Final Exam : Due Before Noon December 11, 2017 The exam has four problems which are ordered approximately in ascending order of difficulty. The first problem looks at a simple system and compares feedback linearization control to passivity-based control. The second problem is an I/O feedback linearization problem in which the output is defined as the difference of two states. The third problem examines an extension of backstepping to non-affine systems. The fourth problem investigates the global uniform ultimate boundedness of a Luenberger observer for a nonlinear process. As I said in class, we will keep the recitation hours for next week and I'll discuss/answer questions related to the course material. I cannot, of course, answer direct questions regarding the exam.

Problem 1: Consider the following system

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = -\rho(x_1) + u$

where $\rho(x_1)x_1 > 0$ when $x_1 \neq 0$ and $\rho(0) = 0$.

- When u = 0, show that the origin of this system is Lyapunov stable.
- Use I/S feedback linearization to determine a control input *u* that asymptotically stabilizes the origin of the system.
- Determine an output $y = h(x_1, x_2)$ such that the input-output system from u to y is passive and determine an output feedback control that asymptotically stabilizes the origin of the system.

Problem 2: Consider the system

$$\dot{x}_1 = x_2 + x_1 x_2 - x_2^2 + u \dot{x}_2 = x_1 x_2 - x_2^2 + u \dot{x}_3 = x_1 + x_1 x_2 - x_2^2 - (x_3 - x_1)^3 + u y = x_1 - x_2$$

- Determine the system's normal form.
- Find a state feedback controller that renders the input-output map finite gain \mathcal{L}_2 stable.
- Is the origin of the controlled system also asymptotically stable?

Problem 3:

Consider the following augmented system

$$\dot{z} = f(z,\xi)$$

 $\dot{\xi} = u$

where f(0,0) = 0. Assume there exists a control $\phi(z)$ such that the function $V : \mathbb{R} \to \mathbb{R}$ satisfies $\frac{\partial V}{\partial r} f(z, \phi(z)) \leq -W(z)$ for some positive definite function W.

• Use the backstepping procedure to find a control input $u(z, \xi)$ that asymptotically stabilizes the origin of the augmented system.

Problem 4: Consider a scalar process whose state $x(\cdot) : \mathbb{R}^+ \to \mathbb{R}$ satisfies the differential equation

$$\dot{x}(t) = -x^{3}(t) + w(t), \quad x(0) = x_{0}$$

for all $t \ge 0$. Assume that $w \in \mathcal{L}_{\infty}$ with $||w||_{\mathcal{L}_{\infty}} \le 1$. We're interested in building an *observer* whose internal state $\hat{x}(\cdot) : \mathbb{R}^+ \to \mathbb{R}$ satisfies the differential equation

$$\dot{\hat{x}}(t) = -\hat{x}^3(t) + L(x(t) - \hat{x}(t)), \quad \hat{x}_0 = \hat{x}(0)$$

for all $t \ge 0$ where L > 0 is a positive constant representing the *observer's gain*. Let the estimation error be defined as $e(t) = x(t) - \hat{x}(t)$.

• Prove that the estimation error is globally uniformly ultimately bounded and determine an upper bound on the steady state estimation error.