
CHAPTER 5

System Restoration through Managed Regime Shifts

The defining tenet of ecological resilience [55] is that collapse is inevitable,
but that buried within that collapse are the resources needed for eventual
restoration of system function. The restoration of a collapsed system is
therefore a multi-stage process in which the resources of the collapsed sys-
tem must first be reorganized to a point from which full recovery can readily
and naturally proceed. In particular, restoration requires the system to tra-
verse a sequence of alternative states [108] before full system function is
restored. If the traverse of that sequence is left to chance, then the reorga-
nization phase may take a prohibitively long time to complete. If, on the
other hand, an environmental resource manager can artificially trigger the
regime shift between alternative states, then recovery may occur at a faster
and more predictable pace. This line of thinking suggests that one way to
enhance a system’s ecological resilience is through the active management
of the system’s regime shifts.

This reorganization phase can be illustrated through the tritrophic food
web from Fig. 9(a). Recall that this food web consists of a producer (al-
gae), primary consumer (Daphnia), and secondary consumer (fish - crappie).
The system’s nominal regime is taken as a state where most of the system’s
biomass is held in the two consumer compartments, as illustrated by the
bar graph on the left side of Fig. 18. A collapse of this nominal regime
may occur if some environmental event (i.e. storm, epidemic, overfishing)
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86 5. SYSTEM RESTORATION THROUGH MANAGED REGIME SHIFTS

depletes the population of these consumer guilds. The collapse of the con-
sumer guilds will reduce predation pressure on the producers, thereby re-
sulting in explosive growth in that guild as shown in the collapsed system’s
bar graph. System reorganization involves the eventual rebuilding of the
primary consumer compartment. This can occur naturally, or its growth can
be hastened through intentional restocking of that guild. Once this is done,
then the system has reached a stage from which the secondary consumer
guild can readily re-establish itself without any further external assistance.
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FIGURE 18. Order of Succession and Restoration Plans

The necessity of following the order of “collapse” to “reorganize” to “re-
covery” may be seen by trying another “common sense” approach that short
circuits this order. From the standpoint of ecosystem services, it is the sec-
ondary consumer guild (fish) that is of greatest interest to the environmental
resource manager. If the trophic relationships between these guilds are ig-
nored, the resource manager may simply decide to restock the secondary



5. SYSTEM RESTORATION THROUGH MANAGED REGIME SHIFTS 87

consumer compartment after the collapse. That strategy, however, will fail
since restocking the secondary consumers increases predation pressure on
the primary consumers, thereby depressing primary consumer production.
Without a sufficiently large primary consumer guild, the secondary con-
sumer guild cannot maintain itself as a minimum level of resources is re-
quired for continued growth. In other words, successful recovery follows
a well defined order of succession which rebuilds (reorganizes) guilds at
lower trophic levels, before attempting to recover guilds at higher trophic
levels. Plans that ignore this order of succession have a high probability of
failure.

Traversing the order of succession also requires that the system meet thresh-
old conditions to trigger the sequence of regime shifts leading to system
restoration. The example in Fig. 18 has only one threshold to meet; namely
the requirement that the primary consumer guild was rebuilt to a critical
level from which no further intervention was required. If one had stopped
rebuilding the primary consumers before that critical level was achieved,
the system would simply slip back into its collapsed state. This sequence of
regime shifts represent a path or plan for full system restoration. Ecologi-
cally resilient systems will eventually follow the path, but that traversal may
take a very long time. Path traversal can be sped up through interventions
that more quickly meet the thresholds marking the regime shift. The key
pieces of information needed to affect this speed up are 1) knowledge of the
pathways leading to recovery, 2) knowledge of the thresholds that have to
be met to traverse the pathways, and 3) understanding which actions can be
taken to speed up meeting those thresholds. The objective of this chapter is
to discuss ways for finding these pathways from the mechanistic model we
have for the system.

In practice, biologists use their knowledge of trophic interactions and ex-
perimental field work to propose restoration plans. This work is done with
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the help of computer simulation models in which Monte Carlo runs are used
to evaluate the effectiveness of a chosen restoration plan. Prior successes
with this approach, unfortunately, have been limited. A prior study [63]
found that only a third of completed real-world restoration project were suc-
cessful with at least another third being classified as abject failures. Given
that the computer model was based on a mechanistic system model, one
might ask whether appealing to formal methods, rather than Monte Carlo
methods, would provide a more efficient way for developing restoration
plans with more predictable real-world outcomes. The following sections
show how this might be done. In particular, we show how algorithmic
methods from dynamical system analysis [78, 65, 36, 64] can be used to
construct a regime transition system (RTS) that characterizes all possible
shock-induced regime shifts. The regime transition system provides a com-
plete picture of the pathways that can be followed for system restoration.

This chapter focuses on the construction and use of the regime transition
system (RTS). Building this transition system first requires that we identify
as many of the system’s regimes as possible. This will be done by first find-
ing all of the system’s fixed point equilibria, using simulations to generate
forward orbits from points in the equilibria’s neighborhood, and finally us-
ing methods from algorithmic dynamics [78, 65, 36, 64] to construct cubical
complexes that isolate the system’s basic sets from each other. The regime
transition system is then defined as a finite state machine whose states are
these cubical complexes and whose state transitions are determined from
transitions between complexes that were observed in the simulated orbits.
The chapter closes by showing how shock-induced and bifurcation-induced
regime shifts can be used to enhance the ecological resilience of the system.
The methods are demonstrated on a four guild food web with intra-guild
predation.
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1. Finding All Equilibria of Consumer-Resource Systems

Construction of the regime transition system starts with finding all equi-
libria of the consumer-resource system. Since these equilibria are basic sets
of the system, we use them as a starting point for generating simulated or-
bits that reach other basic sets (regimes). This provides a systematic way
of searching for all of the basic sets that can be reached from the system’s
fixed points.

Traditional methods for finding system equilibria use successive approxi-
mation to find a single root of the algebraic equation,

0 = f(x; k0)

When f is a vector of polynomials in R[x], then methods for algebraic ge-
ometry [17] can be used to find all roots of the system of equations. This
section reviews these methods and then applies them to finding all equilib-
ria of a four guild consumer-resource system that is used throughout this
chapter as a running example.

Algebraic Geometry: This subsection reviews those concepts from alge-
braic geometry used in developing algorithms that find all system equilibria.
Consider a subset I 2 R[x] where x = {x1, . . . , xn} is the indeterminate
variable. This set is called an ideal if

• 0 2 I

• for all f, g 2 I , then f + g 2 I

• for all f 2 I and g 2 R[x], then f · g 2 I

Let f1, . . . , fm be polynomials in R[x], then the set

hf1, . . . , fmi :=
(

mX

i=1

hi(x)fi(x), with hi 2 R[x]
)
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can be shown to be an ideal. An ideal I is said to be finitely generated if
there exist polynomials f1, . . . , fm 2 R[x] such that I = hf1, . . . , fmi and
we say that these polynomials form a basis for I . It can be shown [17] that
every ideal of R[x] is finitely generated. The bases for an ideal I , in general,
are not unique, but certain bases will be more useful than others.

When f(x) is a polynomial in R[x], it can be written as

f(x) =
X

↵

k↵x
[↵]

where k↵ 2 R are real coefficients for monomial, x[↵], with multi-index
↵ = (↵1, . . . ,↵n). There are many ways of explicitly ordering the terms
in the above summation, depending on how we choose to order the multi-
indices. This ordering is important in developing computationally efficient
algorithms. The most commonly used order is the standard lexicographic
order. In particular let ↵ = (↵1, . . . ,↵n) and � = (�1, . . . , �n) be two
multi-indices. We say ↵ >lex � if the the leftmost nonzero index in ↵� � is
positive (not zero). We say x

[↵]
>lex x

[�] if ↵ >lex �.

Let I = hf1, . . . , fmi denote an ideal of R[x] that is finitely generated by
polynomials f1, . . . , fm in R[x]. The set

V(I) =
�
z 2 Cn

�� fi(z) = 0
 

is called an algebraic variety of I generated by {fi}mi=1. The variety is a
subset of the complex field consisting of all zeros of the polynomials gener-
ating the ideal. The variety is said to be zero dimensional if it consists of a
finite set of points in Cn.

Let the ideal I ⇢ R[x] be zero dimensional then a basis

T = {f1, f2, . . . , fm}

is said to be triangular if

• fj 2 R[xn�j+1, . . . , xn] for any j = 1, . . . ,m and
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• the leading monomial in fj with respect to the standard lexico-
graphic order is of the form x

mj

n�j+1 for some mj � 1.

A list of triangular bases T = {T1, . . . , T`} is called a triangular decompo-
sition [22] of I if

V(I) = V(T1) [ · · · [ V(T`)

Since Tj is triangular, it has at least one univariate polynomial whose ze-
ros/varieties can be readily computed using a traditional root finding algo-
rithm. The computed zero is then back substituted into another polynomial
of the basis to get another univariate polynomial. The back substitution pro-
cess is then repeated for all polynomials of the basis, thereby obtaining a
specific solution for the system of equations. The process is then repeated
for all bases in the triangular decomposition to obtain a set of complex num-
bers satisfying the algebraic equations generating the ideal, I . Because I’s
affine variety, V(I), equals the union of the varieties of all bases in the tri-
angular decomposition, the union of all solutions obtained for each basis in
the decomposition must equal the set of all possible solutions to the system
of polynomial equations.

Working Example: This subsection demonstrates how computer algebra
platforms like SINGULAR [42] can be used to find all equilibria of a four
guild system with intra-guild predation. This particular system will be used
as a running example throughout the chapter.

The working example is a four guild system with intra-guild predation.
The system was randomly generated using William’s niche model [122]
with allometrically scaled parameters [10]. The system equations for this
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food web are

ẋ1 = r1x1(1� x1)� x1x2
1+x1

� 43
64

x1x3
1+x1+x2

� 13
64x1

ẋ2 = �43
64

x2x3
1+x1+x2

+ x1x2
1+x1

� 97
256

x2x4
1+x2+x3

� 13
64x2

ẋ3 = � 97
256

x3x4
1+x2+x3

+ 43
64

(x1+x2)x3

1+x1+x2
� 35

256x3

ẋ4 = 97
256

(x2+x3)x4

1+x2+x3
� 5

64x4

(41)

This food web consists of a single producer (x1), two primary consumer
guilds (x2 and x3), and a secondary consumer guild (x4). The trophic di-
agram for this system is shown in Fig. 19(a) where we can see that both
primary consumer guilds compete for the same resource (the producer) with
x3 predating on x2. This system exhibited a range of steady state behaviors
that are not restricted to fixed point convergence. Fig. 19(b) shows a sim-
ulated forward orbit in which the system’s qualitative behavior is that of a
limit cycle.
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FIGURE 19. Example Four Guild System
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To use triangular decompositions to find all system equilibria, we first need
to obtain a set of polynomial equations whose roots give the equilibria of the
system in equation (41). This was done by introducing a new variable for
each resource pool. The system in equation (41) has three distinct resource
pools,

R1 = {1} , R2 = {1, 2} , R3 = {2, 3}

So there are three new variables w = {w1, w2, w3}

w1 =
1

1 + x1
, w2 =

1

1 + x1 + x2
, w3 =

1

1 + x2 + x3

These variables are then used to transform equation (41) into a polynomial
system in R[x, w]. To complete the ideal, we then augment the preceding
equations for the w variables to the original system equations. The ideal
whose affine variety we wish to determine is therefore generated by the
following polynomial equations

0 = F1(x, w) = �13
64x1 � x1(x1 � 1)� w1x1x2 � 43

6422x1x3

0 = F2(x, w) = �13
64x2 � 43

64w2x2x3 + w1x1x2 � 97
256w3x2x4

0 = F3(x, w) =
43
64w2x3(x1 + x2)� 97

256w3x3x4 � 35
256x3

0 = F4(x, w) =
97
256w3x4(x2 + x3)� 5

64x4

0 = F5(x, w) = w1(1 + x1)� 1

0 = F6(x, w) = w2(1 + x1 + x2)� 1

0 = F7(x, w) = w3(1 + x2 + x3)� 1

(42)

Algorithms computing a triangular decomposition of a polynomial sys-
tem’s ideal [79] have been implemented in the computer algebra tool SIN-
GULAR [42]. These codes were used to find all equilibria for the system
(41) by finding the zeros of the algebraic equations (42). In particular, a
MATLAB script was used to automate the generation of the system equa-
tions (41) and the associated polynomial equations (42). These equations
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were passed to SINGULAR, whose output was then evaluated in MATLAB
to compute the stability index for the linearization at each equilibrium. This
computation found seven non-negative real valued equilibria, labeled from
A to G with their location in the state space and their stability indices given
in the table in Fig. 19(a). These equilibria will be used in the next section
as initial conditions for a search that builds the regime transition system for
this particular system.

2. Regime Transition System

The regime transition system (RTS) may be informally described as a fi-
nite state machine whose logical states represent global invariant structures
in the state space and whose edges represent the orbits connecting these
structures. In this regard, the RTS may be seen as a discrete abstraction
that maps out all of the system’s possible regime shifts. The fundamental
problem we face is the inference of this discrete abstraction for global be-
havior from a set of differential equations that are local representations of
the system.

We know a great deal about a system’s global behavior when its orbits are
compact. The compactness assumption is not unreasonable for ecological
systems since we know all compartmental states must be bounded. So let
(X,�) be a smooth dynamical system and assume there exists a compact
invariant set, S ⇢ X . As discussed in section 4 of chapter 2, this system’s
chain recurrent set, R(S), can be partitioned into a collection of mutually
disjoint basic sets, {[R(S)]i}mi=1. Or more formally

R(S) =
m[

i=1

[R(S)]i where [R(S)]i \ [R(S)]j = ; for i 6= j

Recall that we used this fact in Chapter 2 to define regime shifts as a transi-
tion between two different basic sets.
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Perhaps the most important thing we know about smooth systems with
compact orbits is that their basic sets can be partially ordered with respect
to the connecting orbits between these basic sets. This last fact is a conse-
quence of Conley’s decomposition theorem [14]. The following statement
of this theorem follows from [77]. Formal proofs for this theorem will be
found in Conley’s original monograph [14] and more recent textbooks on
smooth dynamical systems [30, 60]

THEOREM 5. (Conley’s Decomposition Theorem) Let S be a compact
invariant set for the smooth dynamical system (X,�) and let {[R(S)]i}ni=1

denote the basic sets of this system’s chain recurrent set. Then there exists
a function V : S ! [0, 1] such that

• there exist constants �i 2 [0, 1] (i = 1, 2, . . . , n) for which V (x) =

�i for all x 2 [R(S)]i.
• and V (�(t; x)) < V (x) for all x 2 S �R(S) and for any t > 0.

Note that the function, V , in theorem 5 is a Lyapunov-like function. Since
this function is decreasing along forward orbits starting outside of the chain
recurrent set, R(S), we can classify the global behavior of these orbits in
one of two ways. Consider an orbit x(·; p) with starting state p.

• If p is in one of the basic sets, [R(S)]i, then the orbit x(t; p) 2
[R(S)]i for all t 2 R. In other words, the basic sets are “traps” for
orbits starting in the basic set.

• If p 2 S � R(S) (starts outside of the chain recurrent set) then
there are basic sets [R(S)]i and [R(S)]j where i 6= j such that
x(t; p) ! [R(S)]i as t ! �1 and x(t; p) ! [R(S)]j as t ! 1.
In other words, the orbit for any p outside of a basic set connects
two different basic sets. The set of all connecting orbits from basic
set [R(S)]i to basic set [R(S)]j will be denoted as C(i, j).
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We therefore see that smooth compact systems have two distinct qualitative
behaviors; they are either trapped in a basic set (regime) or they are moving
between two regimes along a connecting orbit.

This decomposition of the orbits also establishes a partial order on the
basic sets. In particular we say that [R(S)]i >c [R(S)]j if and only if C(i, j)

is non empty (i.e. there is a connecting orbit from [R(S)]i to [R(S)]j). One
can readily use the Lyapunov-like character of V in theorem 5 to prove that
the binary relation >c partially orders the basic sets. Moreover, since there
is a finite number of basic sets, there is also a “minimal” element of the set.

We now use these results to define a regime transition system to character-
ize the system’s logical transitions between different regimes (basic sets). In
particular, a regime transition system is the ordered triple ⌃ = (B, Q,Bm)

whose “logical ” state space is B = {B1, B2, . . . , Bn} and where the ith log-
ical state (regime) is Bi = [R(S)]i, the ith basic set. The map Q : B ! 2B is
a set valued map such that Q(Bi) ⇢ B and Bj 2 Q(Bi) if and only if C(i, j)

is nonempty (i.e. there is a connecting orbit from [R(S)]i to [R(S)]j). The
set Bm ⇢ B is a set of logical states (regimes) that are minimal with respect
to the partial order >c induced by the original system’s connecting orbits. A
regime sequence is any finite sequence, {Bij}nj=0, of logical states in B such
that Bij+1 2 Q(Bij) for j = 0, 1, . . . , n � 1. The regime sequence will be
said to be accepted by the regime transition system ⌃ if and only if the last
regime (logical state) in the sequence, Bin , is a minimal logical state in Bm.

The regime transition system ⌃ may be seen as accepting all regime se-
quences that can be generated through shock-induced regime shifts. In par-
ticular, if we know that the system’s actual state, x(t0), at time t0 is in basic
set [R(S)]i, we know it will stay in that basic set forever unless an impulsive
disturbance “shocks” the system state out of this basic set. In particular, that
shock will cause the system state to jump onto a connecting orbit between
[R(S)]i and some other basic set [R(S)]j . If this shock occurs, then the
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system state will converge to [R(S)]j . Reaching the basic set [R(S)]j is the
“threshold” that needs to be met before applying another shock that drives
the system state onto another connecting orbit. In other words, we can use
shocks to trigger regime shifts that force the system’s “logical” state to tra-
verse a path accepted by the regime transition system ⌃. In this regard, the
regime transition system provides a roadmap that an environmental resource
manager can follow to steer a system towards alternative regimes.

Viewing the regime transition system in this way also provides a formal
definition for ecological resilience. Informally, we said a system is ecolog-
ically resilient if it eventually reorganizes and recovers it nominal regime
after a collapse. So let B⇤ 2 B denote the logical state associated with this
nominal regime. The system is ecologically resilient if B⇤ is the only mini-
mal logical state in Bm and for every logical state B0 2 B there is a regime
sequence starting at B0 that is accepted by the regime transition system ⌃.

3. Algorithmic Construction of Regime Transition System

This section examines an algorithmic approach for constructing the regime
transition system, ⌃ = (B, Q,Bm), from the differential state equations,
ẋ = f(x; k), for a compact smooth dynamical system. Algorithmic meth-
ods use numerical integration of the system’s state equations to detect global
invariant structures [36] in the system’s state space and then characterize
those structures as computer data structures that can be more easily worked
with. In our case, these algorithmic methods are used to detect basic sets
that can be reached by shock-induced regime shifts from the system equi-
libria. The detected sets are then represented as cubical complexes that are
isolating neighborhood for the basic set. An isolating neighborhood of an
invariant set, U , is any set N such that U is the largest invariant set in N . The
connecting orbits between these isolating neighborhoods are generated by
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numerically integrating the system equations to obtain sampled orbits orig-
inating in the isolating neighborhood of one basic set and terminating in the
isolating neighborhood of another basic set. These isolating neighborhoods
and their connecting orbits can be efficiently represented and manipulated
in the computer as directed graphs, thereby allowing one to systematically
construct a regime transition system whose regime sequences are all rooted
in the system’s equilibria.

For the regime transition system, ⌃, constructed in this manner, the logical
states B are derived from isolating neighborhoods, {N1, . . . , Nm}, of the
basic sets {[R(S)]1, . . . , [R(S)]m}. The opening description we gave for ⌃
identified the logical states with the basic sets. There are several reasons
why constructing the regime transition using isolating neighborhoods is a
better thing to do than trying to directly find the basic sets.

In the first place, the topology of a basic set is inherently sensitive to com-
puter precision error. Isolating neighborhoods, on the other hand, are rela-
tively insensitive to computational error. Moreover, the topology of the iso-
lating neighborhood provides a lower bound (with respect to Betti numbers
of the cubical complex) on the basic set’s topology. Therefore the transi-
tion systems built from isolating neighborhoods will have topologies will
be numerically stable objects.

In the second place, the transition system characterizing transitions be-
tween isolating neighborhoods is bisimilar to the transition system for the
basic sets (provided the gridding is chosen correctly). This means that one
can identify the regime transition system, (B, Q,Bm), from the transition
system discovered using the isolating neighborhoods. The algorithm that
is used to discover the neighborhood’s transition system is simply a graph
search; that starts at the isolating neighborhoods for the equilibria and then
systematically explores to find the isolating neighborhoods of other basic
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sets. Because we have methods from section 1 that can find all system equi-
libria, we can use this method to discover a large part of the regime transition
system.

Finally, while the algorithmic approach is based on a gridding of the sys-
tem’s state space, the actual data that is stored are only those grid elements
discovered by the computed orbits. In particular, the only information that
is actually retained is the cubical complex representing the isolating neigh-
borhood. This means the space complexity of the scheme is rooted in the
underlying complexity of that basic set’s topology; something that can be
controlled through a judicious selection of the grid size.

There are many ways of constructing isolating neighborhoods for the basic
sets. The easiest way is to introduce a cubical gridding of the state space and
use sampled orbits of the system (obtained by numerical integration of the
system equations) to generate a symbolic trajectory in this gridded space.
This symbolic trajectory is represented as a directed graph whose vertices
are drawn from the grid elements of the space and whose edges are the
observed transitions between distinct grid elements. The isolating blocks
are the cubical complexes associated with the largest strongly connected
components of that graph.

This algorithmic approach was used with the four guild system in Fig. 19
to find isolating blocks and the connecting orbits between them. In particu-
lar, each system state, x 2 S, was associated with a cubical grid element

gx = (g1, g2, . . . , gn)

whose components are integers

gi =

�
xi + dxi/2

dxi

⌫
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for i = 1, 2, . . . , n and where dxi is the length of the ith side of the grid ele-
ment. The system equations are numerically integrated from a specified ini-
tial conditions to create a sampled forward orbit, {x(kh)}1k=0, of the system.
Since each state of that orbit has an associated grid element we can con-
struct a sequence of grid elements

�
gx(kh)

 1
k=0

. There is a lot of redundant
information in this sequence, so we identify a subsequence {kj}1j=0 of non-
negative integers such that k0 = 0 and kj = k if gx(kh) 6= gx((k�1)h). This
subsequence marks time instants when the sampled orbits shifts between
two different cubical grid elements. We refer to the sequence

�
gkj

 1
j=0

as a
symbolic orbit of the system.

The symbolic orbit
�
gkj

 1
j=0

is conveniently represented as a weighted
directed graph G = (V,E,w) whose vertex set, V , consists of the distinct
cubical grid elements of the orbit. The edge set, E ⇢ V ⇥ V , contains
distinct single step transitions along that orbit. The weighting function w :

E ! [0, 1] maps each edge onto the fraction of time that the particular edge
was traversed by the orbit. Fig. 20(a) shows the symbolic orbit generated
by a sampled orbit of our four guild system. This sampled orbit {x(kh)} is
shown in blue and the grid elements comprising the symbolic orbit are the
black cubes shown in the picture. The figure only plots the orbit in a phase
space spanned by the two most active consumer guilds. But what this shows
is that the sampled orbit is contained within the cubical complex (i.e. the set
formed from the union of the cubical sets shown by the black squares). In
other words, the cubical complex isolates the orbit from the rest of the flow
if the grid size is sufficiently small.

As mentioned above the symbolic orbit, {gkj}1j=0, constructed from the
sampled orbit generates a directed graph on the grid elements shown in
Fig 20(a). The strongly connected components of this graph are readily
computed using Tarjan’s algorithm [114] and the cubical complex associ-
ated with the largest connected component is an isolating neighborhood for
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FIGURE 20. Symbolic orbits of four guild system and cubi-
cal complex isolating one the system’s positive limit sets

a basic set of the system. This cubical complex is shown in Fig 20(b). This
figure clearly shows that the cubical complex isolates the “limit cycle” that
this orbit asymptotically approaches. The results portrayed in this figure
therefore suggest that we can use these algorithmic methods to efficiently
construct a finite length representation of the basic set whose size is gov-
erned in large part by the complexity of the basic set’s topology.

Remark: Tarjan’s algorithm finds all strongly connected components of
the directed graph. We took the largest component as the one isolating the
basic set. In practice, this may not be the best choice. Another possible
approach would be to select that component whose topology (as measured
by its Betti numbers) is persistent over a range of grid sizes.

The preceding discussion demonstrated how one can algorithmically iden-
tify cubical complexes that isolate the basic sets of a given system. In gen-
eral constructing isolating blocks for all of the system’s basic sets is difficult.
But if the affine variety of the system is zero dimensional, then we can find
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all equilibria. Each of these equilibria is a basic set. Since Conley’s theorem
asserts the basic sets are partially ordered with respect to an order defined by
their connecting orbits, this suggests we can use sampled orbits to find other
basic sets by simply generating a sampled orbit, constructing its symbolic
orbit, and finding the largest connected component for the symbolic orbit’s
directed graph. This procedure would identify all of those basic sets that
can be reached through shock-induced regime shifts from the equilibrium
points.

When this procedure was followed for the four guild system it generated
the results shown in Fig. 21. In particular, Fig. 21(a), shows the cubical
complexes isolating all basic sets of this system in a phase space that ne-
glects the producer. This figure shows that there are eight isolating blocks.
Seven of these blocks isolate the system equilibria and the eighth block iso-
lates a limit cycle for the system. The directed graph associated with the
transition system discovered by this algorithm is shown in Fig. 21(b). This
figure readily shows that the transition system has only two minimal regimes
in Bm. These minimal logical states are the states that the system will even-
tually fall into. These are regimes A, which is a stable fixed point in which
one of the primary consumers, x3, is zero. The other minimal regime is the
limit cycle regime H in which the other primary consumer, x2, is zero.

Is this system “ecologically resilient”? If we take the minimal regimes
A and H as being the “nominal” regimes that we wish to preserve, then
the answer is yes. Because no matter how the system is perturbed, it will
eventually return to one of these two regimes. Let us assume, however, that
only one of these regimes, say A, is considered to be nominal. In that case,
the system is not ecologically resilient because after collapse the system will
return to A or H . In particular, for this system, there is a greater likelihood
that regime H , rather than regime A, will be restored.
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4. Managing Regime Shifts for System Restoration

A system’s regime transition system, (B, Q,Bm) is a finite abstraction of
the original system. It is bisimilar to the original system in the sense that
every symbolic orbit accepted by the system maps onto orbits in the original
system, and every orbit of the original system has a symbolic orbit. Since
the discrete states of the regime transition system represent distinct basic
sets of the original system, this means that supervisory control of the transi-
tion system essentially manages regime shifts of the original process. This
section considers the development of supervisory policies that ensure the
original process has ecological resilience. In particular, we briefly describe
two such policies; a shock-induced regime shift strategy and a bifurcation-
induced regime shift strategy.

Shocked-Induced System Restoration: Consider the regime transition sys-
tem, ⌃ = (B, Q,Bm). Let B⇤ 2 B denote the nominal logical state (regime)
of the system. The original system (X,�) is ecologically resilient if and
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only if the Bm = {B⇤} and for any logical state B0 2 B, there is a regime
sequence accepted by ⌃. As noted above if Bm contains B⇤ as well as other
logical states, then the system is not ecologically resilient. But if we can
control the system’s regime shifts so that only those regime sequences ter-
minating in B

⇤ are actually generated by the original system, then we can
force the restoration of the nominal regime.

Let us see how this might be done for the four guild system in equation
(41). The system’s regime transition system, ⌃, was constructed in the pre-
ceding section and is shown in Fig. 21(b). One can readily see that ⌃’s set
of minimal logical states is Bm = {A,H} in which A is a stable fixed point
and H is a limit cycle. Let us assume that the A is chosen as the nominal
regime because it is a stable fixed point. This system will not be ecologically
resilient because H is also in Bm.

This system is not ecologically resilient, but we can force the restoration
of the nominal regime by adopting a rather simple policy that waits until the
system state reaches one of the logical states in Bm. If that terminal state
is the nominal regime, then we are done and the system has been restored.
If that terminal state is not the nominal regime, then we intervene using
a shock-induced regime shift that causes the system state to jump into the
ROA of the basic set containing the nominal regime.

This policy is rather easy to enforce for our example system. Assuming
the system starts in its nominal regime, A, we force a system collapse at
t = 200 with an external disturbance that causes guild 2 to collapse. The
collapse of guild 2 also causes a collapse in guild 4, so the system transitions
from regime A to regime F , after which the system enters the limit cycle
regime H as shown in Fig. 22.

Let us now consider two different restoration policies. The first policy
simply restocks guild 2 at t = 600 after the system has entered the minimal
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Shock-Induced Restoration of System

regime H . The outcome of this policy is shown in Fig. 22(a) where we see
that the policy fails to restore the nominal regime A. The reason for this
failure is that the restocking operation did not completely force the system
into a logical state from which it could reach the nominal regime.

So we now consider a second policy that does restore the nominal regime.
This policy restocks guilds 2 and 3 after the system has entered regime H .
The outcome for this policy is shown in Fig. 22(b) which shows recovery
of the nominal regime. The reason why the second restoration policy was
successful was because its restocking action forced the system state into the
isolating neighborhood for regime A.

This example shows that it is possible to use managed shock-induced
regime shifts to restore a system’s nominal regime, even if that system is
not ecologically resilient. The necessary precondition for this approach is
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that the nominal regime must lie in terminating set Bm of the regime tran-
sition system, ⌃. There are other policies that can be used as well. For
instance, if the system had collapsed to regime, B, then the directed graph
for ⌃ shown in Fig. 21 shows that we can reach the nominal regime by sim-
ply adopting policies that prevent transitions from B to C. In other words,
we are adopting a simple supervisory control scheme for the transition sys-
tem ⌃ to prevent transitions from which the nominal regime cannot ever be
reached. In other words, the problem of regime shift management has been
reduced to a well studied problem in the supervisory control of discrete-
event systems [91, 68].

Bifurcation-Induced System Restoration: From the preceding discussion,
it should be clear that the success of a shock-induced restoration policy
relies on the desired nominal regime being in Bm. If this is not the case
then the system cannot be rendered ecologically resilient through shock-
induced regime shifts. This subsection shows that it may still be possible
to restore the nominal regime, but this would be done bifurcation-induced
regime shifts.

Recall that a bifurcation-induced regime shift occurs when a change in the
system parameters triggers a local bifurcation in one of the system equilib-
ria. Since we know the equilibria for the nominal system, we can use the
methods in chapter 3 to determine how large of a perturbation in the system
parameters would trigger a bifurcation which makes a desired “nominal”
regime recurrent. We demonstrate how this might be done for our example
system.

So consider the four guild system in equation (41) and let us assume that
the desired nominal regime is regime C. The system’s transition system in
Fig. 21 shows that regime C is not in Bm and so the system’s nominal regime
cannot be restored through shock-induced regime shifts. A robust stability
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analysis of all equilibria shows that a small reduction of the producer’s car-
rying capacity will destroy regime B’s equilibrium and change the stability
index of regime C’s equilibrium to that of a stable fixed point. Fig. 23(a)
shows the isolating blocks for the perturbed system from which we see that
the change in the stability indices of the equilibria causes the disappearance
of regime’s B and regime H (limit cycle). This change in stability indices
would mean that regime C is recurrent and must be in the terminating set
of states, Bm. This assertion is readily verified by computing the regime
transition system for the perturbed system. The directed graph for this per-
turbed transition system is shown in Fig. 23(b) where we can readily see
that regime C is the only logical state in Bm. So not only does a bifurcation-
induced regime shift restore the nominal regime, but it also renders the entire
system ecologically resilient.
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5. Summary and Further Readings

This chapter provided a formal definition of ecological resilience in terms
of the regime transition system ⌃ = (B, Q,Bm) of a smooth dynamical
system with compact orbits. The transition system is a discrete abstraction
of the original system’s global behavior with respect to the possible tran-
sitions between the system’s basic sets. It essentially provides a roadmap
of the pathways a system can follow through shock-induced regime shifts
and in this way provides a basis for the supervisory control of ecological
resilience. This chapter showed that the regime transition system can be
constructed from the system’s state equations through the use of algorithmic
methods of used for computer analysis of dynamical systems. We saw that
Conley’s decomposition theorem guarantees the existence of such a transi-
tion system and that once determined the transition system could be used to
restore a collapsed system through supervisory control of its shock-induced
and bifurcation-induced regime shifts.

Restoration ecology is a branch of ecology that focuses on developing
plans for the restoration of degraded ecosystems. Much of the work in
restoration ecology focuses on specific restoration projects for degraded ter-
restrial systems. The poor track record of these restoration project was docu-
mented in [63]. Recent work has begun developing a theoretical framework
for restoration ecology that restores degraded ecosystems by following a se-
quence of alternative states. [53, 108, 52, 109]. The results in this chapter
should be relevant to that recent work by providing a systematic method for
identifying the sequence of alternative states leading to restoration of the
nominal system.

Algorithmic methods for the analysis of dynamical systems uses the com-
puter to help prove properties about a dynamical system. The method used
in this chapter to detect basic sets of the system is similar to that used in
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[36]. The formal foundations establishing the correctness of this method
using chain recurrence concepts was laid out in [78, 65]. The decision to
use cubical complexes, rather than simplicial complexes, was based on ex-
periments we did using both that supported the arguments made in [64]
regarding cubical complexes.

The justification for the use of algorithmic methods draws heavily on re-
sults providing global characterizations of the orbits generated by smooth
dynamical systems. The concept of chain recurrence is central to these stat-
ing and understanding these results. Further readings on chain recurrence
may be found in [30] for discrete-time systems and [60]. Both of these
books may be seen as expanding on Conley’s original monograph [14] that
extended Morse theory [76] to dynamical systems. The underlying algo-
rithmic nature of chain recurrent concepts was detailed in [65]. Conley’s
decomposition theorem originates in [14], but there are a number of dif-
ferent statements of his main result in [30, 60, 77]. This chapter used the
statement in [77] for its emphasis on the Lyapunov-like function V .

The idea of building discrete-abstractions characterizing the logical be-
havior of dynamical systems has its origins in the study of hybrid systems
[44]; systems that combine both smooth dynamical systems and discrete-
event systems. Hybrid systems may also be seen as a special class of cyber-
physical system [3]. The idea that a smooth system could be abstracted into
a finite state machine was introduced in [2, 106]. The use of such abstrac-
tions in the supervisory control [91] of smooth systems was reviewed in
[67].


