictly 
concave, and assures among other things that K = F(x)/x defines K as a strictly 
decreasing function of x. 

Now let (see (3.5), (3.9)) 

4(x) = a -F'(x) + c'(x)F(x)/[ p -c(x)], 

(x) = 8-F'(x)+ Ctota1(X)F(X)/[p- Ctotal(X)]. 

We assume the following: the equation q(x)= 0 has a unique solution x in the 
interval (x,.f ); for x > x we have q (x)> O, and for x < i, q (x)< 0; pi-c > O. 
These conditions are easily seen to hold if the marginal stock effect (last term on 
the right-hand side) is a decreasing function of x. We make similar assumptions 
regarding *, denoting the solution to 0*(x) =0 by x*, which is necessarily 
greater than x&. We let K = F(x)/x, K* = F(x*)/x*. 

Let us remark before proceeding to the systematic construction of the optimal 
policy and corresponding return that all our hypotheses are satisfied (for a suitable 
range of parameters) if F is the familiar logistic growth function, i.e., if 

F(x) = rx (J-x). 
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Finally we note the interpretation of (2.9) when I = oo is allowed: set to = 0, and 
suppose jumps in the value of K occur at times to, t1, t2, .. If we denote the 
values immediately before and after these jumps by K(ti-) and K(ti+), respec- 
tively, and if a finite investment rate I(t) is employed between the jumps, then 
(2.9) is given by 

(7.2) et t{(px -c)E -I} dt - Z e -'i [K(t,+)-K(ti 1 i=O 

We let C1 be the locus of points (xo, Ko) in the part of the (x, K)-plane x x 
K > K* such that the trajectory x(t), K(t) originating from (xo, KO) with E(t)- 
K(t), I(t) = 0 passes through (x*, K*) (see Figure 4). It follows that for any (x, K) 
such that 0 < x < x *, K > 0, or such that x 2 x * and (x, K) lies above C1, the policy 
E=K, I=0 will result after finite time in arriving at x(t)=x*, O<K(t) K* (a 
sample trajectory is indicated in Figure 4). Let this arrival time be denoted 
r(xo, KO), and let K be increased to K* at time r; for t 3 r we remain at (x*, K*) 
by setting E = E*, I = yK*. We denote the net discounted return from this policy 
S(x, K). 

Capital, K 

01~~~~~~~~~~~~~~~~~ 

x x* Biomass, x 

FIGURE 4 

LEMMA 1: In the interior of its domain of definition, S is given by 

co S(x, K) =K +je px (t) -c -y}K (t) dt; 

S(x, K) is twice continuously differentiable and satisfies 

8S + (Kx -F)Sx + YKSK K(px -c) = 0. 
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PROOF: Using the notation established for (7.2), we have by integration by parts: 

e 8tIdt e f + yK) dt 

00 

=|1 e8e(8 + y)K(t) dt + Ee _1K (ti 
JO iBl 

-E e8St-'K(tji_+). 

When this is substituted into (7.2), along with E(t) = K(t), we obtain the stated 
expression (all the discrete summation terms cancel except e 8`K(to-) = K). 

It is a consequence of the implicit function theorem that i is a twice continu- 
ously differentiable function of (x, K), and it is also known that x(t) and K(t) are 
(for each t - -ir) twice continuously differentiable functions of their initial value 
(x, K). When we make use of the preceding formula to write 

S(x, K) = K + e-8t{px -c -8- y}Kdt+8e-T{pXep* - c -8- 

the twice continuous differentiability of S becomes apparent. 
If we proceed to observe the identity 

et tS(x(t), K(t))= Je-S{px -c}K(s) ds +S(x, K) 

(which holds for t < r), differentiate with respect to t, and then set t = 0, we obtain 
the required partial differential equation. Q.E.D. 

We shall show presently that the equations 

Sx = p - c/x, 

SK = 1, 

define two curves o- and 0o2, respectively, located essentially as indicated in 
Figure 4. 

LEMMA 2: SK<1 for x<x*, and for points (x*,K) with K>K*. 

PROOF: If in the formula for S derived in the preceding lemma we substitute 
K(t) =F(x(t)) -.i(t), we see that 

S(x,K)=K+J e8t{p-(c+8+y)/x}F(x)dt 
-e -8t{ p - (c +8 + y)/x} dx, 

where the line integral is taken in the (t, x)-plane along the curve x = x (t), t > 0. If 
we now increase K to K + A, the graph of the resulting x (t) will lie below that of 
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the original x(t) for all t, and using Green's theorem we obtain 

S(x, K+ a)-S(x, K)= a+ JJX eI t{p (c +a + +y)/xh*(x) dt dx, 

where the double integral is taken over the (compact) region in the (t, x)-plane 
between the graphs. Since 0*(x)<O in that region, we obtain immediately 
SK(X, K) 1. An elementary estimate shows that the double integral is bounded 
above by a term -EA (E > 0), SO that we have in fact SK < 1. Q.E.D. 

LEMMA3: S <p-C/x for x Bx, K -K. 

PROOF: Let the trajectory originating from (x, K) be denoted as usual x(t), 
K(t), and let the trajectory originating from (x +a, K) (a > 0) be denoted x1(t), 
K1(t). If we proceed as in the previous lemma, keeping account of the line segment 
from x to x +4 in the (t, x)-plane which together with the graphs of x(t) and xi(t) 
comprise our closed curve, we obtain 

S(x, K)-S(x +4 K)= + e"t{p -c/x}F(x) dt-e 8'{p-c/x} dx 

+ { e t(8 + y)(Ki(t)-K(t)) dt 

X+A 

--(P - c/-x) dx 

FromLe-ath p-achtx(x) dt dxe - s (p - c x 

since Kpi(t) >- K (t). 
This implies 

-SX )-Kx)-(pS--C/x 

since 0 > O in the region in question. Strict inequality follows as in Lemma 2. 
Q.E.D. 

From Lemma 3 and the facts that Sx is bounded (as is easily shown) and p- clx 
tends to -oo as x decreases to 0, we deduce that the locus of points satisfying 
Sx =p - clx defines a curve a,1 which lies between the lines x = O and x = x for 
K K. We shall prove later (see Lemma 4, Corollary) that o- crosses the line x = x- 
at one point (x, K) with K > K 

LEMMA 4: A long o-1, we have 

(()-x )(SXX _CIX 2) _ yKSxK = (P p- c/x) (x ), 

and any trajectory employing E = K, I = O meets o-, at most once for x <x 

PROOF: The above equation follows immediately upon differentiating the 
equation of Lemma 1 with respect to x and using the equality Sx = p- clx. Since 
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+(x) < 0 when x < i, the above equality implies that whenever any trajectory as 
stated meets or,, we have at that point 

d [Sx (x (t), K(t)) - p + c/x (t)] < 0. 
dt 

Thus the quantity in brackets can only vanish once along the trajectory. Q.E.D. 

COROLLARY: o- crosses the line x = x at a unique point (x, K) with K > K; when 
Kx >F(x) the graph of a, is that of a function K = g(x). 

PROOF: Let o- cross the graph of K = F(x)/x at x = x1. It follows from Lemma 
4 that SxK is positive at that point. If one recalls that the normal vector to u1 (in the 
direction of increasing Sx) is [Sxx - C/X2, SxK], we see from Lemma 4 that for 
x > x1, a, defines a function K = g(x), since its tangent vector can never be 
vertical. 

It follows that g cannot grow to oo, but must have a finite value g(xi) = K > K at 
x& (otherwise some trajectory x(t), K(t) would meet o- twice). 

We let C2 be the locus of points x (t), K(t) (for x (t) >, X) lying on the trajectory 
which has E = K, I = 0 and which passes through (x, K). The next result follows 
from Lemma 4 as did the above Corollary. 

LEMMA 5: C2 lies below o-, (for x B x). 

Let C3 (see Figure 4) be the locus of points x (t), K (t) (for x (t) S x) lying on the 
trajectory which has E =0, I = 0 and which passes through (x, K). We define the 
policy above C3 as follows: employ E = 0 = I until x(t) = x-, then use E = F(x)/x 
and I = 0 until K = K, then proceed according to the earlier policy. The resulting 
return is S(x, K) on the region in question. 

LEMMA 6: Above C3, S is twice continuously differentiable, SK A 1, SX > p - C/X, 
and S satisfies 

AS-F(x)Sx+yKSK =0. 

PROOF: The smoothness of S and the equation that it satisfies follow as in 
Lemma 1. The inequality involving Sx may be proven by the method of Lemma 3, 
leaving only the verification that SK - 1. 

For each (x, K) in the region in question, let T(x, K) denote the time t at which 
the trajectory x(t), K(t) beginning at x, K and using E = 0, I = 0 arrives at 
x(t) = x. Then we have 

S(x, K)-=e-TS(i, K e-yT). 

Consequently we find (note aT/aK = 0) 

SK (X, K) = e TSK (i, K e ) e 

This content downloaded from 129.74.242.95 on Wed, 07 Oct 2015 21:19:25 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


RENEWABLE RESOURCE STOCKS 43 

Since it is easy to see that SK - 1 when x = x, we conclude that SK (x, K) - 1 for all 
X, K. Q.E.D. 

Our next redefinition occurs in the region bounded by x = 0, o-1 and C3. There 
we employ E = 0, I = 0 until we reach o-1, and after that we switch to E = K, I = 0 
and proceed as before. Note that Lemma 4 assures that this policy is well defined. 
The proof of the following (which parallels that of Lemma 6) is omitted. 

LEMMA 7: In the above region, S is twice continuously differentiable, SK - 1, 
S,x p - c/x, and 

SS-F(x)Sx+yKSK =0. 

We next study the situation in the region lying to the right of x = x*. 

LEMMA 8: Along C1 we have 

S(x, K)- [K -F(x)/x] > (px - c - y)(F(x)/x)/8. 

PROOF: We first observe that the left-hand side is the return obtained from 
starting at (x, F(x)/x) if we immediately increase the number of boats to K and 
use our stated policy from then on, while the right-hand side is the return obtained 
from using E = F(x)/x, I = yK and thus staying at (x, K). Proceeding as in 
Lemma 2, we may express the difference between these two returns as 

e-8t{ p - (c + 8 + y)/x}k* (x) dt dx, 

which is positive in the region in question since x > x*. Q.E.D. 

LEMMA 9: Along C1 (x > x*) we have SK >1. 

PROOF: It is possible to use classic theorems in differential equations to 
calculate 3x(t)/aKo, where x(t) is the value at time t of the solution of our 
differential equation (with E =K, I = O) and KO is the initial value of K. We 
remark only that at t=O, this partial derivative is known to be zero. If we 
differentiate (with respect to KO) the expression for S given in Lemma 1, it then 
follows that we obtain an expression which along C1 is of the form 

1+J f(t) dt, 

where the integrand is recognizably positive for sufficiently small t. It follows that 
SK> 1 when (xo, KO) lies on C1, x > x*, and T is sufficiently small (i.e., when we are 
close to (x*, K*)). 

Now let o-2 be the curve SK= 1. From Lemma 2 and the above, it follows that O2 

lies strictly between C1 and the line x = x*, at least in a neighborhood of (x*, K*). 
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If we differentiate the equation of Lemma 1 with respect to K, set SK = 1 and 
use the inequality of Lemma 8 (which also holds along OJ2 because SK - 1 between 
O2 and C1) we obtain 

SKX (F (x)-Kx)- SKKYK < 0 

along O_2. This shows that no trajectory can intersect o-2 twice; in particular we 
conclude that 0J2 is strictly above C1 for x > x*. Q.E.D. 

As noted above, we have shown: 

COROLLARY: Any trajectory using E = K, I = 0 meets o2 at most once. 

Let us observe in passing that Lemma 9 shows that an optimal policy always 
results in temporary "overcapacity" under the circumstances that xo> x. 

There are now two cases that present themselves, depending on whether o-2 
intersects C2 at a point P having x <.x, or whether o-2 lies below C2 in the region 
x*<x<?. We shall discuss the latter case, where it suffices to discuss the 
definition of S below o2 and above C2. (In the former case the redefinition of S 
above C2 and the left of P necessitates a redefinition of the switching curve o-2 

above C2.) 
Above C2, we redefine our policy, and hence S, as follows: employ E = K, I = 0 

until x = i, then proceed from that point as previously defined (preceding Lemma 
6). The resulting net discounted return is S(x, K) for that region. Below o-2, we 
immediately increase the number of boats to the value placing us on o-2, and then 
we proceed as per our previously adopted policy. Note that by the preceding 
Corollary, we do not encounter o2 again. 

LEMMA 10: Above C2, we have Sx p-c/x, SK-1, and SS+(Kx-F)Sx+ 
,yKSK- K(px - c) = 0. Belowo-2, we have SS + (Kx - F)SX + yKSK- K(px - c) - 

0, SX<p-c/x and SK=1 

PROOF: The first two inequalities may be proven by much the same arguments 
as in Lemmas 2 and 3, and the equation also follows as before. To prove the latter 
set of inequalities, we use the fact that o-2 defines a function K = h(x) for x > x*. 
(This follows from the inequality SKK < 0, which says that the marginal value of 
boats decreases as the number of boats increases.) Thus below Ur2, S is given by 

S(x, K) = S(x, h (x))-(h (x)-K), 

and we see immediately Sx <p - clx, SK = 1. The remaining inequality is then 
seen to be equivalent to 

8 (S (x, h (x)) - h(x) +K) +(Kx -F)Sx (x, h (x)) +,yK - K(px -c)?O,-- 

which we now establish. The derivative of the left-hand side with respect to K is 
8+ -y + c - px + xSx (x, h (x)). The inequality of Lemma 8 (which holds also along 
0-2 as noted previously) and the equation of Lemma 1 imply that this last term is 
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nonpositive. Thus it suffices to prove the required inequality when K = h(x). But 
in that case it is already known (in fact, equality holds by Lemma 1). Q.E.D. 

We have now defined a function S everywhere in the (x, K)-plane, and a 
corresponding policy of harvest and investment for which S is the return. We have 
seen that S is a smooth function except possibly along a finite number of curves 
(where its method of definition changes), an,! S is everywhere continuous. If we 
consider the optimality argument following (7.1), we see that it is unimpaired as 
long as the trajectories x(t), K(t), being otherwise arbitrary, are such that 
S(x(t), K(t)) is differentiable with respect to t except for a finite number of points 
t. But the trajectories x(t), K(t) which only cross the curves where S is non- 
differentiable a finite number of times (and never travel along these curves) are 
dense in the space of all admissible trajectories (i.e., any trajectory can be 
approximated to any degree of closeness by one of this kind). 

Consequently it suffices to know that our stated policy yields a return as good as 
any of these special trajectories; that is, it suffices to know that S satisfies (7.1) 
wherever it is differentiable. Thus the following concludes the proof: 

LEMMA 1 1: S satisfies (7.1) at all points not on the curves o-1, 02, C1, C2, C3 or the 
linesx=x, x=x*. 

PROOF: In the region x > x* below OJ2, this is a consequence of Lemma 10. A 
perusal of all other cases will show that S always satisfies the equation 

SS + K min {0, xS,, -px + c}-FS, + yKSK = 0 

and that SK is always less than or equal to 1. A moment's thought suffices to see 
that this implies (7.1). Q.E.D. 

Finally we shall consider the alternative model discussed in Section 6. For this 
case, equation (7.1) must be modified by replacing the term I(- - SK) by 

qI(I) -ISK = I (7r -SK) for I < 0. 

To establish this modified inequality, we first use the equation 

=s 
aK 

to define a new switching curve 0-3, the geometrical properties of which are 
established as in Lemma 4 above. The return function S(x, K) is then redefined in 
region R4 and also at all points (x, K) from which trajectories ultimately penetrate 
R4. 

We must then re-establish all of the inequalities proved above, and also verify 
that for all (x, K) 

as 
aK 
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However, the present function S(x, K) is identical to the previous function 
S(x, K) except for R4 and points influenced by R4. Hence it is only in these regions 
that further verifications are required. These additional verifications are 
sufficiently similar to those already discussed that we can safely leave them to the 
reader. 

8. SUMMARY AND CONCLUSIONS 

This paper has investigated the implications of restricted malleability of capital 
for the optimal exploitation of renewable resource stocks. While the study has 
been carried out on the basis of a specific model of the commercial fishing 
industry, we believe that the qualitative nature of our results will prove to be 
robust. 

Under the non-malleability assumption the dynamics of the optimally 
controlled fishery can be described in terms of short-run versus long-run behavior. 
Over the long run (unless capital is perfectly non-malleable) the fishery reaches an 
equilibrium state corresponding to "optimum sustained yield," for which the 
relevant cost function incorporates the full cost of fishing, i.e., operating plus 
capital costs. Following the initial development of the fishery, however, there is a 
short-run phase during which capital is excessive (from the long-run viewpoint), 
and only operating costs are relevant to the management decision. The develop- 
ment of the fishery thus follows a complex pattern of expansion, "overcapacity," 
and gradual contraction via depreciation, leading ultimately to the OSY equili- 
brium. We emphasize again that this pattern is an optimal one under the 
assumptions of our model. 

In deriving these results we have been forced to adopt several simplifying 
assumptions. Perhaps the most serious of these lies in the autonomous nature of 
our model. Practically speaking, variability of economic parameters over time is 
more the rule than the exception in renewable resource industries. We make no 
attempt to analyze the effects of such variations here (the malleable case has been 
discussed in [8]). Some information can be gleaned from a comparative dynamics 
approach, i.e., by studying the sensitivity of the solution to the parameters of the 
model. For example, it is easy to verify that the purchase price of capital v has no 
effect on the short-run equilibrium x, but affects x* positively and also affects the 
switching curve O2 in a negative sense. Thus higher capital costs have no effect on 
"bygones," but decrease the optimal (ex ante) level of capitalization, and result in 
lower levels of exploitation over the long run. The effects of varying other 
parameters are also easily worked out. 

Finally, the policy implications of our study are sufficiently clear from a 
qualitative viewpoint. On the one hand, the analysis supports the accepted belief 
that excessive capitalization is likely to occur during the initial development of a 
common-property resource, although a certain degree of overcapitalization is 
now shown to be generally acceptable. On the other hand, the analysis shows that 
extreme policies of stock rehabilitation (e.g., fishing moratoria), may be unwar- 
ranted unless the stock has become very severely depleted. The less transferable 
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are capital assets, the more important this latter consideration becomes. (Along 
these lines, it is clear that non-transferability of labor would have similar impli- 
cations.) The application of these findings to explicit resource-management 
problems will require additional research. 

University of British Columbia 

Manuscript received April, 1977; revision received November, 1977 
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