CHAPTER 2

Regime Shifts

Regime shifts [97, 35] are large and sudden changes in the structure or
function of an ecosystem due to external disturbances. The term originates
with observed changes in an ecosystem that are seen as signaling a dras-
tic shift in the quality of ecosystem services [16]. Commonly cited exam-
ples of ecosystem regime shifts include the eutrophication of shallow lakes
[12, 98] due to increased nutrient loading, the collapse of fisheries due to
overfishing [19, 20], degradation of coral reefs due to seasonal hurricanes
[57, 80, 58], and desertification due to climate change [23, 33]. Human
communities rely on the services these ecosystems provide; especially with
regard to food, fiber, and air/water purification. Regime shifts can disrupt
the quality of these services to a degree that is catastrophic for those depen-
dent communities. There is, therefore, tremendous interest in finding ways
to more accurately forecast and manage impending ecosystem regime shifts.

Ecosystem scientists have proposed a number of statistical indices for de-
tecting impending regime shifts. These indices include Fisher information
[75], increased variance [95], critical slowing [18], and conditional het-
eroskedasticity [100]. Experiments on food webs in whole lakes suggest
these indices strengthen prior to the occurrence of a regime shift [11] , but
these methods make little use of prior dynamical models and so it is unclear
how to set detection thresholds for a meaningful false alarm rate. Moreover,
these statistical indices provide little insight into the mechanisms driving a
system towards a shift, and without such a mechanistic model it becomes
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unclear how one can develop policies that reliably forestall the occurrence
of an impending regime shift. As a result, some have begun to question the
practical value of the concept in adaptive resource management [43].

Ecologists often describe regime shifts in multi-stable systems as a tran-
sition between two stable equilibria. This viewpoint was popularized by
Scheffer et al. in [97]. Fig. 2 graphically illustrates an equilibrium-based
regime shift in which the system state jumps between the Regions of Attrac-
tion (ROA) of alternative stable equilibria. While the principles in Fig. 2 are
easily grasped, there are several scenarios that do not easily fit into this pic-
ture. There are living systems [37], for example, that shift from a stable
equilibrium to a limit cycle associated with an unstable equilibrium. Other
living systems [92] exhibit “bursting” where the system repeatedly cycles
between an oscillatory burst and fixed point convergence. Do we view this
as switching back and forth between two distinct regimes or simply a sin-
gle complex regime? One may also find dynamical systems that have no
stable equilibria and yet they appear to have a steady state limit cycle that
asymptotically approaches a collection of heteroclinic orbits [117]. Do the
heteroclinic orbits represent distinct regimes or is the limit cycle a regime?
The preceding scenarios suggest that the original equilibrium-based notion
of a regime shift popularized by Scheffer et al. [97] is not sufficiently gen-
eral to describe the full range of behaviors seen in living systems.

This chapter uses a simple model for lake eutrophication [12] to iden-
tify two regime shift mechanisms; bifurcation-induced and shock-induced
regime shifts. We then use more realistic compartmental models [62] of
lake eutrophication to show that real-life systems exhibit behaviors that do
not fit into the equilibrium-based notion of a regime shift. This observation
provides the motivation for introducing the concept of a non-equilibrium
regime shift in which regimes are defined with respect to the components
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(also known as basic sets) of a Morse decomposition of the system’s chain
recurrent set.

1. Regime Shift Mechanisms for Shallow Lake Eutrophication

The equilibrium-based regime shift model for shallow lake eutrophication
[12] was tremendously influential because it provided ecologists with a con-
crete way to visualize the mechanisms triggering a regime shift. This section
reviews that regime shift model for lake eutrophication and uses it to identify
two regime shift mechanisms that we call a bifurcation-induced and shock-
induced regime shift. These two mechanisms may be distinguished by the
time scale of the external disturbances triggering the regime shift. Shock-
induced shifts are triggered by an impulsive disturbance whose time scale is
much shorter than the primary time scale of the original process. In general,
these shifts are triggered by “shocks” to the system that cause the system
state to “jump” into an alternative regime. Bifurcation-induced shifts, on
the other hand, are triggered by a disturbance whose time scale is much
longer than the primary time scale in the original process. These shifts are
triggered when a slowly drifting system parameter causes a structural shift
(a.k.a. bifurcation) in the system flow field. This section describes these
regime shift mechanisms with respect to eutrophication in shallow lakes.

Shallow lakes are bodies of fresh water that do not thermally stratify in the
summer months [94]. These lakes are most highly prized in a pristine state
where the biota is diverse and the water is clean and clear. Nutrients such as
nitrogen and phosphorus play an essential role in the health of such lakes,
but excessive nutrient levels (also known as nutrient loading) significantly
degrade lake health by triggering algae blooms. Nutrient loads triggering
such blooms often occur when nutrient enriched runoff flows into the lake
from farm fields and cities . The appearance of such algae blooms is called
eutrophication. The water in a eutrophic lake shifts from a clear to a turbid
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state; turbidity being caused by the lake biota being dominated by a single
organism, i.e. algae. The resulting loss in biodiversity has a significant
negative impact on lake ecosystem services (food, fiber, and clean water).

Eutrophication of fresh water lakes may cascade into larger downstream
bodies of water. In the midwestern United States, nutrients from small fresh
water lakes are carried downstream to other receiving waters such as the
Great Lakes, the Mississippi river, and finally to the Gulf of Mexico. The
accumulation of excess nutrients in these downstream receiving waters will
also trigger algae blooms that in turn create hypoxic dead zones where no
fish can live. Such dead zones appear regularly in the Gulf of Mexico, Baltic
sea, East China sea, the Kattegat, and along the Oregon coast [24]. These
dead zones disrupt the fisheries supported by these bodies of water and so
there is tremendous interest in finding ways to restore eutrophic systems to
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FIGURE 3. Phosphorus cycle in shallow lakes

It is notoriously difficult to restore a eutrophic non-vegetated lake to its
pristine state [94]. Simply reducing lake nutrient levels will not trigger a
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shift back to the clear state due to the way phosphorus cycles through the
system. Phosphorus is a critical nutrient for lake vegetation that is taken
up by plants as soluble reactive phosphorus (SRP) and used to create plant
biomass. This phosphorus rich biomass falls to the lake bottom as detritus
when the plant dies. Subsequent decomposition of the detritus allows the
phosphorus to adsorb to lake bottom sediments. In general this sediment
bound phosphorus is not bio-available. But if the water column’s nutri-
ent concentration is low enough or if turbulence mixes lake sediments into
the water column, then the bound phosphorus desorbs back into the water
column water where it is again taken up by lake vegetation. The fate of
phosphorus in the lake may be visualized by the phosphorus cycle shown
in Fig. 3. The key thing to note in Fig. 3 is that the SRP concentration
is governed multiple fluxes; an exchange with the biota, nutrient loading
from external sources, outflows to downstream receiving waters, and finally
a flux from the lake sediments. It is the interaction of these fluxes into the
SRP compartment that give rise to regime shifts in eutrophic lakes.

One may mathematically model the mechanisms driving lake eutrophica-
tion as a compartmental system [61, 46]. Such systems consist of several
compartments that are interconnected through fluxes of energy or mass. In
particular, each compartment has a local state whose time rate of change
is equal to the fluxes entering and exiting the compartment. The inter-
compartmental flux is generally a function of the local states in the com-
partments. The phosphorus cycle in Fig. 3 graphically portrays the com-
partmental system as a directed graph whose vertices are the compartments
and whose edges are the inter-compartmental fluxes. In Fig. 3, one sees four
compartments within the lake; biota, SRP, detritus, and bound P. There are
two external compartments (upstream and downstream waters) represent-
ing sources and sinks for the system. The state of each lake compartment
is taken as either nutrient concentration or biomass. The fluxes between
compartments are shown by the yellow edges.
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A number of compartmental models [21] have been formulated for the
cycle shown in Fig. 3. But a particularly simple one was used in [12] to
explain lake eutrophication. This model had a single nutrient compartment
whose local state, P : R — R represents an SRP trajectory that satisfies
the following ordinary differential equation,

P3(t)

(1) P(t) = w(t) — aP(t) + %+ P31

where «, 0 are positive constants. The first term on the right hand side (RHS)
of equation (1) is an input function w : R — R representing the total
influx of phosphorus from external sources. This is also called the external
loading term. The second term on the RHS of the equation represents the
outflows of water from the lake. The final term in the equation models the
influx from sediment bound phosphorus back into the water column. This
term is called the internal loading term.

The RHS of equation (1) is plotted in the middle panel of Fig. 4. The
solid line in this plot is for a constant “nominal” external load w(t) = wy.
The internal loading term has a sigmoidal nonlinearity that gives rise to
two stable system equilibria shown by the shaded bullets. The left most
equilibrium is associated with a pristine lake whose waters are clear (see
picture on left side of figure). The right most equilibrium is associated with
a eutrophic lake whose waters are clouded by algae (see picture on right
side of figure). The region of attraction (ROA) for each stable equilibrium is
shown by the shaded regions; with the green region representing the pristine
regime and the red region representing the eutrophic regime. The graph in
Fig. 4 can be used to identify two distinct regime shift mechanisms; shock-
induced and bifurcation-induced regime shifts.

Shock-induced regime shifts are triggered by impulsive shocks to the sys-
tem. To illustrate this shock-induced shift on Fig. 4, let us assume the initial
lake state, P(0), is in the pristine regime with a baseline external load of
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FIGURE 4. Eutrophication of Shallow Lake Systems

wy. A shock-induced shift occurs when a pulse of nutrient is delivered to
the lake. Such pulses may occur as a result of extreme rain events that in-
crease runoff from agricultural fields for a short interval of time. We may
model the nutrient pulse from a storm that hits at time 7" as

w(t) = wo + AS(t — T)

where A > 0 is the size of the pulse and ¢ is a Dirac impulse function. The
delivery of this nutrient pulse at time instant 7' causes the system state, P,
to jump by the amount A as shown in Fig. 4. If that jump places the state in
the ROA of the eutrophic equilibrium then the state remains in the eutrophic
regime for all ¢ > 7" and we say a shock-induced regime shift has occurred.
The minimum pulse amplitude, A, that drives the system into the eutrophic
regime may be taken as a threshold whose size provides a measure of how
vulnerable the system is to eutrophication caused by nutrient pulses.

Bifurcation-induced regime shifts are triggered by slow variations in the
system parameters that cause a topological change in the trajectories satisfy-
ing the system’s differential equation. Consider, for example, the following
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slow linear increase in the external loading term of equation (1)

w(t) = wo + max{0, At}

where the linear increase begins at time ¢ = 0 and proceeds at a slow rate
A < 1. Now consider the system trajectory over the two intervals [t — d, to
and [to, to+0] where 6 > 0. For most initial times, t, there will be a smooth
invertible map between the trajectory over [to, %y + 0] and the trajectory
over [tp — J,to]. But there are certain initial times, say ¢, where no such
invertible map exists. This time represents an abrupt change in the system’s
behavior that is the result of a bifurcation of the system trajectories. This
abrupt change in qualitative behavior also represents a regime shift, but the
mechanism triggering the shift is qualitatively different from the mechanism
behind a shock-induced shift since it is caused by a change in the topology
of the system trajectory, rather than a jump in the system state. We therefore
refer to this particular regime shift as a bifurcation-induced regime shift.

Fig. 4 can also be used to graphically illustrate the mechanism behind a
bifurcation-induced regime shift. In particular, the slow linear increase in
the external loading term, w(t), causes the solid curve in the plot to move
up. For t close to zero, the pristine equilibrium remains stable, but at the
threshold time ¢j, the system trajectory changes abruptly because of a qual-
itative change in the system equilibria. In particular, when ¢ = ¢, the RHS
of the differential equation (dashed line) shows that the pristine equilibrium
is now only marginally stable. Moreover for ¢ > ¢{ (dotted plot) the pristine
equilibrium vanishes entirely and only the eutrophic equilibrium remains
stable. This means that for ¢ > ¢;, the system state, P will asymptotically
approach the eutrophic equilibrium and the lake will shift into a eutrophic
state.
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2. Regime Shifts in a Living System

The eutrophication model in equation (1) is highly idealized and ignores
the impact of the living compartments (what we call the biota) on the fate
of phosphorus. A more complete model capturing the interactions between
the nutrient and biotic compartments may be found in a predator-prey sys-
tem studied in [37] and [112]. This system still exhibits eutrophication but
its behaviors are no longer confined to fixed point convergence and it is a
living system whose model has been experimentally validated through ex-
periments with a biological chemostat. This section uses that living system
to provide a concrete example of regime shifts involved in the collapse and
restoration of the system’s nominal regime.

A chemostat is a continuous culture device used to study the dynamics of
nutrient limited micro-organisms [104]. The chemostat’s physical set up,
shown in Fig. 5(a), consists of three interconnected vessels; a feed, culture,
and collecting vessel. The feed vessel holds a liquid media containing all
nutrients required for micro-organism growth. All nutrients are available
in excess, except for one whose concentration in the feed vessel is denoted
as Ni,. By limiting this nutrient, one can study how variations in nutrient
concentration affect the growth of the cultured organisms. In particular, one
controls the nutrient’s concentration in the culture vessel by adjusting the
flow rate of media from the feed vessel into the culture vessel. The volume
of the media in the culture vessel is kept constant by setting the outflow rate
from the culture vessel into the collecting receptacle equal to the flow rate
entering the culture vessel from the feed vessel. A continuous stirrer is used
in the culture vessel to ensure the media is well mixed.

The control variable that the experimenter uses in the chemostat is the
dilution rate. Let V' denote the constant volume of the media in the culture
vessel and let F'(t) denote the flow rate of media into and out of the culture
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FIGURE 5. (a) Biological Chemostat (b) Predator-Prey Food Web

vessel at time instant ¢. This flow rate is controlled by the media pump
shown in Fig. 5(a). The dilution rate, 6(¢) = F'(¢)/V at time instant ¢ is the
ratio of the flow rate normalized by volume and represents the control input
to this particular system.

The micro-organisms in the culture vessel consist of green algae and a
planktonic consumer (predator) known as a rotifer. Together these organ-
isms form a live predator prey system [37] that can be modeled as a com-
partmental system consisting of three compartments; a producer (algae),
consumer (rotifer), and nutrient (phosphorus) compartment as shown in
Fig. 5(b). Producers are micro-organisms, like green algae, that create
biomass through photosynthesis. In this case, the growth rate in the pro-
ducer compartment is limited by the availability of the limiting nutrient.
Consumers are micro-organisms, like planktonic rotifers, that create biomass
through the consumption of other organisms. In this case, the rotifers con-
sume algae as prey and so the consumer’s rate of growth is dependent on
the algae concentration.
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Each compartment in this system has a local state. The nutrient compart-
ment’s local state, N : R — R, is the nutrient’s concentration in the
culture vessel. The producer compartment’s state, P : R — R, is the al-
gae concentration in the culture vessel. The consumer compartment’s local
state, C' : R — R, is the concentration of rotifers. Because of the way the
chemostat was engineered, the time variations of these states are well mod-
eled by the set of differential equations in Fig. 6 where b., k., 1, by, ky, and
m are system parameters that are identified through maximum likelihood
methods. The nutrient concentration in the feed vessel is a constant /V;, and
the dilution rate 0 : R — R is the controlled input signal.

N(t) = fluxin N compartment + flux from feed vessel

—flux to collection vessel
_ —%p(w + 6N — ON (1)
P(t) = flux due to reproduction
—flux due to predation — flux to collection receptacle
_ b N (1) () —n by P(t)
ke + N(t) ky + P(t)
C (t) = flux due to predation

C(t) — 6P(t)

—loss due to mortality — flux to collection vessel
by P(t)
= ———=C(t)—mC(t) —iC(t
b P O — MO —6C()
FIGURE 6. State Equations for Fussmann Predator-Prey
System [37]

The differential equations in Fig. 6 model mass balance relationships be-
tween the three compartments. In other words, the time rate of change of a
compartment’s local state is equal to the sum of the fluxes entering and exit-
ing that compartment. The physical flux entering the nutrient compartment
in the culture vessel is 6(¢)N;, where §(¢) is the flow rate and N, is the
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limiting nutrient’s concentration in the feed vessel. The physical flux leav-
ing each compartment of the feed vessel is that compartment’s local state
times the flow rate, 0(¢). The flux entering the consumer compartment due
to predation has a Michaelis-Menten mass action kinetic,

b.P(t)
k. + P(t) ®);

which models the fact that the consumer’s functional response levels off

flux entering C' compartment due to predation =

for large producer concentrations. This flux entering the C' compartment is

balanced by a flux leaving the P compartment

_ b.P (1)
Ve + P(2)

where 77 models the feeding efficiency of the consumer. The fluxes connect-

flux exiting P compartment due to predation =

C(t)

ing the N and P compartments model the fact that the producer’s growth
rate is dependent on the nutrient concentration and follows a similar mass
balance kinetic. These particular dynamical relationships were empirically
validated in [37] to accurately predict the onset of Hopf bifurcations in live
algae-rotifer systems implemented on a biological chemostat.

The differential equations in Fig. 6 may be used to simulate what hap-
pens to the food web under various input flow rates, ¢. Since this particular
model has been experimentally validated, these simulation results should
accurately predict what would be seen in the living system. The biotic pa-
rameters for the validated system (see chapter 6 of [112]) were b, = 3.3,
k. = 4.3, by, = 2.25, k, = 15, 7 = 4, and m = 0.1. The nutrient concen-
tration in the feed vessel is fixed at /V;, = 10 and we treat the dilution rate,
0, as the “control” that we use to deliver a pulse of nutrient into the system.
We initially set this dilution rate to

0.1  t<100
5(t)=14 2 100 <t <120
0.1  120<t
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The objective is to see how the producer and consumer compartment states
change in response to the nutrient pulse.
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FIGURE 7. Simulation Results for Chemostat System with
nutrient pulse from 100 — 120 time units

Fig. 7 plots the simulated state trajectories for the nutrient, producer, and
consumer compartments. There is an initial transient when the simulation
starts. By day 25 the compartments have settled to the nominal equilibrium
point. The nutrient pulse starts at ¢ = 100 and causes an abrupt increase
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in the culture vessel’s nutrient concentration which quickly converges to a
steady-state value once the producers begin consuming the excess nutrient.
During this time interval the consumer concentration falls to nearly zero be-
cause the dilution rate, 9, used to generate the nutrient pulse is large enough
so that consumers are being flushed out of the system faster than they can
reproduce. In terms of a real world scenario, this simulation may be said
to represent lake eutrophication due to increased external nutrient loading.
In particular, we see that the jump in external loading at ¢ = 100 causes a
shift in the system in which producer compartment saturates (i.e. an algae
bloom).

Fig. 7 also shows what happens when we try to reverse the algae bloom
by reducing the nutrient inflows back to their original value. In particular,
we return the dilution rate to its initial value for ¢ > 120 days. We see,
however, that the compartments do not immediately return to their original
levels. In fact once the dilution rate is set back to 0.1, we see producer
levels rise as a result of decreased flow through the culture vessel and the
consumer compartment actually collapses to near zero until ¢ ~ 140 days. It
is only for time after 140 days that the consumer population grows to a level
from which they can graze the producers back to their initial non-eutrophic
level. What this time history suggests is that restoring a system back from its
eutrophic state is not a reversible process. Full recovery of the pre-eutrophic
regime requires the system to traverse a sequence of intermediate regimes
that form what was referred to earlier as an order of succession.

3. Food Webs with Consumer-Resource Interactions

The predator-prey system in the preceding section was modeled as a com-
partmental system with consumer-resource interactions [124]. Such mod-
els are commonly used by ecologists to build simulation models that study
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the impact of fisheries on lake ecosystems [85]. They have also been val-
idated against real-life lake systems [8, 47]. This section shows that these
consumer-resource systems often exhibit non-equilibrium behaviors that do
not fit easily within the equilibrium-based regime shifts of [97].

Compartmental models for ecosystem food webs model each species in the
web as a compartment. The species are also referred to as guilds. The local
state of a compartment is the biomass of its associated guild. A guild is clas-
sified as a producer if it does not consume other guilds to create biomass.
A guild is classified as a consumer if it creates biomass by consuming other
guilds. A consumer’s consumption rate is a nonlinear sigmoidal function of
the resources in its resource pool; i.e. the set of all guilds it consumes.

Let N = {1,2,...,n} denote a set of n guilds and let N, UN,. = N denote
a partition of these guilds into producers, N,, and consumers, N.. For any
guild 7 € N, we define its resource pool, R; C N as those guilds that are
consumed by guild 7. The resource pool, R;, will be empty if ¢ is a producer
and is non-empty if ¢ is a consumer. In a similar way, it will be convenient
to define a consumer pool, C; C N, as those guilds consuming guild :.

Each guild has a local state. The ith guild’s state trajectory, z; : R — R
takes values z;(t) representing how much “biomass’ is in that guild at time
t. For producer guilds (z € N,), the local state’s trajectory satisfies the
following ordinary differential equation

ZT; Z;
() Ti(t) =7 ( K) Zrkxk1+Zeeka€

kecC;

where 7; is the ith guild’s growth rate and K; is a parameter representing
the producer’s carrying capacity. For consumer guilds (¢ € N,) the local
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state trajectory satisfies the differential equation

. Tk
b= mmat ) s ——
kER; LeRy, 1

Lk
(3) - ) TEli——
Z 1 —+ ZéeRk Ty

where m; is the guild’s mortality rate, 1) is the consumer’s feeding efficiency
and the other constants and functions are as defined above for the producer
equation.

Not all systems satisfying equations (2) and (3) are biologically plausible.
To be biologically plausible the trophic relationships (i.e. who eats whom)
and the value of the system parameters must conform to what is observed
in real life. Ecologists ensure the biological plausibility of the model by
forming trophic relationships in accordance with a niche model [122] and
by allometric scaling of system parameters such as growth rate, carrying
capacity, and mortality rate [10, 102]. The niche model randomly assigns
a niche value to each guild that may be taken as the average body mass of
the guild. For each guild, the model randomly generates an interval of niche
values that can be consumed by that guild. This model has been shown to
be consistent with several real-life food webs [122].

The predator-prey model in Fig. 6 is a specific example of a consumer-
resource system. The procedure used by the niche model, however, can also
be used to randomly generate arbitrarily large model food webs that may be
seen as biologically plausible [122]. One such food web is shown in Fig. 8.
This randomly generated consumer-resource system is a 6 guild food web
with a single producer and five consumer guilds. A directed graph showing
the trophic relationships between the guilds is shown on the left side of the
figure and the system equations are seen in the middle of the figure. The
simulated trajectories on the right side of the figure show a behavior that
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is dominated by interacting recurrent orbits that are consistent with a non-

equilibrium dynamical system.
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4. Non-equilibrium Regime Shifts

The equilibrium-based regime shifts depicted in Fig. 2 are too restrictive
to describe the behavior of food webs that have periodic or chaotic orbits.
The simulated trajectories shown in Fig. 8 exhibit distinct non-equilibrium
behaviors for which it is unclear how one might associate a “stable” equi-
librium with a given regime. This observation suggests we need a more
general way of characterizing system regimes. This section addresses that
issue by defining regimes with respect to strongly connected components of
the system’s positive limit set, what is sometimes called a Morse decompo-
sition of the limit set. This paper refers to shifts between these components
as non-equilibrium regime shifts.

To define precisely what is meant by a Morse decomposition, we first as-
sume that the system equations,
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generate unique compact and continuous trajectories. This means that the
dynamical system may be characterized by an ordered pair (X, ¢) where
X C R"is called the state space and ¢ : R x X — X is a continuous map
such that for any p € X and all s,t € R, we know ¢(s+t,p) = ¢(s, ¢(t,p))
and ¢(0,p) = p. It will be convenient to introduce two partial maps of
¢. The first partial map ®; : X — X is called the system’s flow. This
map takes values ®;(p) = ¢(¢;p) for some fixed ¢ € R and all p € X.
The second partial map x(-;p) : R — X is called a system orbit (a.k.a.
trajectory). This map takes values z(¢; p) = ¢(¢;p) for a fixed p € X and
any ¢ € R. Orbits that are restricted to t > 0 are called forward orbits and
those restricted to ¢t < 0 are called backward orbits.

A subset S C X of the state space is said to be invariant if for any p € 5,
¢(t;p) € Sforallt € R. If for any p € S, we know ¢(t;p) € S for
all £ > 0, then S is positively invariant. In a similar way, the restriction
that backward orbits starting at p € .S remain in S implies S is negatively
invariant. We will assume throughout that the orbits of the system are com-
pact (closed and bounded sets in R™). For our applications, this is not an
unreasonable requirement since the local state (population size) of all com-
partment in a living system must remain bounded. If all orbits of (X, ¢) are
compact then there must exist an invariant set .S such that the restriction of
the flow to S is an automorphism; i.e. &, : S — s forall £ € R. Given a
system (X, ¢) with compact orbits, we’re interested in characterizing the set
of all chain recurrent states (i.e. states that are returned to infinitely often)
since we will use this set to define the system’s regimes.

An e-chain from p € X to ¢ € X is a finite sequence {(xy, %) }Y, of
points in X X R suchthat N > 2, 1 = p, zy = ¢ and

|Thy1 — A(Th, 1) | < €

The e-chain is a sequence of points that more closely tracks an orbit of a
dynamical system as € goes to zero. If we consider an e-chain from p back
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to itself, we can obviously periodically extend this chain to create an infinite
length periodic e-chain.

Let S C X be acompact positively invariant set of the system and consider
two sets A, B C S. We define ch.(A, B; S) as the union of all e-chains in
S that start in A and end in B. We say a state p € S is e-chain recurrent if
che(p, p; S) is nonempty and we let

R.(S)={p € S : chep,p;S) is nonempty}

denote the e-chain recurrent set with respect to compact set S C X. The
system’s chain recurrent set, R(S), with respect to compact S C X is then
defined as the intersection of all its e-chain recurrent sets

R(S) = () Re(S)

e>0

Long term steady state behaviors of the system are contained in its positive
limit set. Given any point p € S, we say ¢ is a positive limit point of p if
there is an infinite sequence {7} }7°, such that 7, — oo as k — oo and
Tli_r>noo &(mk;p) = q. The set of all positive limit points of p is denoted as

k

w(p) and the set of all positive limit sets for the compact set S C X is

denoted as §2(S) = U w(p). An important fact is that the positive limit set

peS
of S is contained within the system’s chain recurrent set R(S).

Given any two points p, g in the chain recurrent set R(.S), we can introduce
a binary relation that says p ~ ¢ if and only if for all € > 0O there exists a
periodic e-chain containing p and g. One can easily show that this binary
relation is an equivalence relation which means the chain recurrent set can
be decomposed as the union of mutually exclusive equivalence classes. In
particular, we denote the equivalence class that a point p € R(.5) lies in as
[R(S)],. These equivalence classes are called basic sets. Note that because
the system’s positive limit set 2(5) is contained within R(S), this means
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that the positive limit set of the system can also be decomposed with re-
spect to the basic sets of R(S) by simply taking the intersection of Q(5)
with each of the basic sets {[R],(S)}. We will denote these “basic” sets for
the positive limit set as [€2],(S) where p is some state in 2(S). One can
use a result known as Conley’s decomposition theorem [14] to place a par-
tial order on these basic sets. Ordered decompositions of invariant sets are
sometimes called Morse decompositions and so the basic sets of {2(S) can
also be referred to as a Morse decomposition of the positive limit set.

Let us consider a dynamical system (X, ¢) where S is the largest com-
pact invariant set in X. Since we know the system’s positive limit set {2(.5)
can be decomposed into a collection of basic sets [€2],(S5), we will define a
system regime as one of these basic limit sets. A regime shift occurs when
the system state switches between these basic sets as a result of an external
disturbance (i.e. a shock-induced regime shift) or a change in the topol-
ogy of these basic sets (i.e. a bifurcation-induced regime shift). Note that
the regime shift mechanisms are essentially the same as we defined before
for the lake eutrophication example, but now the regimes are no longer de-
fined with respect to stable system equilibria. They are defined with respect
to a Morse decomposition of the system’s positive limit set and this char-
acterization means that the regime shift concept can now be extended to
non-equilibrium systems.

Let us now consider a realistic example of a food web whose regimes
are defined in terms of the positive limit set’s basic sets. We consider a
tritrophic extension of the Rosenzweig-MacArthur [93] predator prey sys-
tem. The original Rosenzweig-MacArthur system consists of a producer
and a “primary” consumer. This model can be extended to a three guild
system by adding a ’secondary” consumer that only feeds on the primary
consumer. The resulting tritrophic food web shown in Fig. 9(a) assumes the
producer is algae, the primary consumer is a planktonic crustacean such as
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Daphnia and the secondary consumer is a lake fish such as a black crappie.
This simple food web is well known to exhibit a wide range of complex
behaviors that include chaotic orbits [50].

We model this food web as a non-negative compartmental system with the
consumer-resource interactions introduced in the preceding section. The
model has three compartments for the producer (1), the primary consumer
(x2), and the secondary consumer (x3). The compartmental states satisfy
the following set of differential equations

. x1 T1T2

4 T = TX <1 — —) — rg——

4) 1 171 K 291 =

(5) . T1T2 T2l3
Ty = T -7 — Mok

2 T R T B,y

. ToT3

6 = _—

(6) xs n373 0y + 9 maT3

where K is the producer’s carrying capacity. The parameters r;, 1;, and
m; denote the growth rate, feeding efficiency and mortality rate of guild 7,
respectively. The RHS of these equations model fluxes entering and exiting
the compartment. The producer equation (4) has two terms; the first term
models growth due to photosynthesis and the second term models predation
by the primary consumer. The primary consumer equation (5) has three
terms; the first term models growth due to predation on the producer, the
second term models loses due to predation by the secondary consumer, and
the third term models loses due to mortality. The secondary consumer’s
equation (6) is similar to that of the primary consumer and has only two
fluxes; one for mortality and another modeling growth due to predation on
the primary consumer.

The tritrophic food web in equations (4-6) is well known to exhibit a range
of qualitative behaviors [S0]. One can switch between these behaviors by
simply changing parameter values. Figs. 9(b) and (c), for instance, show
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simulated trajectories for two different values of the producer’s carrying ca-
pacity, K. The simulated orbits in Fig. 9(b) asymptotically converge to a
fixed point in the state space. By slightly increasing the carrying capac-
ity, the system orbits qualitatively change as shown in Fig. 9(c) to exhibit a
bursting behavior where the system is alternating between oscillatory bursts
(green region A) and non-oscillatory behavior (red region B). In this case,
one may ask whether the system is undergoing regime shifts between be-
haviors A and B, or if there is only a single “complex” regime?

This section answers that question using our definition for regimes as basic
sets of the system’s positive limit set. These basic sets can be obtained by
looking at the orbits generated by initial states starting in the neighborhood
of the system’s equilibria. In particular, we computed orbits generated by
the following initial states,

T, = (0.0,1.0,0.0)T, zop = (0.01,0.00,0.01)7

= (0.01,0.01,0.00)", z¢q = (0.01,0.01,0.01)T
Fig. 10(a) plots the orbits for the case where the selected carrying capacity
(K = 2/3) only exhibits fixed point convergence. Fig. 10(a) shows that this
system’s positive limit set consists of four fixed points; each one being a ba-
sic set that captures the orbits for specific subsets of initial conditions. Each
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of these basic sets represent a distinct regime for the system where regime A
is a dead system, regime B is dominated by the producer (eutrophic regime),
regime C' has no secondary consumer (no fish), and all three compartments
in regime C' are positive (live system).

The need for a non-equilibrium characterization of regime shifts is seen in
Fig. 10(b). This figure plots the orbits for the system initial conditions when
the producer’s carrying capacity (K = 1) results in bursting. This figure
shows that this system’s positive limit set again has four basic sets, but some
of these sets now have distinctly different topologies. Regime A is the dead
system and regime B is still a fixed point representing the eutrophic state
of a producer dominated biota. Regime C' is now a limit cycle in which the
producer and primary consumer alternate in their dominance of the system
biota. The component marked D has a more interesting “teacup” shape
associated with bursting. Each of these sets represents a different regime
that can “trap” the system’s behavior. Recall that we asked earlier whether
the bursting behavior in Fig. 9(c) represented two regimes or a single one.
If we define a system regime as a basic set of the system’s positive limit set,
then the answer to our question is that bursting orbits are trapped within a
single regime with a very complex topology (teacup shape).

5. Pseudo Regimes

The preceding section defined system regimes in terms of the basic sets
of a system’s positive limit set. Some may still find this answer unsatis-
factory. The bursting behavior in Fig. 9(c) is often described informally as
a behavior that periodically generates sustained oscillatory bursts. That de-
scription clearly thinks of bursting as a transition between an oscillatory and
non-oscillatory regime. If that is not a regime shift, then what is it?
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To answer that question, we note that if two systems, p and ¢, are in the
same basic set (i.e. regime) then there is a periodic e-chain that contains both
states. In this regard, we have defined regimes as states that “eventually”
communicate with each other. Clearly all states within the same regime
communicate with each other. But if we are also concerned with the length
of time between successive visits, then this provides a reasonable basis for
partitioning the basic set into distinct regions or pseudo regimes where the
basic set’s orbit spends most of its time. On the surface, this type of partition
might be used to provide a syntactical explanation for the behavior seen in
a “bursting” regime.

One way of forming such a partition is to introduce a probability measure
on the transition map, ¢, so that it becomes a transition probability. The
orbits on the basic set would then be random walks of a Markov process
whose invariant distribution could be used as a basis for partitioning the
basic set in terms of each state’s recurrence time. The following example
shows how this partition might be constructed from a sufficiently long orbit
contained in the basic set.

For example, let z(-;p) : R — S denote an orbit of the system where p is
in one of the positive limit set’s basic sets. Let us sample this orbit in time
and space by constructing a grid set

o= {[7]}..

for £ = 0,1,... and where h and dz denote denote the sampling interval
in time and space, respectively. The grid set, G, is esssentially a cubical
gridding of the basic set. To each grid element G, there is a “‘cube” of points
in R"™. The union of all of theses cubes forms a set that is called a cubical
complex. We use the sample orbit {x(kh; p)},-, to construct a single step
transition probability ()(i|j) as the probability that the system being in grid
element j € G will transition to grid element ¢ € G within a fixed window of
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time. The ordered pair (G, ()) forms a Markov chain and we are interested
in finding a meaningful way of partitioning that grid set, G, based on the
recurrence times.

There are many ways such a partition can be obtained, but since we are
concerned with clustering states into sets where the orbit spends the most
time, it makes sense to construct a partition

G=AUA

that minimizes the sum of the probabilities of leaving A and .A*. This par-
ticular problem can be solved using a variant of the NCUT algorithm [101].
This algorithm takes the Markov chain’s directed graph and computes the
eigenvector for the second largest eigenvalue of its normalized graph Lapla-
cian. The components of that eigenvector are partitioned into two sets, plac-
ing those components with a value greater than a selected threshold into
one set and the rest in the other set. Each component of the eigenvector
represents, of course, a state in the grid space G, so the partitioning of the
eigenvector induces a partition of the Markov chain’s grid space, G. The
NCUT algorithm simply chooses a threshold that minimizes the probability
flux between the two components in this partition of the grid space. This ap-
proach is computationally tractable and forms the basis for many algorithms
used in graph partitioning [119].

This procedure was applied to a bursting orbit of the tritrophic food web.
The grid size, dx, was chosen so the resulting cubical complex had a persis-
tent topology [31] as measured by the complex’s Betti numbers [51]. The
resulting cubical complex is shown in Fig. 11(a). The graph partition that
was obtained using the NCUT algorithm is shown in Fig. 11(b). The primary
partition shown in green has Betti numbers (1, 1, 0), which means the com-
plex has a single connected component with a 1-dimensional hole through
it. This topology is consistent with the behavior associated with a peri-
odic oscillation. The second component, shown in red, has Betti numbers
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(1,0,0) which means there is only a single connected component with no
holes. This partition was projected onto the orbit shown in Fig. 11(c) and
comparing this back to the regions identified in Fig. 9(c), it should be ap-
parent that the graph partition obtained using NCUT is consistent with the
informal description that describes bursting as switching between oscilla-
tory and non-oscillatory behaviors.

The preceding partition of bursting orbit, of course, does not represent a
decomposition of the orbit into distinctly different basic sets, i.e. regimes.
But it is still meaningful from the standpoint of describing the orbit in terms
of changes in the orbit topology. The preceding section gave an unambigu-
ous characterization of regimes in terms of the system’s “basic” invariant
sets. This section showed that this regime concept could also be meaning-
fully refined in terms of topological invariants. This monograph will not
explore the notion of a pseudo-regime any further. The remaining chapters
focus on regime shifts between basic sets.

6. Summary and Further Reading

Regime shifts represent a fundamental concept in the study of ecological
resilience. These shifts can signal the collapse of a functioning system and
they are intentionally triggered to speed up the restoration of a collapsed
system. Ecologists usually describe regime shifts using equilibrium con-
cepts (i.e. a transition in the system state between alternative stable equilib-
ria), but real-life food webs, especially those that satisfy consumer-resource
interactions, exhibit non-equilibrium behaviors. This chapter rigorously de-
fined non-equilibrium regime shifts in terms of the basic sets of the system’s
positive limit set. The chapter identified two regime shift mechanisms;
shock-induced and bifurcation-induced. Shock-induced regime shifts oc-
cur when a disturbance forces the system state into an alternative basic set.
Bifurcation-induced regime shifts occur when parameter variations change
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the topology of the basic sets. The chapter closed with a refinement of the
non-equilibrium regime shift concept (pseudo-regimes) that used spectral
partitions of graphs to partition a basic set based on its topological invari-
ants.

The ecology literature on regime shifts is vast, but often focuses on devel-
oping a link between the equilibrium-based picture in Fig. 2 [97] and obser-
vations [96] in real-life systems. This has led to a number of statistical in-
dices used to predict future regime shifts [75, 95, 5, 18, 100] and studies that
look for regime shifts in particular ecosystems [57, 23, 80, 58, 20, 11, 33].
The recognition of the role of regime shifts in restoration ecology has been
examined in [108, 109, 52]. In spite of the intense interest from ecologists in
regime shifts, there has been some skepticism regarding the practical value
of the concept in the adaptive management of real life systems [43]. This
chapter’s novelty rests with its formal definition of regime shifts in terms
of the basic sets of a consumer-resource system. That definition provides
a rigorous way of extending the regime shift concept to non-equilibrium
systems.

Complex food webs have long been modeled as compartmental systems
[61] based on nutrient fluxes [21] or metabolic energy [10]. The consumer-
resource systems cited in this chapter were based on [124] with trophic re-
lationships given by the niche model [122] using allometrically scaled pa-
rameters [10, 102]. Models of this form will be found in simulation tools
for fishery management [85]. One of the reasons for using such models
is that one can randomly generate large biologically-plausible models for
food webs. Our confidence in these models rest on prior studies [8] that
have validated such models against real life lake system.

Topological concepts lay at the heart of the regime-shift definition given
in this chapter. This chapter’s coverage of chain recurrence and basic sets is
drawn from [30, 60]. These concepts will be used in later chapters to discuss
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Conley’s decomposition theorem [14] that forms the basis for constructing
a discrete-abstraction of regime shift dynamics.

The discussion in the final section computed topological invariants (Betti
numbers) for cubical complexes containing the basic sets. More detail on
these topological invariants may be found in [S1]. These topological in-
variants have recently been used to help refining data sets in a manner that
ensures the topology of the resulting sets is persistent [41, 31]. While most
of this prior work has focused on the use of simplicial complexes in com-
puting topological invariants, we have that cubical complexes appear easier
to work with for data sets generated by dynamical systems. Computational
tools used in finding the topological invariants of such cubical complexes
will be found in [64].



