
CHAPTER 3

Bifurcation Induced Regime Shifts

Bifurcation-induced regime shifts occur when a perturbation in the system
parameters changes the topology of the basic sets comprising the system
regimes. A nominal system’s susceptibility to a bifurcation-induced regime
shift can be measured by the distance-to-bifurcation or D2B; namely the
smallest parameter perturbation that triggers a shift in the topology of the
basic sets. The D2B can therefore play a critical role in developing conser-
vation policies that reduce the likelihood of an impending regime shift.

This chapter presents a method for computing bounds on a consumer-
resource system’s distance to a local bifurcation of its equilibria. In partic-
ular, we show that kinetic realizations of these consumer-resource systems
admit a natural parameterization in terms of the system’s elementary flux
modes (EFM). EFMs represent fundamental sub-circuits (sub-communities)
within the full circuit whose activity levels form a flux parameterization of
the system. This allows one to write the linearization of the system about
its equilibria as an affine parameter dependent (APD) system whose robust
stability margin provides a direct characterization of the system’s D2B with
respect to its flux parameters. Since robust stability for APD systems can be
cast in terms of linear matrix inequalities, this approach provides a compu-
tationally tractable method for assessing a system’s D2B.

The following sections review background material on bifurcations of non-
linear dynamical systems. The chapter shows how to construct kinetic re-
alizations and flux parameterizations of consumer-resource systems. The
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42 3. BIFURCATION INDUCED REGIME SHIFTS

D2B problem is then formulated as a robust stability problem for an APD
system. The methodology is demonstrated using the tritrophic food web
shown in Fig. 9.

1. Distance to Local Bifurcations (D2B)

This section reviews background material on system bifurcations and then
defines the distance to local bifurcation or D2B of a system equilibrium. Let
us consider a dynamical system whose orbit x(·; p) : R ! Rn satisfies

ẋ(t) = f(x(t); k0)(7)

with x(0; p) = p and where f : Rn ⇥ Rm ! Rn is locally Lipschitz in x

and k0 2 Rm is a constant vector of nominal parameters.

Now consider a perturbation of the nominal system whose orbits z(·; p) :
R ! Rn satisfy

ż(t) = f(z(t), k0 + �k)(8)

with z(0; p) = p and where �k 2 Rm is a vector of parameter perturbations.
We say a map h : Rn ! Rn is a homeomorphism if h is continuous and h

�1

exists and is continuous. The nominal system in equation (7) is structurally
stable if and only if there exists ✏ > 0 such that for any parameter per-
turbation with |�k| < ✏ there exists a homeomorphism h that maps orbits,
x, of the nominal system onto the orbits, z, of the perturbed system while
preserving the direction of time. If the nominal system is not structurally
stable, then we say the system undergoes a bifurcation at parameter k0.

Consider the dynamical system

ẋ(t) = f(x(t); k(t))(9)
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where f : Rn ⇥ Rm ! Rn is locally Lipschitz in x. We say the system
undergoes a bifurcation-induced regime shift at time t0 if the constant pa-
rameter system

ż(t) = f(z(t), k(t0))(10)

is not structurally stable. If the above constant parameter system in equation
(10) is structurally stable, then we define its distance-to-bifurcation as

D2B = inf
�k2Rm

{|�k| : ż = f(z, k(t0) + �k) is not structurally stable}

Finding the D2B can be computationally intractable unless all bifurcations
are local. Consider the nominal system in equation (7) and let x⇤ be an
equilibrium point such that f(x⇤; k0) = 0. We say this system is locally
topologically equivalent at x⇤ to the perturbed system in equation (8) if
there exists a neighborhood U of equilibrium x

⇤ and there exists a function
h : Rn ! Rn such that

• there is a neighborhood V of a fixed point z⇤ of the perturbed sys-
tem (i.e. 0 = f(z⇤, k0 + �k)) over which h is a homeomorphism
between U and V with z

⇤ = h(x⇤) and V = h(U).
• any of the nominal system orbits in U are mapped through h onto a

perturbed system orbit in V while preserving the direction of time.

We say the nominal system is locally structurally stable at equilibrium x
⇤ if

and only if there exists ✏ > 0 such that for any parameter perturbation with
|�k| < ✏, we know the nominal and perturbed systems are locally topologi-
cally equivalent at x⇤. If the nominal system is not locally structurally stable
at x⇤, then we say it undergoes a local bifurcation at parameter k0. We may
then define a local bifurcation-induced regime shift and its local D2B in the
same way as was done for global bifurcations. The remainder of the mono-
graph focuses on local D2B, so the ”local” qualifier will be dropped if the
type of bifurcation (global or local) is clear from the discussion’s context.
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Let x⇤ be an equilibrium of the nominal system ẋ = f(x; k0). The lin-
earization of that system about x⇤ is the linear system

ẋ(t) = Ax(t)

where A =


@f(x; k0)

@x

�

x=x⇤
is a real-valued constant matrix called the

linearization’s system matrix. For a given system matrix, A, we let n+

denote the number of eigenvalues for system matrix A with positive real
parts, n0 denotes the number of eigenvalues with zero real parts, and n

�

denotes the number of eigenvalues with negative real parts. We will call the
triple, (n+

, n
0
, n

�) the stabiliy index of the linearization at x⇤. We say the
equilibrium, x⇤, is hyperbolic if n0 = 0 (i.e. A has no eigenvalues with zero
real parts).

The Hartmann-Grossman theorem [49] can be used to prove that the nom-
inal system and its perturbation are locally topologically equivalent at a hy-
perbolic equilibrium, x⇤, if and only if the linearizations of both systems
have the same stability indices. So let A be the system matrix for a hy-
perbolic equilibrium, then there exists a similarity transformation T such

that

"
As 0

0 Au

#
= TAT�1 where all of the eigenvalues of As and �Au

have negative real parts. Assessing the D2B at x⇤ is therefore equivalent to
assessing the robust stability of a linear system with system matrix

A = T�1

"
As 0

0 �Au

#
T

This reduces the problem of finding the distance to local bifurcation to a
linear robust stability problem.

Remark: There are local structurally stable systems that are not (globally)
structurally stable [71]. Necessary and sufficient conditions for global bi-
furcations exist for planar systems and for a restricted class of gradient-like
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systems [103, 82]. These conditions, however, are difficult to verify com-
putationally which is why this monograph confines itself to regime shifts
triggered by local bifurcations.

Posing the problem of finding an equilibrium’s D2B in terms of robust
stability, however, is still complicated by the fact that parameter pertur-
bations also perturb the system’s equilibrium point. This means that the
eigenvalues of the linearization depend in a complex manner on system pa-
rameters and this complexity can make it difficult to solve the lineariza-
tion’s robust stability problem. Our approach to this issue takes advantage
of the fact that compartmental polynomial systems have realizations that
are affine functions of the fluxes between compartments. These realizations
are sometimes called kinetic realizations and the parameters characterizing
their inter-compartmental fluxes are called normalized flux parameters. The
following sections, 2 and 3, discuss flux parameterizations of kinetic real-
izations. Section 4 uses these parameterized realizations to solve the D2B
problem for consumer-resource systems.

2. Kinetic Realizations of Consumer-Resource Systems

The compartmental dynamical system , ẋ = f(x; k), has a kinetic realiza-
tion if f(x; k) can be written as an affine function of the fluxes between sys-
tem compartments. This section discusses kinetic realizations of consumer-
resource systems.

In the following it will be convenient to introduce the following nota-
tional conventions. A polynomial, f(x; k) with indeterminate variables
x = {x1, . . . , xn} and non-negative parameters k = {k1, . . . , km} is a for-
mal series

f(x; k) =
mX

j=1

(
±kj

nY

`=1

x
yj`
`

)
(11)
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where yj` are non-negative integers for j = 1, 2, . . . ,m and ` = 1, 2, . . . , n.
The set of all such polynomials whose parameters k take values in the real
field is denoted as R[x] or R[x1, . . . , xn]. If the parameter k is treated as a
variable, then the set of polynomials is denoted as R(k)[x]. The set R[x]
is an algebraic ring with respect to polynomial addition and multiplication.
The n-dimensional row vector

yj =
h
yj1 yj2 · · · yjn

i

for = 1, 2, . . . , n is called a multi-index and we denote the monomial gen-
erated by multi-index y as x[y]. Let Y 2 Zm⇥n be an integer matrix whose
rows are the multi-indices of the monomial terms in the formal series, f(x; k),
of equation (11). We denote the m-vector of monomials in the formal series
f(x; k) as

x
[Y] =

h
k1x

[y1] k2x
[y2] · · · k3x

[ym]
iT

Now consider a dynamical system whose state trajectory x : R ! Rn

satisfies ẋ(t) = f(x(t); k) where f is a vector of n polynomials in R(k)[x]
with n variables {x1, . . . , xn} and m real parameters k = {k1, . . . , km}.
This system is said to have a kinetic realization, (N,Y,Dk), if the system
equations can be written as

ẋ(t) = NDkx
[Y]

where for some integer p � m the matrix, Y, is a p ⇥ n matrix whose
rows are multi-indices, N is an n⇥ p incidence matrix for a directed graph
G = (V,E) whose vertex set, V , consists of the multi-indices in Y, and
Dk is a p⇥ p diagonal matrix whose diagonal elements are drawn from the
system parameters k = {k1, . . . , km}.

Kinetic realizations often appear in chemical reaction networks with mass
action kinetics. A sufficient condition for a non-negative polynomial sys-
tem, ẋ = f(x; k), to have a kinetic realization is that for all i = 1, 2, . . . , n,
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there exist polynomials gi(x; k) and hi(x; k) in R(k)[x] such that

fi(x; k) = gi(x; k)� xihi(x; k)

A constructive proof for this condition was presented in [48].

Even though consumer-resource systems are not polynomial, one can still
construct a kinetic realization through time scaling. Let us do this for the
following tritrophic food web

ẋ1 = r1x1

�
1� 1

Kx1

�
� r1

x1x2
1+x1

ẋ2 = r2
x1x2
1+x1

� r3
x2x3
1+x2

�m1x2

ẋ3 = r3
x2x3
1+x2

�m3x3

where x1 denotes the producer biomass, x2 is the primary consumer’s biomass
and x3 is the secondary consumer’s biomass. The system parameters are K

(carrying capacity), ri (ith guild’s growth rate), and mi (ith guilds death
rate). If we introduce the following time transformation

⌧(1 + x1)(1 + x2) = t

then we get the state equations

ẋ1 = r1x1

�
1� 1

Kx1

�
(1 + x1)(1 + x2)� r2(1 + x2)

ẋ2 = r2x1x2(1 + x2)� r3x2x3(1 + x2)

�m1x2(1 + x1)(1 + x2)

ẋ3 = r3x2x3(1 + x1)�m3x3(1 + x1)(1 + x2)

(12)

which is a polynomial realization for the original system equations.

Let us fix the value of some system parameters

r1 =
1

2
, , r2 =

5

3
, r3 =

1

20

and introduce perturbations on the producer’s carrying capacity and the sec-
ondary consumer’s mortality rate,

1

K
=

3

2
+ k1, m2 =

2

5
, m3 =

1

100
+ k2
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The parameter, k1, is generated by interventions taken by a resource man-
ager to improve the carrying capacity of the lake. The parameter, k2, is
generated by policies used by a resource manager to encourage or restrict
harvesting of the secondary consumer.

The right hand side of equation (12) consists of polynomials in the ring
R(k)[x] where x = {x1, x2, x3} and k = {k1, k2}. We now construct a
kinetic realization of the polynomial system in equation (12) following the
methods outlined in [48]. In particular, we first form the multi-index matrix,
Y, for the distinct monomials terms in each equation. For the first equation
in (12), we select these monomials and their coefficients to be

j 1 2 3 4 5 6 7
yj [3, 1, 0] [3, 0, 0] [2, 1, 0] [2, 0, 0] [1, 2, 0] [1, 1, 0] [1, 0, 0]

x[yj ] x3
1x2 x3

1 x2
1x2 x2

1 x1x2
2 x1x2 x1

Dk(j, j) � 9
4 � 3k1

2 � 9
4 � 3k1

2 � 3
4 � 3k1

2 � 3
4 � 3k1

2 � 5
3 � 1

6 � 3
2

In practice, the computation of the above table would be implemented using
a computer algebra tool such as SINGULAR, Mathematica, or Maple.
Repeating the steps used to compute the above table for the other equations
in (12) creates the kinetic realization for this system that is shown in Fig. 12.
This realization will be used in later sections to demonstrate how one solves
for the D2B.

3. Normalized Flux Parameters of Kinetic Systems

Kinetic realizations express the system equations as an affine function of
the inter-compartmental fluxes. In particular, note that kinetic realization,
(N,Y,Dk), allows one to rewrite the system equations as

ẋ(t) = f(x; k) = Nv(x; k)

where

v(x; k) = Dkx
[Y]
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{

FIGURE 12. Kinetic Realization of Tritrophic Food Web

We refer to the p-dimensional vector v(x; k) as the realization’s flux vector.
Since N is the incidence matrix of a graph with vertex set given by the
monomials in x

[Y], one may view v(x; k) as a flux between the vertices of
this graph.

Let x⇤(k) denote an equilibrium for a kinetic realization (N,Y,Dk). De-
fine the flux equilibrium

v
⇤(k) := v(x⇤; k) = Dk (x

⇤(k))[Y]

Since f(x⇤(k); k) = 0, one can readily deduce that the flux equilibrium,
v
⇤(k), is a non-negative vector in the null space of the kinetic system’s inci-

dence matrix, N. In other words,

v
⇤(k) 2 Kv := ker(N) \ Rp

�0

Kv is called the realization’s equilibrium flux cone. Note that the flux cone
is a closed convex polyhedral set formed from the intersection of N’s null
space with the non-negative orthant in the parameter space, Rp

�0.
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Since the flux cone, Kv, is a convex polyhedral set, it is finitely generated
by a set of r elementary flux modes (EFM), {e1, . . . , er}. This set consists
of non-negative vectors in the flux space that are extreme rays from which
Kv is generated. This set of EFMs is unique and they are elementary in the
sense that no EFM can be written as a positive linear combination of other
EFMs. This means that any equilibrium flux v

⇤ in the flux cone, Kv, can be
written as v⇤ = E� where E is a p⇥r matrix whose ith column is the EFM,
ei, and � = [�1, . . . ,�r] is an r-vector of flux parameters. So an alternative
representation of the flux cone is

Kv =
�
v 2 Rp

�0 : v 2 E�, � 2 Rr
�0

 

Remark: The EFM matrix, E, of a kinetic realization (N,Y,Dk) is effi-
ciently computed [38, 66, 115] from binary encodings of the realization’s
incidence matrix N.

Let us assume we’ve found the EFM matrix, E for a kinetic realization
of the system, ẋ = f(x; k), with real parameter k 2 Rq

�0 and let x⇤ be
an equilibrium for this system. As mentioned above, the equilibrium flux,
v
⇤ = v(x⇤; k), associated with this equilibrium can be written as v⇤ = E�.

The linearization’s system matrix can be shown to be

A =


@f(x; k)

@x

�

x=x⇤
= Ndiag(E�)Ydiag(h)(13)

where h = 1/x⇤ is a vector whose components are reciprocals of the com-
ponents in x

⇤. Note that the system matrix in equation (13) is dependent
on the components in � and h. But if one were to multiply out equation
(13), we would see that A is affine with respect to monomials of the form
�ihj . This suggests that it would be better to define a set of normalized flux
parameters

µ = {µ1, . . . , µq}
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where each µ` represents a product of a flux parameter �i and the reciprocal
of a component of the equilibrium, hj . So the system matrix A is now affine
in the sense that there exist matrices {A`}q`=1 such that

A =
qX

`=1

µ`A`(14)

We refer to µ as the normalized flux parameters associated with the kinetic
realization and in bounding the system’s distance-to-local bifurcation we
will do this with respect to perturbations of the normalized flux parameters,
µ.

Let us now determine the affine parameterization for the tritrophic food
web whose kinetic realization was shown in Fig. 12. The EFM matrix for
this system was computed using efmtool [115]. The resulting matrix
is shown in Fig. 13(a). The relationships between the equilibrium fluxes
v
⇤ and E� are shown in Fig. 13(b). Computer algebra tools were used to

form the Jacobian matrix according to equation (13). This yielded a 3 ⇥ 3

matrix (Fig. 13(c)) whose elements are affine functions of the normalized
flux parameters shown in Fig. 13(d).

4. Distance to Local Bifurcation of Kinetic Systems

With the affine parameterization of the linearization’s system matrix as
shown in equation (14) one can now compute a bound on the D2B for a
specified equilibrium, x⇤. This section first computes that bound when x

⇤

is an asymptotically stable and positive equilibrium. The end of the section
discusses how one can relax this to any non-negative hyperbolic equilib-
rium.

Let us introduce the following notational conventions,

Ih = diag(h), J̃(�) = Ndiag(E�)Y
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(a) EFM matrix for food web (b) EFM parameterization of equilibrium fluxes

(c) Affine Parameterization of System Matrix in terms of normalized flux parmaters, µ

(d) Normalized Flux Mode Parameters

FIGURE 13. EFM matrix, parameterization of equilibrium
fluxes, affine parameterization of system matrix

Since we assumed the equilibrium was positive, all entries of Ih are well
defined. The linearization’s system matrix may therefore be written as

A = J̃(�)Ih

With these conventions, the linearized state equations become

d

dt
(x� x

⇤) = J̃(�)Ih(x� x
⇤)

We then introduce the following change of variables

z = Ih(x� x
⇤)
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Since ż = Ihẋ, we can readily see that the linearized system equation be-
comes

ż = IhJ̃(�) = A(µ)z

where we explicitly note the system matrix’ dependence on the normalized
flux parameters, µ. Because we assumed the equilibrium, x⇤, was asymp-
totically stable and positive, the matrix A(µ) is well defined and the origin
of this system is asymptotically stable.

Now let k0 be a nominal parameter for the original system and let x⇤(k0)

denote an equilibrium associated with that nominal parameter. There must
be a vector �0 2 Rr

�0 such that the equilibrium flux at this nominal equilib-
rium satisfies

v(x⇤(k0); k0) = E�0

where E is the system’s EFM matrix. Since all components of x⇤ are posi-
tive, this means there is a “nominal” normalized flux vector µ0 such that the
normalized flux parameters can be written as

µ = µ0 + µ̃

In other words, the affine parameterization of the system matrix in equation
(14) can be written as

A(µ) =
qX

i=1

µiAi =
qX

i=1

(µ0i + µ̃i)Ai

= A0 +
qX

i=1

µ̃iAi(15)

where µ̃ denotes a perturbation about the nominal normalized flux parame-
ter, µ0 and A0 =

Pq
i=1 µ0iAi. Note that while there are q matrices in the

sum, many of these matrices are duplicates. So it will be more convenient
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to rewrite equation (15) as

A = A0 +
q̃X

i=1

⇢i(µ̃)Ãi(16)

where q̃  q is an integer such that {Ãi}q̃i=1 is the set of distinct matrices in
equation (15)’s sum and ⇢i(µ̃) is a linear function of the perturbations about
the nominal normalized flux parameter, µ0.

If we treat {⇢i(µ̃)}q̃i=1 as a parameter, then equation (16) is the uncertain
system matrix for an affine parameter dependent system (APD) of the form

ż =

 
A0 +

q̃X

i=1

⇢iÃi

!
z(17)

that was studied in [39]. That paper established sufficient conditions for the
robust stability of the uncertain linear system in equation (17). In particular,
let � ⇢ Rq̃ be a convex polytope containing the origin and that is generated
by the following set {�`}N`=1 of points in the parameter space. From [39], a
sufficient condition for the system matrix

A(⇢) := A0 +
q̃X

i=1

⇢iÃi(18)

to be Hurwitz for any ⇢ = {⇢1, . . . , pq̃} in � is that A0 is Hurwitz and that
there exist q̃+1 symmetric matrices Q0,Q1, . . . ,Qq̃ such that the parameter
dependent matrix

Q(⇢) = Q0 + ⇢1Q1 + · · ·+ ⇢q̃Qq̃(19)

satisfies

AT (�i)Q(�i) +Q(�i)A(�i) < 0(20)

for i = 1, 2, . . . , N with

ÃT
i Qi +QiÃi � 0(21)
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for i = 0, 1, 2, . . . , q̃.

These conditions establish that

V (x; ⇢) = x
TQ(⇢)x

is a parameter dependent Lyapunov function [4] for any system ż = A(⇢)z

with ⇢ 2 �. In particular equations (20-21) are linear matrix inequalities
(LMI) with matrix variables Q0,Q1, . . . ,Qq̃. Since LMI problems are a
class of convex optimization problem for which efficient interior point al-
gorithms exist, it means that certifying the robust stability of the system
ẋ = A(⇢)z is computationally tractable using tools such pdlstab in MAT-
LAB’s robust control toolbox [40].

Let us now see how this works for the positive stable equilibria of the
tritrophic food web. The kinetic realization, (N,Dk,Y), is shown in Fig. 12
and the EFM matrix and normalized flux parameters are shown in Fig. 13.
To certify the robust stability of the nominal system, we first find all of the
system equilibria by solving the following set of polynomial equations,

0 = r1x1

�
1� x1

K

�
(1 + x1)� r2x1x2

0 = r2x1x2(1 + x2)

�r3x2x3(1 + x1)�m2x2(1 + x1)(1 + x2)

0 = r3x2x3 �m3x3(1 + x2)

(22)

using the nominal parameter values given before. All solutions to these
polynomial equations may be computed using triangular decompositions of
the Groebner basis for the ideal formed from these polynomials [22]. We
computed these equilibria using functions in the computer algebra tool SIN-
GULAR [42]. The resulting equilibria are shown below in Table 1. Note
that all of the equilibria are hyperbolic, so we know this system is locally
structurally stable. Only one of the equilibria, however, is positive and sta-
ble. We construct an APD linearization at this positive/stable equilibrium
and use the results from [39] to certify its robust stability. The end of the
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section outlines how one could use this robust stability analysis for lineariza-
tions about the non-positive and/or unstable equilibria.

equilibrium Jacobian eigenvalues stability index
x⇤ A (n+, n0, n�)

2

64
0

0

0

3

75

2

64
1.5 0 0

0 �0.4 0

0 0 �0.01

3

75
�1 = 1.5

�2 = �0.4

�3 = �0.01

(1, 0, 2)

2

64
0.67

0

0

3

75

2

64
�2.5 �1.1 0

0 0.44 0

0 0 �0.016

3

75
�1 = 0.44

�2 = �2.5

�3 = �0.016

(1, 0, 2)

2

64
0.32

0.62

0

3

75

2

64
�1.11 �0.85 0

1.28 0 �0.04

0.00 0.00 0.02

3

75
�1 = 0.02

�2 = �0.55 + j.88

�3 = �0.55� j.88

(1, 0, 2)

2

64
0.54

0.25

4.73

3

75

2

64
�2.19 �1.14 0

0.34 0.07 �0.02

0 0.29 0

3

75
�1 = �.05 + j.05

�2 = �.05� j.05

�3 = �2.01

(0, 0, 3)

TABLE 1. Linearization of Tritrophic Food web

From Fig. 13 we saw there were 28 normalized flux parameters {µi}28i=1.
But when we look at the set of matrices {Ai}28i=1, there are only 7 distinct
matrices forming {Ãi}7i=1 as shown in Fig. 14. So the APD realization of
our system is

A(µ̃) = A0 +
7X

i=1

⇢i(µ̃)Ãi

where the ⇢i are also shown in Fig. 14.

We then formulate a polytopic set � of uncertainties. In particular, we
choose a box centered at the origin so that

⇢(µ̃) 2 [�R,R]7 = �R

where R is a scalar parameter representing the size of the uncertainty set,
�R. Once this is done, we use the function pdlstab in MATLAB’s robust
control tool box to verify the robust stability of A(µ̃) with respect to the
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~ ~

FIGURE 14. Reduced APD Linearization of Tritrophic System

chosen uncertainty set. In particular, we embed this function in a bisection
algorithm to find the largest R such that A(µ̃) has robust stability with re-
spect to �R. Applying this search to the tritrophic food web, we found the
largest R for robust stability to be 0.0192. We can therefore take this as the
distance to local bifurcation with respect to the parameter set {⇢i(µ̃)}7i=1.

The distance computed above is overly conservative because it is deter-
mined by the maximum deviation with respect to all of the structured uncer-

tainty matrices
n
Ãi

o7

i=1
. The original problem statement only considered

perturbations to the carrying capacity, K, and the secondary consumer’s
mortality rate, m3. These two parameters strongly perturb only two of the
structured uncertainty matrices; namely Ã1 and Ã7.

Let us first look at the D2B for perturbations, k1, to 1/K. If we look at the
Fig. 14 we see that

⇢1(µ̃) = �2µ̃2 � 2µ̃4 � µ̃6 � µ̃7

= �2
�3

x
⇤
1

� 2
�4

x
⇤
1

� �5

x
⇤
1

� �6

x
⇤
1

= 3k1(x
⇤
1)

2(x⇤
2) + 3k1(x

⇤
1)

2 + 3k1(x
⇤
1)(x

⇤
2) + 3k1(x

⇤
1)

Small perturbations in k1 will generate small changes in the equilibrium x
⇤,

so if we simply let x⇤ be the nominal equilibrium then the above equation
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implies

|µ̃1| = 3.1728k1

If we then use our preceding procedure to check the robust stability of the
APD matrix

A0 + µ̃1Ã1

we get a bound of D2B = 1, which means |k1| < 1
3.1728 ⇡ 0.31 to ensure

robust stability to variations in the carrying capacity. This assertion can be
readily verified through simulation where 1/K is perturbed away from its
nominal value of 3/2. Simulations show we can perturb 1/K by 0.53 before
a local bifurcation is triggered. This result is consistent with the prediction
made using the D2B analysis.

Now let us look at the D2B for perturbations, k2, to the m3. Again Fig. 14
implies

⇢7(µ̃) = µ̃24 + µ̃26 + µ̃27 + µ̃28

=
�15

x
⇤
2

+
�16

x
⇤
2

+
�17

x
⇤
2

+
�18

x
⇤
2

= k2
x
⇤
1x

⇤
3

x
⇤
2

+ k2
x
⇤
3

x
⇤
2

We again let x⇤ be the nominal equilibrum and evaluate the above equation
to see that

|µ̃7| = 29.28k2

Using our procedure to check the robust stability of the APD matrix

A0 + µ̃7Ã7

gives the bound D2B = 0.29 which means that |k2| < .29
29 ⇡ .01. This as-

sertion is again checked through simulation where one sees that by reducing
the secondary consumer’s morality rate from 0.01 to 0.001 triggers a local
bifurcation of the positive equilibrium. These results thereby suggest the
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system is most sensitive to perturbations of the secondary consumer’s mor-
tality rate, rather than changes in producer carrying capacity. Results such
as these, therefore, could be useful in advising an environmental resource
manager to focus on regulating consumer harvesting (i.e. fishing) rather
than using more expensive interventions that enhance the lake’s carrying
capacity.

Relaxing Restriction to Asymptotically Stable and Positive Equilibria:
The prior example confined its attention to linearizations about asymptot-
ically stable and positive equilibria of the kinetic realization. We need to
relax this restriction to assess the D2B for the other non-positive and unsta-
ble hyperbolic equilibria of the realization.

The restriction to positive equilibria may be relaxed by noting that if a non-
negative equilibrium has components that are identically zero, then those
components will remain zero for all time. We can therefore remove those
components from the system equations ẋ = f(x; k) to obtain a lower di-
mensional system whose equilibria are all positive. One would then solve
the D2B problem for this lower dimensional system.

The restriction to asymptotically stable equilibria can be relaxed by de-
composing A(µ̃) with respect to its stable and unstable eigenvalues. In
particular, the system matrix for the APD realization is

A(µ̃) = A0 +
q̃X

i=1

⇢i(µ̃)Ãi

and we know there exists a similarity transformation such that

TA0T
�1 =

"
A0s 0

0 A0u

#
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where A0s and A0u are Hurwitz. So consider

TA(µ̃)T�1 = TA0T
�1 +

q̃X

i=1

⇢i(µ̃)TÃiT
�1

=

"
A0s 0

0 A0u

#
+

q̃X

i=1

⇢i(µ̃)TÃiT
�1

Note that this is still an affine parameter dependent system but the first ma-
trix in the sum is not Hurwitz. We address this issue by considering the
robust stability of the modified affine parameter dependent matrix

"
A0s 0

0 A0u

#
+

q̃X

i=1

⇢i(µ̃)TÃiT
�1

Since this is also an APD system, and since the first matrix in the sum
is now Hurwitz, we can use our method to assess this modified system’s
robust stability, thereby providing a way to compute the D2B for hyperbolic
equilibria that are not asymptotically stable.

5. Summary and Further Readings

Bifurcation-induced regime shifts occur when a perturbation of the system
parameters causes a bifurcation of a structurally stable system. A sufficient
condition for such a bifurcation is that the stability index of some equi-
librium changes under the parameter perturbation. The smallest parameter
perturbation triggering such a local bifurcation of the equilibrium is called
the system’s distance-to-bifurcation or D2B. This restriction to local bifur-
cations, allows us to treat the D2B problem as a robust stability problem for
a linearization about the system’s equilibria.
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This chapter showed that kinetic realizations of consumer resource sys-
tems could be used to construct affine parameter dependent (APD) lineariza-
tions whose robust stability problem could be efficiently solved using exist-
ing tools for linear matrix inequalities (LMI). Parameter dependent robust
stability problems were studied in [4], but the use of LMI’s to solve the
problem was pioneered in [39]. The LMI tool kit [40] used to solve this
problem has been enormously influential in modern control theory.

Prior approaches to the D2B problem used numerical continuation [26, 25]
to search for local bifurcations. More recent work has found the D2B by
using the positivstellensatz theorem [105] to form semidefinite programs of
sum-of-squares polynomials [110] or Handelmann polynomials [121]. All
of these methods confine their attention to local bifurcations and they can
only handle a limited number of parameters. Algorithmic methods have
been used to search for global bifurcations [27] and heteroclinic orbits [28].
But this prior work is also greatly limited in the number of parameters it can
treat. The APD method discussed in this chapter first appeared in [72] and
was developed to address these scaling issues.

Kinetic realizations appear in the modeling of biochemical reaction net-
works. The characterization of the flux cone, Kv, will be found in [13].
The rays (elementary flux modes) generating the cone appear to form ele-
mentary circuits in biochemical networks [99] that play an important role in
reducing the complexity of analyzing large biochemical networks [15]. The
importance of these subnetworks has motivated the development of compu-
tational tools [115] capable of handling large networks. These tools play an
important role in the study of cellular signal pathways.
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The proposed solution to the D2B problem relied on recent advances in
LMIs and convex optimization. But computing a system’s kinetic realiza-
tion, its flux parameterization, and finally identifying the structured uncer-
tainty matrices in the APD system require extensive use of computer al-
gebra systems [120]. Computer algebra plays a critical role in finding all
system equilibria, in doing the tedious algebra for large-scale systems, and
even providing computational “proofs” certifying a given system’s proper-
ties. These computational tools will also be used in later chapters.


