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a  b  s  t  r  a  c  t

We  derive  and  analyse  a deterministic  model  for the  transmission  of  malaria  disease  with  mass  action
form  of infection.  Firstly,  we  calculate  the  basic  reproduction  number,  R0, and  investigate  the existence
and stability  of  equilibria.  The  system  is  found  to  exhibit  backward  bifurcation.  The  implication  of  this
occurrence  is  that  the  classical  epidemiological  requirement  for  effective  eradication  of  malaria,  R0 <  1,
is  no  longer  sufficient,  even  though  necessary.  Secondly,  by  using  optimal  control  theory  we  derive  the
conditions under  which  it is  optimal  to  eradicate  the  disease  and  examine  the  impact  of  a  possible  com-
bined  vaccination  and  treatment  strategy  on the  disease  transmission.  When  eradication  is impossible,
we  derive  the  necessary  conditions  for optimal  control  of  the disease  using  Pontryagin’s  Maximum  Prin-
ciple.  The  results  obtained  from  the  numerical  simulations  of the  model  show  that  a  possible  vaccination
combined  with  effective  treatment  regime  would  reduce  the  spread  of  the  disease  appreciably.

Crown Copyright ©  2011 Published by Elsevier Ireland Ltd. All rights reserved.

1. Introduction

The ability of malaria to still increase mortality and morbid-
ity continues to inflict major public health and socioeconomic
burdens in developing countries (Chiyaka et al., 2008). Around
200 million persons are at constant risk of infection globally
(Marsh, 1998), with some parts of Africa being the worst affected,
where most victims are children and women. World Health Orga-
nization (WHO) revealed that malaria kills at least one million
people annually in sub-Saharan Africa (WHO, 2003) with the
potential to significantly increase in response to climate change
and Human Immunodeficiency Virus (HIV) (Lindsay and Martens,
1998). Malaria is transmitted to humans when they are bit-
ten by an infected female Anopheles mosquito. Few days after
the bites, clinical symptoms such as pain, fever, sweats develop.
Mosquitoes acquire infection from infected human after a blood

∗ Corresponding author at: Climate System Analysis Group (CSAG), Department
of Environmental and Geographical Sciences, University of Cape Town, Private Bag
X3, Rondenbosch 7701, Cape Town, South Africa.

E-mail addresses: kazeemoare@gmail.com (K.O. Okosun), ouifkir@sun.ac.za (R.
Ouifki), nmarcus@uwc.ac.za (N. Marcus).

1 The first author (OKO) acknowledges, with thanks, the financial support of the
National Research Foundation (NRF), South Africa for this research through grant:
74816. The authors would like to thank the DST/NRF South African Centre of Excel-
lence in Epidemiological Modelling and Analysis (SACEMA) for also supporting this
research.

meal. Although malaria being a life-threatening disease, it is pre-
ventable and curable when the infected individual seek treatment
early. Existing methods for controlling the disease include insecti-
cides, treated bednets, drugs for disease prevention and treatment.
These interventions led to a substantial reduction in morbid-
ity and mortality in many areas. However, malaria still persists
as a major public health problem and the disease burden may
rise again. This is due to the costs of interventions, availability
of treatment and its adverse effects and also to the increasing
rate of parasite drug-resistance and mosquito insecticide-
resistance. All these call for the development of an effective and
cost-effective malaria vaccine. Many vaccine candidates such as
SPf66, CSP, NYVAC-Pf7, [NANP]19-5.1 and RTS,S were developed
and have undergone field trials. RTS,S is the most clinically
advanced vaccine candidate, used in combination with different
adjuvant systems, this vaccine provides protection for young chil-
dren and infants against infection and clinical disease caused by
Plasmodium falciparum in malaria-endemic areas (Alonso et al.,
2004, 2005; see also Sacarlal et al., 2008, 2009; Aponte et al.,
2007; Bejon et al., 2008; Abdulla et al., 2008; Polhemus et al.,
2009; Owusu-Agyei et al., 2009; Bojang et al., 2001, 2009). In
2009, a Phase III trial on infants and young children was  car-
ried out in seven African countries to confirm its efficacy and
safety. This is expected to be submitted to regulatory authori-
ties in 2012 and hence could possibly be available for targeted
use among young children between 5 and 17 months old by
2013.
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Mathematical modelling is useful in analysing the diseases
dynamics (Mushayabasa et al., 2011), outcomes and cost-
effectiveness of some interventions. A number of mathematical
models have been proposed to study the transmission dynamics of
malaria. Some of these studies focused on eradication of the disease,
by targeting mosquitoes as a strategy for controlling the disease
(Ashrafi and Gumel, 2008; Chiyaka et al., 2008; Mukandavire et al.,
2009; Nakul et al., 2006), others studied the effect of vaccination
on the dynamics of the disease (Vásquez Pinzón et al., 2003; Maire
et al., 2006). Besides, studies have also confirmed that eradicat-
ing the disease by eliminating mosquitoes (as a control strategy)
has been an unsuccessful approach (Sachs, 2002); hence, there is
need to consider optimal control in the mathematical modelling of
malaria to curtail the spread of the disease rather than eradication.

There have been applications of optimal control methods to epi-
demiological models, but most of these studies focused on HIV and
TB diseases dynamics. The authors in Adams et al. (2004),  Denis
et al. (1997),  Karrakchou et al. (2006),  and Kirschner et al. (1997)
studied the optimal chemotherapy treatment in controlling the
virus reproduction in an HIV patient. In Goldman and Lightwood
(2002), Gupta and Rink (1973),  Wickwire (1975),  and Sethi (1978),
optimal control was used to minimize the costs of both diseases
and treatment. In Cesar (2006) and Sethi and Staats (1978) the
authors used optimal control to investigate the best strategy for
educational campaigns during the outbreak of an epidemic and at
the same time minimizing the number of infective humans. The
authors in Kar and Batabyal (2011) also used Optimal control to
study a nonlinear mathematical SIR epidemic model with a vac-
cination program. Other applications of optimal control include
modelling of Leukemia (Ainseba and Benosman, in press; Nanda
et al., 2007).

Very little has been done in the area of applying optimal control
theory to study and analyse the dynamics of malaria. Recently, opti-
mal  control was applied to study the impact of chemo-therapy on
malaria disease with infective immigrants (Makinde and Okosun,
2011), while Blayneh et al. (2009) studied the effects of prevention
and treatment on malaria, using an SEIR model. It was  also used in
a malaria model with genetically modified mosquitoes but without
human population (Rafikov et al., 2009).

In this paper we consider an SEIR malaria model that includes
both human and vector populations and incorporates treatment
and vaccination measures. The aim is to gain some insights into
the best intervention for minimizing the transmission of malaria
disease within the population and to explore the impacts of vari-
ous intervention scenarios, namely, vaccination and treatment. We
analyse the stability and bifurcation of the model, then we incorpo-
rate into the model appropriate cost functions in order to study and
determine the possible impacts of these strategies in controlling the
disease. We  further carried out detailed qualitative optimal control
analysis of the resulting model and derive the conditions under
which it is optimal to eradicate rather than control the disease.
In the case when eradication is impossible, we give the necessary
conditions for optimal control of the disease using Pontryagin’s
Maximum Principle, in order to determine optimal strategies for
controlling the spread of the disease.

The organization of the paper is as follows, in Section 2, we
derive a model consisting of ordinary differential equations that
describes the interactions between humans and mosquitoes popu-
lations and the underlying assumptions. Section 3 is devoted to the
mathematical analysis of the malaria model. In Section 4, we derive
the conditions under which it will be optimal to eradicate rather
than to control the disease. Furthermore, we use Pontryagin’s Max-
imum Principle to find the necessary conditions for the optimal
control of the disease when eradication is impossible. In Section 5
the simulation results are shown to illustrate the effect of vaccina-
tion and treatment. Our conclusions are discussed in Section 6.

Fig. 1. Flow diagram for malaria disease transmission. For symbols, see text.

2. Model Formulation

The model sub-divides the total human population, denoted
by Nh, into sub-populations of susceptible individuals (Sh), those
exposed to malaria parasite (Eh), individuals with malaria symp-
toms (Ih), recovered human (Rh) and vaccinated individuals Vh. So
that Nh = Sh + Eh + Ih + Rh + Vh .

The total vector (mosquito) population, denoted by Nv, is sub-
divided into susceptible mosquitoes (Sv), mosquitoes exposed to
the malaria parasite (Ev) and infectious mosquitoes (Iv). Thus,
Nv(t) = Sv + Ev + Iv (Fig. 1).

The model is given by the following system of ordinary differ-
ential equations:

dS
h =(1 − u1(t))!h + "Rh − ˇmSh + #Vh − $hSh

+(% + &u2(t))(1 − ')Ih
dE
h =ˇmSh + bˇmVh − (˛1 + $h)Eh

dI
h =˛1Eh − (% + &u2(t) +   + $h)Ih

dR
h =(% + &u2(t))'Ih − (" + $h)Rh

dV
h =u1(t)!h − ($h + #)Vh − bˇmVh

dS
v =!v − (vSv − $vSv

dE
v =(vSv − (˛2 + $v)Ev

dI
v =˛2Ev − $vIv.

(1)

Susceptible individuals are recruited at a rate !h, where a
proportion u1 ∈ [0, 1] of them is successfully vaccinated at birth.
Susceptible individuals acquire malaria through contact with infec-
tious mosquitoes at a rate ˇm. Due to waning effect, some
vaccinated individuals will move to the exposed class at a rate
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bˇm, where (1 − b) ∈ [0, 1] is the efficacy of vaccine or they loose
their immunity completely and move to the susceptible class at
a rate !. Exposed individuals move to the infectious class at a
rate ˛1. Individuals with malaria are treated under control, at a
rate "u2(t), # are individuals who recovered spontaneously. A pro-
portion of them, $, moves to the recovered class with temporary
immunity and the other proportion moves to the susceptible class.
Non treated infected individuals die at a rate  . Recovered individ-
ual loose immunity at a rate % and become susceptible again. The
term &h is the natural death rate.

Susceptible mosquitoes (Sv) are generated at a rate 'v and
acquire malaria through contacts with infected humans at a rate (v.
Mosquitoes are assumed to suffer death due to natural causes and
various control measures (insecticides, destruction of mosquitoes
breeding sites, etc.) at a rate &v. Newly infected mosquitoes move
to the exposed class (Ev), and later progress to the class of symp-
tomatic mosquitoes (Iv) at a rate ˛2. We  also consider two forms of
infection for mosquitoes.

The interactions between humans and mosquitoes have been
modeled using the mass action law (see Ashrafi and Gumel, 2008;
Dietz et al., 1974; Yang, 2000, 2001; Isao et al., 2004; Li, 2008; Koella
and Anita, 2003; Blayneh et al., 2009; Makinde and Okosun, 2011)
and standard incidence law (see Gumel and Song, 2008; Chiyaka
et al., 2008, 2009; Nakul et al., 2006, 2008; Garba et al., 2008;
Mukandavire et al., 2009; Tumwiine et al., 2008).

Here ˇm = ˇ)*Iv and (v = ()*(+Rh + Ih), where  ̌ is the trans-
mission probability per bite, ) is the per capita biting rate of
mosquitoes and * is the contact rate of vector per human per
unit time. The terms ( and + are the probability for a vector to
get infected by an infectious human and modification parameter,
respectively.

3. Mathematical Analysis of the Malaria Model

3.1. Positivity and Boundedness of Solutions

For the malaria transmission model (1) to be epidemiologically
meaningful, it is important to prove that all solutions with non-
negative initial data will remain non-negative for all time.

Theorem 1. If Sh(0), Eh(0),  Ih(0), Rh(0), Vh(0), Sv(0), Ev(0),
Iv(0) are non negative, then so are Sh(t), Eh(t), Ih(t),
Rh(t), Vh(t), Sv(t), Ev(t) and Iv(t) for all time t > 0. Moreover,

lim sup
t→∞

Nh(t) ≤ '
h

and lim sup
t→∞

Nv(t) ≤ '
v
. (2)

Furthermore, if Nh(0) ≤ 'h/&h, then Nh(t) ≤ 'h/&h, and if Nv(0) ≤
'v/&v, then Nv(t) ≤ 'v/&v.

The proof is omitted for simplicity. The feasible region for system
(1) is therefore given by

D = hD  × vD  ⊂ R5
+ × R3

+ (3)

where

hD  =
{

(Sh, Eh, Ih, Rh, Vh) ∈ R5
+ : Sh + Eh + Ih + Rh + Vh ≤ '

h

}
, (4)

and

vD  =
{

(Sv, Ev, Iv) ∈ R3
+ : Sv + Ev + Iv ≤ '

v

}
. (5)

D  is positively invariant.

3.2. Steady States, Stability and Bifurcation

The disease-free equilibrium (DFE) of the malaria model (1)
exists only when u1 and u2 are constant, it is given by

0E =
(
'h(! + &h − u1&h)

(! + &h)&h
, 0, 0, 0,

u1'h
! + &h

,
'
v ,0, 0

)
. (6)

The basic reproduction number of the vaccination and treatment
policy (1),  R0, is calculated by using the next generation matrix (Van
den Driessche and Watmough, 2002). It is given by

R0 =

√
˛1˛2(ˇ'h'v)2*2(% + +r$ + &h)

&h&
2
v (˛1 + &h)(˛2 + &v)(&h + %)(&h +   + r)

(
1 − u1(1 − b)&h

&h + !

)
, (7)

where r = # + u2" . It is clear that vaccination results into a reduction
in R0 by u1(1 − b)&h/&h + ! which is the product of the coverage rate
of vaccine, u1, by the protective effect of the vaccine, 1 − b, divided
by the odds ratio of loosing immunity (&h + !)/&h.

The square root in (7) agrees with the findings of Lord et al.
(1996) as the biological requirement in the human-vector host sys-
tem for the parasite to pass through two types of individuals to
complete its life cycle.

Further, using Theorem 2 in Van den Driessche and Watmough
(2002), the following result is established.

Proposition 1. The DFE of the vaccination model (1),  is locally
asymptotically stable if R0 < 1, and unstable if R0 > 1.

Next we  calculate the endemic steady states. Solving system (1)
at the equilibrium we obtain ˇ∗

m = 0 (which corresponds to the DFE)
or

Aˇ∗2
m + Bˇ∗

m + C = 0 (8)

where

A = b[˛1'h)(*(% + &h + +r$) + &v(˛1
+&h)(&h + %)(&h +  ) + r&h&v(&h + % + ˛1$)]

B = M(K  − R2
0)

C = &h&v(&h + !)(˛1 + &h)(&h + %)(&h +   + r)(1 − R2
0)

(9)

where

M = &h&2
v (% + &h)(r +   + &h)(˛1 + &h)(˛2 + &v)

K = bˇ()*)2˛1˛2'h'v(% + r+$ + &h)
&h&

2
v (% + &h)(r +   + &h)(˛1 + &h)(˛2 + &v)

(10)

Note that the coefficient A is always positive and C (resp. B) is
positive if R0 is less than 1 (resp

√
K), respectively.

We have the following results.

Proposition 2.

1. If K ≥ 1 then system (1) exhibits a transcritical bifurcation.
2. If K < 1 then system (1) exhibits a backward bifurcation.

Proof.

1. For K ≥ 1 we obtain when R0 > 1 that C < 0 . This implies that sys-
tem (1) has a unique endemic steady state. If R0 ≤ 1, then C ≥ 0
and B ≥ 0. In this case system (1) has no endemic steady states.

2. For K < 1 we discuss the following cases:
i. R0 > 1, in this case C < 0 and system (1) has a unique endemic

steady state.
ii. R0 ≤

√
K , in this case both B and C are positive implying that

system (1) has no endemic steady states.
iii.

√
K < R0 < 1, here C > 0 and B < 0 while the discriminant of

(8), ,(R0) : = B2 − 4AC, can be either positive or negative. We
have ,(1) = B2 > 0 and ,(

√
K) = −4AC < 0, then there exists
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R0c such that !(R0c) = 0, !(R0) < 0 for
√
K < R0 < R0c and

!(R0) > 0 for R0c < R0. This together with the signs of B and
C imply that system (1) has no endemic steady states when√
K < R0 < R0c , one endemic steady state when R0 = R0c and

two endemic steady states when R0c < R0 < 1.

!

Backward bifurcation has been studied for malaria disease by
many authors (Ashrafi and Gumel, 2008; Zhixing et al., 2008;
Doedel et al., 2002; Augas et al., 2008). The occurrence of such
bifurcation suggests that eradication of malaria is achievable only
when the (constant) controls are greater than a critical value less
than one. Moreover, for the disease not to become endemic again,
treatment/vaccination controls must be maintained at this level
for all time. This is because the system will ultimately re-stabilize
at its previous endemic steady state when treatment/vaccination
is stopped. In the next section we proceed to study the opti-
mal  control and analysis of the model with time dependent
controls.

4. Application of Optimal Control to the Malaria Model

From the previous section we conclude that eradication of the
disease may  be too costly when constant controls are considered as
it requires treatment/vaccination at higher levels for all time. For
eradication to be achievable in a finite time, we  need to consider
time dependent controls.

When the control is time dependent the disease free equilib-
rium no longer exists. We  use an approach similar to the one in
Barrett and Hoel (2007) which consists in applying the Pontryagin’s
Maximum Principle to determine the conditions under which erad-
ication of the disease can be achieved in finite time. The analysis
will be restricted to the model with mass-action force of infection
only.

We  seek to minimize the number of infective individuals and the
cost of applying treatment and vaccination controls. The objective
functional that we consider is given by

J = min
u1,u2

∫ t

0
e−qt(wIv + mIh + nu2

1 + cu2
2)dt (11)

subject to differential Eq. (1).
Here wIv and mIh are the cost associated with a number Iv of

infected mosquitoes and Ih of infected individuals, q is the dis-
counted rate, nu2

1 is the cost of vaccinating and cu2
2 the cost of

treatment, while T is the time period of the intervention. In line
with Adams et al. (2004),  Denis et al. (1997),  Joshi et al. (2006),
and Karrakchou et al. (2006),  we choose a linear function for the
cost on infection, wIv, mIh, and quadratic forms for the cost on the
controls nu2

1 and cu2
1. We  also assume that the weight factor c asso-

ciated with control u2 is greater than the one (n) associated with
control u1. This assumption is based on the facts that the cost associ-
ated with u1 includes the cost of vaccination, educational campaign
for public acceptance and administration, while the cost associated
with u2 will include that of antimalarial drugs, surveillance, drug
management, clinical tests and hospitalization.

We seek an optimal control u♯1, u♯2 such that

J(u♯1, u♯2) = min
u1,u2∈U

J(u1, u2) (12)

where U = {u : uismeasurableand0 ≤ u(t) ≤ 1fort ∈ [0,  tf ]} is the
control set.

The necessary conditions that an optimal control must satisfy
come from the Pontryagin’s Maximum Principle (Pontryagin et al.,
1962). This principle converts (1)–(12) into a problem of minimiz-

ing pointwise a Hamiltonian H, with respect to (u1, u2)

H = wIv + mIh + nu2
1 + cu2

2 + #Sh {(1 − u1)$h + %Rh − ˇ1&'IvSh

+ (Vh − )hSh + (1 − *)(+ + u2,)Ih} + #Eh {&'Iv(ˇSh + bˇVh)

− (˛1 + )h)Eh} + #Ih {˛1Eh − (+ + u2, +   + )h)Ih}

+ #Rh {*(+ + u2,)Ih − (% + )h)Rh} + #Vh {u1$h − ()h + (

+ bˇ&'Iv)Vh} + #Sv {$v − #&'(-Rh + Ih)Sv − )vSv}

+ #Ev {#&'(-Rh + Ih)Sv − (˛2 + )v)Ev, } + #Iv {˛2Ev − )vIv} (13)

where
#Sh , #Eh , #Ih , #Rh , #Vh , #Sv , #Ev and #Iv are the adjoint variables

or co-state variables solutions of the following adjoint system:

−
d#Sh
dt

= ((ˇ&'Iv) + )h)#Sh − (ˇ&'Iv)#Eh

−
d#Eh
dt

= ()h + ˛1)#Eh − ˛1#Ih

−
d#Ih
dt

= −m + (q + + + u2, + )h +  )#Ih − *(+ + u2,)#Rh
−(1 − *)(+ + u2,)#Rh + (#&'Sv)#Sv − (#&'Sv)#Ev

−
d#Rh
dt

= −%#Sh + ()h + %)#Rh + #&'-Sv(#Sv − #Ev )

−
d#Vh
dt

= −(#Sh + (( + )h)#Vh + bˇ&'Iv(#Vh − #Eh )

−
d#Sv
dt

= (#&'(-Rh + Ih) + )v)#Sv − #&'(-Rh + Ih)#Ev

−
d#Ev

dt
= (˛2 + )v)#Ev − ˛2#Iv

−
d#Iv
dt

= −w + (ˇ&'Sh)#Sh − #Eh (ˇ&'(Sh + bVh)

+)v#Iv + bˇ&'Vh#Vh

(14)

satisfying the transversality conditions

#Sh (tf ) = #Eh (tf ) = #Ih (tf ) = #Rh (tf ) = #Vh (tf ) = 0

#Sv (tf ) = #Ev (tf ) = #Iv (tf ) = 0
(15)

By applying Pontryagin’s Maximum Principle (Pontryagin et al.,
1962) and the existence result for the optimal control from Fleming
and Rishel (1975),  we obtain

Theorem 2. The optimal control pair (u♯1, u♯2) that minimizes J over
U is given by

u♯1 = max

{
0, min

(
1,

(#Sh − #Vh )$h
2n

)}

u♯2 = max

{
0, min

(
1,
,(#Ih − *#Rh − (1 − *)#Sh )I∗h

2c

)} (16)

where #Sh , #Eh , #Ih , #Rh , #Vh , #Sv , #Ev and #Iv are the solutions of (14)
and (15).

Proof. From Corollary 4.1 (Fleming and Rishel, 1975), the exis-
tence of optimal control results from the convexity of the integrand
of J with respect to u1 and u2, a priori boundedness of the state solu-
tions, and the Lipschitz property of the state system with respect
to the state variables. System (14) is obtained by differentiating
the Hamiltonian function, evaluated at the optimal control. Fur-
thermore, by equating to zero the derivatives of the Hamiltonian
with respect to the controls, we  obtain (see Lenhart and Workman,
2007) u1 = ũ1 := (#Sh − #Vh )$h/2n and u2 = ũ2 := ,(#Ih − *#Rh −
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Fig. 2. Numerical simulations showing individual marginal cost for being vaccinated, individual marginal cost for being treated and the community cost, where Ih = 20
and  the time durations are set to 100 and 50, the other parameter values are !" = 0.1004, #h = 0.00004, #v = 0.1429, ˛1 = 100, ˛2 = 0.0981, $h = 0.00099, $v =
0.0089,    = 0.00013945392, % = 0.7902, & = 0.023, ' = 0.005, ( = 0.001, ) = 0.005, r = 0.00656.

(1 − &)*Sh )I∗h/2c. By standard control arguments involving the
bounds on the controls, we conclude

u♯1 =

⎧
⎪⎨

⎪⎩

0 if ũ1 ≤ 0

ũ1 if 0 < ũ1 < 1

1 if ũ1 ≥ 1

and u♯2 =

⎧
⎪⎨

⎪⎩

0 if ũ2 ≤ 0

ũ2 if 0 < ũ2 < 1

1 if ũ2 ≥ 1

(17)

which leads to (16). Due to the a priori boundedness of the state and
adjoint functions and the resulting Lipschitz structure of the ODE’s,
we obtain the uniqueness of the optimal control for small tf. The
uniqueness of the optimal control pair follows from the uniqueness
of the optimality system, which consists of (1),  (14), (15) and (16).
!

There is a restriction on the length of time interval in order to
guarantee the uniqueness of the optimality system. This is due to
the opposite time orientations of the optimality system; the state
problem has initial values and the adjoint problem has final values.
This restriction is very common in control problems (see de Souza
et al., 2000; Joshi, 2002; Kirschner et al., 1997; Lenhart and Bhat,
1992; Lenhart and Yong, 1997; Seierstad and Sydsaeter, 1987).

Next we  discuss the numerical solutions of the optimality sys-
tem and the corresponding optimal control pair, the parameter
choices, and the interpretations from various cases.

5. Numerical Results

5.1. Optimal Eradication

Fig. 2 shows the individual marginal cost for being vaccinated,
individual marginal cost for being treated and the community cost,
when the initial number of infective humans Ih = 20. The individ-
ual’s best strategy is to be vaccinated until time t = 100 days. The
numerical also result shows that the control is sensitive to the final
time, the shorter the period of control programme, the smaller the
marginal cost of control.

Also, the control programme is found to be sensitive to the num-
ber of initial infective humans in the community, this is shown in
Fig. 3.

In Fig. 4, we evaluate the shadow price at the start of malaria
epidemic as a function of the numbers of vaccinated. Fig. 4(a) shows
that the shadow price of susceptibles is less damaging compared to
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Fig. 3. Numerical simulations showing the model sensitivity to the initial number of infective individuals in the community, (a) (Ih(0) = 100) and (b) (Ih(0) = 800), the
other  parameter values are !" = 0.1004, #h = 0.00004, #v = 0.1429, ˛1 = 100, ˛2 = 0.0981, $h = 0.00099, $v = 0.0089,   = 0.00013945392, % = 0.7902, & =
0.023,  ' = 0.005, ( = 0.001, ) = 0.005, r = 0.00656.
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Fig. 4. Numerical simulations showing the shadow prices of susceptibles and infected using the following parameter values, !" = 0.1004, #h = 0.00004, #v =
0.1429,  ˛1 = 100, ˛2 = 0.0981, $h = 0.00099, $v = 0.0089,   = 0.00013945392, % = 0.7902, & = 0.023, ' = 0.005, ( = 0.001, ) = 0.005, r = 0.00656.

the shadow price of infected. This is, an indication that the shadow
price of susceptibles has positive impact on the costs as the stock
level of susceptibles decreases. Fig. 4(b) indicates that the shadow
price on Sh tends to zero as the numbers of vaccinated susceptibles
increases zero.

5.2. Optimal Control

In this section, we show the numerical simulations of the
impacts of the optimal control strategies on malaria transmission.
The optimal control is obtained by solving the optimality system
that consists of the state system (1) and adjoint system (14). We
use an iterative scheme to solve the optimality system. We  first
solve the state equations with a guess for the controls over the sim-
ulated time using fourth order Runge–Kutta scheme. Then, we use
the current iterations solutions of the state equation to solve the
adjoint equations by a backward fourth order Runge–Kutta scheme.
Finally, we update the controls by using a convex combination of
the previous controls and the value from the characterizations (16).
This process is repeated and iterations are stopped if the values of
the unknowns at the previous iterations are very close to the ones
at the present iterations (Lenhart and Workman, 2007). We  inves-
tigate and compare numerical results, with the following scenario
(i) when vaccination u1 was optimized while treatment u2 is set to
zero (ii) when treatment u2 was optimized while we  set u1 to zero
(iii) when both controls were optimized.

In Figs. 5–7,  we use the same set of weight factors, m = 150,
n = 100, c = 500 and initial state variables Sh(0) = 700, Eh(0) = 220,
Ih(0) = 100, Rh(0) = 60, Vh(0) = 10, Sv(0) = 3000, Ev(0) = 400, Iv(0) =
120 to illustrate the effect of various optimal strategies on the
spread of malaria. Other epidemiological and numerical parameters
are presented in Table 1.

5.2.1. Vaccination
With this strategy, only the control u1 on vaccination is used to

optimize the objective function J, while the control u2 on treatment
is set to zero. Fig. 5 shows a significant difference in the number of
infected humans Ih and infected mosquitoes Iv between the case
with control and the case without. We  observe in Fig. 5(a) and (b)
that due to this strategy, the number of infected humans after an
initial decrease, increases again and stabilize at Ih = 37 while the
number of infected mosquitoes stabilizes at Iv = 65. The control
profile is shown in Fig. 5(c), the control u1 on vaccination is at the
upper bound for 99 (days). This shows that an effective and optimal
use of vaccination in the population without treatment will not be

beneficial to the community on the long run in the control of the
spread of the disease.

The results here suggest that, compared to the case without
control, Sh is higher and Ih is far reduced when an optimal control
strategy is adopted.

5.2.2. Treatment
With this strategy, we  set the vaccination control, u1, to zero and

use only treatment control, u2, to optimize the objective function
J. In Fig. 6(a) and (b) show a significant difference in the infected
humans Ih and infected mosquitoes Iv, respectively with control
compared to the situation where there is no control. More specif-
ically, we observe a decrease in Ih and Iv while an increase was
observed in the uncontrolled cases. The control profile is shown

Table 1
Description of variables and parameters of the malaria model (1). The units of
!, #h, #v, ˛1, ˛2, $h, $v,  , %, &, ' are day−1, the other parameters are
without units.

Parameter Estimated value Reference

! 0.502 Blayneh et al. (2009)
" 0.2 Blayneh et al. (2009)
"! 0.1004, 0.58 Blayneh et al. (2009),  Mukandavire

et al. (2009)
ˇ 0.03, 0.8333 Blayneh et al. (2009),  Mukandavire

et al. (2009)
* 0.0057233, 0.09 Mukandavire et al. (2009), Blayneh

et al. (2009)
#h 0.00004, 0.0000457 Mukandavire et al. (2009), Yang (2001)
#v 0.1429, 0.0667 Mukandavire et al. (2009), Chiyaka

et al. (2008)
˛1 1/17, 100 Blayneh et al. (2009),  Mukandavire

et al. (2009)
˛2 1/18, 0.0981 Nakul et al. (2006), Mukandavire et al.

(2009)
$h 0.00099, 100 Mukandavire et al. (2009), Blayneh

et al. (2009)
$v 0.0089, 1000 Mukandavire et al. (2009), Blayneh

et al. (2009)
  0.00013945392, 0.02 Mukandavire et al. (2009), Blayneh

et al. (2009)
% 0.7902, 1/(2 × 365) Nakul et al. (2006), Blayneh et al.

(2009)
(  0.001 Assumed
& 0.023 Assumed
r 0.00656 Mukandavire et al. (2009)
+ 0.7 Assumed
) 0.005 Chiyaka et al. (2008)
'  0.005 Assumed
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Fig. 5. Simulations of the malaria model showing impact of vaccination only using the following parameter values, ! = 0.502, " = 0.2, #h = 0.0000457, #v = 0.0667, ˛1 = 1/17,
˛2 = 1/18, $h = 100, $v = 1000,   = 0.02, % = 1/(2 × 365), & = 0.023, ' = 0.005, ( = 0.001, ) = 0.005, r = 0.00656.
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Fig. 6. Simulations of the malaria model showing impact of treatment only using the following parameter values, ! = 0.502, "= 0.2, #h = 0.0000457, #v = 0.0667, ˛1 = 1/17,
˛2 = 1/18, $h = 100, $v = 1000,   = 0.02, % = 1/(2 × 365), & = 0.023, ' = 0.005, ( = 0.001, ) = 0.005, r = 0.00656.
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Fig. 7. Simulations of the malaria model showing effect of optimal strategies vaccination and treatment on the spread of malaria using the following parameter values,
!  = 0.502, " = 0.2, #h = 0.0000457, #v = 0.0667, ˛1 = 1/17, ˛2 = 1/18, $h = 100, $v = 1000,   = 0.02, % = 1/(2 × 365), & = 0.023, ' = 0.005, ( = 0.001, ) = 0.005, r = 0.00656.

in Fig. 6(c), where we see that the optimal treatment control u2 is
at the upper bound for t = 98 (days). This strategy suggests that an
additional effort is required on treatment under this strategy.

5.2.3. Optimal Vaccination and Treatment
With this strategy, the vaccination control u1 and the treatment

control u2 are both used to optimize the objective function J. In
Fig. 7(a) and (b), we observed that the control strategies resulted
in a decrease in the number of infected humans (Ih), infected
mosquitoes (Iv) and susceptible humans (Sh) while an increase
is observed in the number of infected humans (Ih) and infected
mosquitoes (Iv) in strategy without control.

6. Cost Effectiveness Analysis

Using cost effectiveness analysis, we want to determine the
most cost effective strategy to use the control of malaria disease
(vaccination only, treatment only, and vaccination with treatment).
For this we need to compare the differences between the costs
and health outcomes of these interventions. This is done by cal-
culating the Incremental Cost-Effectiveness Ratio (ICER) which is
generally described as the additional cost per additional health
outcome. When comparing two competing intervention strate-
gies incrementally, one intervention should be compared with the
next-less-effective alternative. The ICER numerator includes the
differences in intervention costs, averted disease costs, costs of pre-
vented cases and averted productivity losses if applicable. While,
the ICER denominator is the differences in health outcomes (e.g.
total number of infection averted, number of susceptibility cases
prevented)

Based on the model simulation results, we rank the strategies in
increasing order of effectiveness, namely vaccination only (strategy
A), treatment only (strategy B) and the combination of vaccination
with treatment (strategy C).

The difference between the total infectious individuals without
control and the total infectious individuals with control was used
to determine the “total number of infection averted” used in the
table of cost-effectiveness analysis

Strategy Total infection averted Total cost ($)

Strategy A 899.5042 17,100,000
Strategy B 3636.643 1,458,054

ICER(A) = 17,  100, 000
899.5042

= 19,  010

ICER(B) = 1, 458, 054 − 17,  100, 000
3636.643 − 899.5042

= −5714.7069
(18)

The comparison between ICER(A) and ICER(B) shows a cost sav-
ing of $5714.7069 for strategy B over strategy A. The negative ICER
for strategy B indicates the strategy A is “strongly dominated”. That
is, strategy A is more costly and less effective than strategy B. There-
fore, strategy A, the strongly dominated is excluded from the set of
alternatives so it does not consume limited resources.

We exclude strategy A and compare strategy B with C. From the
numerical results we have

Strategy Total infection averted Total cost ($)

Strategy B 3636.643 1,458,054
Strategy C 3769.657 1,153,863

This leads to the following values for the ICER,

ICER(B) = 1, 458, 054
3636.643

= 400.9341

ICER(C) = 1, 153, 863 − 1, 458, 054
3769.654 − 3636.643

= −2786.9612
(19)

The comparison between ICER(B) and ICER(C) shows a cost sav-
ing of $2786.9612 for strategy C over strategy B. Similarly, the
negative ICER for strategy C indicates the strategy B is “strongly
dominated”. That is, strategy B is more costly and less effective
than strategy C. Therefore, strategy B, the strongly dominated is
excluded.

With this result, we  therefore conclude strategy C (combination
of vaccination u1 with treatment of infective individuals (u2) is most
cost-effective of all the strategies for malaria disease control.

7. Conclusion

In this paper, we derived and analyzed a deterministic model
for the transmission of malaria disease that includes treatment
and vaccination with waning immunity, using mass action form
of infection. We  calculated the basic reproduction number, R0,
investigated the existence and stability of equilibria and performed
optimal control analysis of the model. We  found that the mass
action system exhibits backward bifurcation. The epidemiological
implication of this is that for effective eradication and control of
malaria, R0 should be less than a critical values less than one. More-
over, achieving this may  be too costly, because it means that for
constant controls, one needs to keep vaccinating and treating for
infinite time. Therefore, we considered time dependent controls
as a way out, to ensure the eradication of the disease in a finite
time. In this light, we  addressed the optimal control by deriving
and analyzing the conditions for optimal eradication of the dis-
ease and in a situation where eradication is impossible or of less
benefit compared with the cost of intervention, we also derived
and analyzed the necessary conditions for optimal control of the
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disease. From the analysis, we found that eradication will be pos-
sible and optimal when the community marginal costs is less than
the community marginal benefit. But if this is impossible due to
the budget/resource limitation, it is important that the disease is
effectively and optimally controlled.

From the numerical results and cost effectiveness analysis we
conclude that the optimal strategy to effectively control malaria is
the combination of vaccination and treatment. However this con-
clusion must be taken with caution because of the uncertainties
around the parameter values.
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