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Abstract—This paper describes a new approach for generalizing the
Kalman filter to nonlinear systems. A set of samples are used to param-
eterize the mean and covariance of a (not necessarily Gaussian) proba-
bility distribution. The method yields a filter that is more accurate than
an extended Kalman filter (EKF) and easier to implement than an EKF or
a Gauss second-order filter. Its effectiveness is demonstrated using an ex-
ample.

Index Terms—Covariance matrices, estimation, filtering, missile detec-
tion and tracking, mobile robots, nonlinear filters, prediction methods.

I. INTRODUCTION

The problem of generalizing the Kalman filter paradigm for non-
linear applications is considered. This work is motivated by the well-
known limitations of the extended Kalman filter (EKF), which simply
linearizes all nonlinear models so that the traditional linear Kalman
filter can be applied. Although the EKF (in its many forms) is a widely
used filtering strategy [1], [2], over 30 years of experience with it has
led to a general consensus within the tracking and control community
that it is difficult to implement, difficult to tune, and only reliable for
systems that are almost linear on the time scale of the update intervals.
As is well known, the optimal solution to the nonlinear filtering

problem is infinite dimensional [3] and a large number of suboptimal
approaches have been developed [4], [5]. Thesemethods can be broadly
classed as numerical Monte Carlo [6] methods or analytical approxi-
mations [7]–[9]. However, the application of these methods to high-di-
mensioned systems is rarely practical, and it is a testament to the con-
ceptual simplicity of the EKF that it is still widely used.
In this paper, a new linear estimator [10]–[12] is developed. It yields

performance equivalent to the Kalman filter for linear systems, yet gen-
eralizes elegantly to nonlinear systems without the linearization steps
required by the EKF. We show analytically that the expected perfor-
mance of the new approach is superior to that of the EKF and, in fact,
lies between those of the modified, truncated second-order filter [13]
and the Gaussian second-order filter [14]. However, the algorithm is not
restricted to Gaussian distributions. We demonstrate the performance
benefits in an example application, and we argue that the ease of im-
plementation and more accurate estimation features of the new filter
recommend its use over the EKF in virtually all applications.

II. BACKGROUND

We seek the minimum-mean-squared error (MMSE) estimate of the
state vector of the nonlinear discrete time system
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(1)
where is the state of the system at timestep is the input
vector, is the noise process caused by disturbances and modelling
errors, is the observation vector, and is additive measure-
ment noise. It is assumed that the noise vectors and are zero
mean and

The MMSE estimate of is the conditional mean. Let
be the mean of conditioned on all of the observations up to and
including time

where The covariance of this estimate is de-
noted
The Kalman filter propagates the first two moments of the distri-

bution of recursively and has a distinctive “predictor-corrector”
structure. Given an estimate the filter first predicts what the
future state of the system will be using the process model. Ideally, the
predicted quantities are

The expectations can be calculated only if the distribution of
conditioned on is known. In general, the distribution cannot be de-
scribed by a finite number of parameters and most practical systems
employ an approximation of some kind. It is conventionally assumed
that the distribution of is Gaussian at any time Two justifica-
tions are made. First, only the mean and covariance need to be main-
tained. Second, given just the first two moments the Gaussian distribu-
tion is the entropy maximizing or least informative distribution [15].
The estimate at time is given through updating the prediction

by the linear update rule

The EKF exploits the fact that the error in the prediction,
can be attained by expanding (1) as a Taylor Series about

the estimate Truncating this series at the first order yields the
approximate linear expression for the propagation of state errors as

where is the Jacobian of with respect to and is that
with respect to Using this approximation, the state prediction
equations are
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(2)

This approximation is valid if the contributions of the truncated
higher order terms are negligible. However, in many practical situa-
tions (such as converting from polar to Cartesian coordinate systems
[17]), linearization introduces significant biases or errors. The EKF
can also be prohibitively difficult to implement because deriving
Jacobians can be cumbersome and time consuming (especially when
the system is complicated and of high order), and they must be
reevaluated at every prediction step of the filter.
This paper focuses on the central problem of predicting the mean and

covariance. We present an alternative algorithm that is more accurate,
convenient, and uses approximately the same number of calculations
as an EKF.

III. THE NEW FILTER

We use the intuition that it is easier to approximate a probability
distribution than it is to approximate an arbitrary nonlinear function
or transformation [18]. Following this intuition, we generate a set of
points whose sample mean and sample covariance are and

, respectively. The nonlinear function is applied to each of
these points in turn to yield a transformed sample, and the predicted
mean and covariance are calculated from the transformed sample.
Although this superficially resembles a Monte Carlo method, the

samples are not drawn at random. Rather, the samples are determin-
istically chosen so that they capture specific information about the dis-
tribution. In general, this intuition can be applied to capture many kinds
of information aboutmany types of distribution [19], [20]. In this paper,
we consider the special case of i) capturing the mean and covariance of
an ii) assumed Gaussian distribution.
The -dimensional random variable with mean and co-

variance is approximated by weighted samples or sigma
points selected by the algorithm

(3)

is the th row or column1 of the matrix
square root of , and is the weight that is associated
with the th point.
Theorem 1: The set of samples chosen by (3) have the same sample

mean, covariance, and all higher odd-ordered central moments as the
distribution of The matrix square root and κ affect the fourth and
higher order sample moments of the sigma points.

Proof: The matching of the mean, covariance, and all odd-or-
dered moments can be readily demonstrated. Because the points are
symmetrically distributed and chosen with equal weights about the
sample mean is obviously and all odd-orderedmoments are zero. The
sample covariance is

1If the matrix square root of is of the form , then the sigma
points are formed from the rows of However, for a root of the form

, the columns of are used.

Appendix I sketches the principle of the argument for the higher
moments, and a full proof can be found in [21].
Remark 1: The above properties hold for any choice of the matrix

square root. Efficient and stable methods, such as the Cholesky decom-
position, should be used.
Remark 2: κ can be any number (positive or negative) providing

that
Given the set of samples generated by (3), the prediction procedure

is as follows.
1) Each sigma point is instantiated through the process model to
yield a set of transformed samples

2) The predicted mean is computed as

(4)

3) The predicted covariance is computed as

(5)

The mean and covariance are calculated using standard vector and
matrix operations, which means that the algorithm is suitable for any
choice of process model, and implementation is extremely convenient
because it is not necessary to evaluate the Jacobians, which are needed
in an EKF. The method has a further advantage: it yields more accurate
predictions than those determined through linearization.
Theorem 2: The prediction algorithm introduces errors in esti-

mating the mean and covariance at the fourth and higher orders in the
Taylor series. These higher order terms are a function of κ and the
matrix square root used.

Proof: Appendix II shows that evaluating the mean and covari-
ance correctly up to the th order requires approximating the moments
of up to the th order. FromTheorem 1, the approximation is cor-
rect up to the third order, and so errors are introduced in the fourth and
higher orders. These are a function of the matrix square root and κ.
Remark 3: This is the same order of accuracy as the second-order

Gaussian filter [14], but without the need to calculate Jacobians or Hes-
sians.

provides an extra degree of freedom to “fine tune” the higher order
moments of the approximation, and can be used to reduce the overall
prediction errors. When is assumed Gaussian, Appendix I shows
that a useful heuristic is to select If a different distribution
is assumed for , then a different choice of might be more appro-
priate.
Although can be positive or negative, Appendix III shows that

when is negative it is possible to calculate a nonpositive, semidefinite
This problem is not uncommon for methods that approx-

imate higher order moments or probability density distributions (such
as those described in [5], [4], and [8]). In this situation, it is possible to
use a modified form of the prediction algorithm. The mean is still cal-
culated using (4), but the “covariance” is evaluated about
Appendix III shows that the modified form ensures positive semi-def-
initeness, and, in the limit the prediction is the same as
that of the modified, truncated second-order filter [4].
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Remark 4: The method can be generalized to include the effects of
process and observation noise by appending the noise vectors to the
state vector [11].

IV. EXAMPLE APPLICATION

This section applies and compares the performance of the new filter
against an EKF for a tracking problem that was presented in [14]. This
example was chosen because it has significant nonlinearities in the
process and observation models and has been analyzed extensively in
the literature.
We wish to estimate the position velocity , and constant

ballistic coefficient of a body as it reenters the atmosphere at
a very high altitude at a very high velocity. Its motion is determined
by altitude- and velocity-dependent drag terms, and it is constrained to
fall vertically. The position of the body is measured at discrete points in
time using a radar capable of measuring range corrupted by Gaussian
measurement noise. The radar is at an altitude of (100 000 ft), and
the horizontal range between the body and the radar, is (100 000
ft).
The continuous time dynamics of this system are

(6)
(7)
(8)

where , and are zero-mean, uncorrelated noises
with covariances given by and is a constant that
relates the air density with altitude. The range at time is

(9)

where is the uncorrelated observation noise with covariance
ft . The measurements are made with a frequency of 1

Hz.
Tracking systems were implemented using the new filter and the

EKF. The nonlinearities of the process model and the high velocities
required the numerical integration of (6)–(8) to be carried out using
extremely small time steps. In accordance with [14], a fourth-order
Runge–Kutta scheme was employed with 64 steps between each ob-
servation. For the EKF, it was necessary to recalculate the Jacobian 64
times between each update. For the new filter, the trajectory of each
sigma point was calculated using the small time steps, but it was only
necessary to calculate the mean and covariance just before an observa-
tion was made. Because was chosen to be zero in accordance
with the heuristic
The initial true state of the system is ,

and the initial estimates and covariances of these states are

Although the initial estimates of altitude and velocity are correct,
is very bad. The body is assumed to be “heavy,” whereas in

reality it is “light.” The behavior of the two filters differs if the second
and higher order terms are significant. Because process noise can be
used to mask linearization errors, we adopt the practice from [14] and
do not introduce any process noise into the simulation—
for both filters.
In Fig. 1, we show the average magnitude of the state errors com-

mitted by each filter across a Monte Carlo simulation consisting of 50

Fig. 1. Absolute mean error position error.

Fig. 2. Absolute mean velocity error.

runs. At high altitude, the drag effects are minimal, and the body falls
approximately linearly. However, after about 10 s, drag becomes signif-
icant, motion becomes noticeably nonlinear, and the two filters differ
significantly. The velocity estimates are shown in Fig. 2 and indicate
large error spikes in both filters. These occur when the altitude of the
body is the same as that of the radar and range information provides
less data about body motion.The new filter recovers quickly, but the
EKF has a larger error spike and only slowly converges. Fig. 3 shows
the errors in estimating The error in the EKF estimate is biased
and is an order of magnitude larger than that for the new filter.
In Figs. 4 and 5, we show the errors in the position estimates made

by the EKF and the new filter and the associated estimates of the two
standard deviation bounds. These bounds are given by twice the square
root of the diagonals of the covariance matrix, and, if the filter is con-
sistent, the state errors should lie within these bounds 95% of the time.
However, the error in the EKF drifts outside of these bounds after 30 s,
showing that it does not yield consistent estimates. However, the errors
in the new filter always lie well within the two standard deviations, im-
plying that the new filter is consistent.
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Fig. 3. Absolute mean error in

Fig. 4. EKF mean position error.

Therefore, we conclude that in this example the new filter has sub-
stantial advantages over the EKF both in implementation and perfor-
mance.

V. CONCLUSIONS

Motivated by the deficiencies of the EKF, we have examined a com-
pletely new approach for applying linear estimation theory to non-
linear systems. Rather than approximate the Taylor series to an arbi-
trary order, we approximate the first three moments of the prior dis-
tribution accurately using a set of samples. The algorithm predicts the
mean and covariance accurately up to the third order and, because the
higher order terms in the series are not truncated, it is possible to re-
duce the errors in the higher order terms as well. We have provided
empirical evidence that supports the theoretical conclusion and have
demonstrated that the new filter is far easier to implement because it
does not involve any linearization steps, eliminating the derivation and
evaluation of Jacobian matrices.

Fig. 5. New filter mean position error.

This algorithm has found a number of applications in high-order,
nonlinear coupled systems, including navigation systems for
high-speed road [21], [16] vehicles, public transportation systems
[22], and underwater vehicles [23]. Square root filters can be for-
mulated by discrete sets of points (as demonstrated in [24]), and
iterated filters can be constructed using the predictions [25]. The
algorithm has been extended to capture the first four moments of a
Gaussian distribution [12] and the first three moments of an arbitrary
distribution [20].
Given its performance and implementation advantages, we conclude

that the new filter should be preferred over the EKF in virtually all
nonlinear estimation applications.

APPENDIX I
HIGHER MOMENTS OF THE APPROXIMATION

This appendix analyzes the properties of the higher moments of the
sigma point selection scheme of (3). The selection process consists of
three stages. First, a set of sigma points are drawn to approximate an
-dimensional standard Gaussian with mean and covariance A
linear transformation [a matrix square root ] is applied to each
point so that the transformed sample still has mean , but the covari-
ance is Finally, is added to each transformed sigma
point to ensure the correct sample mean. affects the first stage of the
approximation, and the matrix square root affects the second.
The sigma points, which are assumed approximate the standard

Gaussian, lie on the coordinate axes.2 The orthogonality and the sym-
metry of these points means that the only nonzero sample moments
are those that are an even order power of a single coefficient. The
th-order moment for any coefficient is Therefore,

the higher order moments scale geometrically by a factor determined
by . However, the moments for the standard Gaussian are different
from those of the sigma points, which approximate it. Because the
covariance matrix is , the different components are independent of
one another and

2In effect, these points are drawn from the orthogonal matrix square root of
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where the th component in the moment is raised to the power It
can be shown that [13]

is odd
is even

Two differences exist in the approximation by the sigma points.
First, the “scaling” of nonzero moments are different. Second, a
number of moment terms are “missed out.” These differences become
more marked as the order increases, but, as explained in Appendix II,
they only affect the higher order terms of the Taylor Series of the
process model/nonlinear function. Assuming that the contribution of
terms diminishes as the order increases, the emphasis is to minimize
the errors in the lowest order terms. Because for the
Gaussian distribution, choosing minimizes the difference
between the moments of the standard Gaussian and the sigma points
up to the fourth order.
Because the fourth and higher order moments are not precisely

matched, the choice of matrix square root affects the errors in the
higher order terms by adjusting the way in which the errors are
distributed among the different states. However, in general, this infor-
mation cannot be exploited because it would require knowledge of the
higher order derivatives of the process model equation. In the absence
of this information, the choice of matrix square root is governed by
other issues, such as numerical stability or computational cost.

APPENDIX II
MOMENT APPROXIMATION AND PERFORMANCE

In this appendix we provide a justification for approximating a prob-
ability distribution by a set of samples that match itsmoments.We show
that an approximation is only correct to the th order if its moments
up to that order are correctly approximated.
Consider a Gaussian-distributred random variable with mean

and covariance We wish to calculate the mean and covariance
of the random variable , which is related to through the non-

linear (analytic) function
Noting that can be written as , where is a zero-mean

Gaussian random variable with covariance the nonlinear trans-
formation can be expanded as a Taylor Series about

(10)

where the operator evaluates the total differential of when
perturbed around a nominal value by The th term in the Taylor
series for is given by

(11)

where is the th component of Therefore, the th term in the series
is an th-order polynomial in the coefficients of whose coefficients
are given by derivatives of

is the expected value of (10)

(12)

where the th term in the series is given by

(13)

and is the th-ordermoment
The th term is a function of the th central moments of the distribu-

tion of Therefore, for an approximation to be accurate up to the th
order, it must be able to approximate the moments correctly up to the
th order. The EKF truncates this series after the first term, and so its
error in predicting the mean is in the second and higher orders. The new
filter matches the mean and covariance correctly, and so it is correct up
to the second order. Because the new filter does not truncate the filter
at any order, it can be expected that the errors in the fourth and higher
order terms are smaller than those committed by the EKF.
The covariance is given by Now

(14)

with substitutions from (10) and (12). The true covariance is found
by postmultiplying the state error by the transpose of itself and taking
expectations. Exploiting the fact that is symmetric, the odd terms all
evaluate to zero and the covariance is given by

(15)

where has been used. Comparing
this with (2), it can be seen that the EKF truncates this series after the
first term. The new filter does not truncate the series at any arbitrary
order, and, applying the analysis from above, it is correct up to the
second order with errors in the fourth and higher order terms. There-
fore, both the EKF and the new filter predict the covariance correctly
up to the third order.

APPENDIX III
THE MODIFIED FORM OF THE ALGORITHM

When is negative, it is possible that the predicted covariance will
not be positive semidefinite. This can be demonstrated by taking the
limit of (15) as As shown in Appendix I, the fourth and
higher order moments tend to zero and

It can be seen that a fourth-order, positive-semidefinite matrix is sub-
tracted. However, this term originates from the outer product of two
second-order expected terms and does not scale with .
The modified form of the algorithm evaluates the covariance about

the projected mean. Taking the sigma points for are and those for
are the modified form for calculating is3

3This is equivalent to calculating the mean and covariance using (4) and (5)
and adding a term

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 25, 2009 at 11:15 from IEEE Xplore.  Restrictions apply.



482 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 3, MARCH 2000

Positive semidefiniteness is guaranteed by the fact that the covari-
ance matrix is evaluated as the sum of outer products of vectors. It can
be shown that the calculated covariance is

which introduces errors in the fourth and higher orders.
The modified form has the advantage that, irrespective of the choice

of the matrix square root

These are the values calculated by the modified, truncated second-
order filter [4], but without the need to evaluate Jacobians or Hessians.4
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An Boundary Layer in Sliding Mode for
Sampled-Data Systems

Wu-Chung Su, Sergey V. Drakunov, and Ümit Özgüner

Abstract—The use of a discontinuous control law (typically, sign func-
tions) in a sampled-data system will bring about chattering phenomenon
in the vicinity of the sliding manifold, leading to a boundary layer with
thickness where is the sampling period. However, by proper
consideration of the sampling phenomenon in the discrete-time sliding
mode control design, the thickness of the boundary layer can be reduced
to In contrast to discontinuous control for continuous-time VSS,
the discrete-time sliding mode control need not be of switching type.

Index Terms—Boundary layer, discrete-time slidingmode, sampled-data
systems.
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