
CHAPTER 4

Shock-Induced Regime Shifts

A shock-induced regime shift occurs when an impulsive disturbance causes
the system state to jump into the region of attraction (ROA) of an alterna-
tive basic set (regime). An example of this was seen in Fig. 4 of chapter
2, where a lake was “shocked” into a eutrophic state by a nutrient pulse.
These nutrient pulses may be modeled as a stochastic process that generates
a sequence of pulses having random amplitudes and random arrival times.
In the lake example, these pulses occur because intense rain events release
bursts of storm runoff. Since the national climate assessment forecasts more
intense and frequent spring storms in the midwestern U.S., there is interest
in assessing the environmental impact this trend in storms will have on lake
ecosystems.

The likelihood of a shock-induced regime shift may be characterized in
terms of the system’s first passage time (FPT); a random variable represent-
ing the first time when the system exits the nominal regime. In particular,
let {x(t)} denote a sample path of the process that takes values in an open
bounded set X . Let Xnom denote the nominal regime, let Xroa denote the
ROA for the nominal regime, and let Xu = X � Xroa denote a “forbidden”
region outside of the ROA of the nominal regime. This chapter determines
the probability distribution for the FPT generated by the system’s first exit
from Xroa. This exit probability is obtained by computing, for each stopping
time ⌧ , a constant � 2 [0, 1] such that

P {x(t) 2 Xu for some 0  t  ⌧ : x(0) 2 Xnom}  �(23)
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The constant � bounds the probability that the first passage time will be ⌧ .
By computing � for a range of ⌧ , we therefore obtain a function that is an
upper bound on the FPT’s probability distribution.

The algorithmic framework used to find the bound � in equation (23) was
established in [87]. That framework, however, computed the bound for
regular diffusion processes that satisfy the stochastic differential equation
dx = f(x)dt + g(x)dw in which {w(t)} is a Wiener process. This frame-
work cannot be directly applied to the regime shift problem because systems
driven by randomly arriving impulses are better modeled as jump-diffusion
processes (JDP). This chapter, therefore, extends the framework in [87] to
jump-diffusion processes. It then uses this extension to bound probability
distributions for the FPT of shock-induced regimes shifts and demonstrates
the method on an intra-guild predation system [29].

1. Jump Diffusion Processes

This section reviews results for jump-diffusion processes. Let {⌦,F ,P}
be a complete probability space and let {Ft}t�0 be a filtration over that
space which is right continuous [89]. Consider an adapted jump-diffusion
process (JDP), {x(t)}t�0, that satisfies the following stochastic differential
equation

dx(t) = f(x(t))dt+ g(x(t))dw(t) + dJ(t), x(0) = x0(24)

where f : Rn ! Rn and g : Rn ! Rn are Lipschitz continuous functions,
{w(t)}t�0 is a Wiener process, and {J(t)}t�0 is a shot noise process that
takes values

J(t) =
N(t)X

`=1

y`e
��(t�⌧`), ` 2 Z�0(25)

in which {N(t)} is a Poisson process with intensity ⇢, {⌧`} are event times
of the Poisson jumps, {y`} is an i.i.d. random process with distribution F (y)
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describing the `-th jump’s size, and � is a real positive constant representing
the rate of exponential decay after a jump. The JDP in equation (24) is
understood in Itô’s sense and {w(t)} is statistically independent of {J(t)}.

Consider the random process {Y (⌧`, y`)} generated from {y`} and {⌧`}
through the equation

Y (⌧`, y`) = y`e
�⌧`

then we may write the values taken by the shot noise process {J(t)} as

J(t) = e
��t

Z t

0

Z

Rn

Y (⌧, y)N(d⌧, dy)(26)

where N(d⌧, dy) is a Poisson measure with E {N(dt, dy)} = ⇢dtF (dy).
We define the increment of {J(t)} as

dJ(t) = J(t+ dt)� J(t)

where dt is an infinitesimal time increment. We use equation (26) to expand
out the increment, dJ , and retaining the first order terms in dt one rewrites
the shot noise increment as

dJ(t) = ��J(t)dt+

Z

Rn

yN(dt, dy).(27)

The expression for the jump increment in equation (27) is inserted into the
JDP of equation (24) and rewritten to obtain

dx(t) = (f(x(t))� �J(t)))dt+ g(x(t))dw(t)

+

Z

Rn

yN(dt, dy), x(0) = x0(28)

Since {J(t)} and {w(t)} in equation (28) are independent Markov pro-
cesses and with the assumed conditions on the filtration, Ft, one may con-
clude that the solution of the JDP in equation (28) is a Markov process
with right continuous sample paths [89]. The JDP equation (28), therefore,
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generates a Markov process whose current state, x(t), encapsulates all in-
formation needed to characterize its future sample paths.

Now let {x(t)}t�0 be a Markov process with right continuous sample paths
defined on a bounded open set X ⇢ Rn. Let ⌧ < 1 be a stopping time for
the process such that

⌧  inf {t : x(t) /2 X}

Let V : Rn ! R be any function acting on x. The process {V (x(t))}t�0 is
called a supermartingale with respect to process {x(t)} if

(1) V (x(t)) is Ft-measurable for all t
(2) E {|V (x(t)|} < 1
(3) and E {V (x(t2)) |V (x(t1))}  V (x(t1)) for all 0  t1  t2  ⌧

The first two conditions are regularity conditions that can generally be sat-
isfied by requiring X to be bounded and V to be sufficiently smooth. The
third condition means that given V (x(t1)), the average of future values of
V will be smaller. In other words, the conditional expectation of V (x(t))

is a monotone decreasing function of time. If we think of V as the payoff
from a gambling game, having {V (x(t))} be a supermartingale means that
our average winnings from the game are always decreasing.

Supermartingales are useful in extending the concept of asymptotic stabil-
ity to Markov processes. In particular, when {V (x(t))} is a supermartin-
gale, then we can think of V as a “stochastic” Lyapunov function whose
existence certifies that the equilibrium of the system is asymptotically stable
with probability one [69]. The following theorem allows us to say a bit more
about the probability of leaving the neighborhood of the equilibrium. This
result will be used later in characterizing the probability of shock-induced
regime shifts. The theorem is stated below and its proof can be found in
[70, 69].
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THEOREM 1. Let {V (x(t))} be a supermartingale with respect to the
Markov process {x(t)} where x(t) takes values on a bounded open set X
and ⌧ is a stopping time for the process on X . Let V : X ! R be non-
negative in X , then for any constant ✓ > 0 and any initial condition x0 2 X
we have

P
⇢

sup
0t⌧

V (x(t)) � ✓

��� x(0) = x0

�
 V (x0)

✓
(29)

The use of theorem 1, however, requires we find a way to certify that
{V (x(t))} is a supermartingale. This certification can be done using the
JDP’s infinitesimal generator. In particular, let {x(t)} be a Markov process
with right continuous sample paths and consider any function V : Rn ! R.
The infinitesimal generator of {x(t)} is an operator, L, whose action on a
function V takes values

L[V ](x(t)) = lim
h#0+

E {V (x(t+ h)) |V (x(t))}� V (x(t))

h

When the Markov process is generated by the JDP in equation (28) and V

is a C
2 function with two continuous derivatives, then the generator can be

written as [81]

L[V ](x(t)) =
@V (x(t))

@x
(f(x(t))� �J(t))

+
1

2
trace

✓
g
T (x(t))

@
2
V (x(t))

@x2
g(x(t))

◆

+⇢

Z 1

0

(V (x+ y)� V (x))dF (y)

(30)

Note that the JDP’s generator is similar to that of a regular diffusion, with
the main difference being the integral term in the last line of equation (30).

We can now use the generator in equation (30) to obtain a sufficient con-
dition certifying that {V (x(t))} is a supermartingale. In the first place, we
note that we require X to be bounded and we also restrict our attention to V

that are C
2. These two restrictions ensure that a supermartingale’s first two
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regularity conditions are satisfied. The third condition can be satisfied if we
require

L[V ](x(t))  0(31)

for all x. To justify this assertion, we invoke Dynkin’s formula for JDPs

THEOREM 2. (Dynkin’s formula [81]) Consider the JDP in equation (28)
defined on an open bounded set X 2 Rn with smooth boundary @X . Let
V : Rn ! R be a C

2 function and let ⌧ < 1 be a stopping time such that
⌧  inf {t : x(t) /2 X}. Suppose

E
⇢
|V (x(⌧))|+

Z ⌧

0

|L[V ](x(s))|ds
�

< 1

then

V (x(⌧)) = V (x(0)) + E
⇢Z ⌧

0

LV (x(s))ds
��� x(0)

�
(32)

This theorem asserts that V (x(t)) satisfies an integral equation where the
generator L[V ] lies inside the integral term. From this equation it is ap-
parent that if condition 31 is satisfied then V (x(⌧))  V (x(0)) for ⌧ > 0

which is sufficient to establish the third condition for a supermartingale.
For our purposes, therefore, the hypotheses of theorem 1 are satisfied if we
can find a non-negative V such that L[V ](x)  0. Since we have an ex-
plicit expression for the JDP’s generator, this condition can be checked for
a given V thereby allowing us to bound the probability that V (x(t)) will be
greater than ✓. The next section uses this idea to bound the probability of a
shock-induced regime shift occurring before the stopping time.

2. Shock-Induced Regime Shift Certificates

A function whose existence is sufficient for a dynamical system to have a
specified property is called a certificate. Certificates have been developed
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for a number of system properties such as Lyapunov stability, input-to-state
stability, and passivity. The certificate used in [87] is sometimes called a
barrier certificate. But the existence of this function is sufficient to en-
sure that the forbidden set Xu can be reached in finite time from the initial
set Xnom. So in this regard, perhaps they are more accurately described as
reachability certificates.

This section is concerned with certificates for shock-induced regime shifts,
or what we will refer to as a regime shift certificate conditioned on a given
probability � and stopping time ⌧ . The existence of these functions means
that a shock-induced regime shift will occur with probability less than �

within the stopping time ⌧ . For V to be a regime shift certificate, it must
satisfy certain inequality constraints on V and the generator, L[V ]. The
formal statement of these conditions simply restates the main theorem of
[87] in terms of the nominal and alternative regimes (basic set).

THEOREM 3. Let {x(t)} be a Markov process generated by the JDP in
equation (28) where x(t) takes values on an open bounded set X and ⌧ <

1 is a stopping time with respect to X . Let � : R ! R be a function
such that

R ⌧

0 �(t)dt < 1 and let Xnom be the basic set associated with the
deterministic system’s (ẋ = f(x)) nominal regime. Let Xroa be the region of
attraction for Xnom whose closure is contained in the interior of X . Define
the forbidden set Xu = X �X roa. If there exists a C

2 function V : Rn ! R
and a constant � 2 [0, 1] such that

V (x)  �, 8x 2 Xnom

V (x) � 1, 8x 2 Xu

V (x) � 0, 8x 2 X
L[V ](x(t))  �(⌧), 8x(t) 2 X

(33)

then

P
n
x(t) 2 Xu for some 0  t  ⌧

��� x(0) 2 Xnom

o
 �
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The proof of this theorem is based on the probability bound given in theo-
rem 1 of the preceding section. It is instructive to go through it here to see
how the regime shift concepts are carried over into the proof. The generator
in equation (33) is the JDP generator in equation (30). Since we assumed the
domain X is bounded, V 2 C

2, and L[V ](x)  0, we know that {V (x(t)}
is a supermartingale. From Kushner’s theorem (1) we know

P
⇢

sup
0t<⌧

V (x(t)) � ✓

��� x(0) = x0

�
 V (x0)

✓
(34)

The initial states are taken in the nominal basic set Xnom where we know
V (x)  �. On the forbidden set Xu, we know that V (x) � 1. So we take ✓

to be one in equation (34) and get

� � V (x(0))

� P
⇢

sup
0t⌧

V (x(t) � 1
��� x(0) 2 Xnom

�

� P
n
x(t) 2 Xu

��� x(0) 2 Xnom

o

thereby completing the proof.

A function V that satisfies the conditions in theorem 3 will be called a
regime-shift certificate conditioned on probability � and stopping time ⌧ . In
particular, the existence of the function certifies that within time ⌧ , a shock-
induced regime shift will occur with probability less than �. Fig. 15(a) will
be used to help justify this description of V . This figure shows the phase
space for a deterministic system whose orbits are confined to a compact set
X whose boundary, @X , is a negative limit set of the system. We already
know that the positive limit set for this system can be partitioned into a
mutually disjoint collection of basic sets. For the system in Fig. 15 these
basic sets are {@X , [R]1, [R]2}. We take the nominal regime as the basic
set [R]1 := Xnom. The “forbidden” set, Xu, is shown in red in Fig. 15(a).
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It is the complement of [R]1’s region of attraction. Given a family of im-
pulse disturbances, theorem 3 asserts that if there exists a V satisfying the
conditions in equation (33) then there is a sample path that will reach the
boundary of Xnom’s region of attraction with probability � before the time ⌧ .
Once x(t) reaches its boundary it is, of course, in the ROA of an alternative
basic set (regime) and so unless there are further disturbances the system
state remains in the ROA of the alternative regime. Because that regime
must be attracting, the orbit will asymptotically approach the alternative
regime’s basic set and a shock-induced regime shift will have occurred. The
existence of the regime shift certificate, V , is actually guaranteed by Con-
ley’s decomposition theorem 5 which is formally stated in the next chapter.
The only challenge that remains is finding the regime shift certificate, V , so
we can quantitatively assess the likelihood of exiting the nominal regime.

basic set

basic set

FIGURE 15. Morse Decomposition of Positive Limit Sets
and Shock-induced Regime Shifts
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3. Sum-of-Squares Regime Shift Certificates

Theorem 3 provides sufficient conditions for function, V , whose existence
“certifies” that a regime shift will occur with a probability less than � within
the stopping time ⌧ . We can use this certificate to construct an upper bound
on the probability distribution for the system’s first passage time out of the
nominal regime; i.e. a probability distribution on the time a shock-induced
regime shift occurs. This is done by embedding the conditions in theorem 3
in an optimization problem that seeks for a specified ⌧ , the minimum � for
which the theorem’s conditions are satisfied. The optimization problem we
want to solve, therefore, has the following form,

minimize: �

with respect to: V (x)

subject to: 0  � � V (x), 8x 2 Xnom

0  V (x)� 1, 8x 2 Xu

0  V (x), 8x 2 X
0  �L[V ](x) + �(⌧), 8x 2 X

(35)

where ⌧ is a fixed stopping time, � is any function such that
R ⌧

0 �(t)dt < 1,
the regions X , Xu, and Xnom are known, and L[V ] is the JDP generator in
equation (30). Minimizing � is done through a bisection search in which
theorem 3 acts as an algorithmic oracle. The outcome of this search, �⇤(⌧),
is an upper bound on the probability that the first passage time out of the
nominal regime is ⌧ . So by solving the optimization problem for a range of
stopping times, ⌧ , we obtain an upper bound on the FPT’s probability dis-
tribution, thereby providing a useful characterization of the shock-induced
regime shift.

Solving the optimization problem in equation (35) can be very challeng-
ing. In the first place, all of the constraints require that some function of
x be positive semidefinite. In general the problem of deciding whether a
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multi-variate function is positive semidefinite is undecidable. Secondly, the
constraints in equation (35) are restricted to a subset of the state space. We
need a way of translating these constrained inequality condition into an un-
constrained condition if we are to solve the problem. The following sub-
sections (3.1 and 3.2) show that sum-of-squares (SOS) relaxations can be
used to address both challenges when the system and the constraint sets are
defined using polynomials in R[x]. The use of SOS relaxations raises an
additional issue because of the integral term in the JDP generator (30). The
final subsection (3.3) shows how to handle this issue.

3.1 Certifying Unconstrained Polynomials are Positive Semidefinite: The
problem of verifying the positivity of a multi-variate function is undecid-
able. If we restrict our attention to functions that are polynomials in R[x],
however, we find this is still NP-hard. So at first glance this suggests that
theorem 3 is of little practical value even when the system is polynomial.
One may circumvent this complexity issue by relaxing the requirement that
the function be positive semidefinite to simply requiring that it satisfy a suf-
ficient condition for positivity that is relatively easy to check. We refer to
this as a relaxation of the original certification problem. In recent years one
particular relaxation has emerged that is both sufficient for positivity and
easy to compute. This relaxed problem requires the certificates to be sum-
of-squares or SOS polynomials, rather than positive semidefinite polynomi-
als. Satisfying the SOS condition clearly ensures the function is positive.
Checking if a function is SOS is relatively easy because it takes the form
of a convex optimization problem that can be efficiently solved using recent
numerical advances in interior point optimization.

Let R[x] denote the set of all polynomials in the indeterminate variables
x = {x1, . . . , xn} with real coefficients. If a polynomial V 2 R[x] is pos-
itive semidefinite (PSD) then an obvious necessary condition for positivity
is that its degree is even. A simple sufficient condition for the positivity of
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V , therefore, is the existence of a sum-of-squares (SOS) decomposition of
the function,

V (x) =
mX

i=1

v
2
i (x)(36)

where vi 2 R[x] for i = 1, 2, . . . ,m. If one can find V that satisfies equation
(36), then we can conclude V is positive semidefinite.

It is relatively easy to computationally search for such SOS decomposi-
tions of V . Let us consider V 2 R[x] of degree 2d and let us assume it can
be written as a quadratic form in all monomials of degree less than or equal
to d

V (x) = v
TQv(37)

where

v
T (x) =

h
1 x1 x2 . . . xn x1x2 . . . x

d
n

i

and Q is a constant real-valued matrix. The length of the monomial vector,
v(x), is

�
n+d
d

�
. If the matrix Q is positive semidefinite, then V (x) has an

SOS decomposition and so is non-negative. Note that the matrix Q is not
unique and so Q may be PSD for some representations and not for others.
By expanding the right hand side of equation (37) and matching coefficients
of x, one can show that the set of matrices satisfying this equation form an
affine variety of a subspace in the linear space of symmetric matrices. If
the intersection of this affine variety with the cone of positive semidefinite
matrices is nonempty, then the function V is SOS.

Since the set of matrices satisfying equation (37) form an affine variety,
one may write any matrix in that variety as a linear matrix inequality (LMI)
of the form

Q(�) = Q0 +
mX

i=1

�iQi � 0
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where � 2 Rm is a vector parameterizing the matrices in that variety and
Qi = QT

i 2 Rn⇥n are symmetric matrices for i = 1, 2, . . . ,m. When stated
in this way, the problem of certifying if V is SOS devolves to finding a
parameter vector � such that Q(�) � 0. When formulated in this way, it
should be apparent that the problem of certifying whether a polynomial V
is SOS is equivalent to solving an LMI feasibility problem.

The LMI feasibility problem is one of those matrix problems that is com-
putationally tractable. This problem is efficiently solved using interior point
technique that revolutionized the solution of linear programs back in the mid
1980’s [1]. The development of interior point solvers for strict LMI prob-
lems appeared in the early 1990’s [40]. These solvers are recursive codes
with polynomial time complexity. Algorithms that solve the nonstrict LMI
problems are sometimes called semidefinite programs (SDP)[118]. Freely
available SDP solvers began to appear around 2000 [116, 107] and now
represent an essential tool for control systems engineering.

Remark: It can be cumbersome to directly use SDP solvers such as SDPT3
or SEDUMI. This has led to the development of a number of toolkits that
translate LMI expressions into the standard form that these solvers work
with. One of the first widely used tools kits for SOS certificates was SOS-
TOOLS [88]. Another well known tool kit that many use today is YALMIP
[73].

3.2 Certifying Constrained Polynomials are Positive Semidefiite: The
preceding subsection showed how LMI’s could be used to certify whether a
function V is SOS (PSD) for all x 2 Rn. Note, however, that the conditions
in the optimization problem (35) only require positive definiteness over a
subset of Rn. This means that to solve that optimization problem, we need
to find a way to certify that the constrained polynomial function is SOS.
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So our basic problem is to certify

V (x) 2 R[x] is SOS for all x 2 X ⇢ Rn

We will require the constraint set, X to be semi-algebraic, meaning that it
can be represented using equality and inequality constraints of the form,

X = {x 2 Rn : pi(x) � 0 for i = 1, . . . , k and qj(x) = 0 for j = 1, 2, . . . ,m}

with pi and qj being polynomials in x. With this charcterization one can
use the following theorem from algebraic geometry to formulate our con-
strained SOS problem. This theorem is called the positivstellensatz theorem
[105] and may be seen as a generalization of the S-produre that is used for
constrained LMI’s [9]. There are several versions of this theorem, the one
given below is due to Putinar [90].

THEOREM 4. (Putinar’s Positivstellensatz) Suppose

X = {x 2 Rn : pi(x) � 0 for i = 1, . . . , k and qj(x) = 0 for j = 1, 2, . . . ,m}

has compact level sets. If there exist SOS polynomials �i(x) (i = 0, 1, 2, . . . , k)
and polynomials �j(x) (j = 1, 2, . . . ,m) such that

V (x) = �0(x) +
kX

i=1

�i(x)pi(x) +
mX

j=1

�j(x)qj(x)

then the polynomial V (x) is positive semidefinite (SOS) for all x 2 X .

The positivstellenstaz theorem provides a way to certify the constraints in
theorem 3. In particular, let us assume there are polynomial functions p,
pnom, and pu mapping Rn onto R such that the constraint sets in theorem 3
are semi-algebraic

X = {x 2 Rn : p(x) � 0}

Xnom = {x 2 Rn : pnom(x) � 0}

Xu = {x 2 Rn : pu(x) � 0}
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Theorem 4 allows us to recast the regime-shift certificate problem (35) as

minimize �

with respect to: SOS functions V , �, �nom, �u

subject to: �V (x) + � � �0(x)p0(x) is SOS
V (x)� �u(x)pu(x)� 1 is SOS
V (x)� �(x)p(x)� ✏ is SOS

�L[V ](x)� �(x)p(x) + �(⌧) is SOS

(38)

where ⌧ is a selected stopping time,
R ⌧

0 �(t)dt < 1, and ✏ > 0 is chosen
small to simply ensure V is sufficiently positive definite (not just positive
semidefinite). The SOS program in equation (38) can be efficiently solved
using the SDP solvers discussed in the preceding subsection.

3.3 Polynomial Representations for JDP Generator: There is still one
final issue with the SOS program in equation (38) that needs to be dealt
with before demonstrating its use in the next section. The last constraint
certifies that L[V ](x)  0 on X and is needed to verify that {V (x(t))} is a
supermartingale. The problem here is that our expression for the generator
in equation (30) has an integral term in it that does not fit easily handled by
SOS solvers. This section addresses that issue by showing how to reduce
that integral term into a polynomial.

Multi-indices will be of use in reducing the integral term in equation (30).
Given a multi-index, ↵ = (↵1, . . . ,↵n), we let ↵! = ↵1!↵2! · · ·↵n!. The
sum/difference of two multi-indices is the component-wise sum/difference
and ↵ � � is also defined in a component-wise manner. The binomial
coefficient of two multi-indices is

�
↵
�

�
= ↵!

�!(↵��)! The multi-index binomial
theorem says

(x+ y)[↵] =
X

0�↵

✓
↵

�

◆
x
[↵��]

y
[�]
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If V : Rn ! R is a real valued function and given an n-dimensional multi-
index, ↵, then the ↵th order partial derivative of V is defined as

@
[↵]
V =

@
↵1V

@x
↵1
1

@
↵2V

@x
↵2
2

· · · @
↵nV

@x
↵n
1

and finally it can be shown that for V (x) = x
[�] that its derivative is

@
[↵]
x
[�] =

(
�!

(��↵)!x
[��↵] if ↵  �

0 otherwise

We use the preceding notational conventions to reduce the integral term in
the JDP generator. Consider a polynomial V 2 R[x] and write out V (x+ y)

as

V (x+ y) =
X

|↵|p

k↵(x+ y)[↵]

=
X

|↵|p

k↵

X

0|�|,�↵

✓
↵

�

◆
x
[↵��]

y
[�]

where k↵ is a set of real valued coefficients. The above expression can be
used to write out the difference V (x + y) � V (x) that appears in the JDP
generator’s integral

V (x, y)� V (x) =
X

|↵|p

k↵

X

1|�|,�↵

1

�!

�
@
[�]
x
[↵]
�
y
[�]

=
X

1|�|p

1

�!

�
@
[�]
V (x)

�
y
[�]

Integrating both sides with respect to F (y) gives
Z

(V (x, y)� V (x))dF (y) =
X

1|�|p

1

�!

�
@
[�]
V (x)

�
M|�|(39)

where M|�| =
R
y
|�|
dF (y) is the |�|th order moment of y. Equation (39) is

the integral term in the JDP generator equation (30). Substituting this into



4. FIRST PASSAGE TIMES FOR INTRA-GUILD PREDATION SYSTEM 79

that equation allows us to explicitly write out the generator in a form that
can be used in the SOS solvers.

4. First Passage Times for Intra-Guild Predation System

This section demonstrates the computation of the FPT probability distri-
bution for an intraguild predation system originally studied in [29] for fresh-
water lakes that have both bass and crayfish. Bass-crayfish interactions form
an intraguild predation system in which both species compete for the same
resource while also predating on each other. The system has two stable equi-
libria (regimes); one in which the bass dominate the ecosystem and the other
in which the crayfish dominate the ecosystem. An outbreak of crayfish is
undesirable as it can suppress the bass population. If such an outbreak does
occur, the environmental resource manager can adopt management policies
that trigger a regime shift from the crayfish-dominated regime to the bass-
dominated regime.

One commonly used management policy is to permit the harvesting of
crayfish by anglers. In general, this harvesting process can be modeled as
a jump process in which the size and timing of the harvesting events are
parameters that the environmental resource manager needs to set. The man-
agement policy therefore seeks to trigger a shock-induced regime shift from
the lake’s current (nominal) crayfish dominated condition to the more de-
sirable (alternative) bass dominated condition. The manager can determine
how best to set the intensity and frequency of crayfish harvests by using
regime-shift certificates to estimate the FPT probability distribution for a
selected harvesting strategy. This section demonstrates how that FPT prob-
ability distribution is computed and compares the result against a Monte
Carlo simulation for the system.
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A model for crayfish (x) and bass (y) interaction under harvesting satisfies
the following consumer resource equations

(40)
dx(t) = x(1� x� 0.7y)� 0.08yx2

0.01 + x2
+ �dw1(t)�

N(t)X

i=1

zi�(t� ⌧i),

dy(t) = 1.5y(1� y � 0.9x) +
0.01yx2

0.01 + x2
+ �dw2(t).

Equation (40) is a consumer-resource system which is driven by Wiener
processes {wi(t)} , (i = 1, 2) driving the system. The crayfish equation,
x, has an additional term that models the harvesting of the crayfish, x, as a
compound Poisson process in which the harvest size {zi}Nt

i=1 and the harvest
times {⌧i}Nt

i=1 are i.i.d. with exponential distribution of intensity µ and �,
respectively, and N(t) is the number of harvest events in the interval [0, t].
In the absence of the stochastic disturbances w(t) and N(t), this model has
three equilibria (two stable and one unstable) in R2

+.

Figure 16 plots identifies the two stable equilibria with Ebass denoting
the bass-dominated equilibrium and Ecray denoting the crayfish-dominated
equilibrium. The regions of attraction (ROA) for both equilibria are sep-
arated by the separatrix also marked in Fig. 16. We let Xnom denote the
initial regime the system starts in be a neighborhood of the crayfish domi-
nated equilibrium. The forbidden set, Xu, is the ROA for the bass-dominated
equilibrium which is shaded in green. Note that the state space in Fig. 16
has been translated so the crayfish dominated equilibrium, Ecray, is at the
origin.

To setup the SOS optimization problem used in bounding the FPT’s prob-
ability distribution, we first set the harvesting policy’s parameters, µ and �,
and the value of the stopping time we’re testing for. We then need to obtain
semi-algebraic characterizations of the sets, X , Xnom, Xu. We take for X
a unit square region in R2. Xnom can be expressed in terms of a quadratic
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FIGURE 16. State Space of Bass-Crayfish System with the
sets Xnom, Xu marked along with the level curve of a cer-
tificate, V (x, y), that triggers a regime shift with probability
one when the jump parameters are µ = 0.075 and � = 0.2.

form. For this example, we can explicitly compute a polynomial expres-
sion for the separatrix and use that to describe Xu as a semi-algebraic set.
In general, however, one would usually use SOS methods to find a semi-
algebraic set characterizing the alternative regime’s region of attraction as
has been done in [113]. The particular semi-algebraic representations for
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this problem’s constraint sets are

X =

(
(x, y) 2 R2

���
(x+ 0.672)(0.328� x) � 0,

(y + 0.4)(0.6� y) � 0

)

Xnom =
�
(x, y) 2 R2

�� (0.075)2 � x
2 � y

2 � 0
 

Xu =

8
><

>:
(x, y) 2 R2

���
�(x+ 0.672)(0.39 + x) � 0

(y + 0.4)((0.5� y) � 0

y + 0.85x3 � 5.6x2 � 9.45x� 3.16 � 0

9
>=

>;

The SOSTOOLS were used to minimize the FPT probability for a stopping
time ⌧ = 104 (time steps) assuming the Brownian motion intensity was
� = 0.05, and the jump parameters µ = 0.075 and � = 0.2. The dashed
line in Fig. 16 plots a level 0 curve (i.e. V (x, y) = 0) in R2 for the fourth
order certificate function V (x, y) obtained using the SOSTOOLS. One may
observe that this regime shift certificate intersects Xu which verifies that
under these parameters one can trigger a shock-induced regime shift to the
alternative bass-dominated equilibrium with a probability one provided one
waits long enough.

The analysis shown in Fig. 16 was done for a single stopping time ⌧ = 104

using the function �(t) = t. If we repeat this analysis for a range of stopping
times we can obtain a more complete picture of the probability distribution
for the FPT obtained under this given harvesting strategy (i.e. µ = 0.075

and � = 0.2). The results of this more complete analysis are shown in
Fig. 17 which plots the computed probability � against the stopping time
⌧ . The solid bullets show values obtained using the SOSTOOLS. The green
squares show values obtained from Monte Carlo simulations of the system
with 500 samples. The Monte Carlo generated results may be seen as more
accurate estimates of the FPT probabilities. These results indeed show that
the SOSTOOLS provide an upper bound on the FPT probabilities. For stop-
ping times ⌧  102, the difference between the SOSTOOL’s bound and
the MC result is about 0.3. This difference decreases significantly at longer
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stopping times, ⌧ > 103. The quality of the bounds obtained using the su-
permartingale technique will depend on the chosen parameterization of the
function V (x, y). The main advantage of this approach, however, is that it
can prove the reachability of the process without relying on excessive sim-
ulations for computing the sample paths explicitly.
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FIGURE 17. Estimates of FPT probability distribution com-
puted using SOSTOOLS and Monte Carlo simulation with
the jump parameters µ = 0.075 and � = 0.2

5. Summary and Further Reading

Shock-induced regime shifts occur when impulsive disturbances cause the
system state to jump out of the nominal regime and into the ROA of an
alternative regime. This chapter demonstrated how one could extend the
framework for stochastic safety in [87] to systems that can be modeled as
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jump-diffusion processes, thereby allowing one to quantitatively assess the
likelihood of a shock-induced regime shift occurring for a given strength
and frequency of random impulses.

The FPT problem for the intra-guild predation system in the last section
was originally studied in [29]. The methods used in this chapter were re-
ported in [111] and provide a more precise quantitative characterization of
the FPT’s probability distribution than was possible in [29].

SOS programming for both the constrained and unconstrained case is now
widely used to computationally search for certificates verifying Lyapunov
stability [83], input-to-state stability [59], passivity [74], safety [123], region-
of-attraction analysis [113], and so on. The development of these methods
represents a remarkable synthesis of algebraic geometry and semidefinite
programming [84].

A fundamental problem with the use of these tools is that the size of the
SOS problem grows exponentially in the dimensionality of the state space.
This effectively limits these methods to systems with state dimensions no
greater than 4 or 5. Note that prior work [110] has also used SOS method
to solve the D2B problem of the preceding section, but again these methods
are limited to problems with only 4-5 parameters. This was why the last
chapter used affine parameter dependent Lyapunov methods to address the
D2B problem.


