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Preface

This book grew out of lectures I gave for a semester-long course in linear

systems theory for first year engineering graduate students at the University

of Notre Dame. This is a course in applied mathematics. Most students

may only need their prior undergraduate work in transform methods, linear

algebra Strang (1976) , and differential equations. The lectures, however,

should also be of interest to those students with a more mature mathematical

sensibility. The course is structured similar to classical textbooks in linear

systems theory such as Kailath (1980) and Antsaklis and Michel (2006), as

well as the more recent textbook, Hespanha (2018). The lecture notes make

extensive use of MATLAB and the control systems toolbox. These notes

are a work in progress, having been revised and reorganized several times

over the past decade.

M. D. Lemmon

Department of Electrical Engineering

University of Notre Dame

Summer, 2024
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CHAPTER 1

Mathematics for Linear Systems

Linear systems theory applies linear algebra concepts to the study of dy-

namical systems that can be modeled by linear differential equations. In this

regard, linear systems theory is a branch of applied mathematics. Linear

systems theory, however, also provides a set of tools that engineers com-

monly use to predict how a physical process might behave. Many under-

graduate level engineers are familiar with the use of transform-based meth-

ods in solving systems of linear differential equations. These undergrad-

uates are also familiar with the use of transfer functions to predict how a

circuit or mechanical system might respond to a known input signal. These

methods are specific tools showing how linear systems theory is used in en-

gineering. The purpose of this course is to take a deeper look at how linear

system theory is used in the modeling of dynamical systems found in many

engineering disciplines.

This chapter reviews the mathematical concepts needed to take that deep

dive into linear systems theory. In particular, we start by examining condi-

tions for the existence and uniqueness of solutions to linear algebraic equa-

tions. These conditions can be formulated in terms of linear algebra con-

cepts. So we then review basic linear algebra (linear space, linear transfor-

mations, eigendecompositions) and look at other useful results from linear

algebra (singular value decompositions and the Cayley-Hamilton theorem

[Strang (1976)]).
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2 1. MATHEMATICS FOR LINEAR SYSTEMS

1. Linear Algebraic Equations

A system of linear algebraic equations (LAE) is a matrix-vector equation

of the form

b = Ax(1)

where x ∈ Rn, b ∈ Rm, and A ∈ Rm×n. The problem is to find the vector x

such that b = Ax, assuming we already know the vector b and the matrix A.

Any such vector, x, is called a solution of the LAE. A number of problems

in the theory of linear dynamical systems can be reduced to solving a system

of LAEs. We will therefore find it useful to ask the following three questions

about equation (1).

(1) Existence: Does a solution exist?

(2) Uniqueness: Is there more than one solution to the LAE?

(3) Computatability: How does one compute a solution to the LAE?

This lecture answers these questions with respect to concrete examples.

1.1. Gaussian Elimination With Back Substitution: Let us start with

a numerical procedure that is often used to compute a solution to an LAE.

This procedure is called Gaussian Elimination with Back Substitution. Con-

sider the following system of linear algebraic equations

1 = 2x1 + x2 + x3

−2 = 4x1 + x2

7 = −2x1 + 2x2 + x3

(2)

It will be convenient to rewrite the preceding equations as a single matrix-

vector equation of the form,

b =

 1

−2

7

 =

 2 1 1

4 1 0

−2 2 1


 x1

x2

x3

 = Ax
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where A ∈ R3×3 is a matrix whose elements are the coefficients in equation

(2) and x ∈ R3 is the vector whose ith element , xi (i = 1, 2, 3), is the ith

element of the triple solving the system of equations. Our problem is to find

a solution to this system of equations.

The strategy used to compute a solution is a recursive process that con-

sists of two parts. The first part is called the elimination phase and it sys-

tematically eliminates variables from a subset of equations to identify a

subproblem of lower dimension. The second part is called back substitu-

tion and it systematically uses any solution for the lower dimensional sub-

problem to find a solution for the eliminated variables in the higher order

problem. The elimination strategy is applied in a recursive manner to an

n-dimensional system. This strategy reduces the n-dimensional problem to

an n − 1 dimensional problem, and continues to reduce the problem size

until one has a 1-dimensional subproblem. The 1-dimensional subproblem

is trivial to solve so we use this to “bootstrap” up to the n-dimensional so-

lution through back substitution. In particular, back substitution is used on

the k − 1 dimensional problem to obtain the solution to the k dimensional

problem where k = 2, 3, . . . , n. This recursive strategy is what we refer to

as variable elimination with back substutition. The particular elimination

strategy we will use is called Gaussian elimination.

We will use the system of equation (2) to illustrate the Gaussian elim-

ination phase of the method. One first reduces the problem from a sys-

tem of equations with 3 unknowns (3-dimensional problem) to a smaller

2-dimensional problem. Gaussian elimination uses the sequential applica-

tion of elementary row operations to achieve this reduction. An elementary

row operation is a transformation on the problem equations in which

• The order of two equations in the entire problem is reversed.

• One equation is multiplied by a real number and the result replaces

the originally selected equation.
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• One equation is added to another equation and that second equa-

tion is replaced by the sum.

These elementary row operations are invoked in a systematic manner that

takes a set of k equations (k = 2, . . . , n), eliminates a given variable from

k − 1 of equations to obtain a smaller set of equations to solve.

For example, let us consider the 3-dimensional system in equation (2).

Let us multiply the first equation by −2, add the resulting equation to the

second equation, and then replace the second equation with that sum. This

operation removes the variable x1 from the second equation, thereby only

making it a function of x2 and x3. The resulting system of equations is

1 = 2x1 + x2 + x3

−4 = − x2 − 2x3

7 = −2x1 + 2x2 + x3

(3)

We still have x1 in the third equation. So let us use row operations to

remove equation 3’s dependence on x1. In particular, this can be done by

adding the first equation to the third equation and replace the third equation

with the result. This sequence of row operations gives

1 = 2x1 + x2 + x3

−4 = − x2 − 2x3

8 = 3x2 + 2x3

(4)

One may readily verify that the variable x1 does not appear in the last two

equations. So, if we already knew that x2 and x3 satisfy the last two equa-

tions

−4 = −x2 − 2x3

8 = 3x2 + 3x3

(5)

Then one could use the first equation to rewrite x1 as a function of x2 and

x3. In particular, simple algebra shows that

x1 =
1

2
(1− x2 − x3)(6)
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thereby giving us the solution of the full LAE provided we already know

what x2 and x3 are. The two-step reduction is the first stage of this Gaussian

elimination process. The update in equation (6) represents the back substi-

tution phase of the algorithm.

Note that the preceding procedure reduced the problem of finding the

solution of the 3-dimensional system to that of finding the solution of the

associated 2-dimensional system in equation (5). So let us apply this proce-

dure one more time to reduce the 2-dimensional system in equation (5) to

a 1-dimensional system. Note that the one dimensional system is trivial to

solve. This last elimination is designed to remove x2 from the third equa-

tion. In particular, if we multiply the last equation in equation (5) by 3, add

it to the second equation in (5), and replacing gives

−4 = −x2 − 2x3

−4 = − 4x3

(7)

The last equation is

−4 = −4x3

which is a 1-dimensional system of equations whose solution is readily seen

to be x3 = 1. We back substitute this value for x3 in the first line of equation

(7) to obtain

−4 = −x2 − 2

whose solution is readily seen to be x2 = 2. We now know that x2 = 2 and

x3 = 1, so we back substitute these values into equation (6) to obtain

x1 =
1

2
(1− x2 − x3) =

1

2
(1− 2− 1) = −1

which completes the computed solution as x =

 −1

2

1

, whose correctness

is readily checked by multiplying out Ax and verifying that it is equal to

the given b vector.
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Remark: The application of the row operations described above trans-

forms the original system of equations (2) to the following form

1 = 2x1 + x2 + x3

−4 = − x2 − 2x3

−4 = − 4x3

(8)

which can be written in matrix vector form as 1

−4

−4

 =

 2 1 1

0 −1 −2

0 0 −4


 x1

x2

x3

(9)

Note that the matrix in this equation is in upper triangular form where all

elements below the diagonal are zero. Gaussian elimination may therefore

be seen as a transforming the original system of equations to an upper tri-

angular form, from which back substitution is applied. In particular, each

of the row operations given above can be realized as a matrix-vector multi-

plication on the original system,

Pb = PAx

where

P =

 1 0 0

0 1 0

0 3 1


 1 0 0

0 1 0

1 0 1


 1 0 0

−2 1 0

0 0 1



=

 1 0 0

−2 1 0

−5 3 1


Each matrix in the first line corresponds to a particular row operation de-

scribed above.

Does the transformed system of equations have the same solution as the

original system? To answer this question let x solve

b = Ax
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Let P be any nonsingular matrix and let z solve the system

Pb = PAz

Since P is invertible, we know there exists a matrix inverse, P−1. Multiply

the above equation by P−1 to obtain

P−1Pb = P−1PAz

Since P−1P = I (the identity matrix) we can readily see the above equation

reduces to

b = Az

which means the solution to the transformed z-system also is a solution

for the original x-system. We can therefore conclude that applying any

nonsingular transformation to the system will not change its “solution”.

1.2. Existence and Uniqueness of Solutions. Let us now examine when

a unique solution exists for a system of linear algebraic equations. We can

do this by seeing when the Gaussian elimination procedure begins to break

down. In particular, consider the following system that has been written in

matrix-vector form,

b =

 0

0

0

 =

 1 3 3 2

2 6 9 5

−1 −3 3 0




x1

x2

x3

x4

 = Ax(10)

There are two interesting things about this system. First notice that b = 0.

Such systems are said to be homogeneous. The second interesting thing is

that there are more unknown variables than equations. When this occurs,

the system is said to be under-determined

Let us apply the Gaussian elimination procedure and see what happens.

Applying row operations to null the (2, 1) and (3, 1) components of the A
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matrix gives

A =

 1 3 3 2

2 6 9 5

−1 −3 3 0

 ⇒

 1 3 3 2

0 0 3 1

−1 −3 3 0



⇒

 1 3 3 2

0 0 3 1

0 0 6 2

 ⇒

 1 3 3 2

0 0 3 1

0 0 0 0

 = U

Examining the first row of matrix U, we see that the pivot occurs in the

row column so the associated variable is x1. As discussed above, this means

one can express x1 in terms of x2, x3, and x4. Examining the second row of

U, we see a pivot of 3 in the third column. So the associated variable is x3

and this means that we can express x3 in terms of x4.

The last row of U is zero, which means there are no nonzero pivots as-

sociated with this row. In particular, this means that the only variables with

nonzero pivots are x1 and x3. The other two variables, x2 and x4, have

no nonzero pivots. When this occurs we say the system of linear algebraic

equations is singular. When a system is singular then it either has no solu-

tion or an infinite number of solutions.

On the basis of the preceding discussion, one groups the variables in x

into two disjoint sets. The first set consists of basic variables that corre-

spond to variables with nonzero pivots. In the above example, the basic

variables are x1 and x3. Variables that are not basic are said to be free

variables. In our example, the free variables are x2 and x4. Free variables

cannot be expressed in terms of the other variables of the equation.

To find the most general solution, one allows the free variables to take

any value and then uses back substitution to express the basic variables in

terms of the free variables. For this example, the upper triangular system of
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equations after the elimination procedure is

0 = x1 + 3x2 + 3x3 + 2x4

0 = 3x3 + x4

In the second equation, the basic variable is x3 that we rewrite as a function

of the free variable, x4,

x3 = −1

3
x4

Inserting this algebraic expression for x3 into the first equation and solving

for the remaining basic variable, x1, in terms of the free variables gives

x1 = −3x2 − x4

So all solutions to this particular system of equations may be written as

x =


−3x2 − x4

x2

−1
3
x4

x4

 = x2


−3

1

0

0

+ x4


−1

0

−1
3

1


where x2 and x4 are free to be any real numbers. All solutions for this

under-determined homogeneous system may therefore be expressed as a

linear combination of two vectors


−3

1

0

0

 ,


−1

0

−1
3

1


 .

This set of solutions is said to form a subspace of the Euclidean vector

space R4 and the two vectors form a basis set for that subspace. One may

also view the linear system of equations as a linear transformation map-

ping vectors in R4 onto vectors in R3. In particular, the matrix A in the

homogeneous equation Ax = 0 maps x ∈ R4 onto the zero vector in R3.

The set of vectors in R4 that are mapped onto the zero vector through A,

form another useful subspace called the null space of the matrix A. The

null space is sometimes called the kernel of the matrix and is often denoted

as ker(A). In particular, this means that any solution to the homogeneous
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equation Ax = 0 must lie in the null space of A. We can therefore say that

all solutions of the homogeneous equation are x ∈ ker(A).

The preceding discussion characterized the solutions when b = 0. If b is

nonzero then we have an inhomogeneous system of equations. In particular,

if one wants to find solutions to the inhomogeneous problem, we apply

Gaussian elimination to the augmented matrix
[
A b

]
. So let us consider

the inhomogeneous version of our above example where we let the elements

of b be real variables. So the system of equations can be written as

b =

 b1

b2

b3

 =

 1 3 3 2

2 6 9 5

−1 −3 3 0




x1

x2

x3

x4

 = Ax

The matrix tableaux for this system and its subsequent reduction to reduced

row echelon form generate are shown below 1 3 3 2 b1

2 6 9 5 b2

−1 −3 3 0 b3

 ⇒

 1 3 3 2 b1

0 0 3 1 −2b1 + b2

0 0 6 2 b1 + b3



⇒

 1 3 3 2 b1

0 0 3 1 b2 − 2b1

0 0 0 0 b3 − 2b2 + 5b1


Note that the last equation requires

0 = 5b1 − 2b2 + b3

This equation is satisfied when b = 0 and when b =

 1

1

−3

. But it will

not be satisfied for any arbitrary choice for b. For instance, the equation is

not satisfied if b =

 1

1

1

. This would mean, therefore, that a solution to
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the inhomogeneous problem does not exist when b =

 1

1

1

. So we are

interested in determining all of those vectors b ∈ R3 for which a solution

does exist.

To determine which b’s in R3 give rise to an inhomogeneous system with

real solutions, we first note that b can be written as a linear combination of

the columns of A,

b =

 b1

b2

b3

 =

 1 3 3 2

2 6 9 5

−1 −3 3 0




x1

x2

x3

x4

 = Ax

= x1

 1

2

−1

+ x2

 3

6

−3

+ x3

 3

9

3

+ x4

 2

5

0

(11)

These b vectors, therefore, lie in a subspace of R3 that is spanned by the

columns of the A matrix. We call this subspace the column space of A. If

we think of A as a linear transformation, then it will also be called the range

space of A. We often denote this range space as range(A). Our preceding

discussion has therefore shown that a solution exists for the inhomogeneous

system of linear equations b = Ax if and only if

b ∈ range(A) = range space of A

By inspection of the four vectors used to form b in equation (11), one can

see that only two of these vectors are linearly independent (i.e. they cannot

be written as a linear combination of the other vectors). This means that

range(A) = span


 1

2

−1

 ,

 1

3

1


(12)
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where span{z1, . . . , zn} is the subspace formed by all linear combinations

of the collection of vectors z1 to zn. Because all elements of the range

space defined by equation (12) are linearly independent, we know this is

the smallest number of vectors that can be used to span range(A). We refer

to such a collection of vectors as a basis set and the number of elements in

the basis is called the dimension of the subspace range(A). We also refer

to this as the rank of the matrix A.

Clearly not all b ∈ R3 will lie in range(A). But for those that do, one

may solve the inhomogeneous problem using back substitution. For this

particular example, one can readily verify that all solutions are

x = x2


−3

1

0

0

+ x4


−1

0

−1
3

1

+


3b1 − b2

0
1
3
(−2b1 + b2)

0


The first two terms on the right hand side of the above equation are vectors

forming a basis for the null space of A. The third term on the right hand

side is a particular solution of the original inhomogeneous problem. In

particular, this means that if b ∈ range(A) then any solution to this problem

may be written as

x ∈ xp + ker(A)

where xp is a particular solution to the system and ker(A) is the null space

of A.

We can now answer the questions we originally posed.

(1) Existence? A solution exists if b lies in the range space of A. In

other words, b ∈ range(A).

(2) Uniqueness ? If b ∈ range(A), then any solution can be written

as xp+v where xp is any particular solution such that Axp = b and

v is any vector in the null space of A. The solution, therefore, will
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be unique if and only if ker(A) is the trivial linear space consisting

of only the zero vector.

(3) Computability? The Gaussian elimination procedure with back

substitution provides an efficient algorithm for computing solu-

tions to the inhomogeneous problem.

1.3. Relaxed Solution Concepts. There are many real-life engineer-

ing problems giving rise to a system of linear equations b = Ax where

b /∈ range(A). Based on our earlier discussion, this means that no solu-

tion exists for this system of equations. But this fact seems to contradict

the fact that we ”know” our real-life problem does have a solution. This

commonly occurs in LAEs that have more equations than variables. Such

LAEs are said to be over-determined and they often occur in parameter es-

timation problems where one relies on noisy measurements to “estimate”

a vector of unknown parameters. Because there are many more equations

than unknowns, and because of the noise, it is highly unlikely that b lies in

the range space of A. So what can we do?

Let us consider the following over-determined LAE,

b =

 b1

b2

b3

 =

 a11 a12

a21 a22

a31 a32

[ x1

x2

]
= Ax

As mentioned above, it is highly unlikely that b will be in the range space

of A, so let us relax our notion of a solution so that x solves the LAE if

Ax̂− b ≈ 0. In other words, we don’t require that x is an exact solution in

the sense that Ax = b, but only that Ax is ”close” to b. We need to clarify

what it means to be ”close”. Formally, we define this as requiring that

|Ax− b|2 ≤ ϵ

where |x| =
√
xTx is the Euclidean norm of vector x and ϵ is a “small”

tolerance level that quantifies how close Ax is to b. In particular we want
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to find a solution x̂ that minimizes ϵ. We can pose our search for this mini-

mizing x̂ as an optimization problem

x̂ = arg min
x∈Rn

|Ax− b|2

We can find a solution by writing out an explicit expression for

J(x)
eq
=

1

2
|Ax− b|2 = 1

2

3∑
i=1

(
bi − aTi x

)2
=

1

2

3∑
i=1

(
bi −

[
ai1 ai2

] [ x1

x2

])2

where ai is the ith row of A. We can find the x that minimizes the above

expression by taking the derivative of the right hand side of the above equa-

tion and setting it equal to zero. From elementary calculus, we know this

is a necessary condition for optimality. Taking the derivatives means the

optimal x̂ satisfies

0 =
∂J

∂x̂1

= −
3∑

i=1

(
bi −

[
ai1 ai2

] [ x̂1

x̂2

])
ai1

0 =
∂J

∂x̂2

=
3∑

i=1

(
bi −

[
ai1 ai2

] [ x̂1

x̂2

])
ai2

which we can rewrite in matrix vector form as

0 = −
[

a11 a21 a31

a12 a22 a32

]
b1

b2

b3

+

[
a11 a21 a31

a12 a22 a32

]
a11 a12

a21 a22

a31 a32


[

x̂1

x̂2

]

= −AT b+ATAx̂

Note that if ATA is invertible then the solution to this problem is

x̂ =
[
ATA

]−1
AT b

with the minimum value being

ϵ2 = |Ax̂− b|2

=
∣∣∣(A [ATA

]−1
AT − I

)
b
∣∣∣

≤
∥∥∥A [ATA

]−1
AT − I

∥∥∥ |b|
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where ∥A∥ is the matrix norm1 induced by the Euclidean 2-norm.

2. Linear Algebra

Linear algebra is a branch of mathematics concerned with the algebraic

properties of mathematical systems that generalize our traditional notion

of a vector space. The generalization of a vector space is called a lin-

ear space and mappings between linear spaces are called linear transfor-

mations. From an engineer’s perspective, we view linear spaces as signal

spaces and linear transformations are used as mathematical models for sys-

tems that generate these signals. So linear algebra becomes an important

formal tool for the modeling, prediction, and design of engineering sys-

tems. The following subsections review basic concepts in linear algebra

that are used throughout the remaining lectures.

2.1. Linear Spaces. A linear space generalizes our notion of a vector

space to objects that are not necessarily vectors. We start with a generaliza-

tion of real numbers into an algebraic system known as a field. In particular,

a field F = (X,+,×) is a triple formed from a set X and two binary opera-

tions called addition, +, and multiplication, × that satisfy certain conditions

given below. The sum of two elements x, y ∈ X is denoted as x+y and the

product of two elements x, y ∈ X is denoted as x×y or xy. The conditions

that the two binary operations must satisfy are

• Addition (+) is commutative, associative, and closed in X . There

exists an additive identity 0 ∈ X and each element x ∈ X has an

additive inverse, −x ∈ X .

• Multiplication (×) is commutative, associative, and closed in X .

There exists a multiplicative identity 1 ∈ X such that 1 ̸= 0 and

every nonzero element x ∈ X , has a multiplicative inverse, x−1.

1The matrix norm of a matrix A ∈ Rn×n is defined as ∥A∥ = max
x ̸=0

|Ax|
|x|

of A.
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• Addition and multiplication satisfy the distributive laws,

x(y + z) = xy + xz

(x+ y)z = xz + yz

for all x, y, z ∈ X .

The set of real numbers is obviously a field. There are other sets of math-

ematical objects that form a field once a suitable pair of binary operations

are chosen. The set of complex numbers, C, forms a field with respect to

complex addition and complex multiplication. The set of rational numbers

(denoted as Q) form a field with respect to their usual binary operations.

The set of rational functions is formed from the ratio of two polynomials.

This set forms a field with respect to polynomial addition and polynomial

multiplication.

A linear space is formally defined with respect to a set X and a field

F . The elements of X will be called vectors (we are overloading the name

”vector” in this case) and the elements of F are called scalars. We introduce

a binary operation over X called addition (+) that maps ordered pairs of

vectors (x, y) ∈ X ×X onto a single vector x+ y ∈ X . We also introduce

a binary operation called dilation (·) that maps a scalar-vector pair (α, x) ∈
F ×X onto a vector αx ∈ X . We will often denote αx as α ·x. The ordered

tuple, L = (X,F,+, ·) is called a linear space if

• Addition is commutative, associative, and closed in X . There ex-

ists an additive identity, 0 ∈ X and for each x ∈ X there is an

additive inverse, −x ∈ X .

• For all x ∈ X and α, β ∈ F there exist vectors αx ∈ X and

βx ∈ X such that

α · (β · x) = α · (βx) = α(βx) = (αβ)x

and for all x ∈ X we have 1 · x = x where 1 is the multiplicative

identity of the field, F .
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• Addition and dilate distribute as

(α + β)x = (αx) + (βy)

α(x+ y) = (αx) + (αy)

for all x, y ∈ X and α, β ∈ F .

Euclidean n-space, Rn, is clearly a linear space where X = Rn and F = R.

The set of real and complex valued functions also form a linear space. These

spaces are useful since we think of dynamical systems as generating signals

that are a function of time. This means that the inputs and outputs of a

dynamical system are elements of a linear space that we refer to as a signal

space.

Let us try to justify this idea more formally. Consider a continuous real

valued function, x : R → R. Denote the set of all continuous functions as

C(R,R). For any functions x, y ∈ C(R,R), define function addition in a

component-wise manner as

(x+ y)(t) = x(t) + y(t)

for all t ∈ R. Note that on the right hand side of this equation the symbol,

+, acts like real addition whereas on the left hand side the symbol, +, acts

on two functions in C(R,R). We define scalar-dilation in a similar manner

in which

(αx)(t) = α · x(t)

for all t ∈ R. The fact that addition and dilation on the right hand side of

these equations are defined with respect to the vector space, R, means that

these new ”function” binary operations on the left hand side inherit many

of the attributes of vector-space addition and scalar-vector multiplication.

The only property that is not inherited in this manner is closure. In other

words, we cannot conclude that C(R,R) is closed with respect to these two

binary operations. Closure would mean that the sum of any two continuous

functions is continuous and the dilation of any continuous function is also
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continuous. Establishing continuity of x + y and αx requires that we use

the fundamental definitions for continuity.

Remember that a function x : R → R is continuous if and only if for all

ϵ > 0 there exists δ > 0 such that |x(t)− x(t′)| < ϵ whenever |t− t′| < δ.

So to establish that x + y is continuous with x and y are continuous, we

would need to certify that the above definition for continuity also holds for

x + y. So let us assume x and y are continuous so for any ϵ there exist δ1
and δ2 such that |x(t)− x(t′)| < ϵ

2
when |t− t′| < δ1 and |y(t)− y(t′)| < ϵ

2

when |t− t′| < δ2. Note that

|(x+ y)(t)− (x+ y)(t′)| = |x(t) + y(t)− x(t′)− y(t′)|

≤ |x(t)− x(t′)|+ |y(t)− y(t′)|

If we select δ = min(δ1, δ2), then we know both terms on the left hand side

are less than ϵ
2
. This means that when |t− t′| < δ then

|(x+ y)(t)− (x+ y)(t′)| ≤ |x(t)− x(t′)|+ |y(t)− y(t′)| ≤ ϵ

Since our choice of ϵ was arbitrary, we have found the required δ and so

x + y is also continuous. A similar argument can also be used for αx and

this means that C(R,R) is closed with respect to the two binary operations.

This means for these binary operations, the set C(R,R) satisfies the axioms

of a linear space and so C(R,R) is a linear space. We sometimes refer to it

as a signal space.

Let X be a linear space over a field F and let x1, . . . , xn ∈ F and

α1, · · · , αn ∈ F , then the vector

x =
n∑

i=1

αixi

is called a linear combination of vectors x1, . . . , xn. A non-empty subset

M of X is called a subspace of X if for any pair of scalars α, β ∈ F and

any pair of vectors, x, y ∈ M we have αx + βy ∈ M . In other words, a

subspace is closed under linear combinations of its elements. Consider a a

collection, M = {x1, . . . , xm} of vectors in linear space, X . The set of all
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linear combinations formed from elements of M is a subspace called the

span of M . This subspace is denoted as

span(M)
def
=

{
x ∈ X : x =

m∑
i=1

αixi, where αi ∈ F and xi ∈ M

}
Given a collection M = {x1, . . . , xm} of vectors in linear space, X , if there

exists a set of scalars, not all zero, such that
m∑
i=1

αixi = 0

then M is said to be linearly dependent. This set, M , is said to be linearly

independent if the above equation is only satisfied when all αi are zero. If

M is linearly dependent, then there exist nonzero scalars αi1 , αi2 , . . . , αir

with r < m such that
r∑

j=1

αijxij = 0 ⇒ xi1 = − 1

αi1

r∑
j=2

αijxij

This means that all vectors in a linearly dependent collection M can be

written as a linear combination of other vectors in M .

Given a collection M = {x1, . . . , xm} of vectors in X , we say M forms

a basis for X if M spans X and M is linearly independent. X is said to

be finite-dimensional if there exists a basis for X having a finite number of

elements. Any basis of a finite dimensional linear space, X , has the same

number of basis elements that we call the dimension of X and denote it as

dim(X).

Let X be a finite-dimensional linear space and let B = {e1, . . . , em} be

a basis for X . Consider a vector x ∈ X and assume it has two different

linear combinations

x =
m∑
i=1

αiei =
m∑
i=1

βiei

If we take the difference of both representations for x we see that

0 =
m∑
i=1

(αi − βi)ei
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Since B is basis, we know that {ei}mi=1 is a linearly independent collection

of vectors. So the only coefficients, αi − βi, satisfying the above equations

must be equal to zero. In other words, αi = βi for i = 1, 2, . . . , n and this

means that every nonzero x ∈ X has a unique representation as a linear

combination of its basis set. We can think of the coefficients of x as a

concrete representation of x ∈ X with respect to basis B. In particular,

these coordinates can be arranged as a column vector whose components

take values in the field F

[x]B =


α1

...

αm

 ∈ Fm

where the notation [x]B is used to denote the concrete representation of x

with respect to basis B. Basically what this shows is that any finite di-

mensional linear space has a concrete representation as a traditional vector

space.

A finite-dimensional linear space, L = (X,F,+, ·), is an algebraic sys-

tem that behaves algebraically like a vector space. Algebraic means that the

behavior of the two binary operations (addition and dilation) behave simi-

larly to what we see in vector spaces. However, we also know that vector

spaces have a ”topological” or ”metric” structure that allows one to define

how ”close” or ”similar” two elements of the space are to each other. There

is nothing in the ”algebraic” definition of a linear space to provide this no-

tion of ”closeness”. So we will find it convenient to endow our linear spaces

with this metric structure and this is done most easily by attaching a func-

tion ∥ · ∥ : X → R called the norm on the linear space, thereby turning the

linear space into a normed linear space.

Intuitively, a norm measures the ”size” or ”length” of an element in the

linear space, X . So we can formally define what properties the norm func-

tion has by abstracting those properties that we usually associate with our
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notion of ”vector” length. We formally define the norm of x ∈ X as a real

number ∥x∥ ∈ R such that

• ∥x∥ ≥ 0 and ∥x∥ = 0 if and only if x = 0

• For any α ∈ F and x ∈ X , we have ∥αx∥ = |α|∥x∥.

• and for all x, y ∈ X we have

∥x+ y∥ ≤ ∥x∥+ ∥y∥

There are several commonly used norms for linear spaces formed from real-

valued functions and functions of a complex variable. We review some of

these norms and their associated normed linear spaces below.

Consider a linear space L(R,Rn) of integrable continuous-time func-

tions, x : R → Rn. We define the Lp norm of x ∈ L(R,Rn) where p is a

positive integer as

∥x∥Lp

def
= lim

T→∞

(∫ T

−T

|x(τ)|pdτ
)1/p

where |x(τ)| is the Euclidean 2-norm of the vector x(τ) ∈ Rn. We define

the normed linear space, Lp as the linear space consisting of all functions

x ∈ L(R,Rn) such that ∥x∥Lp is finite

Lp
def
=
{

Integrable functions in x ∈ L(R,Rn) such that ∥x∥Lp = M < ∞
}

The most commonly used Lp norms are for p = 1, p = 2, and p = ∞. For

p = ∞, the norm is

∥x∥L∞
def
= lim

p→∞
∥x∥Lp = max

i

{
sup
t∈R

|xi(t)|
}

where |xi(t)| is the absolute value of the ith component of the vector x(t).

The L∞ space is then the space of all integrable functions with a finite L∞

norm.

Another important set of normed linear spaces is generated by the Laplace

transform of real-valued functions. In particular, let H(C,C) denote the lin-

ear space of all functions of a complex variable. We define the 2-norm and
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∞-norm of a signal X ∈ H(C,C) as

∥X∥H2 =

(
sup
α>0

1

2π

∫ ∞

−∞
|X(α + jω)|2 dω

)1/2

∥X∥H∞ = sup
α>0

sup
ω∈R

|X(α + jω)|

Note that these norms are only defined if the right hand side of the equation

is finite. This will only occur if X is analytic on the right hand side of the

complex plane. A function X : C → C is said to be analytic at a point

z ∈ C if and only if there is neighborhood about z in which X(z) has a

derivative at each point in that neighborhood. This condition essentially

means that X(z) has continuous derivatives of all orders and that it can be

represented by a convergence power series. Essentially this also means that

z cannot be a removable singularity (pole) of X . The normed linear spaces

associated with these two norms for H(C,C) consist of those functions with

bounded norms, and so they can be written as follows

H2 =

{
X ∈ H(C,C) :

X is analytic in RHS of complex plane

and ∥X∥H2 < ∞

}

H∞ =

{
X ∈ H(C,C) :

X is analytic in RHS of complex plane

and ∥X∥H∞ < ∞

}

Note that a norm is not the only way one can establish a topological

structure on a linear space. Another commonly used approach is through

the introduction of an inner product, which yields an inner product space.

Inner products generalize the notion of dot products in vector spaces. Recall

that the dot product of two vectors, x, y ∈ Rn is defined as xTy. When x and

y are elements of an abstract linear space, then the corresponding concept

is that of an inner product. Consider a binary operation ⟨·, ·⟩ : X ×X → C
maps a pair of vectors in x, y ∈ X onto a complex number, ⟨x, y⟩. This

binary operation is called an inner product if

• For all x, y, z ∈ X we have ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩
• ⟨x, y⟩ = ⟨y, x⟩
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• ⟨x, x⟩ ≥ 0 with ⟨x, x⟩ = 0 if and only if x = 0.

A linear space equipped with an inner product is called an inner product

space. Clearly the dot product we discussed above is an inner product for

real-valued vector spaces. If we consider the linear space of integrable func-

tions, L(R,Rn), then a commonly used inner product is

⟨f, g⟩ =
∫ ∞

−∞
fT (τ)g(τ)dτ

for any f, g ∈ L(R,Rn).

Inner products are used to determine if two elements of a linear space

are orthogonal to each other. In particular we say x, y ∈ X are orthogonal

if and ony if ⟨x, y⟩ = 0. Orthogonality and linear independence are related

concepts. In particular, if we consider a set of vectors {x1, . . . , xm} drawn

from linear space, X , and we assume they are mutually orthogonal (i.e.

⟨xi, xj⟩ = 0 for all i ̸= j), then if we consider any linear combination of the

form

z =
m∑
i=1

αixi ≡ y

Taking the inner product of y with any xk from the collection of orthogonal

vectors yields

0 = ⟨y, xk⟩ =
m∑
i=1

αi⟨xi, xk⟩ = αk⟨xk, xk⟩

Since ⟨xk, xk⟩ > 0 and since our choice of k was arbitrary, we can con-

clude that αi = 0 for all i = 1, 2, . . . ,m. This means that the collection

{x1, . . . , xm} is linearly independent. So we have just proven that a set of

mutually orthogonal vectors is also linearly independent.

If one can talk about vectors being orthogonal to each other, we can also

speak of subspaces being orthogonal to each other. In particular, one says

two linear subspaces, U and V , of linear space X are orthogonal if every

vector in U is orthogonal to every vector in V . Given a subspace U of X , the



24 1. MATHEMATICS FOR LINEAR SYSTEMS

space of all vectors orthogonal to U is called the orthogonal complement,

U⊥, of U .

2.2. Linear Transformations. A linear transformation is a mapping

between elements of two linear spaces. If these linear spaces are real-valued

vector spaces, then the linear transformation is a matrix. If the linear spaces

consist of real-valued integrable functions, then the linear transformation

can be written explicitly as an integral transform, or implicitly as a set of

differential equations. To formalize this notion, let X and Y be two linear

spaces over the same field, F . Let G : X → Y denote a function taking

elements of X onto elements of Y . Let G[x] denote the element in Y as-

sociated with the argument x ∈ X . We say G is a linear transformation if

it satisfies the principle of superposition. This means that for any x, y ∈ X

and α, β ∈ F we have

G [αx+ βy] = αG[x] + βG[y]

It will be convenient to define the zero-transformation 0[x] = 0 and the

identity transformation I[x] = x for all x ∈ X . These two transformations

are easily shown to also be linear transformations.

Let L(X, Y ) denote the set of all linear transformations from linear

space X to linear space Y . Define the addition of two linear transforma-

tions, G,H ∈ L(X, Y ) in a component-wise manner. In other words, for

any x ∈ X we have

(G+H)[x] = G[x] +H[x]

Where + on the right hand side is addition for the linear space, Y and +

and the left hand side is addition of the two linear transformations. Define

the dilation of G with respect to any α ∈ F as

(αG)[x] = α (G[x])

for all x ∈ X . One can also show that G + H and αG are linear trans-

formations so we can assert that L(X, Y ) is closed under these two binary
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operations. Since the range space of these transformations is also a linear

space, we can readily conclude that these two binary operations satisfy all

of the axioms for a linear space. In other words, the set of all linear trans-

formations, L(X, Y ), is also a linear space. In applications, we would think

of a linear transformation is a linear system which means that L(X, Y ) can

be thought of as a linear system space.

Since L(X, Y ) is a linear space, it has a basis. Let X be a finite dimen-

sional linear space with basis set {e1, . . . , en}. Let Y be a finite dimensional

linear space with basis set {f1, . . . , fm}. Consider the set of mn linear

transformations Eij : X → Y (for i = 1, 2, . . . ,m and j = 1, 2, . . . , n) that

takes values

Eij[ek] = δjkfi

where δjk is the Kronecker delta

δjk =

{
1 if j = k

0 otherwise

One can show that these Eij transformations for a basis for the linear space

L(X, Y ) of linear transformations.

Now consider any linear transformation, G ∈ L(X, Y ). Since {Eij} is

a basis for L(X, Y ) we know that for any k = 1, 2, . . . , n there are unique

coefficients βik ∈ F such that

G[ek] =
m∑
i=1

βikfi

Let Bx denote the basis {e1, e2, . . . , en} and let By denote the basis {f1, f2, . . . , fm}
for Y . Note that

G[x] = G

[
n∑

j=1

αjej

]
=

n∑
j=1

αj

m∑
i=1

βijfi

=
m∑
i=1

(
n∑

j=1

βijαj

)
fi
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This is a matrix vector equation that can be written as

[G[x]]By
=


∑n

j=1 β1jαj

...∑n
j=1 βmjαj

 =


β11 · · · β1n

... . . . ...

βm1 · · · βmn




α1

...

αn


= [G]Bx

By
[x]Bx

where the notational convention, [G]Bx

By
, denotes the concrete representation

of G with respect to the inputs space’s basis, Bx, and the output space’s

basis, By. The linear transformation, G, is therefore concretely represented

as a matrix, [G]Bx

By
once the bases Bx and By have been chosen for the linear

transformation’s input and output spaces. This observation is useful because

it means that more complex linear transformations representing dynamical

systems can be concretely viewed as matrices, so that many of the geometric

intuitions we have when matrices act on vector spaces can also be used

to understand what happens when a linear transformation acts on finite-

dimensional linear spaces.

Since linear transformations form a linear space, we will also find it

useful to introduce a topology or metric on these linear spaces as well. Let

us consider a system G : L2 → L2 mapping finite energy input signals onto

finite energy output signals. We will find it convenient to refer to G as a

system mapping L2 signals onto L2 signals. The amount of energy gained or

lost between the input and output is sometimes called a gain for the system.

We can therefore define the system’s L2-induced gain as

∥G∥L2−ind

def
= sup

w ̸=0

∥G[w]∥L2

∥w∥L2

= sup
∥w∥L2

=1

∥G[w]∥L2

In other words, the system’s (linear transformation’s) L2 induced gain equals

the largest output energy seen over all applied inputs with unit energy. This

means that the actual output energy of the system satisfies the inequality

∥G[w]∥L2
≤ ∥G∥L2−ind∥w∥L2



2. LINEAR ALGEBRA 27

The sup in the above definition means there is a specific signal, w, for

which the above inequality holds with equality. We may, therefore, obtain

an equivalent characterization of the induced gain as

∥G∥L2−ind = inf
{
γ ∈ R : ∥G[w]∥L2

≤ γ∥w∥L2

}
We say ∥G∥L2−ind is an induced gain because it is ”induced” by our se-

lection of the norms for the input and output signal spaces. In this case,

we chose the L2 on both spaces, hence the name L2-induced gain. It may

be more convenient from the application’s standpoint to select a different

norm on the input and output spaces. For instance many mechanical en-

gineers might prefer to use an L∞ norm, in which case, our induced gain

would be different.

The formal definition for the induced gain is awkward to work with for it

provides no explicit formula we can use to compute what the gain might be.

For certain selections of the signal space norms, however, we can find ex-

plicit formulas. For example, let G : L∞ → L∞ be a linear transformation

defined explicitly through the convolution equation

G[w](t) = y(t) =

∫ t

−∞
g(t− τ)w(τ)dτ

where g : R → R is a function called the system’s impulse response func-

tion and w ∈ L∞ is the applied input. To determine the L∞ induced gain,

we need to bound the L∞ norm of the output, so

|y(t)| =

∣∣∣∣∫ ∞

−∞
g(τ)w(t− τ)dτ

∣∣∣∣
≤

∫ ∞

−∞
|g(τ)| |w(t− τ)|dτ

≤
[∫ ∞

−∞
|g(τ)|dτ

]
∥w∥L∞

= ∥g∥L1
∥w∥L∞

since ∥y∥L∞ is the largest |y(t)|, we have

∥y∥L∞ = sup
t

∥y(t)∥ ≤ ∥g∥L1 ∥w∥L∞
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So we can conclude that the L1 norm of the impulse response function, g,

is an upper bound on the system’s L∞ induced gain.

One may show that ∥g∥L1 equals the L∞ induced gain by finding any L∞

input for which the inequality holds with equality. Finding such ”signals”

requires some degree in ingenuity, but for this example, if we consider

w(t− τ) = sgn(g(τ))

it is easy to show that y(t) = ∥g∥L1 , thereby establishing that ∥G∥L∞−ind

is equal to ∥g∥L1 . Since this signal norm can be explicitly computed once

we know the impulse response function, g, it provides a concrete way of

computing what this system’s L∞-induced gain.

Consider a linear transformation G : X → Y where X and Y are inner

product spaces. We will find it convenient to define another linear transfor-

mation G∗ : Y → X that takes vectors in Y onto vectors in X . This linear

transformation G∗ is called the adjoint of G if for any x ∈ X and y ∈ Y

we have

⟨G[x], y⟩ = ⟨x,G∗[y]⟩

Adjoints are useful technical tools for sometimes it is easier to establish

results regarding a linear transformation using the adjoint, rather than the

original transformation itself.

Consider a linear transformation G : X → Y between two linear spaces

X and Y . This linear transformation has two important subspaces; its null

space and its range space. The null space of G (also known as the linear

transformation’s kernel) is

ker(G)
def
= {x ∈ X : G[x] = 0}

The range space of G is

Range(G)
def
= {y ∈ Y : there exists z ∈ X such that y = G[z]}
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Recall that when X and Y are finite dimensional then any element x ∈ X

and y ∈ Y has a concrete representation with respect to the field F once

we’ve chosen a basis for X and Y . Let Bx denote the basis for X and By

denote the basis of Y . The concrete representations for x and y (following

our earlier notational convention) are [x]Bx ∈ F n and [y]By ∈ Fm, respec-

tively. We also know that G : X → Y has a concrete representation as the

matrix [G]Bx

By
∈ Fm×n with

[y]By = [G]Bx

By
[x]Bx

The preceding concrete representation is a linear algebraic equation that

we studied in the preceding section. Based on those results we know that

y = G[x] has a solution if and only if its concrete representation has a

solution. We know that such solutions exist if y ∈ Range
(
[G]Bx

By

)
and this

solution is unique if and only if ker
(
[G]Bx

By

)
is trivial.

A useful relationship can be established between the null space and range

space of a linear transformation G. In particular, this relationship is some-

times called the fundamental theorem of linear algebra [Strang (1976)] and

it asserts that

ker(G) = Range(G∗)⊥

where G∗ is the adjoint operator of G. To prove this equivalence, suppose

that x ∈ ker(G) and y ∈ Range(G∗). This would mean G[x] = 0 and for

some z ∈ Y we have G∗[z] = y. Taking the inner product of y and x yields,

⟨y, x⟩ = ⟨G∗[z], x⟩ = ⟨z,G[x]⟩ = ⟨z, 0⟩ = 0

This shows that any vector y ∈ Range(G∗) is orthogonal to any vector

x ∈ ker(G). This fundamental theorem of linear algebra provides a useful

tool for proving results, where proving a given assertion is easier to do on

the adjoint.

2.3. Eigenvalues and Eigenvectors. A useful way of characterizing a

linear transformation G : X → X over a linear space X is to determine
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those vectors in X that are invariant. In other words, we look for those

vectors, v ∈ X , that are left ”unchanged” by the application of the linear

transformation, i.e. G[v] = v. This is actually too restrictive to be useful,

so we look for vectors that are “invariant” up to a scalar dilation. So this

means we look for ordered pairs, (v, λ) ∈ X × F where v is a nonzero

vector in X and λ is a scalar in the field F such that

G[v] = λv

The scalar λ is called an eigenvalue of G and v is called its associated

eigenvector.

When X is finite dimensional, then we know that once we choose a

basis, B, for X , we can concretely represent G as a matrix. If X is an

n-dimensional linear space, then [G]BB ∈ F n×n is a square matrix whose

components are in the field F . In many of our applications F will either

be the real, R or complex, C, field. In this case, we can specialize our

notion of an eigenvector/value to correspond to a matrix. So given a matrix

A ∈ Cn×n, then the pair (v, λ) ∈ Cn × C is a right eigenvalue/vector pair

for A if

Av = λv

We call (v, λ) a left eigenvalue vector pair if

vTA = λvT

Eigenvalue/vector problems arise in a number of ways, but one way that

is often taught to undergraduate engineers involves using them to character-

ize solutions to constant coefficient ordinary differential equations (ODE).

We will use an example to review how this is done. Consider the following

ODE with given initial condition.

ẋ1(t) = 4x1(t)− 5x2(t), x1(0) = 8

ẋ2(t) = 2x1(t)− 3x2(t), x2(0) = 5
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The initial value problem (IVP) is to find explicit representations for the

two functions x1 : R≥0 → R and x2 : R≥0 → R that satisfy the differential

equation for all t ≥ 0 and that satisfy the given initial condition at time

t = 0.

Note that the IVP can be rewritten in matrix-vector form as

ẋ(t) = Ax(t), x(0) = x0

where

A =

[
4 −5

2 −3

]
, x(t) =

[
x1(t)

x2(t)

]
, x0 =

[
8

5

]
Let us assume that x1 and x2 are both exponential functions of time of the

form

x1(t) = eλtx10

x2(t) = eλtx20

where x0 =

[
x10

x20

]
is the initial condition and λ ∈ C is a complex valued

constant. We can substitute this assumed form for the solution into the

differential equation to obtain

λeλtx10 = 4eλtx10 − 5eλtx20

λeλtx20 = 2eλtx10 − 3eλtx20

which we can also write in matrix-vector form as

λx0 = λ

[
x10

x20

]
=

[
4 −5

2 −3

][
x10

x20

]
= Ax0

This is a system of linear algebraic equations (LAE) rather than a differ-

ential equation and so we can look for (x0, λ) that satisfy this relation

Ax0 = λx0

using the computational procedures discussed in the first section. If a so-

lution does exist, then we know that our guess for the solution was correct
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with the exponent λ being obtained from the solution of the above set of

LAEs. Note, however, that this equation also has the form as the matrix

eigenequation we introduced above. So if a solution does exist it means

that λ will be an eigenvalue of the matrix A =

[
4 −5

2 −3

]
with associated

right eigenvector x0.

How do we find eigenvector/value pairs for a square matrix? Let A ∈
Rn×n be a square real-valued matrix and let v be a right eigenvector corre-

sponding to eigenvalue λ ∈ C. This means Av = λv and v is a nonzero

vector. This is equivalent to saying that

(A− λI)v = 0

and so it means that the eigenvector v is a nonzero vector in the null space

ker(A − λI). We know that this homogeneous LAE will have nonzero

solutions when the null space of the matrix A− λI is nontrivial.

The condition we use to check if a matrix A has a nontrivial kernel is

based on the determinant of that matrix. Given a matrix A ∈ Rn×n, the

determinant of A (denoted as det(A)) is the sum

det(A) =
∑

σ∈P (N)

sgn(σ) · aij1 · a2j2 · · · anjn

where P (N) is the set of all possible permutations of N = {1, 2, . . . , n}
and for any σ ∈ P (N) we have

sgn(σ) =

{
+1 if σ is an even number of permutations from N

−1 if σ is an odd number of permutations from N

The main property of the determinant that we use is that the columns (or

rows) of A are linearly dependent if and only if det(A) = 0.

The computation of det(A) is easily done using computer tools in MAT-

LAB, so we can use the determinant test to see whether (A − λI) has a

nontrivial null space. For convenience define

Rλ = A− λI
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with i, jth component, rij . The null space of Rλ is nontrivial if and only if

there is a nonzero vector v ∈ Cn such that Rλv = 0. We may rewrite this a

s

0 = Rλv = v1


r11

r21
...

rn1

+ v2


r12

r22
...

rn2

+ · · ·+ vn


r1n

r2n
...

rnn


If ker(Rλ) is nontrivial then there exists v ∈ ker(Rλ) that is nonzero and

from the preceding equation this implies the columns of Rλ are linearly de-

pendent. So since det(Rλ) = 0 if and only if the columns of Rλ are linearly

dependent, the preceding discussion shows that A−λI has a nontrivial null

space if and only if λ ∈ C is chosen so that det(A− λI) = 0.

The condition det(A − λI) = 0 is actually a polynomial equation with

respect to the indeterminate variable λ. So it will be convenient to define

the characteristic polynomial of a square matrix A as

p(λ) = det(A− λI)

The condition for λ to be an eigenvalue is therefore that λ ∈ C is a root of

the matrix characteristic equation

p(λ) = 0

These roots are in the complex field C. If λi ∈ C for i = 1, 2 . . . , p where

p ≤ n are distinct roots (i.e. all different) of the characteristic equation,

then we can factor the characteristic polynomial as

p(λ) = (λ1 − λ)m1(λ2 − λ)m2 · · · (λp − λ)mp

where mi is called the algebraic multiplicity of the ith distinct root, λi.

Note that each distinct eigenvalue of A has an eigenvector associated

with it. If eigenvalue λ of A has an algebraic multiplicity m > 1, then the

number of linearly independent eigenvectors associated with this eigenvalue

will be µ ≤ m. The number of linear independent eigenvectors associated
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with a distinct eigenvalue λ of A is called the eigenvalue’s geometric mul-

tiplicity.

So let us return to our ODE example and determine the eigenvalues of

the matrix A =

[
4 −5

2 −3

]
. We first form the characteristic polynomial

det(A− λI) = det

[
4− λ −5

2 −3− λ

]
= (4− λ)(−3− λ) + 10

= (λ+ 1)(λ− 2)

So this matrix has two distinct eigenvalues λ1 = −1 and λ2 = 2 that cor-

respond to the roots of (λ + 1)(λ − 2) = 0. Note that each eigenvalue has

an algebraic and geometric multiplicity of one, so there is a single nonzero

eigenvector associated to each of these distinct eigenvalues.

The eigenvectors are obtained by solving the following system of linear

algebraic equations

0 =

[
4− λ −5

2 −3− λ

]
x

for x using λ = −1 or λ = 2. If we let λ = −1 (the first eigenvalue) we get

0 =

[
5 −5

2 −2

]
x ⇒ x =

[
1

1

]
for λ = 2 we get

0 =

[
2 −5

2 −5

]
x ⇒ x =

[
5

2

]

All solutions of the ODE are obtained by taking a linear combination of

these eigensolutions that we just computed. So we have

x(t) = c1e
−t

[
1

1

]
+ c2e

2t

[
5

2

]
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Our initial condition is x0 =

[
8

5

]
and we need to pick c1 and c2 so that

x(0) = x0 when t = 0. This also gives rise to an LAE of the form[
1 5

1 2

][
c1

c2

]
=

[
8

5

]
The solution to this LAE is c1 = 3 and c2 = 1, so the full solution to our

original IVP is

x(t) = 3e−t

[
1

1

]
+ e2t

[
5

2

]
for all t ≥ 0.

Consider a linear space, X and consider the two linear transformations

T1,T2 ∈ L(X,X). Assume there exists an invertible linear transformation

Q ∈ L(X,X) such that

QT1 = T2Q

Let v be an eigenvector of T2 with eigenvalues λ, then

T2v = λv ⇒ QT1(Q
−1v) = λv

⇒ T1(Q
−1v) = λQ−1v

This last relation says that the vector Q−1v is an eigenvector of T1 with

the same eigenvalue λ. The linear transformations T1 and T2 therefore

have the same eigenvalues and their eigenvectors are related through an

invertible coordinate transformation, Q. We say that the matrices T1 and

T2 are similar and we refer to Q as a similarity transformation.

Similarity transformations provide a useful way of transforming a ma-

trix into a similar form that is easier to work with. Such “convenient” forms

are called canonical forms. One important canonical form of a matrix is its

diagonal form (when it exists) that is also known as its modal form. In par-

ticular, consider a square matrix A with n distinct eigenvalues {λ1, . . . , λn}
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with associated eigenvectors {v1, . . . , vn}. Define the matrices

V =
[
v1 · · · vn

]
, Λ = diag(λ1, . . . , λn) =


λ1 · · · 0
... . . . ...

0 · · · λn


We can therefore see that

AV = A
[
v1 · · · vn

]
=
[
λ1v1 · · · λnvn

]

=
[
v1 · · · vn

]
λ1 · · · 0
... . . . ...

0 · · · λn


= VΛ

So we can see that V is a similarity transformation matrix between A and

Λ, where Λ is a diagonal matrix whose diagonal elements are the eigenval-

ues.

So if we take our original ODE

ẋ = Ax, x = x0

and introduce the similarity transformation Vy = x then we get

Vẏ = AVy, Vy0 = x0

which implies that

ẏ = V−1AVy = Λy, y0 = V−1x0

This is “similar” to the original system. In fact it is better to say that the

two systems are topologically equivalent for the trajectories of both ODEs

can be mapped into each other through the invertible matrix V. Note that

this diagonalized system is “easy” to solve since both components are de-

coupled. In particular, we can see that

y1(t) = c1e
−t, y2(t) = c2e

2t
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where c1 and c2 are chosen to satisfy the initial condition y(0) = V−1x0.

We can then recover our earlier solution in the original coordinate frame

through the equation x(t) = V−1y(t).

Note that in the preceding example we assumed that A had n distinct

eigenvalues. This is a sufficient condition for A to be diagonalizable through

a similarity transformation. In general, however, this may not always be the

case. If some eigenvalues have a geometric multiplicity that is less than the

eigenvalue’s algebraic multiplicity, then it is not possible to diagonalize the

matrix. The best we can do is convert it to its Jordan Canonical Form.

Let the characteristic polynomial of A be

p(λ) = (λ1 − λ)m1 · · · (λp − λ)mp

such that
p∑

i=1

mi = n. The Jordan Canonical form of A is

J =


J1 0 · · · 0

0 J2 · · · 0
...

... . . . ...

0 0 · · · Jp


where Ji is an mi ×mi matrix of the form

Ji = λiImi
+Ni

in which

Ni =



0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
... . . . ...

...

0 0 0 · · · 1 0

0 0 0 · · · 0 1

0 0 0 · · · 0 0


The Jordan canonical form always exists.



38 1. MATHEMATICS FOR LINEAR SYSTEMS

2.4. PCA and Singular Value Decompositions. Principal component

analysis (PCA) is a useful way for taking a set of data points D = {xk}Mk=1

where xk ∈ Rn and identifying a set of orthogonal vectors P = {pk}mk=1

whose span form a subspace that minimizes the mean squared error between

vectors in the subspace P and the datapoints in D. This problem has impor-

tant applications in data compression and machine learning applications.

Let the data samples D = {xk}Mk=1 be real valued vectors in Rn and let

us construct a data matrix

X =
[
x1 x2 · · · xM

]
whose columns are the data sample vectors, xk. This matrix, therefore,

lies in Rn×M . Now let P be a linear transformation from Rn to Rm where

m < n. We let P be a concrete representation of this linear transformation

of the form

P =


pT1

pT2
...

pTm


where pk ∈ Rn. If we then consider a new data matrix obtained by trans-

forming X through Y,

Y = PX

we see that Y ∈ Rm×M is a matrix whose columns are the projections of xk

onto a lower dimensional (remember m < n) latent space. Essentially, we

can think of Y as a lower dimensional representation for the information in

the original data sample, X. Since it is lower dimensional, we have essen-

tially ”compressed” the original data vectors in X into a lower dimensional

vector y ∈ Y.

The rows of P are said to be principal components of X if they maximize

the trace of the covariance matrix of Y

CY =
1

M
YYT



2. LINEAR ALGEBRA 39

subject to CY being diagonal and PPT = I. These last two conditions

requires that principal components are orthogonal to each other and that

they have unit length.

We will now show that the principal components in P are the m eigen-

vectors of XXT that have the largest eigenvalues. Note that the covariance

matrix of Y may be written as

CY =
1

M
YYT = P

(
1

M
XXT

)
PT = PCXP

T

where CX = 1
M
XXT is the covariance matrix of the original data matrix

X. We may decompose XXT as VΛVT where Λ is a diagonal matrix

consisting of the eigenvalues of CX and V is a matrix of eigenvectors of

CX arranged as columns.

Let us choose P to be a matrix whose rows are eigenvectors of CX. To

simplify this discussion we’ll assume that the eigenvalues of CX are distinct

with an algebraic multiplicity of 1. We can then write the covariance of Y

CY = VTVΛVTV = Λ

where the last line holds because the eigenvectors of a real symmetric matrix

are mutually orthogonal. We have just shown that if we choose the rows of

P from the eigenvectors of CX, then we diagonalize the covariance matrix

of Y. That diagonal contains m of the eigenvalues of CX which we know

must all be positive since XXT is symmetric. Clearly we can maximize the

trace of CY if we simply form P from the eigenvector associated with the

m largest eigenvalues of CX.

It is common to use a particular matrix decomposition known as the

singular value decomposition (SVD) to compute the principal components.

The algorithms used to compute SVDs represent one of the most numeri-

cally stable ways of determining the rank of a matrix, especially for very

large data matrices. SVDs are also useful in representing the frequency re-

sponse of MIMO LTI systems and they can be used to characterize how
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close a matrix is to be singular. For any m × p matrix, Q, one can prove

that there exist m×m and p× p unitary matrices U and V and a real r× r

diagonal matrix Σ such that

Q = U

[
Σ 0

0 0

]
VT

The matrix Σ has the form

Σ = diag(σ1, σ2, . . . , σr)

where σi ≥ σi+1 for i = 1, . . . , r − 1 and r ≤ min(m, p) is the rank of

matrix Q. The triple, (U,Σ,V) is called the singular value decomposition

of Q. This decomposition is unique and σ1 to σr are called the non-zero

singular values of Q. It can be readily shown that these non-zero singular

values are also the positive roots of the non-zero eigenvalues of QTQ. The

SVD of Q may also be written as

Q = UΣVT =
r∑

i=1

σiuiv
T
i

where ui and vi are the ith rows of U and V, respectively.

To see how this relates back to PCA, let us consider a data matrix X

whose columns are the data sample vectors that have been centered with

respect to the dataset’s mean. Recall that C = 1
M
XXT is the covariance

matrix of the data matrix. We know the principal components are the eigen-

vectors of CX. Now consider the SVD of the data matrix X = UΣVT . Let

us express the covariance matrix of X in terms of its SVD

XXT = UΣVTVΣUT = UΣ2UT

We can therefore conclude that

CX =
1

M
UΣUT = UΛUT

where Λ is a diagonal matrix whose diagonal elements are λi =
σ2
i

M
. Since

U is a unitary matrix (i.e. UTU = I) we can readily see that

CXU = UΛ
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This means that the columns of U are the prinicipal components. Since we

defined the PCA transformation P so its rows were the principal component

vectors, we have P = UT . If we then look at transforming all data points

into the PCA coordinates we have

Y = PX = UTUΣVT = ΣVT

2.5. Cayley-Hamilton Theorem. The characteristic polynomial of a

matrix A can be used in other ways. Let us write the characteristic polyno-

mial as, p(s) = det(sI −A), with respect to the indeterminate variable s.

This polynomial may be written as

p(s) = a0s
n + a1s

n−1 + · · ·+ an−1s+ an

where ai for i = 0, 1, . . . , n are real coefficients. We define the matrix

function

p(A) := a0A
n + a1A

n−1 + · · ·+ an−1A+ anI

An important fact about this matrix function is that p(A) = 0 when p(s)

is the characteristic polynomial of A. This result is known as the Cayley-

Hamilton Theorem [Strang (1976)]. It will be useful in our later work. The

proof of this relationship will also be useful later.

Let N(s) be the classical adjoint2 of A − sI. This matrix is a function

of s and may be written as

N(s) = N1s
n−1 +N2s

n−2 + · · ·+Nn−1s+Nn

2The classical adjoint, adj(A) of a matrix, A, is obtained by taking the transpose of

its cofactor matrix, cof(A). The cofactor matrix of a square matrix A is a matrix whose

elements are the cofactors of A. The ijth cofactor of A is the determinant of a matrix

obtained by deleting the ith row and jth column of the matrix and multiplying by −1 if

i+j is odd. The inverse of a matrix A can be computed from its adjoint and its determinant,

A−1 = [adj(A)] /det(A).
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where the Ni (i = 1, 2, . . . , n) are real valued matrices. This matrix satisfies

the equation

(A− sI)N(s) = det(A− sI)I

Expanding this out gives

(A− sI)(N1s
n−1 + · · ·+Nn−1s+Nn) = (a0s

n + · · ·+ an−1s+ an)I

Multiplying out the left hand side of the above equation and equating like

power yields,

−N1 = a0I

AN1 −N2 = a1I
...

ANn−1 −Nn = an−1I

ANn = anI

Multiply the first equation by An, the second by An−1, and so on to obtain

−AnN1 = a0A
n

AnN1 −An−1N2 = a1A
n−1

...

A2Nn−1 −ANn = an−1A

ANn = anIn

Adding up these terms shows that

0 = a0A
n + a1A

n−1 + · · ·+ an−1A+ anI = p(A)

thereby completing our verification of the Cayley-Hamilton theorem.

The Cayley-Hamilton theorem is a useful technical tool. It implies for

any A ∈ Rn×n that

An = −a1A
n−1 − a2A

n−2 − · · · − an−1A− anIn
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This can be used to show that

An+1 = (a21 − a2)A
n−1 + (a1a2 − a3)A

n−2 + · · ·+ (a1an−1 − an)A+ a1anIn

In other words, An and An+1 can be expressed as a linear combination of

a finite number of powers of Ak for k = 0 to n − 1. So for any k ≥ n, we

can always write Ak as a linear combinations of In, A, A2, · · · ,An−1. We

will use this observation to obtain finite length representations of analytic

functions, f : C → C, of a complex variable.

A function of a complex variable, f : C → C, is analytic if it has

derivatives of all orders. If f(s) is analytic then we can express it as a

convergent power series of the form,

f(s) =
∞∑
k=0

αks
k, where αk =

1

2πj

∫
|w|=r

f(w)

wk+1
dw

This is, essentially, a Taylor series expansion of f about 0, which means

that we can also write this as

f(s) =
∞∑
k=0

f (k)(s)

k!
sk

where f (k)(s) = dkf(s)
dsk

. We now show how the Cayley-Hamilton theorem

can be used to reduce the order of an analytic function, f(A), of the square

matrix A.

So consider the matrix A ∈ Rn×n and a polynomial f : C → C that takes

values f(s). Let p(s) = det(sI −A) denote the characteristic polynomial

of A. Note that one can always write f(s) in the form

f(s) = q(s)p(s) + r(s)

where q(s) is found by polynomial long division, p(s) is the characteristic

polynomial, and the remainder polynomial, r(s), is of degree less than or

equal to n−1. The fact that such polynomials always exist is a consequence

of the division algorithm in abstract algebra.
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Now let λ ∈ C be any eigenvalue of A. At such eigenvalues we know

p(λ) = 0, and using this in the relation f(s) = q(s)p(s) + r(s) we can

conclude that

f(λ) = r(λ)

where r(s) is the remainder polynomial of degree n − 1 or less. Now

consider the corresponding matrix polynomial f(A) where one simply re-

places s by the matrix A. From the Cayley-Hamilton theorem we know that

p(A) = 0 which means that

f(A) = q(A)p(A) + r(A)

= r(A)

This last relationship can be used to set up a system of equations from which

a reduced order representation of f(A) can be obtained. Recall that f is

analytic, so the right hand side of the above equation is an infinite series

formed from the Taylor series of f . By the division algorithm, on the other

hand, we know that the polynomial on the left hand side of the above equa-

tion, r, has a degree less than or equal to n − 1. This r(A), therefore,

represents our reduced order representation for the matrix function f(A).

As an example, let us consider a polynomial function of A

f(A) = A4 + 3A3 + 2A2 +A+ I

where the matrix A =

[
3 1

1 2

]
. The characteristic polynomial of A is

p(s) = det(sI−A) = s2 − 5s+ 5

which means the eigenvalues of A are λ1 = 1.3820 and λ2 = 3.6180. We

know that f(s) = s4+3s3+2s2+2s+1, so applying the division algorithm

to find the remainder r(s) gives

f(s)

p(s)
=

s4 + 3s3 + 2s2 + 2s+ 1

s2 + 5s+ 5

= s2 + 8s+ 37 +
146s− 184

s2 − 5s+ 5
= q(s) +

r(s)

p(s)
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and so

f(s) = (s2 + 8s+ 37)p(s) + 146s− 184 = q(s)p(s) + r(s)

and so

r(s) = 146s− 184

Since we know for the given A that f(A) = r(A) we can conclude that

f(A) = A4 + 3A3 + 2A2 +A+ I

= 146A− 184I

which is a reduced order representation of f(A).





CHAPTER 2

Linear Models for Dynamical Systems

Linear systems theory is concerned with linear mathematical models that

are used to predict, simulate, and estimate the behavior of dynamical sys-

tems generating outputs as a function of time. Time may be either continu-

ous (real-valued) or discrete (integer-valued). These systems are dynamical

because their outputs at time t are a function of the past outputs and past

inputs, so these systems have ”memory”. In many cases, that ”memory”

can be encapsulated as a single real-valued vector, x(t), that is sufficient

to predict the system’s outputs after time t. That vector, x(t), is called the

system’s state at time t. The notion of ”state” encapsulates the prior infor-

mation needed to predict future outputs and it is one of the main concepts

buried at the heart of linear systems theory. In many cases, we can implic-

itly characterize the state in terms of a differential or difference equation

that forms the system’s state-space realization. This chapter introduces

state-based models for linear dynamical systems and discusses how they

arise in the mathematical modeling of various systems found in engineer-

ing applications.

1. Linear State-based Realizations of Dynamical Systems

A dynamical system, G, is one that accepts an input signal, w, and produces

an output signal y. For us a signal will be a function of time, so that the input

signal can be specified as w : R → Rm indicating that it maps time t ∈ Rm

to a vector w(t) ∈ Rm. We think of w as the ”name” of the signal and we

think of w(t) as the ”value” that this signal takes at time t. The system,

G, therefore is an operator that transforms an input signal into an output
47
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signal. In particular, G maps the input signal, w, onto an output signal y.

We will use the notational convention y = G[w] to denote that the input

signal w was transformed into output signal y. The value that the output

takes at time instant t will be denoted as y(t) = G[w](t). We can make this

more precise by specifying the set of all input signals as Lin and the set of

output signals as Lout. From this standpoint, a system may then be seen as a

signal transformation and the system can be scoped out as G : Lin → Lout.

The value that G takes for an input w ∈ Lin is denoted as G[w] ∈ Lout.

The preceding description of signals and systems is exceptionally ab-

stract and provides no concrete way to ”represent” a specific system. To

quantitatively predict how a system might respond to a given input, we need

a concrete way of mathematically representing the system. This course

focuses on a particular kind of dynamic system, namely systems that are

linear and systems that have state space realizations. A system is said

to be linear if it satisfies the principle of superposition. In particular, let

G : Lin → Lout denote a system mapping signals from Lin onto signals in

Lout. Let us also assume that the signals in these two sets, Lin and Lout, take

values in the vector spaces Rm and Rp, respectively. The system G is said

to be linear if for any two signals w1, w2 ∈ Lin and any two real scalars,

α, β ∈ R, we have

G [αw1 + βw2] = αG [w1] + βG [w2](13)

In other words we can distribute the binary operations of scalar-vector mul-

tiplication and vector addition outside of the scope of the G operator. From

an analysis standpoint this is extremely useful because it means that one

can determine the response of the system to any input in terms of a linear

combination of simpler inputs that whose behavior we already know.

We still, however, need a concrete way of representing the system itself.

One way of taking care of this is through the system’s state-space realiza-

tion. The preceding system G : Lin → Lout has a state space realization if

the relation between the input and output signals can be said to satisfy the
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following set of equations

ẋ(t) = A(t)x(t) +B(t)w(t)

y(t) = C(t)x(t) +D(t)w(t)
(14)

for all t ≥ 0. The signal x : R → Rn is an internal signal of the system

called the system’s state and x(t), the state at time t ∈ R is a real-valued

vector of dimension n in Rn. The other objects are matrix-valued functions

of time, A : R → Rn×n, B : R → Rn×m, C : R → Rp×n, and D :

R → Rp×m. For this system to be completely characterized we also need

to specify the initial state at time 0, x(0) = x0, and we need to specify the

input signal w for all time. But once this information is available then one

can obtain a forward solution to the differential equation and use that to

determine the output y for all time greater than 0. Note that this state-space

realization is characterized by the four matrix function we have given. So

in particular, we can denote the state space realization of G (the operator)

as a packed collection of matrices

G
s
=

[
A(t) B(t)

C(t) D(t)

]

We call this the packed matrix representation of linear system G. The state

space realization above has these system matrices varying over time, so this

particular G is a time-varying system. If these matrices are constant for all

time, then G is a time-invariant system.

Remark: The state-space realization in equation (14) assumed continuous-

time inputs and outputs. State space realizations for discrete-time systems

take a similar form.

x(k + 1) = A(k)x(k) +B(k)w(k)

y(k) = C(k)(k) +D(k)w(k)
(15)

The internal state x : Z → Rn is not a discrete-time function so that x(k) ∈
Rn denotes the system state at time instant k ∈ Z.
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Consider the state-space system G
s
=

[
A B

C D

]
. Is this system linear?

To verify that this is indeed the case, we need to consider two arbitrary

signals w1, w2 ∈ Lin and two scalars α, β ∈ R. For the inputs, w1 and w2,

we know there are two state trajectories, x1 and x2, respectively, such that

ẋ1(t) = Ax1(t) +Bw1(t)

ẋ2(t) = Ax2(t) +Bw2(t)

y1(t) = Cx1(t) +Dw1(t)

y2(t) = Cx2(t) +Dw2(t)

Now consider the signals

x(t) = αx1(t) + βx2(t)

w(t) = αw1(t) + βw2(t)

then we have

ẋ(t) = αẋ1(t) + βẋ2(t)

= αAx1(t) + αBw1(t)

βAx2(t) + βBw2(t)

= A(αx1(t) + βx2(t)) +B(αw1(t) + βw2(t))

= Ax(t) +Bw(t)

Moreover this means that the system’s output under w(t) will be

y(t) = Cx(t) +Dw(t)

= C(αx1(t) + βx2(t)) +D(αw1(t) + βw2(t))

= α(Cx1(t) +Dw1(t)) + β(Cx2(t) +Dw2(t))

= αy1(t) + βy2(t)

The preceding two equations say that if we use w(t) = αw1 + βw2 as an

input to G that the output can be written as y = αy1 + βy2 where y1 is the

response to w1 and y2 is the response to w2. This assertion therefore verifies

the principle of superposition in equation (13) and we can assert that any
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state space realization

[
A B

C D

]
is a realization for a linear system. This

argument is summarized in the following theorem

THEOREM 1. Let G s
=

[
A B

C D

]
is a system that satisfies the principle

of superposition (13).

The input and output signals of a dynamical system may be viewed as

elements of a linear space. Linear spaces are abstract generalizations of

the more familiar vector space concept. In our case, we will confine our

attention to continuous-time systems whose inputs and outputs form linear

spaces denoted as L(Rm) and L(Rp), respectively. The notation L(Rn)

being a linear space of integrable functions, whose elements are x : R →
Rn. Let us consider two linear state-based systems G1 : L(Rm) → L(Rp)

and G2 : L(Rm) → L(Rp). We are going to define an algebra on such

linear systems by introducing two different binary operations that we refer

to as parallel composition and cascade or series composition.

The parallel composition of two systems, G1 and G2, will be denoted as

”addition”, with the symbol G1 + G2 and is defined on a componentwise

manner with respect to the system’s outputs. Namely, using the previous

notational conventions representing systems as ”signal transformations”,

(G1 +G2)[w] = G1[w] +G2[w]

Note that on the left hand side of this equation, the symbol + refers to the

”addition” of the two systems whereas on the right hand side of the equa-

tion the + symbol refers to addition over the linear space of output signals,

L(Rp). It is also convenient to think of this parallel composition in terms

of a block diagram where each block represents a system transformation.

Fig.1 shows the block diagram associated with G1 + G2. This diagram

shows the two systems, G1 and G2, acting in parallel on the same input, w

before adding their outputs together.
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FIGURE 1. (left) parallel composition, G1 +G2: (right) se-

ries or cascade composition, G2G1

Since both of these systems are linear state-based systems, they each

have a state space realization. So let us denote these two realizations as

G1
s
=

[
A1 B1

C1 D1

]
, G2

s
=

[
A2 B2

C2 D2

]
Each of these realizations give rise to the following state based equations

ẋ1 = A1x1 +B1w

ẋ2 = A2x2 +B2w

y1 = C1x1 +D1w

y2 = C2x2 +D2w

We know that y1 = G1[w] and y2 = G2[w]. So the parallel composition of

these two systems will produce the response

y = (G1 +G2)[w] = y1 + y2

in response to the input w. If we rewrite this output in terms of the state

equations we get[
ẋ1

ẋ2

]
=

[
A1 0

0 A2

][
x1

x2

]
+

[
B1

B2

]
w

y =
[
C1 C2

] [ x1

x2

]
+ (D1 +D2)w
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This means that we can immediately write down a state space realization

for the parallel composition of two systems as

G1 +G2
s
=

 A1 0 B1

0 A2 B2

C1 C2 D1 +D2


Note this is not the only state space realization we can obtain for the parallel

decomposition, but it is a convenient one that can be readily programmed in

a scripting language to automate the generation of a state-space realization

for two systems connected in parallel.

The other binary operation is called a series or cascade composition of

the systems G1 and G2. In this case we assume that G1 : L(Rm) →
L(Rq) and G2 : L(Rq) → L(Rp). The series composition is denoted as the

concatenation or multiplication of the two systems, denoted by the symbol

G2G1. This binary operation is defined as

(G2G1)[w] = G2 [G1 [w]]

The block diagram in Fig. 1 shows that a cascade combination first has G1

transform the input w and that G2 acts to transform the output of G1.

Since both of these systems are linear state-based systems, we can use

their state space realizations to construct a state-space realization of the

cascaded system G2. These realizations give rise to the following state-

based equations

ẋ1 = A1x1 +B1w

ẋ2 = A2x2 +B2y1

y1 = C1x1 +D1w

y = C2x2 +D2y1

Note that we have modified the inputs to the second and fourth equations to

be y1, the output from the first system, G1. What we see here is that y1 is an

intermediate variable that we would like to remove from the representation.
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So substituting the third equation into the second and fourth yields,

ẋ1 = A1x1 +B1w

ẋ2 = A2x2 +B2 (C1x1 +D1w)

= B2C1x1 +A2x2 +B2D1w

y = C2x2 +D2 (C1x1 +D1w)

= D2C1x1 +C2x2 +D2D1w

These equations immediately give rise to the following state space realiza-

tion for the cascaded system

G2G1
s
=

 A1 0 B1

B2C1 A2 B2D1

D2C1 C2 D2D1



These two binary operations can be used to construct a wide range of

systems. The fact that we have two ”formulae” for constructing state space

realizations of these system compositions means we can automate the con-

struction of state space realizations for any system that can be represented

as a sequence of parallel or cascade compositions. In other words, these

results provide a useful algorithmic way for constructing state space real-

izations. For convenience we will summarize the preceding derivation as a

theorem.

THEOREM 2. Let G1
s
=

[
A1 B1

C1 D1

]
and G2

s
=

[
A2 B2

C2 D2

]
, then

state space realizations for the parallel and cascade composition of these
two systems (assuming the input/outputs of each subsystem are correctly
dimensioned) are

G1 +G2
s
=


A1 0 B1

0 A2 B2

C1 C2 D1 +D2

 , G2G1
s
=


A1 0 B1

B2C1 A2 B2D1

D2C1 C2 D2D1


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2. Transform Modeling of Time-invariant Linear Systems

Let us consider a time-invariant system G
s
=

[
A B

C D

]
whose state equa-

tions take the form

ẋ(t) = Ax(t) +Bw(t)

y(t) = Cx(t) +Dw(t)

We first want to predict how the system will behave in response to a known

applied input signal w. How does one go about solving the ordinary differ-

ential equation (ODE)? This section reviews the use of Laplace transform

methods in solving the state equations for continuous time systems.

FIGURE 2. Transform Method for Solving Ordinary Differ-

ential Equations

Most undergraduate students who have taken an elementary course in

ordinary differential equations should be familiar with the use of trans-

form methods to solve systems of constant-coefficient ordinary differential

equations. Fig. 2 is a commutative diagram illustrating how the transform

method works. The diagram shows two ways for obtaining the system’s

response y(t), to an applied input w(t). The first way directly solves the

differential equation in the time domain and therefore requires calculus to

get a solution. The second approach transforms the time-domain signal w
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through a single-sided Laplace transform into a function of a complex vari-

able, W . It transforms the differential equations into a system of linear al-

gebraic equations (LAE). This LAE system can be solved more easily than

the original differential equations to obtain a function Y that is the Laplace

transform of the output signal y. One would only need to inverse trans-

form Y back into y to complete the problem. There are two things which

make this approach algorithmically more attractive than directly solving the

ODEs. First, the transformed system differential equations form a set of lin-

ear algebraic equations that can be easily solved using methods from high

school mathematics. Second the linear nature of the system allows us to

easily compute the Laplace and inverse Laplace transforms of the signals.

Together these two facts provide a powerful set of tools that solve the sys-

tem state equations and also provide significant insight into how one might

”control” that system to force it to behave in a desired manner.

Transform methods for continuous-time systems are based on the single

sided Laplace transform while discrete-time systems may be modeled using

single sided z transforms. The following subsections provides an informal

review of single sided Laplace transforms and z-transform methods.

2.1. Single-sided Laplace Transforms. A single sided Laplace trans-

form is an invertible linear transformation

L : L(R) → L(C)

where L(R) is a linear space of integrable time domain signals and L(C)
represents the set of functions of a complex variables with removable sin-

gularities. We will refer to the real-valued function, g : R → R as a time-

domain function (signal) and we will refer to its image under the Laplace

transform, L[g] : C → C, as a frequency-domain function. The single

sided Laplace transform of the function g takes the following values

L[g](s) =
∫ ∞

0

g(t)e−stdt

where s ∈ C.
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Let us consider the signal y(t) = e−αtu(t) where u is a unit step function

that takes values

u(t) =

{
1 t ≥ 0

0 otherwise

The signal y(t) is zero for t < 0, jumps to 1 when t = 0, and then decays

at an exponential rate for t > 0 if α > 0 and grows at an exponential rate

if α < 0. This means that the integral equation only exists when α > 0. In

that case we have

Y (s) = L[y](s) =

∫ ∞

0

e−(s+α)tdt

=

∫ ∞

0

e−(σ+α)te−jωtdt

=

∫ ∞

0

e−(σ+α)t cos(ωt)dt− j

∫ ∞

0

e−(σ+α)t sin(ωt)dt

where we used the variable substitution s = σ + jω with σ, ω ∈ R and we

used the Euler relation e−jωt = cos(ωt)− j sin(ωt). Note that the integrals

in the last equation are standard Riemann integrals that exist if and only if

σ+α > 0. The set of complex values, s = σ+ jω, that satisfy this relation

form the region of convergence (ROC) of the transform.

RoC = {s = σ + jω : σ > −α}

In particular, this means that the value Y (s) only exists (is finite) if s lies in

the RoC. If s is chosen outside of RoC, then Y (s) is not well defined. The

value that this integral converges to can be readily shown to be

L
[
e−αtu(t)

]
(s) =

∫ ∞

0

e−(s+α)tdt = − 1

s+ α
e−(s+α)t

∣∣∣∣∞
0

= − 1

σ + α + jω
e−(σ+α)t(cos(ωt)− j sin(ωt))

∣∣∞
0

=
1

s+ α
, for Re(s) > −α

Determining the Laplace transform of a given function using the preced-

ing integral formula is cumbersome and does not need to be repeated for
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type x(t) F (s)

impulse δ(t) 1

step u(t) 1
s

ramp tu(t)
1

s2

exponential e−atu(t)
1

s+ a
sine sin(ωt)u(t)

ω

s2 + ω2

cosine cos(ωt)u(t)
s

s2 + ω2

damped ramp te−atu(t)
1

(s+ a)2

damped general ramp tne−atu(t)
n!

(s+ a)n+1

damped sine e−at sin(ωt)u(t)
ω

(s+ a)2 + ω2

damped cosine e−at cos(ωt)u(t)
(s+ a)

(s+ a)2 + ω2

TABLE 1. Table of Standard Single Sided Laplace Trans-

forms

functions that are closely related to e−αtu(t). Rather than directly integrat-

ing any given function, we formally compute the integrals for a canonical

set of functions and then use a set of operational transforms to determine

the transform of the given function. Table 1 shows a table of canonical

single-sided Laplace transform pairs. Table 2 shows at table of well known

operational transform pairs.

The tables 1 and 2 are used together to compute more complex transform

pairs that may not be in the original table. As an example, let us consider

the function

y(t) = e−3t cos(5t+ 30◦)u(t)

The first thing we note is that

cos(ωt+ ϕ) = cos(ϕ) cos(ωt)− sin(ϕ) sin(ωt)
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we let ω = 5 and ϕ = 30◦ so this becomes

cos(5t+ 30◦) =

√
3

2
cos(5t)− 1

2
sin(5t)

and we can rewrite y(t) as

y(t) =

√
3

2
e−3t cos(5t)u(t)− 1

2
e−3t sin(5t)u(t)

From the table of operational transforms we know that

Y (s) =

√
3

2
L
[
e−3t cos(5t)u(t)

]
− 1

2
L
[
e−3t sin(5t)u(t)

]
From the table of canonical transforms we then get

Y (s) =

√
3

2

s+ 3

(s+ 3)2 + 25
− 1

2

5

(s+ 3)2 + 25

When Y (s) is a rational function (the ratio of two polynomials in s), it is

customary practice to simply the expression into a single ratio of two monic

polynomials multiplied by a real constant. So using this convention Y (s)

becomes

Y (s) =

√
3

2

s+ 5.8868

s2 + 6s+ 34

and the region of convergence includes that s where Re(s) > −3.

An important aspect of the Laplace transform is that it is invertible. This

means that there exists a linear transformation L−1 : L(C) → L(R) such

that L−1[Y ] = y if and only if L[y] = Y . This inverse transform is also

characterized by an integral formula,

y(t) = L−1[Y ](t) =
1

2π

∫ σ+j∞

σ−j∞
Y (s)estds

where σ = Re(s) is for any s in the RoC of Y (s). One may readily verify

this formula when Y (s) is strictly proper; namely |Y (s)| → 0 as |s| → ∞.

To verify this integral equation, we create a contour, CR, that is contained

within the transform’s region of convergence. One can show that the ROC

for a strictly proper Laplace transform is a half-space in the complex plane,

so we construct our contour from two parts. The first part is the line s =

σ + jω where σ is the real part of any complex number in the ROC and
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Type h(t) H(s)

Linearity αf(t) + βg(t) αF (s) + βG(s)

Time Shift f(t− T ) e−sTF (s)

for T > 0

s-shifting e−atf(t)u(t) F (s+ a)

Time scale f(at), a > 0
1

a
F
(s
a

)
Differentiation

df(t)

dt
sF (s)− f(0−)

Integration
∫ t

0

f(τ)dτ
F (s)

s

Initial Value lim
t→0+

f(t) lim
s→∞

sF (s)

assuming no impulse functions

Final Value lim
t→∞

f(t) lim
s→0

sF (s)

assuming at most one pole at the origin

with remaining poles having negative real parts

Convolution
∫ t

0

x(t− τ)g(τ)dτ F (s)G(s)

TABLE 2. Table of Operational Transforms (Laplace)

where ω ∈ [−R,R] where R is large. To close the contour we take a large

half circle, CR, of radius R that connects the points σ+ jR and σ− jR. We

can then invoke the Cauchy integral theorem 1 to assert

Y (s) = lim
R→∞

1

2πj

∮
CR

F (w)

w − s
dw

= lim
R→∞

1

2πj

∫
CR

F (w)

s− w
+ lim

R→infty

1

2πj

∫ σ+jR

σ−jR

F (w)

s− w
dw

1Cauchy Integral theorem [Levinson and Redheffer (1970)]: If f(z) is an analytic

function of a complex variable in a simply connected domain, thenf or any simple closed

contour in that domain, the contour integral of f is zero.
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One can show that the first integral goes to zero as R → ∞ because Y (s)

is strictly proper, which leaves

Y (s) =
1

2πj

∫ σ+j∞

σ−jω

F (w)

s− w
dw

We now insert this into the following equation

f(t) = L−1 [L[y]] (t) = L−1

[
1

2πj

∫ σ+jω

σ−jω

Y (w)

s− w
dw

]
=

1

2πj

∫ σ+jω

σ−jω

Y (w)L−1

[
1

s− w

]
dw

=
1

2πj

∫ σ+jω

σ−jω

Y (w)ewtdw

which verifies the integral formula we gave for the inverse Laplace trans-

form.

We can now use the transform pairs in tables 1 and 2 to solve for the state

trajectory x(t) of a linear dynamical system. As an example let us consider

the following state-based realization[
ẋ1(t)

ẋ2(t)

]
=

[
4 −5

2 −3

][
x1(t)

x2(t)

]
+

[
1

0

]
u(t), x0 =

[
2

1

]

y =
[
1/2 1

] [ x1(t)

x2(t)

]

where u(t) is a unit step function. A common way of solving such differ-

ential equations is to use the transform method illustrated in Fig. 2. This

approach uses the differentiation operational transform in table 2 to trans-

form the differential equation into a system of linear algebraic equations

sX1(s)− 2 = 4X1(s)− 5X2(s) +
1

s
sX2(s)− 1 = 2X1(s)− 3X2(s)

Y (s) =
1

2
X1(s) +X2(s)
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The first two equations for a system of linear algebraic equations that we

solve for X1(s) and X2(s) using standard methods such as Gaussian elimi-

nation. In particular, these two equations can be rewritten as[
1
s
+ 2

1

]
=

[
s− 4 5

−2 s+ 3

][
X1(s)

X2(s)

]
Since the matrix on the right hand side is 2 by 2, we can use Cramer’s

formula2 to get its inverse[
X1(s)

X2(s)

]
=

[
s− 4 5

−2 s+ 3

]−1 [
1+2s
s

1

]

=
1

(s− 4)(s+ 3) + 10

[
s+ 3 −5

2 s− 4

][
2 s+1/2

s

1

]

=

[
2 s2+s+1.5
s(s−2)(s+1)

s2+2
s(s−2)(s+1)

]

Remark: We can use software tools such as MATLAB to do much of

the ”algebra” used to obtain the preceding example’s final expression. In

particular, note the original system equations can be written in matrix-vector

form as

ẋ = Ax+Bu

y = Cx

Taking the Laplace transform gives

sX(s)− x0 = AX(s) +B
1

s
Y (s) = CX(s)

where x0 =

[
2

1

]
, A =

[
4 −5

2 −3

]
, B =

[
1

0

]
and C =

[
1/2 1

]
. So

we can use the following MATLAB script

2If A =

[
a b

c d

]
, then A−1 = 1

ad−bc

[
d −b

−c a

]
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s = tf(’s’);

A = [4 -5; 2 -3];

B = [1;0];

x0 = [2;1];

X = inv(s*eye(2,2)-A)*(B*1/s+x0);

zpk(X)

The last command converts the expression for X into a zero-pole form
that factors the numerator and denominator polynomials

ans =

From input to output...

2 (s-2) (s+1) (sˆ2 + s + 1.5)

1: -----------------------------

s (s-2)ˆ2 (s+1)ˆ2

(s-2) (s+1) (sˆ2 + 2)

2: ---------------------

s (s-2)ˆ2 (s+1)ˆ2

Continuous-time zero/pole/gain model.

Note that the computer algebra done by MATLAB does not cancel like

terms between the numerator and denominator, so this must be done by

hand to get

X1(s) = 2
s2 + s+ 1.5

s(s− 2)(s+ 1)
, X2(s) =

s2 + 2

s(s− 2)(s+ 1)

Since Y (s) = X1(s)/2 + X2(s), we can readily conclude that the system

response to the step input is

Y (s) =
s2 + s+ 1.5

s(s− 2)(s+ 1)
+

s2 + 2

s(s− 2)(s+ 1)
= 1.5

s2 + 0.333s+ 1.833

s(s− 2)(s+ 1)

Again, I used MATLAB and the zpk command to get the final expression

for Y (s).
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Because the Laplace transform is invertible, we can readily invert the

transform in our example to obtain a time-domain representation of the pre-

ceding transform. For cases where the transform is a strictly proper rational

transform, we can readily use the partial fraction expansion (PFE) method

to rewrite our rational expression as a sum of elementary transforms that

are in Table 1. This means that we write our earlier expression for Y (s) as

Y (s) = 1.5
s2 + 0.333s+ 1.833

s(s− 2)(s+ 1)

=
K0

s
+

K1

s− 2
+

K2

(s+ 1)

where K0, K1, and K2, are real-valued coefficients. A standard way of
teaching undergraduate students how to evaluate these coefficients is to
rewrite our preceding expression as

Y (s) =
K0

s
+

K1

s− 2
+

K2

s+ 1

=
K0(s− 2)(s+ 1) +K1s(s+ 1) +K2s(s− 2)

s(s− 2)(s+ 1)

=
s2(K0 +K + 1 +K2) + s(−K0 +K1 − 2K2) + (−2K0)

(s(s− 2)(s+ 1)

= 1.5
s2 + 0.333s+ 1.833

s(s− 2)(s+ 1)

we would then equate coefficients of the numerator polynomial, set up a

system of linear algebraic equations in terms of the coefficients and then

solve for those coefficients.

Another approach for finding these coefficients uses the Residue calcu-
lus3 from complex analysis. The residue calculus states that the coefficients,

3In complex analysis, the Residue theorem [Levinson and Redheffer (1970)] is a tool

used to evaluate line integrals of analytic functions over closed curves.
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K0, K1, and K2 are the residues of the rational function, where

K0 = lim
s→0

1.5
s2 + 0.333s+ 1.833

(s− 2)(s+ 1)

=
1.5(1.833)

−2
= −1.3750

K1 = lim
s→2

1.5
s2 + 0.333s+ 1.833

s(s+ 1)

= 1.5
4 + .6666 + 1.8333

2(3)
= 1.6250

K2 = lim
s→−1

1.5
s2 + 0.3333s+ 1.8333

s(s− 2)

= 1.5
1− .333s+ 1.8333

−1(−3)
= 1.25

This tends to be easier to solve by hand and it allows us to immediately see

that

Y (s) =
−1.3750

s
+

1.6250

s− 2
+

1.25

s+ 1

Each term on the right hand side is in the Laplace transform table, so we

can immediately write this out as

y(t) = −1.3750u(t) + 1.6250e2tu(t) + 1.25e−tu(t)

What we just showed is that any time-invariant state-based system of the

form

ẋ(t) = Ax(t) +Bw(t)

y(t) = Cx(t) +Dw(t)

can be solved using the transform method. The Laplace transform of the

state equations gives

sX(s)− x(0) = AX(s) +BW (s)

Y (s) = CX(s) +DW (s)
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These equations are algebraic and we solve the first one to show

X(s) = (sI−A)−1(BW (s) + x(0))

= (sI−A)−1BW (s) + (sI−A)−1x(0)

inserting our expression for X(s) into the second state equation gives

Y (s) = C(sI−A)−1BW (s) +C(sI−A)−1x(0)

= G(s)W (s) +G0(s)x(0)

The first term G(s) is called the transfer function of the system from the in-

put w to the output. It represents the system’s zero-state or forced response

to the external input w. The second term, G0 characterizes the system’s

zero-input or natural response to the system’s initial states. It may also be

thought of as a transfer function from the input x0 to the output. The transfer

function G(s) is usually seen as a concrete representation of the system’s

input-output behavior (assuming zero initial condition). We summarize this

in the following result

THEOREM 3. Given the state-space realization G
s
=

[
A B

C D

]
, then

the transfer function of this system is

G(s) = C(sI−A)−1B+D

The transfer function from W (s) to Y (s) has an explicit form in our

example which we can readily derive

G(s) = C(sI−A)−1B+D

=
[
1/2 1

] [ s− 4 5

−2 s+ 3

]−1 [
1

0

]

=
1

(s− 4)(s+ 3) + 10

[
1/2 1

] [ s+ 3 −5

2 s− 4

][
1

0

]

=
0.5s+ 3.5

s2 − s− 2
= 0.5

s+ 7

(s− 2)(s+ 1)
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The response of this system to a given input w(t) assuming zero initial

conditions x(0) = 0 will be the inverse transform of

Y (s) = G(s)W (s)

This is in our table of operational transforms which implies

y(t) =

∫ t

0

w(t− τ)g(τ)dτ

where g is the the inverse transform of G(s). Of greater importance is the

fact that the above integral can be viewed as a binary operation on w(t) and

g(t) called the convolution. The inverse transform g is called the impulse

response function of the system because if we let w(t) = δ(t), then Y (s) =

G(s) and we see that g(t) becomes the response of the system to a unit

impulse input, δ(t).

Remark: We could have also defined a linear system in terms of the

convolution of the input with the system’s impulse response function. In

general, this would take the form

y(t) =

∫ t

−∞
g(t, τ)w(τ)dτ

to imply that the impulse response function may also be a function of the

time t, by itself. This would imply that the ”response” changes depending

upon when the impulse is applied and would mean that the system is time-

varying. In particular, we can readily see that if g is only a function of the

time difference t− τ in the integral then the system is time-invariant.

2.2. Single-Sided z-Transforms: Laplace transforms are used for continuous-

time signals. A similar transform-based tool exists for discrete-time signal,

y : Z → R. The tool we’ll use below is called the z-transform. The single

sided z-transform is given by

Z[y](z) =
∞∑
k=0

y(k)z−k



68 2. LINEAR MODELS FOR DYNAMICAL SYSTEMS

type y(t) Y (s)

impulse δ(k) 1

step u(k)
z

z − 1
geometric αku(k)

z

z − α
damped ramp kαku(k)

αz

(z − α)2

cosine cos(ωk)u(k)
z2 − cos(ω)z

z2 − 2 cos(ω)z + 1

sine sin(ωk)u(k)
sin(ω)z

z2 − 2 cos(ω)z + 1

damped cosine αk cos(ωk)u(k)
z2 − α cos(ω)z

z2 − 2α cos(ω)z + α2

damped cosine αk sin(ωk)u(k)
α sin(ω)z

z2 − 2α cos(ω)z + α2

TABLE 3. Canonical z-transform pairs

As an example we compute the z-transform for the signal

y(k) = αku(k)

where u is a unit step function. If |α| < 1 then |y| asymptotically ap-

proaches zero as k → ∞. If |α| > 1, then |y| increases in a geometric

manner as k → ∞. We want to compute the single sided z-transform of

this function

Y (z) =
∞∑
k=0

αkz−k =
∞∑
k=0

(αz−1)k

The series is convergent when there exists M such that
∑∞

k=0 |αz−1|k =

M < ∞. This occurs when |αz−1| < 1 or equivalently |z| > |α|. The value

that the series converges to may be computed as follows.

Y (z) = 1 + αz−1 + (αz−1)2 + (αz−1)3 + · · ·

Notice that

αz−1Y (z) = αz−1 + (αz−1)2 + (αz−1)3 + · · ·
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If we subtract the last two equations we get

Y (z)− αz−1Y (z) = 1

and solving for Y (z) gives

Y (z) =
∞∑
k=0

(αz−1)k =
1

1− αz−1

We sometimes prefer expressing Y (z) as a rational function in terms of the

indeterminate variable, z, which gives

Y (z) =
z

z − α

Determining z-transforms using the series equation is also somewhat

cumbersome. So the usual approach is to determine transforms for a se-

lect set of canonical signals and use these canonical transforms along with

a corresponding set of operational transforms to find the transform for more

complex functions. A basic table of z-transform pairs is given in table 3. A

basic table of operational z-transform pairs is given in table 4.

Table 3 provides a set of elementary transform pairs that can be seen

as a basic dictionary of relationships. Not all signals may be in this form,

though they may be closely related. There are, therefore, a number of op-
erational transforms that can be used to find the transform of a function

that is “related” to that of the function in the table. A table of these opera-

tional transforms is provided in table 4. What should be apparent is that the

basic methods used by the z-transform are similar to those of the Laplace

transform.

The preceding example confined its attention to continuous-time sys-

tems, but all of the prior discussion is also relevant to discrete-time sys-

tems. For discrete-time systems, however, we use the z-transform. So let

us consider the discrete-time system whose input/output signals satisfy the

equation

y(k + 1) = −1

3
y(k) + w(k)
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Type h(k) H(z)

Linearity αf(k) + βg(k) αF (z) + βG(z)

Time Delay f(k − 1) z−1F (z) + f(−1)

Time Advance f(k + 1) zF (z)− zf(0)

z-scaling ejωkf(k) F (e−jωz)

First difference f(k)− f(k − 1) (1− z−1)F (z)− f(−1)

Accumulation
n∑

k=0

f(k)
1

1− z−1
F (z)

ramped function kx(k) −z
dF (z)

dz

Convolution Sum y(k) =
k∑

n=0

f(n)g(k − n) F (z)G(z)

Initial Value f(0) lim
z→∞

F (z)

Final Value lim
k→∞

f(k) lim
z→1

(z − 1)F (z)

TABLE 4. Table of Operational Transforms (z)

where k ≥ 0 and where y(0) = 0 and w is an input function of the form

w(k) =

{
1 for k = 1, 2, . . .

0 for k ≤ 0

Note that this is a unit step function that has been shifted so it starts at

k = 1, rather than k = 0. We denote the z-transforms of y and w as ŷ and

ŵ, respectively. We can use the operational transforms in table 4 to see that

zŷ(z) = −ŷ(z)
1

3
+ ŵ(z)

Solving for ŷ(z) gives

ŷ(z)

(
z +

1

3

)
= ŵ(z)

which we rewrite as

ŷ(z) =
1

z + 1/3
ŵ(z)

from which we see the system’s transfer function is G(z) = 1
z+1/3

.
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Since y(0) = 0 (zero initial condition), the system’s total response is its

forced response to the shifted step input ŵ(z). In particular, the z-transform

of w can be shown to be

ŵ(z) =
z−1

1− z−1
=

1

z − 1

and so

ŷ(z)

(
z +

1

3

)
=

1

z − 1

Solving for ŷ(z) gives

ŷ(z) =
1

(z − 1)(z + 1/3)

We get the time-domain signal, y, from the partial fraction expansion of

ŷ(z).

ŷ(z) =
1

(z − 1)(z + 1/3)
=

K0

z + 1/3
+

K1

z − 1

Since ŷ(z) is a rational function of a complex variable, I can use the residue

method to get K0 and K1. In particular,

K0 = lim
z→−1/3

1

z − 1
=

1

−1/3− 1
= −3

4

K1 = lim
z→1

1

z + 1/3
=

1

1 + 1/3
=

3

4

So we can see that

ŷ(z) = −3

4

1

z + 1/3
+

3

4

1

z − 1

= −3

4
z−1 z

z + 1/3
+

3

4
z−1 z

z − 1

We use the transforms in table 3 and the time delay operational transform

to deduce that

y(k) = −3

4

(
−1

3

)k−1

u(k − 1) +
3

4
u(k − 1)

=

{
3
4

(
1−

(
−1

3

)k−1
)
, for k = 1, 2, . . .

0 otherwise
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where u is the discrete-time unit step function. The actual sequence we get

is

y(0) = 0, y(1) = 0, y(2) =
3

4
+

1

4
= 1, y(3) =

3

4
− 1

12
, · · ·

Remark: You can also use PFE by rewriting ŷ(z) as a function of z−1.

This gives

ŷ(z) =
z−1

1− z−1

z−1

1 + (1/3)z−1

= z−2 1

(1− z−1)(1 + (1/3)z−1

= z−2

(
K1

1− z−1
+

K2

1 + (1/3)z−1

)
Evaluate the residues to get

K1 = lim
z−1→1

1

1 + (1/3)z−1
=

3

4

K2 = lim
z−1→−3

1

1− z−1
=

1

4

So we have

y(n) =
3

4
u(n− 2) +

1

4

(
−1

3

)n−2

u(n− 2)

The sequence is then

y(0) = 0, y(1) = 0, y(2) = 1, y(3) =
3

4
− 1

12
, · · ·

This is the same we got before, but the expression for the sequence is a bit

more compact than what we had before.

2.3. Frequency Response. One of the more important features of trans-

fer function representations of a linear system is their relationship to a sys-

tem’s frequency response function. This is easiest to explain for continuous-

time LTI systems. In particular, let G(s) denote a single-input single-output

(SISO) transfer function for an LTI system and assume the input is a co-

sinusoidal input, w(t) = A cos(ωt + ϕ)u(t) where A is sinusoid’s ampli-

tude, ϕ is the phase angle, and ω is the frequency. The Laplace transform
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of w is

W (s) =
A(s cosϕ− ω sinϕ)

s2 + ω2

So the Laplace transform of the output is

Y (s) = G(s)
A(s cosϕ− ω sinϕ)

s2 + ω2

The partial fraction expansion for Y (s) can be written as

Y (s) =
K1

s− jω
+

K1

s+ jω

+
∑

terms generated by poles of G(s)

If we assume the poles of G(s) all have negative real parts, then the time-

domain terms associated with these poles will asymptotically go to zero as

t → ∞. So for large t, we can ignore these components and the steady-state

or recurrent behavior of the system becomes

Yss(s) =
K1

s− jω
+

K1

s+ jω

These residues can be shown to have the form

K1 =
1

2
G(jω)Aejϕ =

A

2
|G(jω)|ej(argG(jω)+ϕ)

So the steady-state time-domain response of this system is

yss(t) = A|G(jω)| cos(ωt+ ϕ+ argG(jω))

This shows that the transfer function allows one to characterize the steady-

state response of the LTI system to a sinusoidal input. The amplitude of

the response is also a sinusoid of the same frequency with an amplitude

equal to A times the modulus of the transfer function |G(jω)|. The phase

of the output sinusoid equals the sum of the phase angle of the input, ϕ, and

the phase angle of the transfer function, arg(G(jω)). We refer to this pair,

(|G(jω)|, argG(jω)). as the system’s frequency response function.

Frequency response functions are often used to visualize the behavior

of a continuous-time LTI system. This visualization could be obtained
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by plotting |G(jω)| and argG(jω) as a function of ω. It is more con-

venient, however, to plot these functions on a log scale. In particular we

plot 20 log10 |G(jω)| versus logω. The particular unit for 20 log10 |G(jω)|
is called a decibel (dB). We usually plot argG(jω) in degrees along the

logω axis. Together these plots form the Bode plot of the LTI system. Such

plots are relatively easy to plot by hand and are frequently used in designing

feedback controllers for a given SISO LTI system.

There is a close relationship between a system’s frequency response and

its L2-induced gain. Recall that

∥G∥L2−ind = inf
{
γ ∈ R : ∥G[w]∥L2

≤ γ∥w∥L2

}
We can find an explicit formula for this gain when G is a causal LTI system.

In particular, note that Parseval’s relation implies

∥y∥2L2
=

∫ ∞

−∞
|y(τ)|2dτ =

1

2π

∫ ∞

−∞
|Y (jω)|2dω

where Y (s) is the Laplace transform of y. For an LTI system we know

Y (s) = G(s)W (s) where W (s) is the Laplace transform of the input sig-

nal. This means we have

∥y∥2L2
=

1

2π

∫ ∞

−∞
|Y (jω)|2 dω ≤ 1

2π

∫ ∞

−∞
|G(jω)|2 |W (jω)|2 dω

≤
[
max

ω
|G(jω)|2

] [ 1

2π

∫ ∞

−∞
|W (jω)|2 dω

]
=

[
max

ω
|G(jω)|2

]
∥w∥2L2

= ∥G∥2H∞
|w|2L2

This means, therefore that the L2-induced gain is bounded above by the H∞

norm of the system’s transfer function G.

∥y∥2L2
≤ ∥G∥2H∞

∥w∥2L2

As before we can show this upper bound equals the induced gain by

finding specific input for which equality holds. Finding such a signal again

requires some degree of insight into the system. But we know that |G(jω)|
is the magnitude of the output’s response when the input is a unit sinusoid



3. STATE SPACE REALIZATIONS 75

with frequency ω. Since the H∞ norm is the largest gain-magnitude of the

frequency response function, we simply need to apply a sinusoidal input

whose frequency

ω0 = argmax
ω

|G(jω)|

The inequality must hold with equality for this particular input and so we

can conclude an LTI system’s induced gain is simply maxω |G(jω)| =

∥G∥H∞ .

The preceding formula for the L2 gain was derived for SISO systems. If

G is a MIMO system, then its induced L2 gain can be computed in terms

of the maximum singular value of the frequency response matrix G(jω). In

particular we have

∥G∥L2−ind = sup
ω∈R

σ(G(jω))

These singular values of the matrix G(jω) are denoted as σ(G(jω)). If we

plot these singular values as a function of frequency, we obtain a natural

extension of the Bode plot to MIMO systems. In particular, MATLAB’s

control system toolbox, has a function, sigma, that can be used to plot the

singular values of a transfer function matrix.

3. State Space Realizations

The preceding sections determined the transfer function of a state-space

realization G
s
=

[
A B

C D

]
has the form

G(s) = C(sI−A)−1B+D

While each state space realization has a unique transfer function, each trans-

fer function has an infinite number of possible state space realizations. This

section derives one particular ”canonical” realization for a given transfer
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function. Note that we can rewrite G(s) as

G(s) =
Y (s)

W (s)
=

n(s)

d(s)
=

b1s
n−1 + b2s

n−2 + · · ·+ bn−1s+ bn
sn + a1sn−1 + a2sn−2 + · · ·+ an−1s+ an

Let y(k) denote the kth time derivative of the signal y with y(0) = y. Assume

that y(k)(0) = 0 for all 0 ≤ k ≤ n. A similar set of restrictions will be

placed on the input signal w. We may then rewrite the above equation as

Y (s)(sn + a1s
n−1 + · · ·+ an−1s+ an) = W (s)(b1s

n−1 + · · ·+ bn−1s+ bn)(16)

Take the inverse transform using the fact that the initial values of all deriva-

tives is zero to obtain the nth order differential equation

y(n) = a1y
(n−1) + · · ·+ an−1y

(1) + any = b1u
(n−1) + · · ·+ bn−1u

(1) + bnu

This is an nth order differential equation, but we can rewrite it as a set of n

first order differential equations.

This is done by introducing an internal state variable, z, that satisfies the

differential equation

w(t) = z(n)(t) + a1z
(n−1)(t) + · · ·+ an−1z

(1)(t) + anz(t)

where z(n)(t) denotes the nth time derivative of z(t). Taking the Laplace

transform (assuming zero initial conditions) gives

W (s) = Z(s)(sn + a1s
n−1 + · · ·+ an−1s+ an)(17)

We can insert this expression for W (s) into our earlier equation (16) to

obtain

Y (s) = (b1s
n−1 + · · ·+ bn−1s+ bn)Z(s)(18)

and taking the inverse transform of equations (17-18) yields

w(t) = z(n)(t) + a1z
(n−1)(t) + · · ·+ an−1z

(1)(t) + anz(t)(19)

y(t) = b1z
(n−1)(t) + · · ·+ bn−1z

(1)(t) + bnz(t)(20)
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Let us now define the following state variables, xi for i = 1, . . . , n, as

xi = z(n−i)

for i = 1, . . . , n. This allows us to rewrite equation (19) as

ẋ1(t) = −a1x1(t)− a2x2(t)− · · · − anxn(t) + w(t)

ẋ2(t) = x1(t)

...

ẋn(t) = xn−1(t)

and we can rewrite equation (20) as

y(t) = b1x1(t) + b2x2(t) + · · ·+ bn−1xn−1(t) + bnxn(t)

These state equations in matrix form become



ẋ1(t)

ẋ2(t)

ẋ3(t)

...

ẋn−1(t)

ẋn(t)


=



−a1 −a2 −a3 · · · −an−1 −an

1 0 0 · · · 0 0

0 1 0 · · · 0 0

...
...

. . . · · ·
...

...

0 0 0
. . . 0 0

0 0 0 · · · 1 0





x1(t)

x2(t)

x3(t)

...

xn−1(t)

xn(t)


+



1

0

0

...

0

0


u(t)

= Ax(t) +Bu(t)

y(t) =
[

b1 b2 · · · bn−1 bn

]


x1(t)

x2(t)

...

xn−1(t)

xn(t)


= Cx(t)

So what we have done is taken a strictly proper scalar input-output transfer

function G(s) = n(s)
d(s)

used it to construct n first order ODEs characterizing

the evolution of the state vector, x, for the input-output system.
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The particular A, B, and C have a convenient form. In particular, the A

matrix is a companion matrix. We can readily show that

det(A) = det





−a1 −a2 −a3 · · · −an−1 −an

1 0 0 · · · 0 0

0 1 0 · · · 0 0
...

... . . . · · · ...
...

0 0 0
. . . 0 0

0 0 0 · · · 1 0




= sn + a1s

n−1 + a2s
n−2 + · · ·+ an−1s+ an

In other words, the coefficients of the transfer function matrix’ denominator

polynomial are embedded in the first row of the A matrix and that denomi-

nator polynomial is equal to A’s characteristic polynomial. The other thing

we notice is that the coefficients of transfer function’s numerator polyno-

mial are embedded in the C matrix. These observations suggest that this

is a particularly convenient state space realization because it can be written

down directly from the transfer function’s polynomials. Such “convenient”

realizations are said to be canonical and what we’ve shown you above is one

form of the companion canonical realization for a transfer function matrix.

Given a transfer function, G(s), there are actually an infinite number

of possible state-space realizations. This can be readily seen as follows.

Consider a state space realization (such as the controllable companion form

above).

G
s
=

[
A B

C D

]

Let Q be any nonsingular square matrix with the same dimensions as A.

This means there exists a matrix Q−1 such that Q−1Q = I. If x ∈ Rn is

the state vector for G, we can create a new ”state”, z = Qx by passing x

through the matrix Q. This means that x = Q−1z and if we take the time
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derivative we get

ẋ = Ax+Bw

= AQ−1z +Bw

= Q−1ż

The last two equations can be rewritten as

ż = QAQ−1z +QBw

Note also that

y = Cx+Dw

= CQ−1z +Dw

This gives rise to the following state space realization

ż = Ãz + B̃w

= QAQ−1z +QBw

y = C̃z + D̃w

= CQ−1z +Dw

where

Ã = QAQ−1, B̃ = QB

C̃ = CQ−1, D̃ = D

We claim that this state space realization,

[
Ã B̃

C̃ D̃

]
has the same trans-

fer function as the original state space realization,

[
A B

C D

]
. This asser-

tion is easily verified by directly computing the transfer function of

[
Ã B̃

C̃ D̃

]
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as

C̃(sI− Ã)−1B̃+ D̃ = CQ−1(sI−QAQ−1)−1QB+D

= CQ−1Q(sI−A)−1Q−1QB+D

= C(sI−A)−1B+D

= G(s)

This verifies that two state space realizations whose state spaces are related

through a nonsingular matrix will also have the same transfer function.

Since the transfer function characterizes the system’s input/output behav-

ior, this implies that both state space realizations appear to respond in the

same way to the same inputs. So with regard to their input/output behavior

the two state space realizations are indistinguishable from each other. This

leads to the following theorem

THEOREM 4. Consider the state-space realization

ẋ(t) = Ax+Bw

y(t) = Cx+Dw

and let Q be any nonsingular matrix such that z = Qx, then the state space

realization

ż(t) = QAQ−1z +QBw

y(t) = CQ−1z +Dw

has the transfer function

G(s) = C(sI−A)−1B+D

The obvious thing to do is to take a given state space realization

[
A B

C D

]

and transform it to a realization

[
Ã B̃

C̃ D̃

]
that is more convenient to work

with.
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One such ”canonical” form is the controller companion form given above.

This form is useful because it can be directly written down once we know

the transfer function. It is called a controller companion form because it

also has an important property known as controllability that we will study

later. But essentially, this means that we can always find an input w that

drives the controller companion form’s state to any desired state. Another

convenient companion form is the observable companion form

ẋ1

ẋ2

...

ẋn−1

ẋn


=


0 · · · 0 −α1

1 · · · 0 −α2

... . . . ...
...

0 · · · 1 −αn−1





x1

x2

...

xn−1

xn


+


b1

b2
...

bn−1

w

y =
[
0 0 · · · 0 1

]


x1

x2

...

xn−1

xn


+ d0w

which has the transfer function

G(s) =
bn−1s

n−1 + . . .+ b1s+ b0
sn + αn−1sn−1 + · · ·+ α1s+ α0

+ d0

This form is convenient because it too can be written down as soon as we

have an expression for the transfer function and because it has the impor-

tant property of observability, meaning that we can reconstruct the system’s

initial state from any finite length set of inputs, w, and outputs y.

Another convenient form is the modal form. This one is particularly

easy to find when the A matrix has n distinct eigenvalues {λ1, . . . , λn}
with associated eigenvectors {v1, . . . , vn}. If we then define the matrices

V =
[
v1 · · · vn

]
, Λ = diag(λ1, . . . , λn) =


λ1 · · · 0
... . . . ...

0 · · · λn


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then we can see that

AV = A
[
v1 · · · vn

]
=
[
λ1v1 · · · λnvn

]

=
[
v1 · · · vn

]
λ1 · · · 0
... . . . ...

0 · · · λn


= VΛ

The matrix V is invertible and therefore can be used to transform a state

space realization

[
A B

C D

]
to a modal form.


λ1 · · · 0 b0
... . . . ...

...

0 · · · λn bn−1

c0 · · · cn−1 d0


which has the transfer function

G(s) =
n−1∑
k=0

ckbk
s− λk+1

+ d0

Note that the preceding version of the modal form assumed A had n

distinct eigenvalues. If the matrix is not diagonalizable then some repeated

eigenvalues may not have not have enough eigenvectors. In this case, the

best we can do is use a similarity transformation to transform A to its Jor-

dan Canonical Form The Jordan Canonical form of A is

J =


J1 0 · · · 0

0 J2 · · · 0
...

... . . . ...

0 0 · · · Jp


where Ji is an mi ×mi matrix of the form

Ji = λiImi
+Ni
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in which

Ni =



0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
... . . . ...

...

0 0 0 · · · 1 0

0 0 0 · · · 0 1

0 0 0 · · · 0 0


The Jordan canonical form always exists.

4. Linearization Methods

In using state-based method we must first have a state-space realization

for the system of interest. How are such realizations usually obtained?

They can be obtained through a priori mathematical modeling of a phys-

ical process or they can be obtained empirically by measuring the system’s

input/output response. This section will discuss both approaches.

4.1. A Priori Modeling: Many mechanical systems have states, x, that

satisfy the following second order differential equations

M(q)q̈ +B(q, q̇)q̇ +G(q) = F

where q ∈ Rn is vector of generalized coordinates, M(q) is an n× n non-

singular symmetric positive definite matrix called the Mass matrix, F ∈ Rn

is a vector of applied forces (inputs), G(q) is a conservative force vector,

and B(q, q̇) is a matrix sometimes called the Coriolis/friction matrix. In

general, B(q, q̇) satisfies

q̇TB(q, q̇)q̇ ≥ 0

for all q̇.

The dynamics of an inverted pendulum will be used to illustrate how

prior modeling can be used to get the preceding differential equation. In
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particular, the dynamics of the inverted pendulum

mℓ2θ̈ = mgℓ sin θ − bθ̇ + T

where T is a torque applied at the base and g is gravitational acceleration.

This equation has the form given above if we let

q = θ, F = T, M(q) = mℓ2, , B(q) = b, G(q) = −mgℓ sin θ

A state space realization is a system of first order differential equations,

whereas our equations of motion for the inverted pendulum are second order

differential equations. We can always rewrite this second order ODE as a

set of two first order ODE’s through the following state assignments

x1 = q = θ, x2 = q̇ = θ̇

This then leads to the following state based realization

ẋ1 = x2

ẋ2 =
g

ℓ
sinx1 −

b

mℓ2
x2 +

1

mℓ2
T

Note that this is NOT a linear differential equation because of the sinx1

term in the second equation. So this is not a linear state-space realization.

We obtain a ”linear” model for the inverted pendulum by linearizing the

nonlinear equations. In general, let

ẋ(t) = f(x(t), w(t))

denote the state equation for a given system. We say a state x∗ ∈ Rn is an

equilibrium with respect to constant input w if f(x∗, w) = 0. Now assume

that the actual input to the system w(t) is a perturbation of the constant

input w. This means there is a function δw such that

w(t) = w + δw(t)

This perturbation of the input will also generate a perturbation of the state

trajectory, x about the equilibrium x∗. So there exists a function δx such
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that

x(t) = x∗ + δx(t)

We know that

dx(t)

dt
=

d

dt
x∗ +

d

dt
δx(t) =

d

dt
δx(t)

=
∂f

∂x

∣∣∣∣
(x∗,w)

δx(t) +
∂f

∂w

∣∣∣∣
(x∗,w)

δw(t) + o(|δx|) + o(|δ|)

≈ ∂f

∂x

∣∣∣∣
(x∗,w)

δx(t) +
∂f

∂w

∣∣∣∣
(x∗,w)

δw(t)

= Aδx(t) +Bδw(t)

This forms a linearized state equation about the fixed point (x∗, w). We call

this a Taylor jet linearization of the system about the equilibrium (x∗, w),

since we used a Taylor series expansion for f .

Returning to our inverted pendulum example we have an equilibrium

when θ = x1 = 0 and θ̇ = x2 = 0. So x∗ = (0, 0). The torque, T , needed

to ensure this equilibrium is given by

0 =
1

mℓ2
T

or rather T = w = 0. The f function then takes the form

f(x,w) =

[
f1(x,w)

f2(x,w)

]
=

[
x2

g
ℓ
sinx1 − b

mℓ2
x2

]
+

[
0
1

mℓ2

]
w(t)

We can now see that

A =

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
(0,0)

=

[
0 1

g
ℓ
cosx∗

1 − b
mℓ2

]
=

[
0 1
g
ℓ

− b
mℓ2

]

B =

[
∂f1
∂w
∂f2
∂w

]
=

[
0
1

mℓ2

]
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So our linear state space realization for this system is

G
s
=

 0 1 0
g
ℓ

− b
mℓ2

1
mℓ2

1 0 0


where we took the system’s output to be its generalized coordinate y(t) =

q(t) = θ(t) = x1(t).

Another approach to linearization is by transforming the input, w, using

a feedback transformation. In particular we will rewrite the input w as

w(t) = u(q, q̇) +M(q)v(t)

where u is a function of the state, x = (q, q̇). We think of this as a reparam-

eterization of the input so that the input becomes v, rather than w. We will

use a particular form for u

u(q, q̇) = B(q, q̇)q̇ +G(q)

this allows us to rewrite the nonlinear state space equation as

M(q)q̈ +B(q, q̇)q̇ +G(q) = B(q, q̇)q̇ +G(q) +M(q) = v

We can cancel the like terms on both sides of the above equation and take

the inverse of the mass matrix M(q) to deduce that

q̈ = v

This is a second order linear differential equation that can be placed in state

space form as

ẋ =

[
0 I

0 0

]
x+

[
0

I

]
v

y =
[
I 0

]
x

Essentially, what feedback linearization does is introduce ”known state-

dependent” terms in the input that cancel out the nonlinear dynamics of

the original system, thereby making the entire system appear to be ”linear”

from the new input v to the output y.
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Both Taylor and feedback linearizations are used in practice. Taylor lin-

earizations, however, are ”approximations” to the original nonlinear system

and so they will only be ”valid” in a small neighborhood about the chosen

equilibrium. For this reason we can think of Taylor linearizations as ”local”

models of the original system. On the other hand, the feedback linearization

is ”global”. It is not an approximation of the nonlinear system, it holds as

long as we know M(q) is invertible, which can be true over a much larger

region of the system’s state space.

4.2. Data-Driven Modeling. Data driven modeling means that we ex-

perimentally observe a physical system’s input/output behavior and then

use those observations to construct a linear state space realization of the

process. We will examine two ways of doing this. The first is based on

frequency response measurements of the system, which we use to obtain a

transfer function representation of the system. That transfer function would

then be used to construct a state-space realization. The second approach

uses time-delayed versions of the output as a state for the system and then

uses the data matrices generated from inputs and these delay-embedding

states to directly identify the state space matrices of the realization.

+

-

+

-

+

-

stator rotor

e

FIGURE 3. DC servo motor

Frequency-Response Modeling: In this example we consider a field-controlled

DC servo-motor shown in Fig. 3. The state equations associated with the
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electrical part of this system are

ve = Le
die
dt

+Reie

va = La
dia
dt

+Raia + e

where e is the back EMF generated by the motor spinning at angular rate ω.

The EMF is proportional to the product of the stator current and the angular

rate in which c is the proportionality constant

e = cieω

The motor torque is T = θieia where ia is the rotor current and this defines

the mechanical part of the motor. We let ve be the input to the system, v,

the output y = ω is the angular rate, and the other states are x1 = ie (stator

current), x2 = ia (rotor current), and x3 = ω (angular rate). With these

variable assignments we get the following state equations

ẋ1 = −ax1 + v

ẋ2 = −bx2 + ρ− cx1x3

ẋ3 = θx1x2

where a = Re/Le, b = Ra/La, and ρ = va/La. The open loop system has

an equilibrium at x1 = 0, x2 = ρ/b and a constant shaft speed setpoint of

ω0.

While we can use the first-principle model to obtain a state equation,

this model ignores many of the nonlinearities and other uncertainties in the

physical system. In other words, the preceding model is an idealization of

an actual DC motor. In this case, it may be better to obtain a model di-

rectly from the measured frequency response of the system. Fig. 4 shows

the magnitude and phase of the output y for a given unit amplitude sinu-

soidal input. Each measurement was taken for a unit amplitude input with

frequency in column 1. The corresponding max and min output magni-

tude and phase were then recorded for several separate measurements of

that response. The right side of the figure plots these values along with the
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max/min error bars. While the variation in the magnitude measurements is

relatively small, we see that the phase variation gets very large at the higher

frequencies. This phase variation is a consequence of the nonlinearities in

the physical system.

FIGURE 4. Field-Controlled DC Motor Data

We pose an optimization problem that seeks a set of coefficients for a

transfer function

G(s) =
b0s

2 + b1s+ b2
s3 + α0s2 + α1s+ α2

that minimizes the average | log(G(jωi))| for each input frequency, ωi. This

can be posed as an optimization function that can be solved using convex

programming tools. In matlab we can use the function fitmagfrd to do

this and thereby obtain the model

G(s) =
20
3

(
s
5
+ 1
)
(−s+ 100)(

s
0.5

+ 1
) (

s
30

+ 1
)
(s+ 100)

=
−20s2 + 1900s+ 10000

s3 + 130.5s2 + 3065s+ 1500

Since we have a strictly proper transfer function, we can readily write out a

observable canonical realization for this system.

G
s
=


0 0 −1500 1

1 0 −3065 0

0 2 −130.5 0

−20 1900 10000 0


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We can also obtain a modal form for this realization using the eigenvalue/vector

decomposition of the A matrix discussed above

G
s
=


−100 0 0 −13.64

0 −30 0 −8.275

0 0 −0.5 0.7032

4 −3.804 4.382 0


The following Fig. 5 shows the gain/phase magnitude of these continuous-

time models against the actual data. These plots show that they are reason-

ably good fits for both gain and phase.

FIGURE 5. Bode Plots of Fit Model

Dynamic Model Decomposition with Control: This subsection describes

a data-driven way of identifying a state-space realization of a discrete-time

dynamical system

x(k + 1) = Ax(k) +Bw(k)

y(k) = Cx(k)

In the following it will be convenient to represent the state (input or output)

at time instant as xk, rather than x(k), with the understanding that xk ∈ Rn.

The justification for this approach is based on a well known result from

equation-free modeling of continuous-time dynamical systems. This result
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essentially says that under certain observability conditions that state infor-

mation can be determined by simply observing the behavior of the input w

and output y over a finite window of time. In other words, we can actually

treat the following vector of time-delayed continuous-time output measure-

ments as the state[
y(kh) y((k − 1)h) · · · y(0)

]
where h is a regular sampling interval.

In the context of discrete-time systems, we would simply take a sequence

of the past outputs as a ”surrogate” for the system state. We write the state

at time instant k as the vector

zk =


yk

yk−1

...

yk−N+1


where yk is the output at time k. So our ”surrogate” state is a delay-

embedded vector of the outputs prior to time k with N denoting the number

of outputs we use to form this vector.

To obtain a linear model for the system’s dynamics we form the follow-

ing matrices from the surrogate state vectors zk and the known inputs wk

Z =
[
zk zk−1 · · · zk−M+2 zk−M+1

]
Z+ =

[
zk+1 zk · · · zk−M+1 zk−M

]
W =

[
wk wk−1 · · · wk−M+2 wk−M+1

]
where M are the number of observations we have made. We can then

quickly see that if, on average, the dynamics are linear there should be ma-

trices A and B that satisfy

Z+ = AZ+BW
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In general this will be an overdetermined linear system of linear equations

and so we seek a relaxed solution that minimizes

N−1∑
k=1

∣∣∣∣∣
[

zk+1

wk+1

]
−
[
A B

] [ zk

wk

]∣∣∣∣∣
2

which we know can be solved either using singular value decompositions

of the data matrices or else through the pseudo-inverse. The resulting ”lin-

ear” state-space realization is an ”average” linear model for the system’s

dynamics with the average being taking over the window of duration M .

We can use this ”linear” model as long as M is not too large and as long

as we are not in the vicinity of an equilibrium point for the original sys-

tem. The reason why this is a reasonable approximation is that away from

a hyperbolic equilibrium point the ”flows” of any smooth dynamical sys-

tem can be seen as continuous deformations of a ”linear” system. This well

known result from the elementary theory of ordinary differential equations

is known as the Hartman-Grossman Theorem4.

5. Solutions to State Equations

This section discusses the solutions of the state equations. We cover the

solutions to continuous-time state equations in some detail. We also cover

methods for solving discrete-time state equations.

5.1. Solutions to Continuous-time Linear Homogeneous Systems:
Consider the linear homogeneous (LH) system whose state trajectory, x :

[t0,∞) → Rn, satisfies the initial value problem,

ẋ(t) = A(t)x(t), x(t0) = x0(21)

4The Hartman-Grossman theorem [Hartman (2002)] is a well known result in ad-

vanced textbooks on differential equations that essentially says that in the neighborhood of

a hyperbolic equilibrium, the flows of the differential equation are topologically equivalent

to the flows of its linearization. The theorem is sometimes called the linearization theorem
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for all t ≥ t0. Let V denote the set of all solutions to this problem over a

finite interval [t0, T ]. Now consider any α1, α2 ∈ R and ϕ1, ϕ2 ∈ V , then

d

dt
(α1ϕ1(t) + α2ϕ2(t)) = α1A(t)ϕ1(t) + α2A(t)ϕ2(t)

= A(t) [α1ϕ1(t) + α2ϕ2(t)]

for all t. This means α1ϕ1+α2ϕ2 is a solution of the homogeneous problem

and is therefore in V . So V is closed with respect to addition and dilation

and must therefore form a linear space.

We can also show that V has a finite dimension n. In particular, let

us choose n linearly independent vectors, {xi0}ni=1, that span Rn, and let

{ϕi}ni=1 denote the solutions to the LH system using initial conditions ϕi(t0) =

xi0. If these solutions were not linearly independent, then there would be

scalars αi ∈ R (not all zero) such that for all t

n∑
i=1

αiϕi(t) = 0

In particular this would hold at t0, which would contradict the assumption

that all xi0 are linearly independent. So the solutions ϕi must be linearly

independent and so the dimension of V must be at least n. In other words,

span{ϕi} ⊂ V .

To show that dim(V ) = n, we need to show that any solution in V lies

in the span of the preceding set of ϕi. So let us consider any solution, ϕ,

in V such that ϕ(t0) = x0. We know this x0 lies in the span of {xi0},

which must also mean that ϕ(t) lies in the span of {ϕi}. In other words

V ⊂ span{ϕi} so we can conclude span{ϕi} = V and since there are n

such basis elements, we have dim(V ) = n. What we have just shown in

summarized in the following theorem

THEOREM 5. The solutions of the homogeneous system in equation (21)

over the interval [t0, T ], form an n-dimensional linear space.
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A set , {ϕi}ni=1, of n linearly independent solution of the LH system,

ẋ = A(t)x(t) is called a set of fundamental solutions and the matrix

Ψ(t) =
[
ϕ1(t) ϕ2(t) · · · ϕn(t)

]
formed from these fundamental solutions is called a fundamental matrix of

the LH problem.

Note that any fundamental matrix, Ψ of the LH problem satisfies the

matrix differential equation

Ψ̇(t) = A(t)Ψ(t)

If Ψ = [ϕ1, . . . , ϕn] is a fundamental matrix and ϕ is any solution of the LH

problem then there must exist real coefficients (not all zero), {αi}ni=1 such

that ϕ(t) = Ψ(t)α where α = [α1, . . . , αn]
T . For any t we know ϕ(t) =

Ψ(t)α is a linear algebraic equation with a unique solution. We know such

LAEs have unique solutions only if the null space of Ψ(t) is trivial for all

t, which means that Ψ(t) must be nonsingular for all t. Conversely if Ψ

satisfies the LH matrix differential equation and Ψ(t) is nonsingular for all

t, then det(Ψ(t)) ̸= 0 for all t. This means the columns of Ψ(t) are linearly

independent for all t, which also means Ψ(t) is a fundamental matrix. What

we have just proven is summarized in the following theorem

THEOREM 6. A solution Ψ of the matrix differential equation Ψ̇(t) =

A(t)Ψ(t) is a fundamental matrix if and only if Ψ(t) is nonsingular for all

t.

Note that any LH problem may have many different fundamental matri-

ces. In practice, we would like a ”unique” matrix characterizing the solution

of an LH problem. So we pick a specific fundamental matrix whose ith col-

umn is the fundamental solution generated by the initial state x(t0) = ei

with ei being the ith elementary basis vector of Rn. We call this particular

fundamental matrix a state transition matrix and denote it as Φ(t; t0).
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Note that Φ(t; t0) = Ψ(t)Ψ−1(t0) where Ψ(t) is any fundamental ma-

trix of the LH problem. Note that if T is a nonsingular matrix and we define

the matrix Ψ1 = Ψ2T, then Ψ2 is a fundamental matrix whenever Ψ1 is

also a fundamental matrix. Moreover, we see that

Φ(t; t0) = Ψ1(t)Ψ
−1
1 (t0) = Ψ2(t)TT−1Ψ−1

2 (t0)

= Ψ2(t)Ψ
−1
2 (t0)

This implies the transition matrix is unique and is independent of which

fundamental matrix we use to form it.

The following properties of transition matrices are worth itemizing

• Φ(t; t0) is the unique solution to the matrix differential equation

∂

∂t
Φ(t; t0) = A(t)Φ(t; t0)

with Φ(t0; t0) = I.

Proof: For any fundamental matrix Ψ we know that Φ(t; t0) =

Ψ(t)Ψ−1(t0). This implies

∂

∂t
Φ(t; t0) = Ψ̇(t)Ψ−1(t0)

= AΨ(t)Ψ−1(t0) = AΦ(t; t0). ♢

• Group Property: For all t, τ, σ ∈ R, then

Φ(t; τ) = Φ(t;σ)Φ(σ; τ)

Proof: Note that

Φ(t; τ) = Ψ(t)Ψ−1(τ) = Ψ(t)Ψ−1(σ)Ψ(σ)Ψ−1(τ)

= Φ(t;σ)Φ(σ; τ). ♢

• Φ(t; t0) is nonsingular for all t, t0 and

[Φ(t; t0)]
−1 = Φ(t0; t)
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Proof: For any fundamental matrix Ψ(t), we know that det(Ψ(t)) ̸=
0 for any t. This means that

det(Φ(t; t0)) = det(Ψ(t)Ψ−1(t0))

= det(Ψ(t)) det(Ψ−1(t0))

̸= 0, for all t

So Φ(t; t0) is nonsingular. Finally note that

[Φ(t; t0)]
−1 =

[
Ψ(t)Ψ−1(t0)

]−1

= Ψ(t0)Ψ
−1(t)

= Φ(t0; t). ♢

• The unique solution x(t; t0, x0) to the initial value problem

ẋ(t) = A(t)x(t), with x(t0) = x0

is

x(t; t0, x0) = Φ(t; t0)x0

Proof: Follows trivially from the above properties. ♢

5.2. Solutions of Continuous-time Inhomogeneous Problems: We

now extend our earlier solutions to the LH problem to the inhomogeneous

problem

ẋ(t) = A(t)x(t) +B(t)u(t), x(t0) = x0

where u is a known input defined over [t0,∞). We claim the solution is

x(t; t0, x0) = Φ(t; t0)x0 +

∫ t

t0

Φ(t; τ)B(τ)u(τ)dτ(22)

where Φ(t; t0) is the transition matrix for the associated LH problem.
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The preceding assertion about the solution to the inhomogeneous prob-

lem may be readily verified by direct computation. In particular note that

ẋ(t; t0, x0) = Φ̇(t; t0)x0 +Φ(t; t)B(t)u(t) +

∫ t

t0

Φ̇(t; τ)B(τ)u(τ)dτ

= A(t)Φ(t; t0)x0 +B(t)u(t) +

∫ t

t0

A(t)Φ(t; τ)B(τ)u(τ)dτ

= A(t)

{
Φ(t; t0)x0 +

∫ t

t0

Φ(t; τ)B(τ)u(τ)dτ

}
+B(t)u(t)

= A(t)x(t) +B(t)u(t)

Note the important role that the transition matrix plays in characterizing

solutions of the inhomogeneous problem. The first term on the right-hand

side of equation (22) is associated with the system’s zero-input response.

The second term is associated with the system’s zero-state response. If

one wants an explicit solution for x(t), then one needs to find closed-form

expressions for the state transition matrix. When the system is LTI so that

A(t) and B(t) are constant matrices, then there are several approaches one

can take to obtain a concrete representation for Φ(t; t0). These approaches

are discussed in the next subsection.

5.3. Solutions to LTI State equations: Consider the homogeneous

LTI system

ẋ(t) = Ax(t), x(t0) = x0

The solution to this ODE can be written as

x(t) = x0 +

∫ t

t0

Ax(τ)dtau

and it can be written as

x(t) = Φ(t; t0)x0
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It can be shown that this state transition matrix has the form of a matrix

exponential function

Φ(t; t0)
def
= eA(t−t0)

= I+A(t− t0) +
1

2!
A2(t− t0)

2 + · · ·+ 1

m!
Am(t− t0)

m + · · ·(23)

The derivation of this formula is based on a much deeper result proving

that such constant coefficient ODEs always have solutions that are unique.

The proof is an interesting application of the contraction mapping princi-

ple5 which shows that any differential equation ẋ = f(x) where f satisfies

a Lipschitz property has a unique solution [Khalil (2002)]. The proof is

constructive and when the system is linear then that construction leads in a

natural way to the preceding series formula.

The value of this formula is that there are a number of ways to obtain

closed form expressions for the series that we can determine in closed form.

We now consider several of these methods.

Consider the inhomogeneous LTI system

ẋ(t) = Ax(t) +Bu(t), x(t0) = x0

y(t) = Cx(t)

We know the state trajectory for this system for t ≥ t0 is

x(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−τ)Bu(τ)dτ

and that the system’s output is

y(t) = CeA(t−t0) +

∫ t

t0

CeA(t−τ)Bu(τ)dτ

The last equation’s right hand side has two terms. The first term is the nat-

ural or zero-input response. The second is the forced or zero-state response

5A linear transformation G : X → X is a contraction mapping [Antsaklis and Michel

(2006)] if ∥G[x − y]∥ ≤ ∥x − y∥. If G is a contraction mapping on a complete normed

linear space (aka. Banach space) then there exists a unique fixed point x∗ in X such that

G[x∗] = x∗.
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of the system. Since we already know the forced response equals the con-

volution integral of the input, u, with the impulse response function g, we

can readily see that this system’s impulse response function is

g(t) = CeAtBu(t)

where u is a unit step function in this case and that the Laplace transform

of g will be the transfer function which is equal to

G(s) = C(sI−A)−1B

What one might notice in the preceding equations is the important role

that the matrix exponential, eAt, plays in all of these equations. So, we need

to find methods that can explicitly compute concrete representations for the

matrix exponential. This section reviews methods to find eAt.

The matrix exponential in equation (23) is an infinite power series of A.

We can use the Cayley-Hamilton theorem to reduce this infinite series to

a finite series. Recall that f(s) = est is an analytic function and that the

matrix function f(A) can be written as

f(A) = eAt =
∞∑
k=0

βkA
ktk

From our earlier work with the Cayley-Hamilton theorem, we know that the

division algorithm can be used to write this as

eAt = p(A)q(A) + r(A)

where p(A) = det(sI −A) is the characteristic polynomial of A and q(s)

and r(s) are polynomials with r(s) having a degree less than or equal to

n− 1. By the Cayley-Hamilton theorem we know p(A) = 0, so that

eAt = r(A) =
n−1∑
k=0

αk(t)A
k

with the coefficients αk (k = 0, 1, . . . , n − 1) being functions of time that

we need to determine.
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We can find these functions as follows. For the moment assume that

A has n distinct eigenvalues i = 1, 2, . . . , n, that we denote as {λi}ni=1.

These eigenvalues satisfy the characteristic equation so that p(λi) = 0 for

i = 1, 2, . . . , n. We also know by the division algorithm that

f(λi) = eλit = p(λi)q(λi) + r(λi)

where r(λi) is a polynomial of degree n − 1 or less. Using the fact that

p(λi) = 0, this reduces to

eλit = r(λi)

=
n−1∑
k=0

αk(t)λ
k
i

since we have n distinct λi, this gives a set of n linear equations that we can

then solve for the coefficient functions, αk(t) (k = 0, 1, . . . , n− 1).

Example: Consider the matrix A =

[
0 1

−2 −3

]
. The characteristic poly-

nomial of A is

p(s) = s2 + 3s+ 2 = 0

So the eigenvalues of A are λ1 = −1 and λ2 = −2. The reduced order

representation for eAt is

eAt = α0(t)I+ α1(t)A

To get these coefficient functions, we use the eigenvalues of A to form the

algebraic equations

e−t = α0(t)− α1(t)

e−2t = α0(t)− 2α1(t)

which we can solve to obtain

α0(t) = 2e−t − e−2t

α1(t) = e−t − e−2t
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and so our reduced order expression for the matrix exponential is

eAt = (2e−t − e−2t)I+ (e−t − e−2t)A

=

[
2e−t − e−2t e−t − e−2t

−2e−t + 2e−2t −e−t + 2e−2t

]

Example: Here is an example where the eigenvalues of A =

[
0 1

−1 0

]
are not real. The characteristic equation is s2 + 1 which has eigenvalues

λ1 = j and λ2 = −j. So the equations we need to solve for the coefficients

in

eAt = α0(t)I+ α1(t)A

are now

ejt = cos(t) + j sin(t) = α0(t) + α1(t)j

e−jt = cos(t)− j sin(t) = α0(t)− α1(t)j

Solving the α0 and α1 gives

α0(t) = cos(t)

α1(t) = sin(t)

so that

eAt = cos(t)I+ sin(t)A

=

[
cos(t) sin(t)

− sin(t) cos(t)

]

Note that if one or more of the eigenvalues is repeated, the above proce-

dure will not generate n linearly independent equations. For any eigenvalue

with multiplicity m > 1, however, we know the first (m − 1) derivatives

of p(s) must vanish at the eigenvalues. We can use this fact to generate
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additional linearly independent equations. So if λi is an eigenvalue with

multiplicity mi > 1, then

f(λi) =
n−1∑
k=0

αkλ
k
i = r(λi)

f (1)(λi) = r(1)(λi)

...

f (mi−1)(λi) = r(mi−1)(λi)

where f (j)(s) and r(j)(s) denote the jth derivatives of f(s) and r(s), re-

spectively. These additional equations will generate mi linearly indepen-

dent equations and since
∑

imi = n, we will be able to generate enough

equations to characterize all αk(t) for k = 0, 1, 2, . . . , n− 1.

Example: Find the matrix exponential for A =

[
−1 1

−1 1

]
. This matrix

has an eigenvalue λ1 = 0 with multiplicity m1 = 2. We need to find α0(t)

and α1(t) such that

f(A) = eAt = α0(t)I+ α1(t)A
def
= r(A)

The equations we need to solve for these coefficients are

eλit = f(λ1) = α0(t) + α1(t)λ1 = r(λ1)

f (1)(λ1) =
d

ds
est
∣∣∣∣
s=λ1

= teλ1t

= r(1)(λ1) =
dr(s)

ds

∣∣∣∣
s=λ1

= α1(t)

Since λ1 = 0, these two equations become

1 = α0(t)

t = α1(t)
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and so

eAt = I+ tA

=

[
1 0

0 1

]
+

[
−t t

−t t

]

=

[
1− t t

−t 1 + t

]

Other approaches - truncation: The matrix exponential may also be ap-

proximated by truncating the power series. In general, the power series

converges slowly and so one would need many many terms for a useable

approximation. In some cases, the Ak term map be zero far out in the se-

quence 6. For example in our earlier example where A =

[
−1 1

−1 1

]
, we

see that A is nilpotent since A2 = 0. The matrix exponential power series

can therefore be written as

eAt =

[
1 0

0 1

]
+

[
−1 1

−1 1

]
t

= I+At =

[
1− t t

−t 1 + t

]

which is the same answer we got above.

Other approaches - Laplace Transforms: Another way to find the matrix

exponential is to use Laplace transforms. Note that eAt satisfies the matrix

differential equation

d

dt
eAt = AeAt, eA0 = I

Since eAt is defined for all values of t ∈ R, we take the bilateral Laplace

transform of eAt. Let Φ̂(s) denote the bilateral Laplace transform of Φ(t) =

6A matrix A for which Ak = 0 when k is a positive integer is said to be nilpotent.

The matrix is said to be idempotent if A2 = A.
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eAt. Taking the Laplace transform of the preceding matrix differential equa-

tion yields,

sΦ̂(s)− eAt
∣∣
t=0

= AΦ̂(s)

Solving for Φ̂(s) gives

Φ̂(s) = (sI−A)−1

So we can get a concrete representation for eAt by taking the inverse trans-

form of the Laplace transform of the expression (usually done using a partial

fraction expansion).

Example: Let A =

[
−1 1

−1 1

]
, then

sI−A =

[
s+ 1 −1

1 s− 1

]
and

(sI−A)−1 =
1

s2

[
s− 1 1

−1 s+ 1

]
Taking the inverse transform gives

L−1

[
1
s
− 1

s2
1
s2

− 1
s2

1
s
+ 1

s2

]
=

[
1− t t

−t 1 + t

]

In general if we use partial fraction expansions of (sI−A)−1 to find the

matrix exponential, we get an expression of the following form,

eAt =
σ∑

i=1

mi−1∑
k=0

Aikt
keλit

where the residues are

Aik =
1

k!

1

(mi − 1− k)!
lim
s→λi

{
dmi−1−k

dsmi−1−k

[
(s− λi)

mi(sI−A)−1
]}

with A having σ distinct eigenvalues and the ith distinct eigenvalue being

denoted as λi with multiplicity mi. The residues are called the modes of
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the system. Sometimes, one refers to the entire term, Aikt
keλit, as a system

mode.

From the preceding equation, one can readily see that if Re(λi) < 0 for

all i then eAt → 0 as t → ∞. We will later say that this means the origin of

the LTI system is asymptotically stable. Note that this eigenvalue condition

is a necessary and sufficient condition for the asymptotic stability of the LTI

system’s origin.

Other approaches - diagonalization: We may also use similarity transfor-

mations to compute the matrix exponential. This is particularly useful when

A is diagonalizable through a nonsingular matrix T. In this case,

Λ = diag(λ1, . . . , λn) = T−1AT

and we see that

eΛt = eT
−1ATt = diag(eλ1t, . . . , eλnt)

and so the transition matrix becomes

Φ(t) = eAt = Tdiag(eλit)T−1

If A is not diagonalizable, then one uses its Jordan canonical form to

compute the matrix exponential. In this case, we reduce the system to

diag(Ji) = T−1AT

where the ith Jordan block is an mi ×mi square matrix

Ji =



λ1 1 0 · · · 0

0 λi 1 · · · 0

0 0 λi · · · 0
...

...
... . . . ...

0 0 0 · · · λi


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where λi is the ith distinct eigenvalue with multiplicity mi. For this case,

one can verify by direct computation that

eJit = eλit


1 t · · · tmi−1

(mi−1)!

0 1 · · · tmi−2

(mi−2)!
...

... . . . ...

0 0 · · · 1


and the matrix exponential is

eAt = Tdiag
(
eJit
)
T−1

5.4. Discrete-time Transition Matrix. Consider the discrete-time state

space equations

x(k + 1) = A(k)x(k) +B(k)u(k)

y(k) = C(k)x(k) +D(k)u(k)

We want to find solutions y(k) and x(k) for all k ≥ k0 for a given u assum-

ing x(k0) = x0.

As before we start with the homogenous problem,

x(k + 1) = A(k)x(k)

and observe that

x(k + 2) = A(k + 1)x(k + 1)

= A(k + 1)A(k)x(k)

...

x(k + n) = A(n− 1)A(n− 2) · · ·A(k + 1)A(k)x(k)

=
n−1∏
j=k

A(j)x(k)

This suggests that the transition matrix is

Φ(n; k) =
n−1∏
j=k

A(j), n > k
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and that Φ(k; k) = I. So the solution to the homogeneous problem is

x(n) = Φ(n; k0)xk0 =
n−1∏
j=k0

A(j)x(k0)

for all n > k0.

Computing closed form expressions for Φ(n; k0) may be difficult in

practice. One way of doing this is to form the first few matrices Φ(0, 0),

Φ(1; 0), Φ(2, 0), and so on to see if a “pattern” emerges. One would then

use that proposed “pattern” as a propositional statement on the set of natu-

ral numbers whose satisfaction would need to be formally verified using the

principle of mathematical induction.

Some common properties for continuous time transition matrices are

similar to those for discrete-time systems. For instance the discrete time

transition matrix has the semigroup property

Φ(k; ℓ) = Φ(k;m)Φ(m; ℓ), k ≥ m ≥ ℓ

But not all properties of continuous-time transition matrices carry over to

discrete time. In particular, recall that for continuous time, if t > τ , then

future value of the state at t are obtained from past values and vice versa. In

other words, the continuous-time state transition matrix is invertible so that

time moves freely in both directions. This is not the case for discrete-time

systems unless A−1(k) exists for all k.

If we use partial fractions of (zI−A)−1 to find the discrete-time transi-

tion matrix we get

Ak =
σ∑

i=1

(
Ai,0λ

k
i uk +Ai,1kλ

k−1
i uk−1+

· · ·+Ai,ni−1k(k − 1) · · · (k − ni + 2)λk−ni+1
i uk−ni+1

)
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where σ is the number of distinct eigenvalues of A, ni is the multiplicity of

the ith distinct eigenvalue and the residues are

Ai,ℓ =
1

ℓ!

1

(ni − 1− ℓ)!
lim
z→λi

{
dni−ℓ−1

dzni−ℓ−1
(z − λi)

ni(zI−A)−1

}
Note that if |λk| < 1 for all i, then Ak → 0 as k → ∞, which corresponds

to asymptotic stability of the origin of the discrete time LTI system. This

eigenvalue condition is again necessary and sufficient the origin’s asymp-

totic stability in discrete-time LTI systems.

Example: Consider the system

x(k + 1) =

[
1 (k + 1)

0 1

]
x(k)

for k ≥ 0. Determine the system’s state transition matrix.

So we first compute the first few state transition matrices,

Φ(0, 0) =

[
1 0

0 1

]

Φ(1, 0) =

[
1 1

0 1

]
Φ(2, 0) = Φ(2, 1)Φ(1, 0)

=

[
1 2

0 1

][
1 1

0 1

]

=

[
1 1 + 2

0 1

]
Φ(3, 0) = Φ(3, 2)Φ(2, 0)

=

[
1 3

0 1

][
1 1 + 2

0 1

]

=

[
1 1 + 2 + 3

0 1

]
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The preceding computations suggest a “pattern” which is

Φ(k, 0) =

[
1
∑k

j=1 j

0 1

]
=

[
1 k(k+1)

2

0 1

]
for k ≥ 1. The truth of this proposition is easily verified using mathematical

induction. In particular, the base step would require

Φ(1, 0) =

[
1 1×2

2

0 1

]
=

[
1 1

0 1

]

which is clearly true. For the inductive step, we assume Φ(k; 0) =

[
1 k(k+1)

2

0 1

]
and then consider

Φ(k + 1; 0) = Φ(k + 1; k)Φ(k; 0)

=

[
1 k + 1

0 1

][
1 k(k+1)

2

0 1

]

=

[
1 k(k+1)

2
+ k + 1

0 1

]

=

[
1 k(k+1)+2(k+1)

2

0 1

]
=

[
1 (k+1)(k+2)

2

0 1

]
which clearly verifies the inductive step and so the proposition must hold

for all n ∈ N. The actual transition matrix is

Φ(k; ℓ) = Φ(k, 0)Φ−1(ℓ, 0)

=

[
1 k(k+1)

2

0 1

][
1 − ℓ(ℓ+1)

2

0 1

]

=

[
1 k(k+1)−ℓ(ℓ+1)

2

0 1

]





CHAPTER 3

Stability

Stability is one of the most important concepts used in describing a dynam-

ical system’s qualitative behavior. This chapter examines Lyapunov stabil-

ity for linear systems and develops the Lp notion of input/output stability.

Much of this material is drawn from [Khalil (2002)].

1. Lyapunov Stability

Consider a time-invariant system whose state trajectory, x : R → Rn satis-

fies the initial value problem (IVP)

ẋ(t) = f(x(t)), x(0) = x0(24)

where f : D → Rn is locally Lipschitz1 in an open connected set D ⊂ Rn

(also called the “domain”). The Lipschitz condition is required to ensure

the existence of unique local solutions about the initial state, x0.

Given the IVP in equation (24), we say a point x∗ ∈ D is an equilibrium

point of the system if f(x∗) = 0. We may assume without loss of generality

that x∗ = 0, since if x∗ ̸= 0 we can introduce a change of variables z =

x− x∗ whose differential equation

ż =
d

dt
(x− x∗) = ẋ = f(x(t)) = f(z(t) + x∗)

has an equilibrium point at the origin. For this reason, we assume without

loss of generality (wlog) that the equilibrium is always at the origin.

1A function f : Rn → Rn is locally Lipschitz at x ∈ Rn if there is a non-negative

constant L > 0 and a neighborhood about x such that for any z, y in this neighborhhood

we have |f(y)− f(z)| ≤ L|y − z|.

111
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We say that the equilibrium, x∗ = 0, is stable in the sense of Lyapunov

if for all ϵ > 0 there exists δ > 0 such that if |x(0)| < δ, then |x(t)| < ϵ for

all t ≥ 0. We say the equilibrium is unstable if it is not stable. We say the

equilibrium is asymptotically stable if it is stable and x(t) → 0 as t → ∞
for all x(0) in a neighborhood2 of the origin.

Note that Lyapunov stability is a local property of the equilibrium since

it is defined in a neighborhood, Nδ(x
∗), of the equilibrium. In particular, we

see that the initial state, x(0), must start within a distance δ to ensure that it

remains in a distance ϵ of the origin for all time. The choice of ϵ is arbitrary,

and this means δ is a function of ϵ; that we denote as δ(ϵ). It is possible for

lim
ϵ→∞

δ(ϵ) = constant which would mean that Lyapunov stability can only

be assured if x(0) starts within this constant distance, δ, from the origin

(hence the local nature of the concept). If one can show that δ(ϵ) → ∞
as ϵ → ∞, then the stability concept would be a global property of the

equilibrium.

The notion of Lyapunov stability may be interpreted as generalizing the

intuitive notion that “stable” systems dissipate energy. Energy is a non-

negative scalar function of state and a system that dissipates energy would

have its energy decreasing over time. This suggests that one can certify

whether the equilibrium is stable or asymptotically stable by finding a scalar

function, V : Rn → R≥0, acting as a “surrogate” for the system’s energy

that is always decreasing along the system’s trajectories. This notion of the

surrogate energy function is formalized in the following theorem.

THEOREM 7. Lyapunov’s Direct Method: Let 0 be the equilibrium

point for the system ẋ(t) = f(x(t)) where f : D → Rn is locally Lip-

schitz on the connected open set, D ⊂ Rn. If there exists a C1 function

V : D → R such that

2Let p ∈ Rn, then for some ϵ > 0, an ϵ-neighborhood of p is Nϵ(p) =

{q ∈ Rn : |p− q| < ϵ}. Note that Nϵ(p) is an open set in the sense that for any ϵ > 0

there is another point q ∈ Nϵ(p). . The closure of Nϵ(p) contains all limit points of Nϵ(p)

and is denoted as Nϵ(P ) [Rudin (1964)].
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• V is positive definite; i.e. V (0) = 0 and V (x) > 0 for all x ∈
D − {0},

• V̇ (x) =
∂V (x)

∂x
f(x) is negative semidefinite; i.e. V̇ (x) ≤ 0 for all

x ∈ D,

then x = 0 is stable in the sense of Lyapunov. Furthermore if one can

show that V̇ (x) is negative definite (i.e. V̇ (0) = 0 and V̇ (x) < 0 for all

x ∈ D − {0}), then the equilibrium is asymptotically stable.

Proof: For any ϵ > 0, we need to find a starting neighborhood for which

the system state remains within a distance ϵ of the origin for all future time.

So consider the open ball,

Nϵ(0) = {x ∈ Rn : |x| < ϵ}

and consider V (x) evaluated on the boundary of this neighborhood

∂Nϵ(0) = {x ∈ Rn : |x| = ϵ}

This set is closed and bounded3 and so is compact. A well known fact

from real analysis [Rudin (1964)] is that all continuous functions attain their

maximum and minimum on compact sets. So there exists a real number

α ≥ 0 such that

α = min
x∈∂Nϵ(0)

V (x)

Now let Ωα be a subset of Rn such that

Ωα = {x ∈ Nϵ(0) : V (x) < α}

This set is contained in Nϵ(0).

3A set M in a normed linear space is closed if it contains its limit points and it is

bounded if there exists R > 0 such that ∥x − y∥ ≤ R for all x, y ∈ M . When M is a

closed and bounded subset of Rn, then it is said to be compact.
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So let x be any solution to ẋ(t) = f(x(t)) where x(0) ∈ Ωα. By as-

sumption we know for all x ∈ D that

V̇ (x) =
∂V (x)

∂x
f(x) ≤ 0

which means V (x(t)) is a monotone non-increasing function of time and so

V (x(t)) ≤ V (x(0)) < α

for all t ≥ 0. In other words x(t) remains in Ωα for all t ≥ 0 (such a set is

said to be forward invariant). Since V is continuous and V (0) = 0, there

must exist a δ > 0 such that |x| < δ implies V (x) < α, so we can define

another open ball

Nδ(0) = {x ∈ Rn : |x| < δ}

We can therefore see that Nδ(0) ⊂ Ωα ⊂ Nϵ(0). So if we take x(0) ∈
Nδ(0), then we know x(t) ∈ Ωα for all t (by forward invariance) and so

x(t) ∈ Nϵ(0) for all t, which is precisely the definition of Lyapunov stabil-

ity.

To prove the assertion regarding asymptotic stability, we note that if

V̇ (x) is negative definite, then V (x(t)) is a monotone decreasing function.

Since V (x) ≥ 0 we know this decreasing function is bounded below by

0 and so by the bounded monotone convergence theorem in real analysis4.

We know there exists c ≥ 0 such that V (x(t)) → c as t → ∞. If c is strictly

greater than zero, then the continuity of V would mean there is a d > 0 such

that

Nd(0) = {x ∈ Rn : |x| < d} ⊂ Ωc = {x ∈ Rn : V (x) < c}

The trajectory, x(t), cannot enter Nd(0), since V (x(t)) is always greater

than c. So let

−γ = max
x∈Ωc−Nd(0)

V̇ (x) < 0

4Let {xi}∞i=1 denote a sequence of real numbers. If there exists B ∈ R such that

xi ≥ B (sequence is bounded) for all i and xi+1 ≤ xi for all i (sequence is monotone

decreasing), then the sequence is convergent to a limit x∗ ≥ B.
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which must be strictly greater than zero since c > 0 and V̇ (x) is negative

definite (i.e. only zero at zero). This implies

V (x(t)) = V (x(0))−
∫ t

0

V̇ (x(τ))dτ ≤ V (x(0))− γt

This last equation, however, implies that if t is large enough, i.e. when

t > V (x(0))
γ

, then V (x(t)) will be negative which cannot occur since we

know V (x) is positive definite. So c cannot be positive, it must be zero and

so the state trajectory x(t) asymptotically converges to zero. ♢

A C1 function V : D → R that satisfies the conditions in Lyapunov’s

Direct Method is called a Lyapunov function. In recent years, it has also

been referred to as a certificate of Lyapunov stability since the “existence”

of the function is sufficient to “certify” that the origin is Lyapunov stable.

In general, finding Lyapunov functions can be difficult to do. We usu-

ally take a function that is known to be a Lyapunov certificate for a system

related to the one whose stability we want to verify and then parameterize

that known certificate in a manner that allows us to search for a Lyapunov

certificate of the system we’re interested in. This is commonly done in cer-

tifying the stability of the origin of a nonlinear system

ẋ(t) = f(x(t))

In this case, we would take the Lyapunov function for its Taylor lineariza-

tion about the equilibrium

ẋ(t) =
∂f

∂x

∣∣∣∣
x=0

x(t) = Ax(t)

As we will show below, the Lyapunov function for the linearization is a

function V : D → Rn that takes values

V (x) = xTPx(25)

where P is a symmetric positive definite matrix that satisfies the Lyapunov

equation

0 = ATP+PA+Q(26)



116 3. STABILITY

for some symmetric positive definite matrix Q. The matrix P parameter-

izes our family of candidate Lyapunov certificates for the nonlinear system,

which means we would need to find a P that satisfies

V̇ (x) =
∂V (x)

∂x

∣∣∣∣
x=x

f(x) = xTPf(x) + fT (x)Px ≤ 0

for all x. This would make V (x) = xTPx a Lyapunov function for the

“nonlinear” system.

Consider an LTI system

ẋ(t) = Ax(t)

and as suggested in the preceding section, consider a candidate Lyapunov

function

V (x) = xTPx

where P is a symmetric positive definite matrix. Because P = PT > 0, we

already know that V is positive definite. So to show that V is a Lyapunov

function for the LTI system we only need to identify conditions under which

V̇ is negative definite. In particular, we can see that

V̇ (x) =
∂V (x)

∂x
Ax = 2xTPAx = xT (ATP+PA)x

This last equality is obtained by recognizing that

xTPAx =
[
xTPAx

]T
= xTATPx

We write the equation in this way because the matrix in the parentheses

(ATP + PA) is symmetric with real eigenvalues, thereby making it easier

to check if V̇ is negative definite. In particular this means that V̇ is negative

definite if and only if the matrix is ATP + PA is negative definite, which

is so if and only if all of its eigenvalues are negative. So let Q be any

symmetric positive definite matrix, Q. If we can find a symmetric positive

definite matrix P that satisfies the Lyapunov equation

ATP+PA+Q = 0
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then this would imply that

V̇ (x) = −xTQx < 0

for all x ̸= 0. So V is negative definite and on the basis of Theorem 7 we

can conclude that it is a certificate for the asymptotic stability of the origin.

Our preceding discussion can now be summarized in the following theorem

THEOREM 8. (Direct Method for LTI System) If there exist symmetric

positive definite matrices P and Q such that

ATP+PA+Q = 0

then the origin of ẋ(t) = Ax(t) is asymptotically stable.

2. Advanced Lyapunov Stability Theory for LTI Systems

This section discusses two advanced stability results relevant to LTI sys-

tems. The first result is a converse theorem that establishes that the ex-

istence of a Lyapunov function is necessary and sufficient for asymptotic

stability. The second result is called the indirect method and provides a way

to estimate the neighborhood about an equilibrium for which linear models

capture the qualitatitive behavior of a nonlinear system.

2.1. Converse LTI Theorem: Recall that we already established a nec-

essary and sufficient condition for the origin to be asymptotically stable.

This was obtained by writing out the solution to the state equation as

x(t) =
σ∑

i=1

mi∑
k=1

Aikt
keλitx0

for t ≥ 0 where Aik is the residue matrix, σ is the number of distinct

eigenvalues of A, λi is the ith distinct eigenvalue of A with multiplicity

mi. In the above equation, one readily sees that x(t) → 0 as t → ∞
if and only if Re(λi) < 0 for all i = 1, 2, . . . , σ. So while Theorem 8

provides a “sufficient” condition for the origin to be asymptotically stable,

the eigenvalue condition (Re(λi) < 0 for all i) is a stronger condition in that
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it is necessary and sufficient. A matrix, A, that satisfies this condition is said

to be Hurwitz. This result is important enough that we also summarize it as

a theorem.

THEOREM 9. The origin of the LTI system, ẋ(t) = Ax(t), is globally

asymptotically stable if and only if all eigenvalues of A have negative real

parts.

Since we have this strong necessary and sufficient condition for stability,

is it possible to strengthen Lyapunov’s direct method so the existence of a

Lyapunov function is also necessary and sufficient for the origin of an LTI

system to be asymptotically stable? If so, what advantages (if any) does the

Lyapunov analysis provide over the eigenvalue analysis? Such results are

called converse theorems.

We already know that

eigenvalue condition ⇔ asymptotic stability ⇐ Lyapunov condition

From the above implications, it should be clear that if we could show the

eigenvalue condition always implies the existence of a Lyapunov func-

tion, then we would obtain our converse result (i.e. asymptotic stability ⇒
Lyapunov condition).

So let us assume that A satisfies the eigenvalue condition (i.e. Re(λi) <

0 for all i) and consider a specific candidate Lyapunov function V (x) =

xTPx where

P =

∫ ∞

0

eA
T tQeAtdt(27)

in which Q is any positive definite symmetric matrix. Note that

ATP+PA =

∫ ∞

0

(
AT eA

T tQeAt + eA
T tQeAtA

)
dt

=

∫ ∞

0

d

dt
eA

T tQeAtdt

= eA
T tQeAt

∣∣∣∞
0

= −Q
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where we used the fact that eA0 = I and the fact that lim
t→∞

eAt = 0 because

of the eigenvalue condition. The preceding relationships therefore show

that for this choice of P

V̇ (x) = xT (ATP+PA)x = −xTQx

which means V̇ is negative definite.

To complete the certification of V as a Lyapunov function, we need to

verify that V is positive definite. Since Q is symmetric and positive definite,

it can be factored as

Q = MTM.

where M is nonsingular. So if we look at V (x) we get

V (x) = xTPx

= xT

[∫ ∞

0

eA
T tQeAtdt

]
x

=

∫ ∞

0

xT eA
T tMTMeAtxdt

=

∫ T

0

∣∣MeAτx
∣∣2 dτ ≥ 0

So this shows V (x) is positive semidefinite. Note, however, that when

V (x) = 0, the above relation implies∣∣MeAτx
∣∣ = 0

which can only happen if MeAτx = 0 for all τ . But, we already know

M and eAτ (transition matrix for a continuous-time system) are both non-

singular, which means x = 0 and so V (x) is positive definite since the

only time V (x) = 0 is when x = 0. What we’ve just done is prove that

when the eigenvalue condition holds, then there is a Lyapunov certificate,

V (x) = xTPx where P is given by equation (27). From the direct method,

we know that the Lyapunov condition implies asymptotic stability. What

we have shown above is that if the origin is asymptotically stable then the
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Lyapunov condition must hold. This result is important enough that we

formalize it in a theorem

THEOREM 10. (Converse Theorem:) The origin of ẋ(t) = Ax(t) is

asymptotically stable if and only if for any positive definite symmetric ma-

trix Q, there exists a symmetric positive definite matrix, P that satisfies the

Lyapunov equation ATP+PA+Q= 0.

We now have two necessary and sufficient conditions for asymptotic sta-

bility of the origin of an LTI system. Which one to use? If all one wants is

a yes/no declaration of stability, then the eigenvalue test is easier and more

stable numerically than trying to solve the Lyapunov equation. The utility

of Lyapunov methods lies in their use as design tools. To illustrate this, let

us consider the inhomogeneous system

ẋ(t) = Ax(t) +Bu(t)

and the objective is to find a matrix K such that if we let u = Kx then the

origin of the “controlled” system

ẋ(t) = (A+BK)x(t)

is asymptotically stable.

One could try to find this K through the eigenvalue condition. In par-

ticular, one would look at K as a matrix of parameters and then form the

characteristic polynomial

det(sI−A−BK) = p(s;K) = 0

We would then solve for the roots of this polynomial as a function of the

parameters K. In general, this is extremely hard to do because the coef-

ficients of p(s;K) are nonlinear functions of the components of K. This

approach can be used for simple low-dimensional systems, but it is not very

practical for systems with a large state space.
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Alternatively, we can use Theorem 10. In this case, we know that if there

exists a K that stabilizes the origin, then the controlled system

ẋ(t) = (A+BK)x(t)

has a Lyapunov function, V (x) = xTPx, where for any choice of Q =

QT > 0 we find a matrix P = PT > 0 that satisfies the Lyapunov equation

(A+BK)TP+P(A+BK) +Q = 0(28)

This Lyapunov equation has two decision variables we would need to solve

for (once Q has been chosen). These decision variables are P and the gain

matrix K.

At first glance, the Lyapunov equation (28) looks difficult to solve be-

cause it is bilinear in P and K. But we can force this equation to be a linear

matrix equation by defining a two new matrix variables

X = P−1

Y = KX

and note that if we pre-multiply and post-multiply equation (28) by P−1,

we get

0 = P−1
{
(A+BK)TP+P(A+BK) +Q

}
P−1

= P−1AT +AP−1 +P−1KTBT +BKP−1 +P−1QP−1

= XAT +AX+YTBT +BY +XQX

Recall that we can choose Q to be any symmetric positive definite matrix,

so we are free to choose R := XQX to be any symmetric positive definite

matrix. Then we have

0 = XAT +AX+YTBT +BY +R(29)

This equation only has two decision variables, X and Y. But what is im-

portant to note here is that equation (29) is linear in these variables. So we
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can easily solve for X and Y once we have selected R and the controller

gain is then

K = YX−1

computed directly from solution to the linear matrix equation (29).

What this discussion shows is that while the eigenvalue condition for

asymptotic stability is easy to verify, it is more difficult to use as a design

tool because it leads to nonlinear design equations. For the LTI systems, the

use of Lyapunov methods on the other hand lead to linear equations that are

much easier to solve, thereby establishing the value of Lyapunov methods

as design tools. Below a simple example is used to illustrate the difference

in these two methods for stabilizing an LTI system.

Example: Let us consider the following LTI system,

ẋ(t) = Ax(t) +Bu(t) =

 1 1 0

0 1 1

0 0 1

x(t) +

 0

0

1

u(t)

The objective is to determine a state feedback control law, u = Kx that sta-

bilizes the origin of this system. We will try doing this using the eigenvalue

condition and Lyapunov methods.

For the eigenvalue condition, we first need to determine the characteristic

equation for the controlled system. We let K =
[
k1 k2 k3

]
and then

note that the characteristic polynomial is

p(s) = det(sI−A−BK)

= det


 s− 1 −1 0

0 s− 1 −1

0 0 s− 1

−

 0 0 0

0 0 0

k1 k2 k3




= s3 − (3 + k3)s
2 + (3− k2 + 2k3)s− (1 + k1 − k2 + k3)

We now need to determine those values of k1, k2, and k3 for which all of the

characteristic equation roots have negative real parts. The tool we will use
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for this is known as the Routh-Hurwitz criterion [Ogata (1970)]. The best

way of explaining this criterion is by example. So consider a polynomial of

the form,

p(s) = a0s
n + a1s

n−1 + · · ·+ an−1s+ an

where an ̸= 0. For this polynomial we construct the Routh array

sn a0 a2 a4 a6 · · ·
sn−1 a1 a3 a5 a7 · · ·
sn−2 b1 b2 b3 b4 · · ·
sn−3 c1 c2 c3 c4 · · ·

...
...

...

s2 k1 k2

s1 ℓ1

s0 m1

where the first two rows are obtained from the coefficients of polynomial,

p(s). The third row of the array is obtained by the negative of the determi-

nant of a matrix formed from 2 × 2 blocks of coefficients in the preceding

2 rows divided by the first element of the second row. This means that

b1 = − 1

a1
det

[
a0 a2

a1 a3

]
= −a0a3 − a1a2

a1

b2 = − 1

a1
det

[
a2 a4

a3 a5

]
= −a2a5 − a3a4

a1

...

The fourth row is computed in the same manner so that

c1 = − 1

b1
det

[
a1 a3

b1 b2

]
= −a1b2 − b1a3

b1

c2 = − 1

b1
det

[
a3 a5

b2 b3

]
= −a3b3 − b2a5

b1
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We continue in this manner until the end of the array. The number of roots

in the open right half plane (i.e. unstable poles) is equal to the number of

sign changes in the first column of the completed Routh array.

So let us return to our characteristic equation,

0 = s3 − (3 + k3)s
2 + (3− k2 + 2k3)s− (1 + k1 − k2 + k3)

= a0s
3 + a1s

2 + a2s+ a3

and we have a0 = 1, a1 = −3 − k3, a2 = 3 − k2 + 2k3, and a3 = −1 −
k1 + k2 − k3. So the first two rows of the Routh array are

s3 1 3− k2 + 2k3

s2 −3− k3 −1− k1 + k2 − k3

We compute the third row as

b1 = − 1

−3− k3
det

[
1 3− k2 + 2k3

−3− k3 −1− k1 + k2 − k3

]

=
−k1 − 2k2 + 8k3 − k2k3 + 2k2

3 + 8

3 + k3
b2 = 0

which gives us the array

s3 1 3− k2 + 2k3

s2 −3− k3 −1− k1 + k2 − k3

s1
−k1−2k2+8k3−k2k3+2k23+8

3+k3
0

The last row of the array is

c1 = − 1

b1
det

[
a1 a3

b1 0

]
= −1− k1 + k2 − k3

c2 = 0
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and the completed Routh array is now

s3 1 3− k2 + 2k3

s2 −3− k3 −1− k1 + k2 − k3

s1
−k1−2k2+8k3−k2k3+2k23+8

3+k3
0

s0 −1− k1 + k2 − k3

0

So to ensure that all roots of the characteristic polynomial have non-

positive real parts, we need to select k1, k2, and k3 so there are no sign

changes in the first column of the Routh array. The first element of this

column is 1, so that means that

−3− k3 ≥ 0 ⇒ k3 ≤ −3

So let k3 = −4. For this choice of k3, we see that the sign of the third

element will be determined by

0 ≤ k1 + 2k2 − 8k3 + k2k3 − 2k2
3 − 8

= k1 − 2k2 − 8

The sign of the last entry in the first column of the Routh array is determined

by

0 ≤ −1− k1 + k2 − k3 = 3− k1 + k2

So assuming k3 = −4, we need to choose k1 and k2 so

0 ≤ 3− k1 + k2

0 ≤ −8 + k1 − 2k2

which will be satisfied if we section k2 = −7 and k1 = −5. If we insert

these choices back into the original characteristic equation, we obtain

p(s) = s3 + s2 + 2s+ 1

which has one root at −0.57 and two others at −0.215 ± 1.30j. So all real

parts are non-positive.
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Let us now see how this analysis would have been done using Lyapunov

methods. In this case, we form the linear matrix equation

0 = XAT +AX+YTBT +BY + I

where I’ve chosen R to be the identity matrix. This must be solved subject

to X > 0. This is an example of a linear matrix equation that is easily

solved using convex optimization methods used in solving linear matrix

inequalities (LMI) [Boyd et al. (1994)]. To do this, we recast our problem

as a constrained optimization problem of the form

maximize: trace(X)

with respect to: X and Y

subject to:
ϵ1I ≤ X

ϵ2I ≤ −XAT −AX−BY −BTYT

where ϵ1 > 0 and ϵ2 > 0 are positive real constants we are free to choose.

By maximizing the trace of X, we find a solution that gets close to the

boundary of the sets generated by the linear matrix inequalities. The con-

stants ϵ1 and ϵ2 are chosen to enforce how “definite” we want these inequal-

ities to be.

The preceding optimization problem can be efficiently solved using con-

vex optimization programs known as semi-definite programming (SDP)

solvers [Toh et al. (1999)]. In general, one uses a programming interface

to access these SDP solvers. The one I’ll use below is YALMIP [Lofberg

(2004)]. For this example I used the the following script to solve for the

controller gains,

clear all;

%declare system matrices

A = [1 1 0; 0 1 1; 0 0 1];

B = [0;0;1];

n = size(A,1);

%declare SDP variables X and Y

X = sdpvar(n,n);

Y = sdpvar(1,n);

eps1 =1; eps2 = 1;
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%declare LMI’s

F = [X > eps1*eye(n)];

F = [F,-X*A’-A*X-B*Y-Y’*B’-eps2*eye(n)];

%solve the SDP that maximizes trace of X subject to F

optimize(F, trace(X))

P = inv(value(X));

K = value(Y)*P

eig(A+B*K)

The output generated by this script is shown below

>> test_file

num. of constraints = 9

dim. of sdp var = 6, num. of sdp blk = 2

*******************************************************************

SDPT3: Infeasible path-following algorithms

*******************************************************************

version predcorr gam expon scale_data

HKM 1 0.000 1 0

it pstep dstep pinfeas dinfeas gap prim-obj dual-obj cputime

-------------------------------------------------------------------

0|0.000|0.000|1.4e+01|7.8e+00|6.0e+02|-6.000000e+01 0.000000e+00| 0:0:00| chol 1 1

1|0.824|0.807|2.5e+00|1.6e+00|1.1e+02|-3.895285e+01 -1.384793e+01| 0:0:00| chol 1 1

2|0.833|0.545|4.3e-01|7.1e-01|3.4e+01|-6.307726e+01 -2.301790e+01| 0:0:00| chol 1 1

3|0.610|1.000|1.7e-01|7.1e-04|5.9e+01|-5.093197e+01 -9.675923e+01| 0:0:00| chol 1 1

4|0.970|0.916|5.0e-03|1.2e-04|5.6e+00|-6.416986e+01 -6.946985e+01| 0:0:00| chol 1 1

5|0.974|0.984|1.3e-04|1.4e-04|1.4e-01|-6.734862e+01 -6.746674e+01| 0:0:00| chol 1 1

6|0.919|0.983|1.1e-05|1.1e-05|8.1e-03|-6.740433e+01 -6.741073e+01| 0:0:00| chol 1 2

7|0.927|0.991|9.8e-07|4.7e-07|3.9e-04|-6.740698e+01 -6.740727e+01| 0:0:00| chol 2 2

8|0.952|0.983|2.4e-07|2.1e-08|1.3e-05|-6.740708e+01 -6.740710e+01| 0:0:00| chol 2 2

9|0.972|0.985|2.9e-08|6.1e-10|3.1e-07|-6.740709e+01 -6.740709e+01| 0:0:00|

stop: max(relative gap, infeasibilities) < 1.00e-07

-------------------------------------------------------------------

number of iterations = 9

primal objective value = -6.74070920e+01

dual objective value = -6.74070931e+01

gap := trace(XZ) = 3.06e-07

relative gap = 2.25e-09

actual relative gap = 8.09e-09

rel. primal infeas = 2.88e-08

rel. dual infeas = 6.09e-10
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norm(X), norm(y), norm(Z) = 5.2e+01, 8.3e+01, 5.9e+01

norm(A), norm(b), norm(C) = 9.3e+00, 2.7e+00, 3.4e+00

Total CPU time (secs) = 0.34

CPU time per iteration = 0.04

termination code = 0

DIMACS: 3.9e-08 0.0e+00 1.1e-09 0.0e+00 8.1e-09 2.3e-09

-------------------------------------------------------------------

ans =

struct with fields:

yalmiptime: 1.1079

solvertime: 0.5257

info: ’Successfully solved (SDPT3-4)’

problem: 0

P =

0.5937 0.4511 0.0937

0.4511 0.4538 0.1016

0.0937 0.1016 0.0441

K =

-10.5098 -12.2276 -4.0915

ans =

-0.2001 + 0.0000i

-0.4457 + 2.5822i

-0.4457 - 2.5822i

>>

The first part of the output is generated by the SDP solver in which the

termination code of 0 indicates the SDP was successfully solved. The last
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part shows the resulting P and the control gains,

K =
[
−10.5 −12.2 −4.09

]
The closed loop eigenvalues are seen to be −0.2 and −0.44± 2.58j, which

indeed shows that we’ve stabilized the equilibrium. Notice that solving the

problem in this manner was tremendously easy because it could be put in a

linear form for which existing optimization tools could be used. The eigen-

value approach provided a systematic way to identify stabilizing controller

gains, but the Routh-Hurwitz array, in general, creates a set of nonlinear

multivariate polynomial constraints that can be extremely difficult to solve

by hand or by the computer. We therefore see the value in the Lyapunov

method lies in how it formulates the stabilization problem as a convex prob-

lem that allows one to easily use efficient codes to solve it.

2.2. Indirect Method: We can use Lyapunov stability concept to es-

tablish when the linearized system’s stability can be used to infer the sta-

bility of the nonlinear system. This theorem is called Lyapunov’s indirect

method [Khalil (2002)].

THEOREM 11. Lyapunov’s Indirect Method: Let ẋ(t) = Ax(t) be the

linearization of a nonlinear ẋ(t) = f(x)(t) about an equilibrium at the

origin. Let {λi}ni=1 denote the eigenvalues of A. If Re(λi) < 0 for all

i = 1, 2, . . . , n, then the origin of the nonlinear system is asymptotically

stable. If Re(λi) > 0 for any i ∈ {1, 2, . . . , n}, then the origin of the

nonlinear system is unstable.

Proof: The “stability” part of the theorem can be proven using what we

already have. The “instability” part of the theorem is proven using a insta-

bility certificate known as a Chetaev function. These instability certificates

are not of direct interest in this course, so we will only prove the stability

part of the theorem.

Consider a candidate Lyapunov function of the form V (x) = xTPx

where P = PT > 0. Under the first condition when A is Hurwitz, we can
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take P to satisfy the Lyapunov equation ATP + PA + Q = 0 for some

Q = QT > 0. Take the directional derivative of V with respect to the

nonlinear system’s vector field, f , and get

V̇ = xTPf(x) + fT (x)Px

= xTP(Ax+ g(x)) +
[
xTAT + gT (x)

]
Px

= xT (PA+ATP)x+ 2xTPg(x)

= −xTQx+ 2xTPg(x)

So the first term is negative definite. The second term is indefinite. We

know, however, that |g(x)|
|x| → 0 as |x| → 0 so for any γ > 0 there exists

r > 0 such that

|g(x)| < γ|x|

when |x| < r. This means that

V̇ < −xTQx+ 2γ∥P∥|x|2

< −(λ(Q)− 2γ∥P∥)|x|2

where λ(Q) is the minimum eigenvalue of Q. So if we choose γ < λ(Q)
2∥P∥

then we can guarantee V̇ < 0 for |x| < r which establishes the asymptotic

stability of the origin when A is Hurwitz. ♢

We summarize the preceding theorem’s findings below

• If the equilibrium of the linearization of ẋ = f(x) is asymptoti-

cally stable, then the origin of the nonlinear system is also locally

asymptotically stable.

• If any eigenvalue of the linearization has a positive real part then

the origin of the nonlinear system is unstable.

• If all eigenvalues of the linearization have nonpositive real parts

and there exists at least one eigenvalue with a zero real part, then

nothing can be concluded about the stability of the equilibrium.
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The theorem says that if the origin of a nonlinear system’s linearization is

asymptotically stable, then so too is the origin of the original system pro-

vided the equilibrium is hyperbolic (the linearization’s eigenvalues have no

zero real parts). A similar finding holds for the certain unstable lineariza-

tions. This means, therefore, that stabilizing the linearization is often good

enough to stabilize a real-life nonlinear plant. The only time it cannot be

used is when the none of the algorithms have positive real parts and at least

one has a zero real part. This result, of course, only holds in a neighbor-

hood of the origin and that neighborhood may be too small for practical use

depending on the system under study.

Example: Let us apply this to a nonlinear pendulum system,

ẋ1(t) = x2(t)

ẋ2(t) = −g

ℓ
sinx1(t)− x2(t)

where x1 is the pendulum angle, x2 is the angle’s time derivative, g is grav-

itational acceleration, ℓ is the length of the pendulum, and the mass of the

pendulum bob is 1. We will examine the stability of the physical equilibria

at (0, 0) and (π, 0) using the indirect method. This requires that we first

compute the Jacobian of

f(x1, x2) =

[
f1(x1, x2)

f2(x1, x2)

]
=

[
x2

−g
ℓ
sinx1 − x2

]
That Jacobian is[

∂f

∂x

]
=

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
=

[
0 1

−g
ℓ
cosx1 −1

]

At the two equilibria, (0, 0), and (π, 0) we end up with the matrices,

A1 =

[
∂f

∂x

]
x=(0,0)

=

[
0 1

−g
ℓ

−1

]

A2 =

[
∂f

∂x

]
x=(π,0)

=

[
0 1
g
ℓ

−1

]
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The characteristic polynomial of A1 is s(s+ 1) + g
ℓ
= 0 which as roots

λ1,2 = −1

2
± 1

2

√
1− 4

g

ℓ

both roots have negative real parts for all g/ℓ > 0 and so the indirect method

implies the equilibrium at (0, 0) is asymptotically stable. The characteristic

polynomial for A2 has roots

λ1,2 = −1

2
± 1

2

√
1 + 4

g

ℓ

One root has a positive real part and the other has a negative real part. There

are no center (zero real part) eigenvalues so by the theorem we know the

equilibrium at (π, 0) is unstable.

3. Lyapunov Stability for Discrete-time LTI Systems:

Consider the homogeneous time-invariant system

x(k + 1) = f(x(k))

x∗ ∈ R is an equilibrium point of x∗ = f(x∗) and without a loss of gen-

erality we assume x∗ = 0. We introduce a candidate Lyapunov function

V : Rn → R which is positive definite and define the first difference of V

with respect to a given state trajectory as

∆V (x) = V (f(x))− V (x)

Our usual notions of Lyapunov stability are

• The equilibrium is stable (Lyapunov) if for all ϵ > 0 there exists

δ > 0 such that |x(0)| < δ implies |x(k)| < ϵ for all k ≥ 0.

• The system is unstable if it is not stable.

• The equilibrium is asymptotically stable if the origin is stable and

for |x0| small enough, we can show x(k) → 0 as k → ∞.

Lyapunov’s direct method now relies on using first differences. In par-

ticular this means
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• The origin is stable if V > 0 and ∆V ≤ 0

• The origin is asymptotically stable if V > 0 and ∆V < 0.

If we confine our attention to LTI systems of the form

x(k + 1) = Ax(k)

and consider a candidate Lyapunov function of the form V (x) = xTPx

where P = PT > 0 then the first difference condition becomes

∆V (x)(k) = V (Ax(k))− V (x(k))

= xT (k)(ATPA−P)x(k) ≤ 0

which leads to the discrete-time Lyapunov equation

ATPA−P+Q = 0(30)

where P and Q are symmetric positive definite matrices. In particular for

any Q = QT > 0, if we can find a P = PT > 0 that satisfies the discrete

time Lyapunov equation (30), then the origin of the discrete time system is

asymptotically stable. Just as in the continuous-time case, the existence of

such a Lyapunov function is necessary and sufficient for asymptotic stability

and is therefore equivalent to the eigenvalue condition that all eigenvalues

lie in the unit circle of the complex plane.

While one may use Lyapunov analysis to certify whether the origin of

a discrete-time LTI system is asymptotically stable, it is actually easier to

use the eigenvalues of A to make this assessment. In particular, for the LTI

system

x(k + 1) = Ax(k)

Let λ1, . . . , λσ denote the σ distinct eigenvalues of A and let mi denote

the algebraic multiplicity of the ith eigenvalue. The state transition matrix

becomes
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Φ(k; 0) = Ak =
σ∑

i=1

[
Ai0u(k) +

mi−1∑
ℓ=1

Aiℓk(k − 1) . . . (k − ℓ+ 1)λk−ℓ
i u(k − ℓ)

]

where

Aiℓ =
1

ℓ!
lim
z→λk

{
dmi−ℓ−1

dzmi−ℓ−1

[
(z − λi)

mi(zI−A)−1
]}

with u(k) denoting the unit step function. Note that all terms in the preced-

ing expression asymptotically go to zero as k → ∞ if and only if |λi| < 1

for all i = 1, . . . , σ. So we can say the origin of the discrete-time LTI sys-

tem is asymptotically stable if and only if all eigenvalues of A lie within

the unit circle (i.e. |λi| < 1 for all i = 1, 2 . . . , σ).

Just as we had the Routh-Hurwitz criterion to assess a continuous-time

LTI system’s stability, we can use the Jury Stability Test [Ogata et al. (1995)]

to do the same for discrete-time LTI systems. In this case, let us assume that

the discrete-time system’s characteristic equation can be written as

d(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0 = 0

with an > 0. Jury’s stability test is applied to the following array

z0 z1 z2 · · · zn−k · · · zn−1 zn

a0 a1 a2 · · · an−k · · · an−1 an

an an−1 an−2 · · · ak · · · a1 a0

b0 b1 b2 · · · bn−k · · · bn−1

bn−1 bn−2 bn−3 · · · bk−1 · · · b0

c0 c1 c2 · · · cn−k · · ·
cn−2 cn−3 cn−4 · · · ck−2 · · ·

...
...

...
...

...

ℓ0 ℓ1 ℓ2 ℓ3

ℓ3 ℓ2 ℓ1 ℓ0

m0 m1 m2
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where

bk = det

[
a0 an−k

an ak

]
, ck = det

[
b0 bn−1−k

bn−1 bk

]
, dk = det

[
c0 cn−2−k

cn−2 ck

]
, . . .

The necessary and sufficient conditions for d(z) to have no roots on or out-

side the unit circle with an > 0 are

d(1) > 0

(−1)nd(−1) > 0

|a0| < an

|b0| > |bn−1|

|c0| > |cn−2|

|d0| > |dn−3|
...

|m0| > |m2|

As an example, let us consider a discrete-time system whose character-

istic polynomial is

d(z) = z3 − 1.8z2 + 1.05z − 0.20 = 0

The first conditions of the Jury test are

d(1) = 1− 1.8 + 1.05− 0.2 = 0.05 > 0

(−1)3d(−1) = −[−1− 1.8− 1.05− 0.2] = 4.05 > 0

|a0| = 0.2 < a3 = 1

The Jury array is

z0 z1 z2 z3

−0.2 1.05 −1.8 1

1 −1.8 1.05 −0.2

−0.96 1.59 −0.69
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So the last condition is

|b0| = 0.96 > |b2| = 0.69

Since all conditions are satisfied, all roots of the characteristic equation

lie within the unit circle. In particular, one may factor the characteristic

equation as

d(z) = (z − 0.5)2(z − 0.8)

which is consistent with what was predicted by the Jury test.

An “indirect” result can also be established for discrete time systems

where the nonlinear system is written as

x(k + 1) = Ax(k) + g(x(k))

and g is a little-o function. Then if all eigenvalues of A are in the unit circle

the origin of the nonlinear system is asymptotically stable. If at least one

eigenvalue of A is outside the unit circle, then the origin of the nonlinear

system is unstable.

4. Uniform Stability Concepts

We need to refine the earlier Lyapunov stability concept when it is applied

to time-varying systems. To help illustrate the need for this refinement,

consider the LTV system

ẋ(t) = (6t sin(t)− 2t)x(t)

One may view this as a linear system, ẋ(t) = a(t)x(t) whose time-varying

coefficient a(t) is subject to a damping force and a sinusoidal perturbation

that both grow over time. The solution may be obtained by first separating

the variables, x and t

dx

x
= (6t sin(t)− 2t)dt
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and then integrating both sides of the equation from t0 (initial time) to t > t0

assuming x(t0) = x0.

x(t) = x(t0) exp

{∫ t

t0

(6s sin(s)− 2s)ds

}
= x(t0) exp

{
6 sin(t)− 6tcos(t)− t2 − 6 sin(t0) + 6t0 cos(t0) + t20

}
For a fixed initial time, t0, one sees that eventually the quadratic term, t2,

will denominate the exponential function’s behavior, thereby implying that

the exponential function in the above equation is bounded above by a func-

tion of t0, say c(t0). It therefore follows that

|x(t)| ≤ c(t0)|x(t0)|, for all t ≥ t0

If we then consider any ϵ > 0 and select the initial neighborhood δ(ϵ) =
ϵ

c(t0)
then clearly |x(t)| remains with a ϵ-neighborhood of the equilibrium

and so we can conclude the equilibrium at 0 is stable in the sense of Lya-

punov.

The issue we face here, however, is that δ is not just a function of ϵ, it

is also a function of the initial time t0. Our worry is that as t0 → ∞ that

δ(ϵ, t0) could approach a finite limit that is, in fact, zero. If we think of t0
as the system’s current “age”. Then this says as the system ages (i.e. t0 gets

larger) our ability to keep |x(t)| < ϵ is harder and harder as we have to start

in a smaller and smaller distance, δ, from the origin.

This is precisely the case with this particular system. Consider a se-

quence of initial times {t0n}∞n=0 where t0n = 2nπ for n = 0, 1, 2, . . . ,∞.

Let us evaluate x(t) exactly π time units after t0n to see that

x(t0n + π) = x(t0n) exp
{
6(2n+ 1)π − (2n+ 1)2π2 + 6(2nπ) + (2n)2π2

}
= x(t0n) exp

{
24nπ + 6π − 4nπ2 − π2

}
= x(t0n) exp {(4n+ 1)(6− π)π}

and for any x(t0) ̸= 0 we then can see that the ratio

x(t0n + π)

x(t0n)
= e(6−π)π(4n+1) = 7942.2e35.918n → ∞
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as n → ∞. In other words, as the system ages in the sense that t0n goes

to infinity, we see that ratio of x at t0n + π and t0n become unbounded.

This means that the origin becomes “less” stable as t0 → ∞ since |x(t)|
gets larger and larger as t0 → ∞ assuming x(t0) starts in the same δ-sized

neighborhood of the origin.

These issues also become relevant when we consider asymptotic stability

of the equilibrium. To be asymptotically stable, we require the origin to be

stable and that x(t) → 0 as t → ∞. Formally, this asymptotic behavior

may be seen as requiring for any ϵ > 0 there exists a time T > 0 and initial

neighborhood, Nδ(0), such that starting x0 ∈ Nδ(0) implies |x(t)| < ϵ for

all t ≥ T . T represents the time it takes for the system state to reach the

desired ϵ-neighborhood. In general this convergence time is a function of ϵ

as well. But if the system is time-varying then we can also expect T to be

a function of the initial time t0. Our worry is that as t0 → ∞ (i.e. as the

system ages) we have T (ϵ, t0) → ∞. In other words, as the system ages its

convergence time gets slower and slower.

We will use the following LTV system

ẋ(t) = − x(t)

1 + t

to illustrate this other convergence issue. Again we separate the variables,

x and t, and integrate from t0 to t to obtain

x(t) = x(t0)
1 + t0
1 + t

The origin is Lyapunov stable since for any t0 we have |x(t)| ≤ |x(t0)| for

t ≥ t0. So for any ϵ > 0, we can choose δ so it is independent of t0. Note

that the origin, however, is also asymptotically stable. So for all ϵ, we can

find T > 0 such that |x(t)| < ϵ for all t ≥ t0 + T . In particular, given ϵ we

can bound |x(t)| as

|x(t)| ≤ |x(t0)|
1 + t0

1 + t0 + T
< ϵ
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which can be rearranged to isolate T and get

T > t0

(
|x(t0)|

ϵ
− 1

)
− 1

Note that this is a lower bound on the time, T , it takes to reach the target

ϵ-neighborhood. So 1/T may be taken as the “rate” at which the state con-

verges to the origin. But the lower bound on T in the above equation is also

a function of t0 and we can readily see that 1
T

→ 0 as t0 → ∞. In other

words, as the system ages (i.e. t0 gets larger), the system’s convergence

rate, 1/T , gets slower and slower. In terms of behavior, this system would

appear to “stall out” on its approach to the origin.

The preceding concerns motivate a refinement of our earlier Lyapunov

stability concept. We say the equilibrium at the origin is uniformly stable if

for all ϵ > 0 there exists δ > 0 that is independent of t0 such that

|x(t0)| ≤ δ, ⇒ |x(t)| < ϵ for all t ≥ t0.

The equilibrium is uniformly asymptotically stable if it is uniformly stable

and there exists δ independent of t0 such that for all ϵ > 0 there exists T > 0

that is also independent of t0 such that |x(t)| < ϵ for all t ≥ t0 + T (ϵ)

and all |x(t0)| ≤ δ(ϵ). Finally, we say the origin is globally uniformly

asymptotically stable (GUAS) if it is uniformly stable and δ can be chosen

so that δ(ϵ) → ∞ as ϵ → ∞ and there exist constants T and δ, both

independent of t0, such that for any ϵ > 0 we have |x(t)| < ϵ for all t ≥
t0 + T (ϵ) when |x(t0)| < δ(ϵ).

Example: Consider the LTV system

ẋ(t) =

[
−1 t

0 −1

]
x(t)

• Use the definition of asymptotic stability to show the origin is

asymptotically stable.

• Use the definition of uniform asymptotic stability to show the ori-

gin is not UAS.
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We take the initial time to be t0 and let x10 = x1(t0) and x20 = x2(t0).

Note that x2(t) = e−(t−t0)x20 for all t ≥ t0. This means that the first ODE

is

ẋ1(t) = −x1(t) + te−(t−t0)u(t− t0)

where u is a unit step function The solution for this ODE is

x1(t) = e−(t−t0)x10 +

∫ t

t0

τe−(τ−t0)e−(t−τ)x20dτ

= e−(t−t0)x10 + x20e
−(t−t0)

∫ t

t0

τdτ

= e−(t−t0)
(
x10 +

x20

2
(t2 − t20)

)
Note that for t ≥ t0 we get

|x(t)|2 = x2
1(t) + x2

2(t)

= e−2(t−t0)

(
x2
20 + x2

10 + x10x20(t
2 − t20) +

x2
20

4
(t2 − t20)

2

)
≤ e−2(t−t0)

(
|x0|2 + |x0|2(t2 − t20) +

|x0|2

4
(t2 − t20)

2

)
= |x0|2e−2(t−t0)

(
1 + (t2 − t20) +

1

4
(t2 − t20)

2

)
To assess stability, let ϵ > 0 and t0 = 0, then we get

|x(t)|2 ≤ |x0|2(1 +K)

where K = maxt e
−2t(t2 + t4/4). We choose δ <

ϵ√
1 +K

to show the

origin is stable. We can also see that

|x(t)|2 ≤ |x0|2(e−2t + t2e−2t + t4e−2t/4) → 0

as t → ∞ which establishes the origin is asymptotically stable.

To assess uniform asymptotic stability, we need to keep t0. In particular,

we see this means

|x(t)|2 ≤ |x0|2e−2(t−t0)

(
1 + (t2 − t20) +

1

4
(t2 − t20)

)
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The problem is that

t2 − t20 = (t− t0)
2 + 2t0(t0 − t)

which means δ is also a function of t0, not just t− t0. As a result we cannot

conclude the origin is uniformly stable and hence cannot be UAS.

5. Lyapunov Stability for Linear Time-varying Systems

As before, there is a Lyapunov theorem (direct method) for time-varying

systems that certifies the uniform asymptotic stability of the equilibrium.

This theorem is stated below without proof since it uses techniques that are

not of direct interest to this course. We will use this theorem in establishing

uniform stability results for LTV systems.

THEOREM 12. (Direct Method for Time-Varying Systems) Let x = 0

be an equilibrium for ẋ(t) = f(t, x), and let V : R × Rn → R be C1 in

both arguments. If there exist continuous positive definite functions W , W ,

and W all mapping Rn onto R such that

W (x) ≤ V (t, x) ≤ W (x)
∂V

∂t
+

∂V

∂x
(f(t, x) ≤ −W (x)

for all t ≥ 0 and x ∈ D, then the origin is uniformly asymptotically stable.

Let us compare Theorem 12 to our earlier direct method for time invari-

ant systems. We first see that the Lyapunov function is now a function of

time, t, and state, x, whereas the time-invariant V was only a function of

state. This means that to establish similar conditions we need to “bound” the

time variation in V . So the condition for V (x) > 0 now becomes one where

V (t, x) is “sandwiched” between two positive definite functions W (x) and

W (x) which are independent of t. In a similar spirit, we now require

V̇ =
∂V

∂t
+

∂V

∂x
f(t, x)
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to be bounded above by a negative definite −W (x) which is also indepen-

dent of t. So the conditions in this theorem are essentially the same as those

in the direct method for time-invariant systems. Uniform asymptotic stabil-

ity of the equilibrium is certified when V (t, x) is sandwiched between two

positive definite functions of state and V̇ (t, x) is bounded above by a neg-

ative definite function of state. As before a function V (t, x) that satisfies

these conditions is called a Lyapunov function for UAS.

Let us now apply theorem 12 to an LTV system. So consider the LTV

system

ẋ(t) = A(t)x(t), x(t0) = x0

which has an equilibrium at the origin. We let A(t) be a continuous function

of t and suppose there is a C1 symmetric positive definite matrix-valued

function P : R → Rn×n with positive constants c1 and c2 such that

0 < c1I ≤ P(t) ≤ c2I, for all t ≥ t0(31)

and such that P(t) satisfies the matrix differential equation

−Ṗ(t) = P(t)A(t) +AT (t)P(t) +Q(t)(32)

where Q(t) is a continuous symmetric positive definite matrix valued func-

tion and positive constant c3 such that

Q(t) ≥ c3I > 0, for all t ≥ t0(33)

We want to show that V : R× Rn → R taking values

V (t, x) = xTP(t)x

is a Lyapunov function for the LTV system.

Certifying V as a Lyapunov function simply means checking the condi-

tions in Theorem 12. Clearly

c1|x|2 ≤ V (t, x) = xTP(t)x ≤ c2|x|2

based on our assumptions on P(t) in equation (31). So we can take W (x) =

c1|x|2 and W (x) = c2|x|2, both of which are clearly positive definite. We
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now check the other condition by computing the directional derivative of

V (t, x),

V̇ (t, x) = xT Ṗ(t)x+ xTP(t)ẋ+ ẋTP(t)x

= xT
{
Ṗ(t) +P(t)A(t) +AT (t)P(t)

}
x

= −xTQ(t)x ≤ −c3|x|2

where the last line comes from our assumption on Q(t) in equation (33). So

we can take W (x) = c3|x|2 which is also clearly positive definite. As both

conditions of Theorem 12 are satisfied we can conclude that the equilibrium

of the LTV system is UAS provided the conditions in equations (31), (32),

and (33) are all satisfied.

The Lyapunov conditions in equations (31-32) are only sufficient UAS

of an LTV system. Unlike the LTI case, we cannot use eigenvalues as a

necessary and sufficient condition for UAS because these eigenvalues are

changing over time. The following theorem provides an alternative “eigen-

value” condition for GUAS of the LTV system,

THEOREM 13. The origin of ẋ(t) = A(t)x(t) with initial condition

x(t0) = x0 is uniformly asymptotically stable (UAS) if and only if there

are positive constants, k and λ, such that the system’s state transition ma-

trix satisfies

∥Φ(t; t0)∥ ≤ ke−λ(t−t0)

for all t ≥ t0 > 0.

Proof: Since Φ is the system’s transition matrix, we have for t ≥ t0 that

|x(t)| ≤ |Φ(t; t0)x(t0)|

≤ ∥Φ(t; t0)∥ |x(t0)|

≤ k|x(t0)|e−λ(t−t0)
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Since this is true for any x(t0), we can see that |x(t)| → 0 as t → ∞ at a

rate, λ, which is independent of t0. So the condition is sufficient for global

UAS.

Conversely, assume that the origin is UAS, then there must exist a class

KL function, β : [0,∞)× [0,∞) → [0,∞), such that

|x(t)| ≤ β(|x(t0)|, t− t0), for all t ≥ t0 and all x(t0) ∈ Rn

A class KL function, β(r, s), is a continuous function that is continuous and

increasing in r with β(0, s) = 0 and that is also asymptotically decreasing

to zero in s. It is what we sometimes refer to as a comparison function.

Now note that the induced matrix norm of Φ has the property

∥Φ(t; t0)∥ = max
|x|=1

|Φ(t; t0)x| ≤ max
|x|=1

β(|x|, t− t0) = β(1, t− t0)

Since β(1, s) → 0 as s → ∞, there exists T > 0 such that β(1, T ) ≤ 1
e
.

For any t ≥ t0, let N be the smallest positive integer such that t ≤ t0+NT .

Divide the interval [t0, t0 + (N − 1)T ] into (N − 1) equal subintervals of

width T . Using the transition matrix’ group property we can write

Φ(t; t0) = Φ(t, t0 + (N − 1)T ) Φ(t0 + (N − 1)T, t0 + (N − 2)T ) · · · Φ(t0 + T, t0)

and so

∥Φ(t; t0)∥ ≤ ∥Φ(t, t0 + (N − 1)T )∥
n−1∏
k=1

∥Φ(t0 + kT, t0 + (k − 1)T )∥

≤ β(1, 0)
N−1∏
k=1

1

e
= eβ(1, 0)e−N

≤ eβ(1, 0)e−(t−t0)/T = ke−λ(t−t0)

where k = eβ(1, 0) and λ = 1/T . ♢
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Example: Consider the LTV system

ẋ(T ) =

[
−1 α(t)

−α(t) −1

]
x

where α(t) is continuous for all t ≥ 0. Is the origin uniformly asymptoti-

cally stable?

We can solve this by checking a somewhat easier condition suggested by

the preceding theorem. In particular, let V (x) = 1
2
(x2

1 + x2
2) and note that

V̇ (x) = x1(−x1 + α(t)x2) + x2(−α(t)x1 − x2) = −x2
1 − x2

2 = −2V

In other words, we know that V (x(t)) will satisfy the differential equation

V̇ (t) = −2V (t)

which has the solution V (t) = V (0)e−2t for t ≥ 0. Since V (x) = 1
2
|x|2

we know this implies the system is uniformly exponentially stable and so

by the preceding theorem it must also be UAS.

Example: Consider the linear homogeneous system

ẋ(t) =

[
−2 t

0 −2

]
x(t)

Determine if the origin is uniformly asymptotically stable. We can use our

earlier methods to show that this system’s state transition matrix is

Φ(t; τ) =

[
e−2(t−τ) t2−τ2

2
e−2(t−τ)

0 e−2(t−τ)

]
=

[
1 t2−τ2

2

0 1

]
e−2(t−τ)

The matrix norm is clearly dominated by the e−2(t−τ) term and so we know

this system is UAS according to the preceding theorem.

This theorem means that for linear systems, UAS is equivalent to uni-

form exponential stability (i.e. asymptotic stability where |x(t)| < ke−λt).

This condition is not as useful as the eigenvalue condition we had for LTI

systems because it needs knowledge of the transition matrix that can only

be obtained by solving the state equations. In other words, the preceding

theorem is of limited value as a “test” for UAS.
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We can establish a converse theorem for LTV systems. This is done by

making considering

P(t) =

∫ ∞

t

ΦT (τ, t)Q(τ)Φ(τ, t)dτ

and let ϕ(τ ; t, x) = Φ(τ, t)x denote the state trajectory with initial condition

at time t being x. With this notational convention, we can write

xTP(t)x =

∫ ∞

t

ϕT (τ ; t, x)Q(τ)ϕ(τ ; t, x)dτ

So by the preceding theorem we know that if the equilibrium is uniformly

exponentially stable (UAS), then there exist k > 0 and λ > 0 such that

∥Φ(τ, t)∥ ≤ ke−λ(τ−t)

Since we assumed Q(t) is bounded and positive definite, there are constants

c3 and c4 such that c3I ≤ Q(t) ≤ c4I and we can then say

xTP(t)x =

∫ ∞

t

ϕT (τ ; t, x)Q(τ)ϕ(τ ; t, x)dτ

=

∫ ∞

t

xTΦT (τ, t)Q(τ)Φ(τ, t)xdτ

≤
∫ ∞

t

c4 ∥Φ(τ, t)∥2 |x|2dτ

≤
∫ ∞

t

k2e−2λ(τ−t)dτc4|x|2

=
k2c4
2λ

|x|2

So we take W (x) =
k2c4
2λ

|x|2.

On the other hand since there exists L > 0 such that ∥A(t)∥ ≤ L for all

time, we can bound the solution from below by

|ϕ(τ ; t, x)|2 ≥ |x|2e−2L(τ−t)
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and so

xTP(t)x ≥
∫ ∞

t

c3|ϕ(τ ; t, x)|2dτ

≥
∫ ∞

t

e−2L(τ−t)dτc3|x|2

=
c3
2L

|x|2

So we take W (x) =
c3
2L

|x|2 and what we’ve established is that

W (x) =
c3
2L

|x|2 ≤ xTP(t)x ≤ k2c4
2λ

|x|2 = W (x)

which establishes the first condition we need for a Lyapunov function.

We now show that the derivative property holds. We use the fact that

∂

∂t
Φ(τ, t) = −Φ(τ, t)A(t)

to show that

Ṗ(t) =

∫ ∞

t

ΦT (τ, t)Q(τ)
∂

∂t
Φ(τ, t)dτ

+

∫ ∞

t

[
∂

∂t
ΦT (τ, t)

]
Q(τ)Φ(τ, t)dτ −Q(t)

= −
∫ ∞

t

ΦT (τ, t)Q(τ)Φ(τ, t)A(t)

−AT (t)

∫ ∞

t

ΦT (τ, t)Q(τ)Φ(τ, t)dτ −Q(t)

= −P(t)A(t)−AT (t)P(t)−Q(t)

which establishes that V (t, x) = xTP(t)x is a Lyapunov function. What we

have just done is show that if the origin of the LTV system is asymptotically

stable, then there must be a Lyapunov function of the form given above.

This converse theorem is formally stated in the following theorem.

THEOREM 14. Let x = 0 be the uniformly exponentially stable equilib-

rium of ẋ(t) = A(t)x(t) where A(t) is continuous and bounded. Let Q(t)

be continuous bounded symmetric positive definite matrix function of time.
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Then there is a continuously differentiable bounded positive definite sym-

metric matrix function, P(t), that satisfies the matrix differential equation

−Ṗ(t) = P(t)A(t) +AT (t)P(t) +Q(t)

and so V (t, x) = xTP(t)x is a Lyapunov function for this system.

6. Lp Stability:

Lyapunov stability is a property of the equilibrium for a system that is not

being forced by an unknown exogenous input. For systems with exogenous

inputs, the state equation takes the form,

ẋ(t) = f(x(t), w(t))

where f : Rn×Rm → Rn is now a function of the state x : R → Rn and an

applied input signal w : R → Rm. One can think of w as a disturbance. The

disturbance is a signal that we don’t know and that fluctuates about a bias

or trend line. If 0 = f(0, w(t)) for any w, then the origin is an equilibrium

point for the forced system and one can examine the Lyapunov stability of

that equilibrium. In general, however, the disturbance is non-vanishing in

the sense that f(0, w) ̸= 0 and this means that the origin will not be an

equilibrium point and so the Lyapunov stability concept cannot be used.

For systems with non-vanishing perturbations, one often uses a stability

concept that focuses on the input/output behavior of the system. In particu-

lar, we say a forced system is input/output stable if all bounded inputs to the

system result in a bounded response. “Bounded”, in this case, means that

signals have finite norms and so the system is viewed as a linear transfor-

mation between two normed linear signal spaces. A stable system is then a

linear transformation, G : Lin → Lout, that takes any signal, w ∈ Lin, such

that ∥w∥Lin
< ∞ onto an output signal G[w] ∈ Lout such that ∥G[w]∥Lout is

also finite. It is customary to consider signals that are linear transformations

between two Lp spaces because these spaces are Banach spaces (complete

normed linear spaces). Such systems are said to be Lp stable. The purpose



6. Lp STABILITY: 149

of this section is to formalize the Lp stability concept and discuss the special

case when p = 2.

Lp-stability is defined for systems, G : Lpe → Lpe, that are linear trans-

formations between two extended Lp spaces. In particular, Lpe is the space

of all functions, w, such that the truncation of w for any finite T

wT (t) =

{
w(t) for t ≤ T

0 otherwise

is in Lp. We say this space is “extended” because it contains all signals in

Lp as well as unbounded signals whose truncations are bounded. For such

systems we say G is Lp stable if and only if there exists a class K function5,

α : [0,∞) → [0,∞), and a non-negative constant, β, such that

∥G[w]T∥Lp
≤ α(∥wT∥Lp) + β

for all w ∈ Lpe and T ≥ 0. The constant β is called a bias.

Note that in characterizing a system as a linear transformation, we also

need to constrain the system to be causal. Causality means that the current

output is only a function of the past inputs and outputs, a consequence of the

forward motion of time. Formally, we define causality using a truncation

of the input and output signals. In particular, if we let w ∈ Lp, then the

truncation of w with respect to time instant T is a function wT : R → R
such that

wT (t) =

{
w(t) if t ≤ T

0 otherwise

The dynamical systm G : Lp → Lp is causal if and only if for any T ∈ R,

we have

G[wT ](t) = G[w](t), or all t ≤ T

Informally, this means that the output of the system prior to time T under

the non-truncating input signal w is identical to the system’s output prior

5A function α : [0, a) → [0,∞) is class K if and only if it is a continuous and

increasing with α(0) = 0.
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to time T under the truncated input wT . Since wT is zero for t > T , this

means that nonzero inputs after time T have no impact on outputs prior to

T . In other words, the future inputs have no impact on the past outputs.

Lyapunov analysis is often just concerned with declaring whether or not

the equilibrium is stable. But for Lp stability, one talks about how well

the “disturbance”, w, is attenuated at the system’s output and this degree

of attenuation is characterized through the concept of the system’s gain. In

particular, we say that G : Lpe → Lpe is finite-gain Lp stable if there exist

γ > 0 such that

∥G[w]T∥Lp
≤ γ∥wT∥Lp + β

This constant γ is called a gain.

Note that if there is any other γ1 > γ, then γ1 is also a gain. We want

a notion of gain as a property of the system that is some sense uniquely

defined. This is done by taking the infimum over all inputs, w, of those

scalars that can be gains. We call this the Lp induced gain of the system

that is formally defined as

∥G∥Lp−ind := inf
{
γ : ∥(G[w])T ∥Lp

≤ γ∥wT ∥Lp + β, for all w ∈ Lp and T ≥ 0
}

Note that if the bias, β, is zero then the above gain is identical to the L2 and

L∞ defined we discussed in earlier chapters.

The prior lectures provided an explicit formula for the L∞ induced gain

of an LTI system with a known impulse response function. But the L2-

induced gain we derived for LTI systems required finding the maximum

of the system’s gain-magnitude function, |G(jω)|. Finding this maximum

can be very difficult to do if the system has many sharp resonant peaks;

which is usually the case for mechanical systems with a large number of

vibrational modes. So the rest of this section presents an alternative way
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of determining the L2-induced gain that is computationally efficient. The

following theorem will play an important role in this approach.

THEOREM 15. Suppose G
s
=

[
A B

C 0

]
is a system realization with A

being Hurwitz, then ∥G∥L2−ind < γ if and only if the matrix

H =

[
A 1

γ2BBT

−CTC −AT

]
has no eigenvalues on the jω-axis.

Proof: Let Φ(s) = γ2I−G∗(s)G(s). It should be apparent that because

∥G∥L2−ind = maxω |G(jω)| then ∥G∥L2−ind < γ if and only if Φ(jω) > 0

for all ω ∈ R. This means that Φ(s) has no zeros on the imaginary axis, or

rather than Φ−1(s) has no poles on the imaginary axis.

One can readily verify that a state space realization for Φ−1(s) is

Φ−1(s)
s
=

 H

[
1
γ2B

0

]
[
0 1

γ2B
T
]

1
γ2


If H has no imaginary eigenvalues, then clearly Φ−1(s) has no imaginary

poles.

So let jω0 be an eigenvalue of H. This means there is x =

[
x1

x2

]
̸= 0

such that

0 = (jω0I−H)x

=

[
jω0I−A − 1

γ2BBT

CTC jω0I+AT

][
x1

x2

]
which means

(jω0I−A)x1 =
1

γ2
BBTx2(34)

(jω0I+AT )x2 = −CTCx1(35)
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The mode associated with this eigenvalue will be

[
x1

x2

]
ejω0t. For this

mode not to appear in the system’s output, we would require for all t that

0 =
[
0 1

γ2B
T
] [ x1

x2

]
ejω0t =

1

γ2
BTx2e

mω0t

This can only occur in if BTx2 = 0, which when we insert this into equa-

tions (34-35) gives

(jω0I−A)x1 = 0

(jω0I+AT )x2 = −CTCx1

The first equation implies x1 = 0 since A is Hurwitz, and inserting this

into the second equation implies x2 = 0. So we’ve shown that if the jω0-

mode is activated and it does not appear at the output, then x = 0, which

cannot happen. So in this case jω0 cannot be an eigenvalue of H. A similar

case can be made if we require that the applied input not excite those x2

components in the jω0-mode. ♢

The preceding theorem is useful because it uses an eigenvalue test to

certify whether ∥G∥L2−ind < γ. We refer to this test as an algorithmic

oracle since for a given state space realization it can easily declare whether

or not a given γ is an upper bound on the induced gain. In particular, we use

this oracle as the basis of a binary or bisection search to efficiently search

for the minimum γ. This bisection algorithm is stated below.

(1) Select an upper and lower bound, γu and γℓ, respectively, such that

γℓ ≤ ∥G∥L2−ind ≤ γu

(2) If
γu − γℓ

γℓ
< ϵ where ϵ is a specified error tolerance, then STOP

and declare
γu + γℓ

2
as the induced gain. Otherwise continue

(3) Set γ =
γu + γℓ

2
(4) Form the Hamiltonian matrix H and compute its eigenvalues
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• if no eigenvalues are purely imaginary, then set γℓ = γ and go

to step 2.

• If any eigenvalue is imaginary then set γu = γ and go to step

2.

This algorithm works in a very simple manner. It assumes we already

know that the induced gain is bounded between the two initial guesses, γℓ
and γu. The value of γ that we check is chosen halfway between γℓ and γu,

thereby dividing the region of uncertainty in half. Let γ0 denote this initial

guess. The eigenvalue test tells us whether the initial guess is or is not an

upper bound on the induced gain. If it is an upper bound, then we know

γℓ < ∥G∥L2−ind < γ0 and we can reset the upper bound to γu = γ0. If the

eigenvalue test tells us γ0 is not an upper bound on the induced gain, then we

know γ0 < ∥G∥L2−ind < γu and we can reset the lower bound to γℓ = γ0.

With this reset, the interval of uncertainty around the induced gain, [γℓ, γu]

is cut in half. We then repeat this game with the smaller uncertainty interval.

What this algorithm guarantees is that we will determine the induced gain to

an accuracy of
γu − γℓ

2n
after n recursions. So for a specified tolerance level,

ϵ, we can actually determine how many recursions are needed to complete

the search.

Example: Consider the LTI system

G
s
=

 0 1 0

−ω2
n −0.1 1

1 0 0


Determine the system’s induced L2 gain.

We know the transfer function for this system is G(s) = 1
s2+0.1s+ω2

n
and

so

|G(jω)|2 = 1

(ω2
n − ω2)2 + 0.01ω2

Computing the first derivative and setting it equal to zero yields,

2(ω2
n − ω) = 0.01 = 0
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The solution, ω0, is the peak in the gain magnitude function and satisfies the

quadratic equation

ω2
0 + ω2

n −
0.01

2

which has a positive solution positive for ω2
n > 0.01/2. For ω2

n ≤ 0.01/2,

the function is monotone decreasing which means the peak occurs for ω0 =

0. We therefore see that

∥G∥L2−ind = |G(jω0)|2 =

{
1

(0.01/2)2+(0.01)(0.01/2+ω2
n
≈ 100

ω2
n

for ωn > 0.01/2
1
ω2
n

for ω2
n ≤ 0.01/2

Example: Consider a system with the following state space realization

G
s
=



−0.016 16.19 0 0 0 0 0 0 1.30

−16.19 −0.162 0 0 0 0 0 0 0.01

0 0 −0.01058 10.58 0 0 0 0 1.1

0 0 −10.58 −0.0106 0 0 0 0 −0.09

0 0 0 0 −0.004 3.94 0 0 −0.22

0 0 0 0 −3.94 −0.004 0 0 −0.0019

0 0 0 0 0 0 −0.00056 0.568 0.074

0 0 0 0 0 0 −0.568 −0.0006 10−4

2× 10−5 −0.0025 −0.0075 −0.095 −0.00032 0.0366 0.00016 −0.127 0


Plot the system’s frequency response function at 100 equally spaced points

between 0.1 to 100 rad/sec. Use that plot to estimate the L2 induced gain

of the system. Then use the preceding bisection algorithm to estimate the

induced gain.

The frequency response plotted using MATLAB is shown in Fig. 1. This

plots shows points at 100 sample points between 0.1 and 100 rad/sec (blue

asterisks) as well as a more finely sampled plot with 10, 000 sample points

(shown in solid red line). The peak found by the coarse sampling was

1.0822 (0.3671 dB). So one would estimate the induced gain to be 1.0822.

The peak found by the more finely sampled plot was 4.8912 (13.7883 dB).

If we had used the preceding bisection algorithm, we would have found the

actual peak to be 8.2664 (18.3463 dB). The induced gain estimated from the

gain-magnitude plot depended greatly on how finely we sampled the plot.

The problem here was that we have no way of relating the sampling interval
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to the error in our estimate of the induced gain. The bisection algorithm, on

the other hand, does provide a relationship between the number of recur-

sions and the accuracy of the estimate. In particular, one can guarantee that

with an initial guess between 0 and 10 one would only need 10 recursions

to get within 0.01 of the actual gain.
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-80
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FIGURE 1. Sampled Gain magnitude being used to estimate

L2 induced gain

Since Lyapunov stability is such an important concept, it is useful to

characterize the relationship between Lp stability and Lyapunov stability.

This is done in the following theorem

THEOREM 16. Consider the input-output system ẋ(t) = f(x(t), w(t))

and y(t) = h(x(t), w(t)) where the origin is an exponentially stable equi-

librium of ẋ(t) = f(x(t), 0). Assume there exist positive constants L, r, rw,

η1, and η2 such that

|f(x,w)− f(x, 0)| ≤ L|w|

|h(x,w)| ≤ η1|x|+ η2|w|
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for all |x| < r and |w| < rw. If there exists a C1 function V : Rn → R and

non-negative constants c1, c2, c3, and c4 such that

c1|x|2 ≤ V (x) ≤ c2|x|2

V̇ (x, 0) ≤ −c3|x|2∣∣∣∣∂V∂x
∣∣∣∣ ≤ c4|x|

then the system is finite gain Lp-stable.

Proof: Consider V̇ along trajectories of the forced system

V̇ =
∂V

∂x
f(x, 0) +

∂V

∂x
[f(x,w)− f(x, 0)]

with the given bounds and the Lipschitz constant, L, for f we get

V̇ ≤ −c3|x|2 + c4L|x||w|

Take W (t) =
√

V (x(t)) and note that

Ẇ =
V̇

2
√
V

We obtain the following differential inequality

Ẇ ≤ −1

2

c3
c2
W +

c4L

2
√
c1
|w(t)|

By the comparison principle we can therefore conclude that

W (t) ≤ e
− c3

2c2
t
W (0) +

c4L

2
√
c1

∫ t

0

e
−(t−s)

c3
2c2 |w(s)|ds

which implies that

|x(t)| ≤ c2
c1
|x0|e−

c3
2c2

t
+

c4L

2c1

∫ t

0

e
−(t−s)

c3
2c2 |w(s)|ds

and so we can conclude that if |x0| ≤
r

2

√
c1
c2

and ∥w∥L∞ ≤ c1c3r

2c2c4L
, then

|x(t)| ≤ r for all time.

This means that the bound on h holds for all time and so

|y(t)| ≤ k1e
−at + k2

∫ t

0

e−a(t−s)|w(s)|ds+ k3|w(t)|
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where k1 =
√

c1
c2
|x0|η1, k2 =

c4Lη1
2c1

, k3 = η2, and a =
c3
2c2

. Assign to each

of these terms in the above equation a signal y1, y2, and y3. If w ∈ Lpe with

∥w∥L∞ sufficiently small then for any T > 0

∥y2T∥Lp ≤
k2
a
∥wT∥Lp , ∥y3T∥Lp ≤ k3∥wT∥Lp , ∥y1T∥Lp ≤ k1ρ

where ρ =

{
1 if p = ∞

(1/ap)1/p otherwise
. So that since

∥yT∥Lp ≤ ∥y1T∥Lp + ∥y2T∥Lp + ∥y3T∥Lp

we can use the above bounds to conclude

∥yT∥Lp ≤ k1ρ+
k2
a
∥wT∥Lp + k3∥wT∥Lp

=

(
k2
a

+ k3

)
∥wT∥Lp + k1ρ = γ∥wT∥Lp + β

which identify the finite gain and bias for this system. ♢

For linear time-invariant systems, since the existence of a Lyapunov

function is necessary and sufficient for asymptotic stability of the state, then

it is much easier to see that the system will be Lp stable. The converse, how-

ever is not true. Let us consider,

ẋ(t) = Ax(t) +Bw(t)

y(t) = Cx(t)

If the origin is asymptotically stable, then it is exponentially stable and so

there exist K > 0 and γ > 0 such that

eAtx0 ≤ Ke−γt

for t ≥ 0. Since the impulse response is CeAtBu(t), it is easy to see that

this must be integrable and so if the state-based system is exponentially

stable, it must also be Lp stable.
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The converse may not be true as is seen in the following example. Let us

consider the state-based system,[
ẋ1(t)

ẋ2(t)

]
=

[
−1 0

0 1

][
x1(t)

x2(t)

]
+

[
1

0

]
w(t)

y(t) =
[
1 0

] [ x1(t)

x2(t)

]
This system is clearly unstable since the A matrix has one eigenvalue with

a positive real part. This system however is Lp stable since its transfer func-

tion is 1
s+1

which only has a single pole on the left hand side of the complex

plane. The reason why this system is Lp stable but not asymptotically sta-

ble is because the unstable mode of the state-based system is not observed

at the system’s output. Moreover, it is not influenced by the input either.

State-based models that have this property are said to be uncontrollable and

unobservable.



CHAPTER 4

Controllability and Observability

The stabilization problem is concerned with keeping the system state in a

neighborhood of an equilibrium. A companion problem is how one steers

the state to that neighborhood in the first place. In particular for a continuous-

time linear system

ẋ(t) = A(t)x(t) +B(t)u(t), x(t0) = x0

or a discrete-time system

x(k + 1) = A(k)x(k) +B(k)u(k), x(k0) = x0

how do we select the controlled input u so the state trajectory starting at

time t0 (k0) in state x0 reaches a given operating point in finite time. This

is called the reachability problem. The finite time nature of the problem’s

statement makes it distinct from the stabilization problem we considered

earlier. We will find it useful to consider two versions of this problem.

• The reachability problem seeks a control input that drives the state

to a desired point from the origin in finite time.

• The controllability problem seeks a control that steers the system

state to the origin for any initial state in finite time.

For continuous-time systems, these two versions of the concept are equiva-

lent. For discrete-time systems, these concepts are not equivalent since time

cannot flow freely in both directions for a discrete-time system.

Dual to the notion of reachability/controllability is observability. Ob-

servability asks whether one can determine the system’s state x at time t0 if

we have access to a finite interval of inputs u[t0,t0+T ] and output y[t0,t0+T ]. A
159
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related concept known as constructibility asks whether the state x at time t0
can be predicted based on inputs for a finite time interval, [t0 − T, t0], prior

to t0. This chapter discusses all four of these finite-time concepts.

1. Controllability/Reachability Definitions

Let us consider an inhomogeneous time-varying linear system whose state

equations are

ẋ(t) = A(t)x(t) +B(t)u(t), x(t0) = x0

Informally, we want to know if there is an input, u, that transfers the state

from x0 at time t0 to a specified state, x1, by some finite time t1 > t0. If

such an input exists then we must have

x1 = Φ(t1; t0)x0 +

∫ t1

t0

Φ(t1; τ)B(τ)u(τ)dτ

It will be convenient to rewrite this equation as

x̂1
def
= x1 −Φ(t1; t0)x0 =

∫ t1

t0

Φ(t1; τ)B(τ)u(τ)dτ

Rewriting the equation this way suggests that the problem of transfering the

state from (x0, t0) to (x1, t1) is equivalent to transfering the state from the

origin, (0, t0), to (x̂1, t0). For this reason, the formal definition of reachabil-

ity is defined with respect to steering the state from the origin to a specified

target state, x1. So we say that state x1 is reachable at t1 if and only if there

exists a finite t0 < t1 and input u : [t0, t1] → Rm such that

x1 =

∫ t1

t0

Φ(t1; τ)B(τ)u(τ)dτ(36)

The set of all reachable states for a given system pair, (A(t),B(t)) forms a

linear space. The reachable at t1 subspace of (A(t),B(t)) is

Rt1
r

def
=

x1 ∈ Rn :
for some finite t0 < t1 and there is an input u

under which x1 =

∫ t1

t0

Φ(t1; τ)B(τ)u(τ)dτ


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The system is reachable at t1 if Rt1
r = Rn. If the union of all reachable sub-

spaces at t1, i.e.
⋃
t1

Rt1
r , consists of the entire state space, then the system

is reachable. In plain language, this means a system is reachable if every

state can be reached in finite time from the origin. If the system is state

reachable, then it is customary to say that (A(t),B(t)) forms a reachable

pair.

The controllability concept reverses time to identify those states that can

be driven to the origin in finite time by an input. Usually the origin is the

system’s equilibrium point and so we say a state x0 is controllable at time t0
if there exists a finite time t1 > t0 and input u : [t0, t1] → Rm that transfers

the state from x0 at t0 to the origin at t1. In other words, for some finite time

t1 > t0 there will be an input such that the state at time t1 is at the origin,

i.e. 0 = x(t1 ; x0, t0). This is equivalent to saying x0 is controllable at t0 if

there exists a finite time t1 > t0 and an input u such that

−Φ(t1; t0)x0 =

∫ t1

t0

Φ(t1; τ)B(τ)u(τ)dτ

Note that because the transition matrix, Φ, is invertible for continuous-time

systems, so the preceding integral equation is equivalent to

−x0 =

∫ t1

t0

Φ(t0; τ)B(τ)u(τ)dτ(37)

which is very similar to the integral equation (36) used to characterize

reachability.

As we did for reachability, we can define the controllable at t0 subspace

as

Rt0
c

def
=

x0 ∈ Rn :
there exists finite t1 > t0 and an input u

such that −x0 =

∫ t1

t0

Φ(t0; τ)B(τ)u(τ)dτ


We say the system is controllable at t0 if Rt0

c = Rn. The system is con-

trollable if
⋃
t0

Rt0
c = Rn. Note that the integral conditions for controllabil-

ity (37) and reachability (36) are essentially identical for continuous-time
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systems. One may therefore conjecture that a continuous-time system is

controllable if and only if it is reachable. Note that the non-singular na-

ture of the continuous-time system’s transition matrix played a major role

in forming this conjecture. For discrete-time systems

x(k + 1) = A(k)x(k) +B(k)u(k)

the transition matrix Φ(k; k0) =
k∏

i=k0

A(i) may not be invertible. So in gen-

eral, we cannot make the same conjecture. In other words, controllability

and reachability are not equivalent for discrete-time systems and this fact is

why we draw a distinction between the two notions.

The equivalence of controllability and reachability for continuous-time

systems may be proven in a ”formal” manner with a functional, L [·; t0, t1] :
Lpe → Rn that takes values

L[u; t0, t1] =

∫ t1

t0

Φ(t1; τ)B(τ)u(τ)dτ(38)

With this linear functional, we can see that equation (36) asserts x ∈ Rn is

reachable at t1 if and only if there exists a finite t0 < t1 such that x lies in

the range space of L. In other words

(x, t0) is reachable at t1 ⇔ x ∈ Range(L[· ; t0, t1]) for some input u

The controllability condition in equation (37) asserts that x is controllable

from t0 if and only if there exists finite t1 > t0 and input u such that

x = −
∫ t1

t0

Φ(t0; τ)B(τ)u(τ)dτ

=

∫ t0

t1

Φ(t0; τ)B(τ)u(τ)dτ = L[u ; t1, t0]

which is the same as saying x is controllable from t0 if there exists finite

t1 > t0 such that

(x, t1) is controllable at t0 ⇔ x ∈ Range(L[· ; t1, t0]) for some input u
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The subspaces Range(L[· ; t1, t0]) and Range(L[· ; t0, t1]) are readily shown

to be equivalent thereby allowing us to conclude a state x is controllable at

x0 if and only if it is also reachable at t1. This argument ”formalizes” the

observation leading to our original conjecture. The preceding argument

with the linear functional L simply allows us to formally verify that our

conjecture is indeed true. This conjecture can now be formalized into the

following theorem

THEOREM 17. Consider the LTV system, ẋ(t) = A(t)x(t) + B(t)u(t).

The state x ∈ Rn is controllable at t0 if and only if it is reachable at t1.

2. Conditions for Reachability/Controllability

Equations (36) and (37) provide conditions that can verify whether a state

x is reachable/controllable. But these conditions are difficult to verify be-

cause we need to determine the range space of a linear functional equation.

Determining whether states are reachable/controllable is of particular inter-

est to safety critical systems. Systems can become ”unsafe” if their state

enters a ”forbidden” region of the state space in finite time. We therefore

need to identify conditions for controllability and reachability that are easier

to verify than the integral equations given in the preceding section.

The reachability gramian of the continuous-time system

ẋ(t) = A(t)x(t) +B(t)u(t)

is an n× n matrix-valued function

Wr(t0; t1) =

∫ t1

t0

Φ(t1; τ)B(τ)BT (τ)ΦT (t1; τ)dτ

where Φ(t1; t0) is the system’s transition matrix.

Recall that (x, t0) is reachable at t1 if and only if x lies in the range

space of the linear functional L[u ; t0, t1] for some input u. Verifying this

condition, however, is difficult because we must look through all inputs u,

to see if its true for a single one. We will show that the Range space of
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the linear functional, L, is equivalent to the range space of the reachabil-

ity gramian, Wr, thereby providing another way of verifying whether x is

reachable without having to find u directly.

Let us first verify Range(Wr) ⊂ Range(L). Let x1 ∈ Range(Wr).

This means there exists η1 ∈ Rn such that Wrη1 = x1. So choose

u(τ) = BT (τ)ΦT (t1 ; τ)η1

for τ ≤ t1, then

L[u; t0, t1] =

[∫ t1

t0

Φ(t1; τ)B(τ)BT (τ)ΦT (t1; τ)dτ

]
η1

= Wr(t0, t1)η1 = x1

This means that x1 ∈ Range(L) for the chosen u. We can therefore con-

clude that Range(Wr) ⊂ Range(L).

We can now prove the other direction, namely Range(L) ⊂ Range(Wr).

Let x0 ∈ Range(L), so there exists some control input, u, such that L [u ; t0, t1] =

x1. Let us assume, however, that x1 /∈ Range(Wr). We are going to use

the fundamental theorem of linear algebra to show that this cannot occur.

From the fundamental theorem of linear algebra, we know that for any lin-

ear transformation (matrix), A, we have

ker(A) = (Range(AT ))⊥

Since Wr is a symmetric matrix, we can conclude

Range(Wr) = (ker(Wr))
⊥

So for any w ∈ Range(Wr) and v ∈ ker(Wr) we would have wTv = 0.

So let us take our x1 and rewrite it as

x1 = x′
1 + x′′

1

where x′
1 ∈ Range(Wr) and x” ∈ ker(Wr). Note that x′′

1 ̸= 0 because we

assumed x1 /∈ Range(Wr). There exists, therefore an x2 ∈ ker(Wr) such

that xT
2 x

′′
1 ̸= 0, which would imply xT

2 x1 ̸= 0.
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But if this nonzero x2 is in ker(Wr) then we can readily see

xT
2Wrx2 = 0 =

∫ t1

t0

(xT
2ΦB)(xT

2ΦB)Tdτ

=

∫ t1

t0

∣∣xT
2Φ(t1; τ)B(τ)

∣∣2 dτ
which would mean xT

2Φ(t1; τ)B(τ) = 0 for any τ ∈ [t0, t1]. This observa-

tion would imply

xT
2 x1 = xT

2L[u; t0, t1] =

∫ t1

t0

xT
2Φ(t1; τ)B(τ)u(τ)dτ = 0

where u is the input taking the state to x1 from the origin. This last equation,

however, contradicts our earlier observation that xT
2 x1 ̸= 0. This contradic-

tion arose from our assumption that x1 /∈ Range(Wr) and so the contrac-

tion implies x1 ∈ Range(Wr). Since our original choice of x1 ∈ Range(L)

was arbitrary, we can conclude Range(L) ⊂ Range(Wr. The preceding ar-

guments allows us to conclude Range(L) = Range(Wr).

Since the range spaces of L and Wr are the same, it means that we can

verify that a state x1 is reachable at t1 if and only if it lies in the the range

space of Wr(t0, t1) for some finite t0 < t1. This condition is much easier

to certify than the condition in integral equation (36) because Wr is only

a matrix that is independent of the input u. Another important outcome

of our preceding discussion is that it identifies one particular input u that

steers the state from the origin to x1. In particular that transfer must be

achieved by the input u(t) = BT (t)ΦT (t1, t)η1 that we used to form the

reachability gramian from the linear functional L. These observations can

be summarized in the following theorem.

THEOREM 18. For the LTV system ẋ(t) = A(t)x(t)+B(t)u(t), then the

state x1 is reachable at t1 if and only if there exists a finite t0 < t1 such that

x1 ∈ Range(Wr(t0, t1))

Moreover, one such input that achieves this transfer is

u(t) = BT (t)ΦT (t1, t)η1
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where η1 is a solution of the linear algebraic equation

Wr(t0, t1)η1 = x1

In view of the preceding theorem one can assert that all states can be

reached at t1 if and only if for some t0 < t1 we have Range(Wr(t0, t1)) =

Rn. This can only be true if rank(Wr(t0, t1)) = n are rather that detWr(t0, t1) ̸=
0. These observations are summarized in the following theorem

THEOREM 19. (A(t),B(t)) is a reachable pair at t1 if and only if there

exists t0 < t1 such that det(Wr(t0, t1)) ̸= 0.

Example: Consider the LTV system

ẋ(t) =

[
−1 e2t

0 −1

]
x(t) +

[
e−t

0

]
u(t)

One can readily show that the state transition matrix is

Φ(t; τ) =

[
e−(t−τ) 1

2
(et+τ − e−t+3τ )

0 e−(t−τ)

]
This implies that

Φ(t; τ)B(τ) =

[
e−(t−τ) 1

2
(et+τ − e−t+3τ )

0 e−(t−τ)

][
e−τ

0

]
=

[
e−t

0

]
So the reachability gramian is

Wr(t0, t1) =

∫ t1

t0

Φ(t1; τ)B(τ)BT (τ)ΦT (t1; τ)dτ

=

∫ t1

t0

[
e−t1

0

] [
e−t1 0

]
dτ

=

[
τe−2t1 0

0 0

]∣∣∣∣∣
t1

t0

=

[
(t1 − t0)e

−2t1 0

0 0

]

Clearly rank(Wr(t0, t1)) = 1 < 2 for any t0 < t1. So this system is not

reachable for any t1.
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Even though (A(t),B(t)) is not a reachable pair, there are reachable

states. In particular, the states in Range(Wr(t0, t1)) = span

{[
1

0

]}

are reachable. So if we consider any state x1 =

[
α

0

]
where α is any real

number then x1 must be reachable. We can use our earlier theorem to obtain

a specific input transferring the state from the origin to this x1. This is done

by first solving the LAE

Wr(t0, t1)η1 =

[
(t1 − t0)e

−2t1 0

0 0

]
η1 =

[
α

0

]
= x1

which has the solution

η1 =

[
α

t1−t0
e2t1

β

]

where β is any real number. Our earlier theorem therefore allows us to

conclude that one control steering the state to x1 will be

u(t) = [Φ(t1; t)B(t)]T η1

=
[
e−t1 0

] [ α
t1−t0

e2t1

β

]
=

α

t1 − t0
et1

We can verify that this control input actually reaches the desired state by

substituting u back into the equation for x1

x(t1) =

∫ t1

t0

Φ(t1; τ)B(τ)u(τ)dτ

=

[
e−t1

0

]
α

t1 − t0
et1(t1 − t0) =

[
α

0

]

Time Invariant Systems: We now specialize the results above to continuous-

time LTI systems

ẋ(t) = Ax(t) +Bu(t)
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In this case the transition matrix may be written as Φ(t; τ) = eA(t−τ). Be-

cause of time invariance, we take t0 = 0 and t1 = T without loss of gener-

ality and the reachability gramian becomes

Wr(0, T ) =

∫ T

0

e(T−τ)ABBT e(T−τ)AT

dτ

When the system is time invariant, the range space of Wr(0, T ) is inde-

pendent of T . To show this, let us first assume that B is a vector so we are

considering a scalar input u. Let us then consider x1 ∈ Range(Wr(0, T ))

for some T > 0. This would mean that there exists an input u such that

L[u; 0, T ] =

∫ T

0

e(T−τ)ABu(τ)dτ = x1

Since eAt is a power series, we can use the above equation to see that

x1 =
∞∑
k=0

AkB

(∫ T

0

(T − τ)k

k!
u(τ)dτ

)
Invoking the Cayley-Hamilton theorem lets us express this infinite series as

a finite series

x1 =
n−1∑
k=0

AkBαk(T )

where αk : R → R are functions of time. This last relation relation implies

x1 lies in the span of the collection of vectors {AkB}n−1
k=0 . In particular, this

subspace is the range space of a matrix whose columns are formed from

these vectors,

C =
[
B AB A2B · · · An−1B

]
This matrix is also called the pair’s controllability matrix. So we can con-

clude that x1 ∈ Range(C) and so Range(Wr(0, T )) ⊂ Range(C) for any

T > 0.

Conversely, let us assume there exists η1 ∈ Rm such that Cη1 = x1 and

let us further assume that x1 /∈ Range(Wr(0, T )) for some T > 0. This
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would imply that the null space of Wr(0, T ) is nontrivial and so

Range(Wr(0, T )) = (ker(WT
r (0, cT ))

⊥ = (ker(Wr(0, T )))
⊥

where the last equality occurs because Wr is symmetric. So for any w ∈
Range(Wr) and v ∈ ker(Wr) we can conclude wTv = 0.

We then use the same argument leading to our earlier theorem to deduce

there exists a vector x2 ∈ ker(Wr(0, T )) such that xT
2 x1 ̸= 0. We then use

the fact that xT
2Wr(0, T )x2 = 0 to deduce that xT

2 e
(T−τ)AB = 0 for all

0 ≤ τ ≤ T . By the Cayley-Hamilton theorem this would mean

0 = xT
2

n−1∑
k=0

AkBαk(T )

which would mean x2 is orthogonal to Range(C). This would mean that

xT
2 x1 = xT

2 Cη1 = 0

which contradicts our earlier observation that xT
2 x1 ̸= 0 if x1 /∈ Range(Wr).

So by this contraction we can deduce Range(C) ⊂ Range(Wr). Combin-

ing this with our earlier result we can see that Range(C) = Range(Wr(0, T )).

Since the matrix C is independent of T , this means the subspace Range(Wr(0, T ))

is the same for all T . These observations can now be summarized in the fol-

lowing theorem.

THEOREM 20. Consider the LTI system, ẋ(t) = Ax(t) +Bu(t), then

• Range(Wr(0, T )) = Range(C) for all T > 0

• The reachable subspace is R = Range(C)
• There exists an input u

u(t) = BT eA
T (T−t)η1

transfers the state from the origin to x1 ∈ Range(C) by time T for

η1 satisfying the LAE Cη1 = x1.

• (A,B) is a reachable/controllable pair if and only if rank(C) = n.
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Discrete-time Systems: Consider the discrete-time LTI system

x(k + 1) = Ax(k) +Bu(k)

Consider the problem of steering the state from x0 to x1 in finite time K.

This means

x1 = AKx0 +
K−1∑
i=0

AK−(i+1)Bu(i)

= AKx0 + CKUK

where

CK =
[
B AB · · · AK−1B

]

UK =


u(K − 1)

u(K − 2)
...

u(0)


The definitions for a state x1 to be reachable or controllable at K are iden-

tical to the definitions in the continuous-time case. To determine an input

that steers a reachable state, however, can be determined directly from the

the matrices of the system equations. Recall that if x1 is reachable from the

origin that

x1 =
K−1∑
i=0

AK−(i+1)Bu(i) = CKUK

The last equation is a linear algebraic equation whose solution, UK , gives

the desired control sequence. This simple argument can be summarized in

the following theorem

THEOREM 21. For a discrete time LTI system, the state x1 is reachable

from the origin in finite time if and only if x1 ∈ Range(C). The reachable

subspace of the system is Rr = Range(C) and one input sequence that

transfers the state from the origin to x1 in n steps is

Un =
[
uT (n− 1) uT (n− 2) · · · uT (0)

]T
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where Un satisfies CUn = x1.

Now let us consider the problem of controlling the system state from x0

to the origin in K steps. We can see that this requires x0 satisfy

−AKx0 ∈ Range(CK)

One input that achieves this transfer is UK that satisfies

−AKx0 = CKUK

The fact that the left hand side of the equation passes our target through AK

means that controllability will not be equivalent to reachability. The reason

for this is that A may not be invertible in a discrete-time system.

In particular, let us assume that x is reachable. This would mean x ∈
Range(C). But also note that if x ∈ Range(C) then Akx ∈ Range(C)
for any k ≥ 0. We refer to such subspaces as being A-invariant. Since x

being reachable also implies Akx ∈ Range(C) we can conclude that the

preceding LAE, −AKx0 = CkUK has a solution and so x is also control-

lable. Since our choice of x was any state in the reachable subspace, we can

conclude that if state x is reachable it is also controllable.

But the converse relation need not be true. Controllability does not imply

reachability for discrete-time systems. To verify this claim it suffices to find

just one example. So consider

x(k + 1) =

[
1 1

0 0

]
x(k) +

[
1

0

]
u(k)

The system is controllable since any initial state x0 can be returned to the

origin in a single step using the input

u = −x1(0)− x2(0)
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This assertion is verified by a direct computation

x1 =

[
1 1

0 0

]
x(0) +

[
1

0

]
(−x1(0)− x2(0))

=

[
x1(0) + x2(0)− x1(0)− x2(0)

0

]
= 0

This system, however, is not reachable as can be verified by simply finding

the reachable subspace and noting it is not all of R2. In particular, we see

that

x(1) =

[
1

0

]
u(0) =

[
u(0)

0

]

x(2) =

[
1 1

0 0

]
x(1) +

[
u(1)

0

]
=

[
u(0) + u(1)

0

]
...

...

and so we see that the reachable subspace is span(

{[
1

0

]}
. Since this is

clearly not all of R2, it means this system has states that are controllable,

but that are not reachable.

Example: Consider the discrete-time LTI system

x(k + 1) =

 1 1 0

−1 −1 0

0 0 1

x(k) +

 −1

1

1

u(k)

(1) Is the system reachable? Determine the reachability subspace.

Consider the target state x1 =

 −2

2

4

 and find an input that

reaches x1 from the origin. Verify that your inputs actually reach

the desired x1.

(2) Is the system controllable? Determine the set of states that can be

controlled to the origin in finite time. Characterize all inputs that
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drive the system to the origin in two steps. Verify that your input

actually drives the system state to the origin.

For the reachability problem, we first find the controllability matrix, C,

C =
[
B AB A2B

]
=

 −1 0 0

1 0 0

1 1 1


The matrix clearly has a rank of 2 and so this system is not reachable. The

reachable subspace is

Rr = span


 −1

1

0

 ,

 0

0

1




The desired target state is

x1 =

 −2

2

4

 = −2

 −1

1

0

+ 4

 0

0

1


So x1 is in the reachable subspace. An input U = [u(2), u(1), u(0)]T that

satisfies

CU =

 u(2)

u(1)

u(0)

 =

 −2

2

4


which has the solution

U =

 2

2

0

+ ker(C)

=

 2

2

0

+ α

 0

1

−1

 =

 2

2 + α

−α


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where α is any real number. We can verify this input works by computing

x(1) = A0 +B(−α) =

 α

−α

−α



x(2) = Ax(1) +B(2 + α) =

 −α− 2

α + 2

2



x(3) = Ax(2) +B2 =

 −2

2

4


Now let us turn to the controllability part of the problem. All states that

can be driven to the origin in K steps must satisfy

AKx0 ∈ Range(CK)

In our case K = 2 and A2 =

 0 0 0

0 0 0

0 0 1

. So for any x0 =

 α

β

γ

 ∈ R3,

we can see that A2x0 =

 0

0

γ

. The range space of C2 is

Range(C2) = Range


 −1 0

1 0

1 1


 = span


 −1

1

0

 ,

 0

0

1




So for any x0 ∈ R3, we have A2x0 ∈ Range(C2), so every state in R3 is

controllable in two steps and the system is controllable. The set of all inputs

that drive x0 to the origin in two steps is

−A2x0 = −

 0

0

γ

 = C2

[
u(1)

u(0)

]
=

 −1 0

1 0

1 1

[ u(1)

u(0)

]
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The null space of C2 is trivial so there is a unique input that satisfies the

LAE. That input is

U =

[
u(1)

u(0)

]
=

[
0

−γ

]

We verify the correctness of this control by computing the states

x(1) =

 1 1 0

−1 −1 0

0 0 1


 α

β

γ

+

 −1

1

1

 (−γ) =

 α + β + γ

−α− β − γ

0



x(2) =

 1 1 0

−1 −1 0

0 0 1

x(1) +

 −1

1

1

 0 =

 0

0

0



3. Observability and Constructibility Definitions

Observability is a finite-time property of a linear state-based system that is

”dual” to reachability. In particular observability means that one can deduce

the system’s initial state, x0, at time t0 from a finite duration of inputs and

outputs after time t0. Constructibility is similar to controllability in that it

reverses time and means that one can deduce the system’s state, x1 at time

t1 using finite duration inputs and outputs observed before time t1.

Observability can be informally explained using discrete-time LTI sys-

tem

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

In this case we know the system output is

y(k) = CAkx(0) +
k−1∑
i=0

CAk−(i+1)Bu(i) +Du(k)
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for k ≥ 0. This implies that

ỹ(k)
def
= y(k)−

{
k−1∑
i=0

CAk−(i+1)Bu(i) +Du(k)

}
= CAkx0

for k ≥ 0. Note that ỹ(k) is known for 0 ≤ k ≤ K, so the initial state is

obtained as a solution to the linear algebraic equation

Ỹ0,K−1 = OKx0

where

OK =


C

CA
...

CAK−1

 , Ỹ0,n−1 =


ỹ(0)

ỹ(1)
...

ỹ(K − 1)


Whether or not we can determine x0 from a given set of K measured inputs,

u and outputs, y, will depend on whether the preceding linear algebraic

equation has a unique solution. This is the basic approach adopted when

extending these ideas to continuous-time and time-varying linear systems.

We now formalize our definition of observability for continuous-time

LTV systems

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)

The output y(t) is

y(t) = C(t)Φ(t; t0)x(t0) +

∫ t

t0

C(t)Φ(tτ)B(τ)u(τ)dτ +D(t)u(t)

where Φ(t; τ) is the state transition matrix. We can rewrite the above equa-

tion as

ỹ(t) = C(t)Φ(t; t0)x0
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where x0 = x(t0) and where

ỹ(t)
def
= y(t)−

{∫ t

t0

C(t)Φ(t; τ)B(τ)u(τ)dτ +D(t)u(t)

}
A state x ∈ Rn is unobservable at time t0 if the zero-input (natural) response

of the system is zero for all t ≥ t0. In other words, x is unobservable at t0
if and only if

C(t)Φ(t; t0)x = 0, for all t ≥ t0

The unobservable subspace at t0 is denoted as Rt0
o and consists of all states

that are unobservable at t0. We say the system is completely observable at

t0 if and only if the only unobservable state is the origin. In other words, the

system is observable if and only i Rt0
o = {0}. If the system is observable,

then we refer to (A(t),C(t)) as an observable pair.

Observability uses future output/inputs to determine the initial state at

time t0. Constructibility uses past inputs/outputs prior to the initial time, t0,

to determine the initial state, x0. So a state x is unconstructible at time t1 if

and only if for all t ≥ t1, the zero input (natural response) of the system is

zero

C(t)Φ(t; t1)x = 0, for all t ≤ t1

The unconstructible at t1 subspace is denoted as Rt1
cn and consists of all

states that are unconstructible at time t1. The system is constructible at t1
if and only if the only state that is unconstructible at t1 is the origin (i.e.

Rt1
cn = {0}). If the system is constructible then we refer to (A(t),C(t)) as

a constructible pair.

As before, observability and constructibility are equivalent for continuous-

time LTV systems and may not be equivalent for discrete-time systems.

To prove the equivalence of these concepts for continuous-time systems,

we define the observability gramian as a matrix-valued function, Wo :

R× R → Rn×n that takes values

Wo(t0, t1) =

∫ t1

t0

ΦT (τ ; t0)C
T (τ)C(τ)Φ(τ ; t0)dτ
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Note that Wo(t0, t1) is symmetric and positive semidefinite for all t1 > t0.

So if x is unobservable at t0, then

C(t)Φ(t; t0)x = 0, for all t ≥ t0

This means that

Wo(t0, t1)x =

∫ t1

t0

ΦT (τ ; t0)C
T (τ)C(τ)Φ(τ ; t0)xdτ = 0

for all t1 ≥ t0. The last equality holds because CΦx = 0 and so we can

conclude

x ∈ ker(Wo(t0, t1))

This implies that x being in the null space of the observability gramian is

necessary for x being unobservable at t0.

Conversely, let x be in the null space of Wo(t0, t1) for all t1 ≥ t0. This

means that

0 = xTWo(t0, t1)x =

∫ t1

t0

|C(τ)Φ(τ ; t0)x|2 dτ

for all t1 ≥ t0. This can only occur if |C(τ)Φ(τ ; t0)x| = 0 for all τ > to

which is only true if C(τ)Φ(τ ; t0)x = 0 for all τ > t0, or rather that x is

unobservable at t0. So x being in the null space of the observability gramian

is also sufficient for x being unobservable.

The preceding argument says that x is unobservable at t0 if and only if

x lies in the null space of Wo(t0, t1) for all t1 > t0. If x is observable at

t0, then there is a t1 > t0 such that the null space of Wo(t0, t1) is trivial or

rather than rank(Wo(t0, t1)) = n for some t1 > t0. This condition can be

readily verified by checking the determinant of Wo(t0, t1).

We can also define a constructibility gramian

Wcn(t0, t1) =

∫ t1

t0

ΦT (τ ; t1)C
T (τ)C(τ)Φ(τ, t1)dτ

A similar argument can be used to show that x is unconstructible at t1 if and

only if x lies in the kernel of Wcn(t0, t1) for all t0 < t1. In a similar way,
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we can assert that x is constructible if there is t0 < t1 such that Wcn(t0, t1)

has full rank; a condition that can be checked using the determinant of the

constructibility gramian.

Note that

Wo(t1, t0) = ΦT (t1; t0)Wcn(t0, t1)Φ(t1; t0)

Since the transition matrix for a continuous time system is nonsingular, we

can conclude that

rank(Wo(t1, t0)) = rank(Wcn(t0, t1))

thereby establishing that Wo has rank n if and only if Wcn has rank n,

which implies observability and constructibility are equivalent in continu-

ous time systems. This result is summarized in the following theorem.

THEOREM 22. Consider the LTV system ẋ(t) = A(t)x(t) with output

y(t) = C(t)x(t). The state x is unconstructible at t1 if and only if it is

unobservable at t0. The system is completely observable if and only if it

completely constructible.

4. Conditions for Observability/Constructibility

This section develops conditions that can be checked to see if a state or

system is observable or constructible. We will confine our attention to LTI

systems. Let us first consider the continuous-time LTI system

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

The output will be

y(t) = CeAtx0 +

∫ t

0

CeA(t−τ)Bu(τ)dτ +Du(t)
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for t ≥ 0. As before we rewrite the output equation as

ŷ(t) = y(t)−
{∫ t

0

CeA(t−τ)Bu(τ)dτ +Du(t)

}
= CeAtx0

By definition, this state x0 is uobservable if the zero-input response of the

system is zero for all t ≥ 0. In other words, x is unobservable if

CeAtx0 = 0

for all t ≥ 0. This set of unobservable states is denoted as Ro and (A,C)

is an observable pair if Ro = {0} or rather if the observability gramian

Wo(0, t) =

∫ T

0

eA
T τCTCeAτdτ

has full rank for any t ≥ 0. Evaluation of the observability gramian for

all time t may be complicated so we seek a simpler condition that is not

dependent on t. In particular, define the observability matrix as

O =


C

CA
...

CAn−1


We will show that the null space of Wo is independent of t and equals

ker(O).

To prove this assertion, first let x ∈ ker(O) so that Ox = 0. From the

definition of O this means CAkx = 0 for all 0 ≤ k ≤ n − 1. Taking the

series expansion for eAt, we rewrite the zero-input response as

CeAtx = C

{
∞∑
k=0

tk

k!
Ak

}
x
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for all t ≥ 0. Now look at the gramian

Wo(0, T )x =

∫ T

0

eA
T τCTCeAτxdτ

=

∫ T

0

eAτCTC

{
∞∑
k=0

τ k

k!
Ak

}
xdτ

=
∞∑
k=0

{∫ T

0

eA
T τCT τ

k

k!
dτ

}
CAkx

= 0

The last line occurs because we assumed CAkx = 0. So we can con-

clude that x ∈ ker(Wo(0, T )) for all T > 0 which means ker(O) ⊂
ker(Wo(0, T )) for all T .

Conversely, let x ∈ ker(Wo(0, T )) for some T > 0 and examine the

quadratic form

xTWo(0, T )x =

∫ T

0

∣∣CeAtx
∣∣2 dt = 0

with the last equality holding because x is in the gramian’s null space. This

integral can only be true if
∣∣CeAtx

∣∣ = 0, which implies CeAtx = 0 for

every t ∈ [0, T ]. Taking the kth derivative of CeAtx with respect to t and

evaluating at t = 0 yields,

Cx = CAx = · · · = CAkx = 0

for all k. This implies that Ox = 0 and so ker(Wo(0, T )) ⊂ ker(O).

Taking this result along with our earlier deduction that ker(O) ⊂ ker(Wo)

leads to the following theorem.

THEOREM 23. For the continuous-time LTI system, ker(O) = ker(Wo(0, T ))

for all T ≥ 0.

Because ker(O) = ker(Wo(0, T )) for all T ≥ 0, we can readily see that

a state x is unobservable if and only if x ∈ ker(O). Moreover, we can also

see that (A,C) is an observable pair if and only if Ro = {0}. This means

that rank(O) = n is a necessary and sufficient condition for (A,C) to be
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an observable pair. Assuming that the system is observable, then one can

determine x0 as follows. Take the equation

ỹ(τ) = CeAτx0

Pre-multiply by eA
T τCT and integrating from 0 to T yields∫ T

0

eA
T τCT ỹ(τ)dτ =

∫ T

0

eA
T τCTCeAτdτx0 = Wo(0, T )x0

If the system is observable then Wo(0, T ) is invertible and so the we can

solve the preceding linear equation to get

x0 = W−1
o (0, T )

{∫ T

0

eA
T τCT ỹ(τ)dτ

}
We can summarize our results in the following theorem.

THEOREM 24. The LTI system is observable if and only if rank(O) = n.

The initial state at time 0 may then be obtained from observed inputs, u,

and outputs y over the interval [0, T ] as

x0 = W−1
o (0, T )

{∫ T

0

eA
T τCT C̃T ỹ(τ)dτ

}

Note that in general x0 is not determined directly using this formula.

The reason is that for small T , the observability gramian’s inverse may be

very sensitive to small perturbations or noise in the data. In practice we use

recursive estimation algorithms to estimate the initial state in a manner that

minimizes the estimate’s covariance. Such ”estimators” will be discussed

in the next chapter.

For discrete-time LTI systems, observability and constructibility are not

equivalent. To see this, note that the system’s output is

y(k) = CAkx(0) +
k−1∑
i=0

CAk−(i+1)Bu(i) +Du(k)
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for k > 0. We rewrite this as

ỹ(k)
def
= y(k)−

(
k−1∑
i=0

CAk−(i+1)Bu(i) +Du(k)

)
= CAkx0

For discrete time systems, we say that state x is unobservable at 0 if and

only if

CAkx = 0

for all k ≥ 0. This is analogous to how we defined unobservable states in
continuous time. We can, readily show that x is unobservable if and only
if it lies in the null space of the observability matrix. If that observability
matrix has full rank, then we know the system is completely observable. To
get x0, note that

y(k) = CAkx0 +

k−1∑
i=0

CAk−(i+1)Bu(i) +Du(k)

which for k = 0, 1, . . . , n− 1 leads to the following system of linear equations

y(0)−Du(0) = Cx0

y(1)−CBu(0)−Du(1) = CAx0

y(2)−CABu(0)−CBu(1)−Du(2) = CA2x0
...

y(n− 1)−
n−2∑
i=0

CAn−(i+1)u(i)−Du(n− 1) = CAn−1x0

which in matrix vector form is
C

CA
...

CAn−1

x0 =


y(0)

y(1)
...

y(n− 1)

−



D 0 · · · 0 0

CB D · · · 0 0
...

... . . . ...
...

CAn−2B CAn−3B · · · D 0

CAn−1B CAn−2B · · · CB D





u(0)

u(1)
...

u(n− 2)

u(n− 1)


Ox0 = [Y0,n−1 −MnU0,n−1]

The matrix Mn is sometimes called a matrix of Markov parameters.
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The notion of constructibility will be defined differently for discrete-

time LTI systems than it was for continuous-time systems. This difference

comes from the fact that the discrete-time system’s transition matrix may

be singular. For discrete-time systems, we say that x is unconstructible if

and only if for all k ≥ 0 there exists a nonzero x̂ ∈ Rn such that

x = Akx̂ and Cx̂ = 0

If A is nonsingular, then this is equivalent to saying that CA−kx = 0,

which corresponds to our definition of constructibility for continuous-time

systems. The preceding definition essentially says there is a ”prior” state,

x̂ that reaches x in a finite number of steps and that this prior state is indis-

tinguishable from 0. Results relating observability and constructibility in

discrete-time are similar to results regarding reachability and controllabil-

ity. Our main result is formalized in the following theorem

THEOREM 25. For the discrete-time LTI system we have

• If the state x is unconstructible, then x is also unobservable

• Rcn ⊂ Ro

• If the system is observable, then it is also constructible

Let us first verify the first assertion and assume that x is unconstructible,

so for every k ≥ 0 there exists x̂ such that

x = Akx̂, Cx̂ = 0

Premultiply by C to get

Cx = CAkx̂

for every k ≥ 0¿. Note that Cx = 0. Therefore CAkx̂ = 0 for all k,

which means x̂ ∈ ker(O. The null space of O can be shown to be A-

invariant, so we also know that Ax̂ ∈ ker(O), which would mean that x is

unobservable. So x being unconstructible implies x is unobservable. The

remaining assertions are immediate consequences of this fact.
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5. Standard Forms for Uncontrollable/Unobservable LTI Systems

The preceding sections provided necessary and sufficient conditions for a

system realization, G s
=

[
A B

C D

]
to be controllable/reachable or observ-

able/constructible. But clearly not all system realizations of interest to us

may have such completely controllable/observable realizations. One exam-

ple is shown below in Fig. 1. This figure shows an airfoil in a wind tunnel

and the flows around that foil. The ”state” space is obtained by gridding

the 2-dimensional space around the foil and the state in each grid element

denotes the type of flow in that grid cell. What we see is the formation

of vortices in the cells containing air/wing interfaces and we would like to

control the surface of the wing to reduce the size of these vortices since they

create drag. The impact of a control surface on the wing, however, will not

effect the states of the flows in all grid cells. In particular, those grid cells

next to the wing and those cells after the wing containing vortices can be

controlled by the control surfaces. But those grid cells far from the wing/air

interface will be minimally impacted by our controls, if at all. So this is a

partially controllable system since our control cannot impact all grid cells

equally. We are not only concerned with whether we can control a dis-

tant state, but also the amount to which a controllable state can be effected.

Moreover, we note that because of our gridding of the 2-d surface, the num-

ber of states is extremely large. Since many of these states are not effected

by the control, then perhaps we can develop a reduced order realization of

the wing’s air flows by neglecting all those grid cells that are minimally

impacted by the control surface. The utility of such reduced order real-

izations is that they are easier to work with computationally since they have

fewer states. This example clearly shows the importance of the controllabil-

ity/reachability concept. This section examines methods for characterizing

partially reachable/observable systems. Later sections examine methods for

model reduction based on these characterizations.
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FIGURE 1. Aerodynamical Flows Example

Based on the preceding example, we can see that a realization’s reach-

able subspace provides a basis for decomposing the original realization into

controllable and uncontrollable subsystems. Such decompositions then pro-

vide the basis for useful schemes for model reduction. Unobservable sub-

spaces provide a similar decomposition in terms observable and unobserv-

able subsystems.

Let us begin by considering reachable decompositions for LTI continu-

ous or discrete-time systems. If (A,B) is not a controllable pair, then we

will show that we can decompose the system into controllable and uncon-

trollable subsystems through a similarity transformation. In particular, let

rank(C) = nr < n and let

{v1, v2, . . . , vnr}

be a basis for the reachable subspace, Rr. We will introduce the following

nonsingular matrix

Q =
[
v1 v2 · · · vnr Qn−nr

]
(39)

where Qn−nr is an n×(n−nr) matrix whose linearly independent columns

are chosen to ensure Q is nonsingular.

We know that the reachable subspace, Rr is A-invariant and so Avi ∈
Rr for i = 1, 2, . . . , nr. This means that the columns of the matrix[

Av1 · · · Avnr

]
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can be written as a linear combination of v1, . . . , vnr and so

A
[
v1 · · · vnr

]
=
[
v1 · · · vnr Qn−nr

] [ A1

0

]
where A1 is some nr × nr matrix. Because the columns of B are in

Range(C) = Rr, it should also be apparent that

B =
[
v1 · · · vnr Qn−nr

] [ B1

0

]
where B1 is an appropriately dimensioned matrix. This means that we can

write AQ and B as

AQ = A
[
v1 · · · vnr Qn−nr

]
=

[
v1 · · · vnr Qn−nr

] [ A1 A12

0 A2

]
= QÂ

B =
[
v1 · · · vnr Qn−nr

] [ B1

0

]
= B̂Q

These last equations imply that (Â, B̂) is also a state space realization for

the original system (A,B) where

Â =

[
A1 A12

0 A2

]
, B̂ =

[
B1

0

]

The matrices (A1,B1) are special because we can show they form a con-

trollable pair. This assertion can be verified by computing the controllability

matrix for (Â, B̂),

Ĉ = Q−1C =

[
B1 A1B1 · · · An−1

1 B1

0 0 · · · 0

]
We know by assumption that rank(C) = nr < n and since Q is nonsingular

this means that rank(Ĉ) = nr. From the form we computed for Ĉ, it should

be apparent that

rank
[
B1 A1B1 · · · An−1

1 B1

]
= nr
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which means that (A1,B1) is a controllable pair. The preceding discussion

can be summarized in the following theorem.

THEOREM 26. If (A,B) is not a controllable pair, then there exists a

nonsingular matrix Q such that

Â = Q−1AQ =

[
A1 A12

0 A2

]
, B̂ = Q−1B =

[
B1

0

]
where (A1,B1) is a controllable pair.

The preceding theorem provides the basis for decomposing an uncon-

trollable state space realization G
s
=

[
A B

C D

]
into controllable and un-

controllable subsystems. If we define a new state x̂ = Q−1x we get

˙̂x =

[
˙̂x1

˙̂x2

]
=

[
A1 A12

0 A2

][
x̂1

x̂2

]
+

[
B1

0

]
u

y =
[
C1 C2

] [ x̂1

x̂2

]
+Du

where (A1,B1) is a controllable pair. We call this the standard form for un-

controllable LTI systems. The nr eigenvalues of A1 and their correspond-

ing eigenvectors are called controllable eigenvalues/eigenvectors (modes)

of the pair (A,B). The n − nr eigenvalues of A2 are the uncontrollable

eigenvalues (modes) of the system.

Example: Consider the system

ẋ =

 0 −1 1

1 −2 1

0 1 −1

x+

 1 0

1 1

1 2

u

The controllability matrix is

C =
[
B AB A2B

]
=

 1 0 0 1 0 −1

1 1 0 0 0 0

1 2 0 −1 0 1


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This matrix has rank nr = 2 < 3, and so (A,B) is uncontrollable.

A basis for Rr is obtained by taking the first two linearly independent

columns of C to get

Q =
[
v1 v2 Q1

]
=

 1 0 0

1 1 0

1 2 1


where the third column was chosen to make Q nonsingular. For this Q we

get

Â = Q−1AQ

=

 1 0 0

−1 1 0

1 −2 1


 0 −1 1

1 −2 1

0 1 −1


 1 0 0

1 1 0

1 2 1



=

 0 1 1

0 −1 0

0 0 −2

 =

[
A1 A12

0 A2

]

and for B̂ we get

B̂ = Q−1B

=

 1 0 0

−1 1 0

1 −2 1


 1 0

1 1

1 2



=

 1 0

0 1

0 0

 =

[
B1

0

]

where (A1,B1) is controllable. The matrix A has 3 distinct eigenvalues

at 0, −1, and −2. We see that A1 has eigenvalues 0 and −1 which are

controllable and the eigenvalue of A2 is −2 which is uncontrollable.

We can also obtain standard forms for unobservable systems. This means

we use a similarity transformation on the pair (A,C) to decouple the system
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into observable and unobservable subsystems. We do this by invoking the

duality between the controllability matrix C and the observability matrix O.

In particular, define a dual pair (AD,BD) where AD = AT and BD = CT

which will not be controllable. We then use the preceding transformation

QD to get

ÂD = Q−1
D ADQD =

[
AD1 AD12

0 AD2

]

B̂D = Q−1
D BD =

[
BD1

0

]

where (AD1,BD1) is controllable.

Taking the dual again we obtain (Â, Ĉ)

Â = ÂT
D = QT

DA
T
D(Q

T
D)

−1

= QT
DA(QT

D)
−1 =

[
AT

D1 0

AT
D12 AT

D2

]
Ĉ = B̂T

D = BT
D(Q

T
D)

−1

= C(QT
D)

−1 =
[
BT

D1 0
]

where (AT
D1,B

T
D1) is observable and the similarity transformation we can

use for this is Q = (QT
D)

−1.

If we then let x̂ = Q−1x then we get[
˙̂x1

˙̂x2

]
=

[
A1 0

A21 A2

][
x̂1

x̂2

]
+

[
B1

B2

]
u

y =
[
C1 0

] [ x̂1

x̂2

]
+Du

which we call the standard form for unobservable systems. The no eigen-

values of A1 and its modes are called observable eigenvalues and modes.

The n−no eigenvalues of A2 and modes are unobservable eigenvalues and

modes.
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The standard form can also be used when

[
A B

C D

]
is unobservable

and uncontrollable. This is called the Kalman Decomposition

Â = Q−1AQ =


A11 0 A13 0

A21 A22 A23 A24

0 0 A33 0

0 0 A43 A44



B̂ = Q−1B =


B1

B2

0

0


Ĉ = CQ =

[
C1 0 C3 0

]

where

([
A11 0

A21 A22

]
,

[
B1

B2

])
is controllable,

([
A11 A13

0 A33

]
,
[
C1 C3

])
is observable and (A11,B1,C1) is controllable and observable.

6. Eigenvalue/vector Tests for Controllability/Observability

This section derives eigenvalue-vector tests that are used to identify a sys-

tem’s uncontrollable or unobservable modes. These methods can be simpler

to use than converting the system to its standard form.

Let us assume there exists a row vector v̂ ̸= 0 and λ ∈ C such that

v̂
[
λI−A B

]
= 0(40)

This would mean that v̂A = λv̂, so that (λ, v̂) is a left eigenvalue/vector

pair for A. It also means that v̂B = 0. We can use both observations to see

that

v̂AB = λv̂B = 0
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and we can then use mathematical induction to see that

v̂AkB = 0

for all k ≥ 0. This means, therefore that

v̂C = v̂
[
A AB · · · An−1B

]
= 0

Since v̂ ̸= 0, we can conclude the system is not completely controllable.

So we have just shown that having such a v̂ that satisfies condition (40) if

sufficient for uncontrollability.

We can also establish the necessity of this condition (40). In particular,

assume that (A,B) is uncontrollable. We can assume wlog that the realiza-

tion is in its standard form with

A =

[
A1 A12

0 A2

]
, B =

[
B1

0

]
with (A1,B1) being a controllable pair. Now let λ be an uncontrollable

eigenvalue and let v̂ =
[
0 α

]
where

α(λI−A2) = 0

This means that condition (40) can be written as

v̂
[
λI−A B

]
=

[
0 α(λI−A2) 0

]
= 0

thereby showing that condition (40) is also necessary for uncontrollability.

Similar arguments can be used to obtain a second eigenvalue/vector test for

unobservability. These two results are summarized as the Popov-Belevich-

Hautus (PBH) test for uncontrollability and unobservability.

THEOREM 27. The pair (A,B) is uncontrollable if and only if there

exists a complex-valued row vector v̂ ̸= 0 such that

v̂
[
λI−A B

]
= 0

for some λ ∈ C.
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The pair (A,C) is unobservable if and only if there exists a column

vector v ̸= 0 such that [
λI−A

C

]
v = 0

where λ ∈ C.

Example: Consider

ẋ =

[
1 1

0 1

]
x+

[
1

0

]
u

The A matrix has an eigenvalue at 1 with multiplicity 2. Note that (A,B)

is already in standard form for uncontrollable systems and we can clearly

see that one of the repeated eigenvalues at 1 is uncontrollable since[
λI−A B

]
λ=1

=

[
0 −1 1

0 0 0

]

has a nonzero left eigenvector v̂ =
[
0 1

]
. So by the PBH test we know

this eigenvalue is uncontrollable.

But, we also know the other eigenvalue at 1 is controllable because this

system is in its standard form. This example shows that the PBH eigenvalue

test can only detect if one of the repeated eigenvalues is uncontrollable. It

cannot be used to detect if the other eigenvalue is controllable.

The proof for the PBH condition suggests that it should be possible

to test for controllability/observability directly from the eigenvalues of A.

This observation is summarized in the following theorem

THEOREM 28. The pair (A,B) is controllable if and only if

rank
[
λI−A B

]
= n

for all λ ∈ C. If λi is an uncontrollable eigenvalue value of A, then

rank
[
λiI−A B

]
< n.
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The pair (A,C) is observable if and only if

rank

[
λI−A

C

]
= n

for all λ ∈ C. If λi is an unobservable eigenvalue of A, then rank

[
λiI−A

C

]
<

n.

Example: Consider the preceding example of the system

ẋ =

 0 −1 1

1 −2 1

0 1 −1

x+

 1 0

1 1

1 2

u

y =
[
0 1 0

]
x

Form the matrix

[
λI−A B

C 0

]
=


λ 1 −1 1 0

−1 λ+ 2 −1 1 1

0 −1 λ+ 1 1 2

0 1 0 0 0


The eigenvalues of A are 0, −1, and −2. We can readily see that the only

ways the PBH matrices lose rank is when

rank

[
λI−A

C

]
λ=−1

= rank


−1 1 −1

−1 1 −1

0 −1 0

0 1 0

 = 2

rank
[
λI−A B

]
λ=−2

= rank

 −2 1 −1 1 0

−1 0 −1 1 1

0 −1 −1 1 2

 = 2

which implies the eigenvalue at −1 is unobservable and the eigenvalue at

−2 is uncontrollable.
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7. Controllable/Observable Realizations

Canonical realizations are state space realizations that have a special useful

form. In prior lectures, we introduced two such realizations, those based on

companion matrices and those based on diagonal or Jordan matrices. This

section takes a closer look at the companion realizations and discusses their

relationship to the controllability and observability matrices.

Consider the system

ẋ = Ax+Bu

y = Cx+Du

and let (A,B) be controllable so rank(C) = n. Assume that

rank(B) = m ≤ n

In other words we assume B has full column rank. We will show how to

find the similarity transformation that takes this realization to its controller

canonical form.

The controller companion realization is

Ac =


0 1 · · · 0
...

... . . . ...

0 0 · · · 1

−α0 −α1 · · · −αn−1



Bc =


0
...

0

1


Cc = no particular structure

where αi (i = 0, . . . , n−1) are coefficients of A’s characteristic polynomial

α(s) = det(sI−A) = sn + αn−1s
n−1 + · · ·+ α1s+ α0
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The similarity transformation taking us to this form is

P =


q

qA
...

qAn−1


where q is the nth row (i.e. last row) of the inverse, C−1, of the original

system’s controllability matrix.

We will verify this assertion by direct computation. Note that

qAi−1B = 0, for i = 1, . . . , n− 1

qAn−1B = 1

This assertion may be verified from the definition of q. The above relations

can then be seen to imply,

qC =
[
0 · · · 0 1

]
.

Extending the preceding computation to the product PC gives

PC = P
[
B AB · · · An−1B

]

=



0 0 · · · 0 1

0 0 · · · 1 x
...

...
...

...

0 1 · · · x x

1 x · · · x x


= Cc

This shows that

det(PC) = det(P)det(C) ̸= 0

if and only if det(C) ̸= 0 and det(P)̸=0. The first holds because the orig-

inal system is controllable and the second condition holds because P is a

similarity transformation (i.e. nonsingular). In view of our expansion for
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PC, we can now use the Cayley-Hamilton theorem to show that

AcP =


qA

...

qAn−1

qAn

 = PA

Similar arguments can be used to show

PB =


0
...

0

1

 = Bc

If we consider an LTI system with multiple inputs, m > 1, then the

controllability matrix

C =
[
B AB · · · An−1B

]
is no longer square. But if (A,B) is controllable, we can still find n linearly

independent columns of C. There are however many ways of choosing these

linearly independent columns.

Let B =
[
b1 · · · bm

]
where bi ∈ Rn is a column of B. We now

rearrange the controllability matrix

C =
[
b1 · · · bm Ab1 · · · Abm · · · An−1b1 · · · An−1bm

]
into the form

C =
[
b1 Ab1 · · · Aµ1−1b1 · · · bm Abm · · · Aµm−1bm · · ·

]
where µi is the number of the first linearly independent columns of the

matrix [
bi Abi · · · An−1bi

]
.

We call µi the controllability index of bi. Note that
∑m

i=1 µi = n and the

largest controllability index µ = maxi{µi} is called the controllability in-

dex of the system.
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We can now form the inverse of C as

C−1
=


...

q1
...

qm


where qk is the σkth row of C−1

and σk =
∑k

i=1 µi. We can then use these

rows to construct a nonsingular matrix that transforms (A,B) to its MIMO

controller canonical form. The similarity transformation is

T =



q1

q1A
...

q1A
µ1−1

...

qm

qmA
...

qmA
µm−1


The associated controller canonical form is

(Ac,Bc) =





0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

x x x x x x x x x x x x

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

x x x x x x x x x x x x

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

x x x x x x x x x x x x



,



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 x x x

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 x x x

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 x x x




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Note that Cc has no particular structure.

Consider the system

ẋ = Ax+Bu

y = Cx+Du

where (A,C) is observable with C being a p× n matrix with full row rank

p ≤ n.

A similar companion realization called the observer companion form ex-

ists when the realization is observable. The observer companion form when

p = 1 is

Ao =


0 · · · 0 −α0

1 · · · 0 −α1

... . . . ...
...

0 · · · 1 −αn−1


Co =

[
0 · · · 0 1

]
where αi denote the coefficients of the characteristic polynomial

α(s) = det(sI−A) = sn + αn−1s
n−1 + · · ·+ α1s+ α0

The similarity transformation giving this canonical form is

Q =
[
q̃ Aq̃ · · · An−1q̃

]
where q̃ is the nth column of the inverse, O−1, of the original system’s

observability matrix. The derivation of this form is similar to what we did

above for the controller companion form.

Example: Consider the system

ẋ =

 −1 0 0

0 1 0

0 0 −2

x

y =
[
1 −1 1

]
x
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The observability matrix and its inverse are

O =

 C

CA

CA2

 =

 1 −1 1

−1 −1 −2

1 −1 4



O−1 =

 1 −1
2

−1
2

−1
3

−1
2

−1
6

−1
3

0 1
3


So the transformation matrix is

Q =
[
q̃ Aq̃ A2q̃

]
=

 −1
2

1
2

−1
2

−1
6

−1
6

−1
6

1
3

−2
3

4
3


and so the observer companion matrices are

Ao = Q−1AQ =

 0 0 2

1 0 1

0 1 −2


Co = CQ =

[
0 0 1

]

8. Controllability of Modal Realizations

Consider a modal realization of a SISO LTI system with n distinct eigen-

values.

G
s
=

[
Ad Bd

Cd 0

]
=


λ1 · · · 0 b1
... . . . ...

...

0 · · · λn bn

c1 · · · cn 0


The controllability matrix for this realization is

Cd =
[
Bd AdBd · · · An−1

d Bd

]
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Note that

AdBd =


λ1 · · · 0
... . . . ...

0 · · · λn




b1
...

bn

 =


λ1b1

...

λnbn


If we continue inductively, it can be shown that

Ak
dBd =


λk
1b1
...

λk
nbn


for k ≥ 0, which means that the controllability matrix for a modal realiza-

tion whose eigenvalues are distinct has the form

Cd =


b1 λ1b1 · · · λn−1

1 b1
...

...
...

bn λnbn · · · λn−1
n bn



=


b1 · · · 0
... . . . ...

0 · · · bn




1 λ1 λ2
1 · · · λn−1

1

1 λ2 λ2
2 · · · λn−1

2
...

...
... · · · ...

1 λn λ2
n · · · λn−1

n



=


b1 · · · 0
... . . . ...

0 · · · bn

V

The matrix

V =


1 λ1 λ2

1 · · · λn−1
1

1 λ2 λ2
2 · · · λn−1

2
...

...
... · · · ...

1 λn λ2
n · · · λn−1

n


is called a Vandermonde matrix and one can show using induction to show

that

det(V) =
∏

1≤i<j≤n

(λj − λi)
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This means that the determinant of the modal realization’s controllability

matrix is

det(Cd) = det




b1 · · · 0
... . . . ...

0 · · · bn


 det(V)

=

(
n∏

i=1

bi

)( ∏
1≤i<j≤n

(λj − λi)

)

This determinant is nonzero if and only if λi ̸= λj for i ̸= j (i.e. no repeated

roots) and bi ̸= 0 for all i = 1, 2, . . . , n. From the preceding argument we

can therefore conclude that

• A modal realization is controllable if and only if λi ̸= λj for i ̸= j

and bi ̸= 0 for all i = 1, 2, . . . , n.

• In a similar manner one can say the modal realization is observable

if and only if λi ̸= λj for i ̸= j and ci ̸= 0 for all i = 1, 2, . . . , n.

Let us now consider what impact uncontrollability might have on the

transfer function of a systems with a given modal realization. Consider

the transfer function of the n dimensional modal realization with distinct

eigenvalues

G(s) = Cd(sI−Ad)
−1Bd =

n∑
i=1

bici
s− λi

Since the system eigenvalues are not repeated, then the realization can only

be uncontrollable if bi = 0 for some i = 1, 2, . . . , n. The realization can

only be unobservable if ci = 0 for some i = 1, 2, . . . , n. If this is the case

(i.e. the realization is uncontrollable or unobservable) then the preceding

partial fraction expansion only has r < n terms

G(s) =
r∑

j=1

bijcij
s− λij
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where i1, . . . , ir are distinct integers drawn from {1, 2, . . . , n}. We could

write the transfer function as the ratio of two n-th order polynomials

G(s) =
b(s)

a(s)
=

bn−1s
n−1 + bn−2s

n−2 + · · ·+ b1s+ b0
sn + an−1sn−1 + · · ·+ a1s+ a0

=
b(s)

det(sI−Ad)

But recognizing that there are only r nonzero terms in the partial fraction

expansion, we can also see that the transfer function may be written as the

ratio of two rth order polynomials

G(s) =
β(s)

α(s)
=

βr−1s
r−1 + βr−2s

r−2 + · · ·+ β1s+ β0

sr + αr−1sr−1 + · · ·+ α1s+ α0

where r < n. Because r is strictly less than n we can conclude that the

nth order polynomials a(s) and b(s) share a common root. Since the zeros

of G(s) are the roots of b(s) = 0 and the poles of G(s) are the roots of

a(s) = 0, we can conclude there is a pole-zero cancellation in the original

nth order transfer function b(s)/a(s) that gives rise to the rth order trans-

fer function β(s)/α(s). This means that a modal realization with distinct

modes is uncontrollable or unobservable if and only if its transfer function

G(s) = b(s)
a(s)

has a pole-zero cancellation.

Remark: This pole zero cancellation impacts the input-output stabil-

ity of the system. Note that the zeros of det(sI − A) determine whether

the origin of the state space realization is asymptotically stable. However,

the input-output stability of the system is determined by the transfer func-

tion β(s)/α(s) obtained after cancelling out the common factors between

the numerator and polynomial. This can be seen by an examination of the

partial fraction expansion for the transfer function. This means that if an

unstable pole of the realization is canceled by a zero it will not impact the

input-output behavior of the system. In other words, it is possible for an

LTI system to be input-output stable and yet not Lyapunov stable.

The following theorem considers an nth order strictly proper transfer

function for a SISO system and notes that if one of its nth order realizations
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is controllable/observable, then all of its nth order realizations are control-

lable/observable.

THEOREM 29. If a transfer function

G(s) =
b(s)

a(s)
=

bn−1s
n−1 + · · ·+ b0

sn + an−1sn−1 + · · ·+ a0

has one nth order realization that is controllable and observable, then all

of its nth order realizations are controllable and observable.

Proof: Consider two nth order realizations of the transfer function G(s),

that we denote as

[
A1 B1

C1 0

]
and

[
A2 B2

C2 0

]
. Assume that

[
A1 B1

C1 0

]
is controllable and observable. One can show that

O(A1,C1)C(A1,B1) = O(A2,C2)C(A2,B2)

We assume O(A1,C1) and C(A1,B1) are nonsingular, so we can imme-

diately conclude O(A2,C2) and C(A2,B2) are nonsingular, which means

the other realization is also controllable and observable. ♢

In view of the above theorem, we will examine the controllability/observability
of a companion realization. In particular, let us consider the controller

companion realization

[
Ac Bc

Cc 0

]
where Ac is a suitable companion ma-

trix whose last row contains the coefficients of the matrix’ characteristic
polynomial. Let ei denote the ith elementary basis vector (i.e. all compo-
nents of ei are zero except the ith component which is 1). Note that for
1 ≤ i ≤ n− 1 that

eTi Ac =
[
0 · · · 1 · · · 0

]


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−a0 −a1 −a2 · · · −an−1


=

[
0 · · · 0 1 · · · 0

]
= eTi+1



8. CONTROLLABILITY OF MODAL REALIZATIONS 205

where the one component in ei moves to the i + 1st place. For i = n, we can see

that

eTi Ac =
[
0 · · · 0 · · · 1

]


0 1 0 · · · 0

0 0 1 · · · 0
...

...
. . .

...

0 0 0 · · · 1

−a0 −a1 −a2 · · · −an−1


=

[
−a0 −a1 −a2 · · · −an−1

]
We can therefore conclude that

eT1 b(Ac) =
[
1 0 · · · 0

] (
bn−1A

n−1
c + · · ·+ b0I

)
= bn−1e

T
1 A

n−1
c + · · ·+ b0e

T
1

= bn−1e
T
2 A

n−2
c + · · ·+ b0e

T
1

= bn−1e
T
n + bn−2e

T
n−1 + · · ·+ b0e

T
1

=
[
b0 b1 · · · bn−1

]
= Cc

In a similar way we can show that

eT2 b(Ac) = eT1Acb(Ac)

= eT1 b(Ac)Ac = CcAc

and continuing inductively for eTi b(Ac) with i = 3, . . . , n− 1 we can show

the observability matrix of the controller companion realization is

Oc =


eT1
...

eTn

 b(Ac) = Ib(Ac) = b(Ac)

This means that Oc is nonsingular if and only if det(b(Ac)) ̸= 0. Or rather

that the controller companion realization of a system is observable if and

only if det(b(Ac)) ̸= 0.

Note however, that

det(b(Ac)) =
n∏

i=1

b(λi)
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where λi is the ith eigenvalue of Ac. By construction, we also know that

a(λi) = det(λiI−Ac) = 0

So we can say that b(λi) = 0 for some i in 1, 2, . . . , n if and only if λi is a

root of both the b(s) and the characteristic polynomial det(sI−Ac) = a(s).

In other words, det(b(Ac)) = 0 if and only if a(s) and b(s) have a common

root. (pole zero cancellation).

The preceding observations motivative the following conventions. Con-

sider two polynomials with distinct roots that we can factor as

a(s) = (s− λ1)(s− λ2) · · · (s− λn)

b(s) = (s− µ1)(s− µ2) · · · (s− µr)

We say the two polynomials are coprime if and only if the largest common

factor between them is 1. Clearly if a(s) and b(s) are coprime then they do

not have a common zero and we can therefore conclude

THEOREM 30. The nth order controller companion realization of a strictly

proper SISO transfer function G(s) = b(s)
a(s)

is observable if and only if a(s)

and b(s) are coprime.

We say a transfer function G(s) = b(s)
a(s)

is irreducible if and only if a(s)

and b(s) are coprime. This leads to the following theorem.

THEOREM 31. A strictly proper transfer function G(s) = b(s)
a(s)

is irre-

ducible if and only if all nth order realizations are controllable and observ-

able.

Finally, we say that a realization of G(s) is minimal if and only if this

realization has the smallest state space dimension over all realizations of the

transfer function. This definition leads to the following theorem.

THEOREM 32. A realization of a strictly proper transfer function G(s)

is minimal if and only if a(s) = det(sI−A) and b(s) = C [adj(sI−A)]B

are coprime.
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Proof: So we know

G(s) = C(sI−A)−1B =
C [adj(sI−A)]B

det(sI−A)
=

b(s)

a(s)

Suppose

[
A B

C 0

]
is minimal but b(s)

a(s)
is not irreducible. This implies

there is a lower order transfer function obtained by cancelling the common

factors. That lower order transfer function would have a realization whose

dimensional is less than that of

[
A B

C 0

]
which would contradict the min-

imality assumption.

Conversely assume that

[
A B

C 0

]
is not minimal but that b(s)

a(s)
is irre-

ducible. So there is a realization of lower dimensionality. But the transfer

function of that lower dimensional realization has an order less than that

of b(s)/a(s) hence contradicting the assumption that b(s)/a(s) was irre-

ducible. ♢

We can now conclude with the following theorem, which follows directly

from our preceding theorems.

THEOREM 33.

[
A B

C 0

]
is minimal if and only if (A,B) is control-

lable and (A,C) is observable.

Remark: The preceding discussion focused on minimality of realiza-

tions for SISO systems with distinct eigenvalues. We focused on this be-

cause the derivation of the results is more easily seen. These results also

extend to MIMO systems with repeated eigenvalues, but the proof is more

involved and can be found in Antsaklis and Michel (2006).
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Example: Consider the state space realization

G
s
=


0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 2 0 −2 1

1 −1 0 0 0


Is the state space realization controllable and/or observable?

Rather than trying to solve this by brute force computation of the con-

trollability and observability matrices. Let us first note that this realization

is already in controller companion form. So we immediately know that it is

controllable and from this form we can immediately write down its transfer

function

G(s) =
b(s)

a(s)
=

−(s− 1)

s4 + 2s3 − 2s− 1

We divide out s− 1 to see if there is a common factor

s3 +3s2 +3s +1

s− 1) s4 +2s3 −2s −1

−s4 +s3

3s3 −2s −1

−3s3 +3s2

3s2 −2s −1

−3s2 +3s

s −1

−s +1

This shows that s − 1 is a common factor between b(s) and a(s) since the

remainder of the division is zero. We can therefore conclude that

G(s) =
b(s)

a(s)
=

−(s− 1)

s4 + 2s3 − 2s− 1
=

−1

(s+ 1)3

Since there is a pole zero cancellation, we know the realization is not min-

imal and so the realization is not observable. Note that this was deduced
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without resorting to a direct computation of the controllability and observ-

ability matrices.

The relative degree to which modes are ”controllable” or ”unobservable”

depends on which state space realization we choose for the system. It there-

fore makes sense to consider realizations where a given mode has an equal

degree of observability and controllability. Such realizations are said to be

balanced and provide the basis for obtaining reduced order models (ROM)

of linear systems. The following discussion on balanced realizations and

their use in model reduction was taken from Green and Limebeer (2012).

A continuous-time state space realization G
s
=

[
A B

C 0

]
is balanced

if A is Hurwitz and

AΣ+ΣAT +BBT = 0

ATΣ+ΣA+CTC = 0

in which

Σ =


σ1Ir1

. . .

σmIrm



with σi ̸= σj when i ̸= j and σi > 0 for all i = 1, 2, . . . ,m. Note that

n = r1 + · · · + rm and ri is the multiplicity of σi. We say the realiza-

tion is an ordered balanced realization if σ1 > σ2 > · · · > σm > 0. In

a balanced realization, the basis for the state space is such that each basis

vector is “equally” controllable and observable with the degree of control-

lability/observability being given by the diagonal entry of Σ. If

[
A B

C 0

]
is a balanced realization and the system’s initial state x0 is partitioned as
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x0 =


x1

...

xm

 where xi is an ri × 1 vector, one can show that

max
u∈L2

∫∞
0

|y(τ)|2dτ∫ 0

−∞ |u(τ)|2dτ
=

m∑
i=1

σ2
i x

T
i xi

In other words, σ2
i , may be seen as a measure of the extent to which the cor-

responding ri dimensional subspace of the state space transfers energy from

past inputs to future outputs. The σi’s are called Hankel singular values of

the system. The next theorem establishes the existence and uniqueness of

balanced realizations.

THEOREM 34. A given realization

[
A B

C 0

]
can be transformed to a

balanced realization if and only if it is asymptotically stable and minimal.

Furthermore, the balanced realization is unique up to an ordering of the

σi’s and an orthognal matrix S satisfying SΣ = ΣS. When the realization[
A B

C 0

]
is asymptotically stable (i.e. A is Hurwitz) and minimal, then

the realization

[
TAT−1 TB

CT−1 0

]
is balanced if we choose the similarity

transformation to be T = Σ1/2UTR−1, where P = RRT is a Cholesky

factorization of P and RTQR = UΣ2UT is a singular value decomposi-

tion of RTQR in which P and Q are the controllability and observability

gramians that satisfy the Lyapunov equations

AP+PAT +BBT = 0

ATQ+QA+CTC = 0

Proof: I’ll only approve the existence of the balanced realization. Note
that if P and Q satisfy the Lyapunov equations in the theorem, then for any
nonsingular T we have

0 = (TAT−1)(TPTT ) + (TPTT )(TAT−1)T + (TB)(TB)T

0 = ((TT )−1QT−1)(TAT−1) + (TAT−1)T ((TT )−1QT−1) + (CT−1)T (CT−1)
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If the original realization is balanced, it is asymptotically stable by as-

sumption and Σ > 0 implies minimality. If the original realization is

asymptotically stable and minimal, then it has positive definite controlla-

bility and observability gramians, P and Q, satisfying the two Lyapunov

equations. Setting T = Σ1/2UTR−1 gives

TPTT = (Σ1/2UTR−1)RRT ((RT )−1UΣ1/2) = Σ

(TT )−1QT−1 = (Σ−1/2UTRT )Q(RUΣ−1/2) = Σ

♢

9. Model Reduction

We already noted that modal realizations are useful in the sense that their

eigenvalues are less sensitive than the companion canonical forms with re-

spect to perturbations of the system matrices. Another useful aspect of

modal forms is their use in model reduction [Green and Limebeer (2012)].

Many applications give rise to extremely high order state space realizations.

Not all of these modes, however, are of equal importance to the application.

So given a state space realization with large dimension n, G s
=

[
A B

C 0

]
,

there is value in generating realizations Ĝ s
=

[
Â B̂

Ĉ 0

]
whose dimension

r < n and yet the realizations input-output behavior (i.e. transfer function)

is very similar to that of the high dimensional system.

One of the easiest ways of generating such reduced order systems is to

take a given realization and discard those states that are felt to have little

impact on the overall system’s behavior. In particular, let us assume the

original system (n-dimensional) is

ẋ = Ax+Bu

y = Cx+Du
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Let us assume this is in its modal form with distinct eigenvalues. We take

the state x and partition it as

x =

[
x1

x2

]
where x1 is r-dimensional and x2 is n − r dimensional and represents the

states of the system we want to discard in forming the reduced model. Be-

cause we are discarding states, we also refer to this as model truncation.

Let us conformally partition the original system matrices with respect to

our decomposition of x as

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
, C =

[
C1 C2

]
The truncated system obtained by discarding x2 is then

ẋ1 = A11x1 +B1u

y = C1x1

In particular, if we started with a modal realization with distinct eigen-

values then it should be apparent that

A11 =


λ1

. . .

λr

 , B1 =


B1

...

Br

 , C1 =
[
C1 · · · Cr

]

We are interested in selecting those modes to truncate such that the differ-

ence between G and Ĝ is small. How should this be done?

In particular, note that if we use the same input to drive both G and Ĝ,

we would want their corresponding outputs to be “close” to each other with

respect to some appropriate norm. We usually choose the L2 norm (i.e.

energy). Recall that∥∥∥G− Ĝ
∥∥∥
H∞

= sup
u∈L2

∥G[u]− Ĝ[u]∥L2

∥u∥L2
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So we want truncate those modes whose transfer of input signal energy to

the output is “small”. That “energy” transfer is measured by the H∞ norm

of the error system G− Ĝ.

So what is the H∞ norm of the error system. When we have a modal

realization, we can bound this rather easily. In particular, it should be clear

that the error system for a modal realization is

G(s)− Ĝ(s) =
n∑

i=r+1

CiBi

s− λi

We can then use standard bounding arguments to show that

∥G− Ĝ∥H∞ ≤
n∑

i=r+1

∥CiBi∥
Real(λi)

In other words, we want to select those n− r modes to discard such that the

preceding sum is minimized.

Note that common engineering practice is to discard high frequency

modes. In light of the preceding equation, this makes sense if all ∥CiBi∥
are the same. In real life, however, the terms ∥CiBi∥ will not be the same

and they are, in fact, dependent on how we decided to factor the residue

term Ri. This suggests that the common engineering practice of discard-

ing high frequency modes (i.e. modal truncation) is not necessarily the best

strategy. In particular, we will show that a better strategy is to truncate

modes of a balanced realization of the system. The key feature of such bal-

anced realizations is that the observability and controllability gramians of

the system are the same. In particular, one may say a balanced realization

is a particular type of modal realization in which each mode has the same

”degree” of observability and controllability.

Model reduction by balanced truncation simply applies the truncation

operation to a balanced realization G
s
=

[
A B

C 0

]
. In particular, if the
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realization is balanced then we can partition Σ as

Σ =

[
Σ1 0

0 Σ2

]
with

Σ1 =


σ1Ir1

. . .

σℓIrℓ

 , Σ2 =


σℓ+1Irℓ+1

. . .

σmIrm


Note that we don’t split states corresponding to a σi with multiplicity greater

than one. If we then partition

[
A B

C 0

]
conformally with Σ, we obtain a

reduced order system Ĝ with realization

[
A11 B1

C1 0

]
which is a balanced

truncation of G. The following theorems regarding the balanced truncation

are stated below without proof.

THEOREM 35. If

[
A B

C 0

]
is a balanced realization, then a balanced

truncation with realization

[
A11 B1

C1 0

]
is also a balanced realization.

THEOREM 36. 1 Let G(s) = D + C(sI − A)−1B where

[
A B

C D

]

is a balanced realization with a balanced truncation

[
A11 B1

C1 D

]
with r

modes in which r = r1 + · · ·+ rℓ. Then

∥G− Ĝ∥H∞ ≤ 2(σℓ+1 + · · ·+ σm)

Example: Consider the following system for a flexible structure

G(s) =
4∑

i=1

ki
ω2
i

s2 + 2ζiωis+ ω2
i

1The proof of this theorem relies on facts about the Hankel singular value that would

take some time to develop. For details the reader can refer to (Green and Limebeer, 2012).
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i ωi ζi ki

1 0.5680 0.0010 0.0165

2 3.9400 0.0010 0.0020

3 10.5800 0.0010 0.0100

4 16.1900 0.0100 0.0002

which can be seen as having four vibrational models ωi for i = 1, 2, 3, 4

where

• Use Matlab to compute the modal canonical form of this system,

G, and determine the modal truncation Ĝm that truncates the two

vibrational modes with the highest natural frequencies. Compute

∥G− Ĝm∥H∞ .

• Determine the balanced realization of G. Verify that the observ-

ability and controllability gramians for the balanced realization are

the same. Determine the modal truncation Ĝ where the two vibra-

tional modes with smallest Hankel singular values are truncated.

Compute ∥G−Ĝb∥ and compare to the truncation error computed

in the first part.

• Use Matlab to draw the gain-magnitude plots of G, Ĝm and Ĝb.

Describe the difference between the two different truncation meth-

ods?

Let Gi =
kiω

2
i

s2+2ζiωis+ω2
i
. Using MATLAB canon to construct the modal

form for G =
∑4

i=1 Gi yields (note that we have rounded the results to the
second least significant digit)

G
s
=



−0.016 16.19 0 0 0 0 0 0 1.30

−16.19 −0.16 0 0 0 0 0 0 0.01

0 0 −0.01 10.58 0 0 0 0 1.12

0 0 −10.58 −0.011 0 0 0 0 −0.09

0 0 0 0 −0.00 3.94 0 0 −0.22

0 0 0 0 −3.94 −0.00 0 0 −0.00

0 0 0 0 0 0 −0.00 0.57 0.07

0 0 0 0 0 0 −0.57 −0.00 0.00

0.00 −0.00 −0.01 −0.10 −0.00 0.04 0.00 −0.13 0


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The modal truncation where the vibrational modes with the highest natural
frequencies are dropped is G = G1 +G2 and the modal form for this is

G
s
=



−0.00 3.94 0 0 −0.29

−3.94 −0.00 0 0 −0.00

0 0 −0.00 0.57 0.13

0 0 −0.57 −0.00 −0.01

−0.00 −0.03 −0.00 −0.07 0


Figure 2 shows the Bode plot for G and Ĝ as well as the error system

E = G− Ĝ. We used norm command to identify the H∞ truncation error

as 5 (13.98 dB) at ω = 10.58 rad/sec.
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FIGURE 2. Modal Truncation

Now we look at the second part using the balanced realization. We first
compute the controllability and observability gramians for the original re-
alization

P = lyap(A,B*B’); %AP+PA’+BB’=0

Q = lyap(A’,C’*C); %A’Q+QA+C’C=0

and then we compute the transformation

T = Σ1/2UTR−1
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where P = RR−1 and RTQR = UΣ2UT is a singular value decomposi-

tion. The balanced realization is then

(TAT−1,TB,CT−1D).

I generated the following balanced realization using this method

G
s
=



−0.00 −0.57 −0.00 0.01 0.00 0.00 −0.00 −0.00 0.07

0.57 −0.00 −0.01 0.00 0.00 0.00 −0.00 −0.0007 −0.0682

−0.0024 0.0097 −0.0106 10.5800 0.0048 0.0072 −0.0037 −0.00 0.23

−0.01 0.00 −10.58 −0.01 −0.01 −0.00 0.00 0.00 0.23

0.00 −0.00 0.00 0.01 −0.00 −3.94 0.01 0.0051 −0.0628

−0.00 0.00 −0.01 −0.00 3.94 −0.00 0.01 0.01 0.06

−0.00 0.00 −0.00 −0.00 0.01 −0.01 −0.16 −16.1892 0.0400

0.00 −0.00 0.00 0.00 −0.01 0.01 16.19 −0.17 −0.04

0.07 0.07 0.23 −0.23 −0.06 −0.06 0.04 0.04 0


If we compute the gramians for this realization we essentially obtain the

following

Wc = diag(4.1291, 4.1209, 2.5025, 2.4975, 0.5005, 0.4995, 0.0050, 0.0049)

Wo = diag(4.1209, 4.1291, 2.4975, 2.5025, 0.4995, 0.5005, 0.0049, 0.0050)

which is essentially the same (up to reordering) and so we’ve verified that

the realization is balanced.

We now truncate the realization by dropping the last 4 modes in the
balanced realization to obtain

Ĝ
s
=



−0.00 −0.57 −0.00 0.01 0.07

0.57 −0.00 −0.01 0.00 −0.07

−0.00 0.01 −0.01 10.58 0.23

−0.01 0.00 −10.58 −0.01 0.23

0.07 0.68 0.23 −0.23 0



Figure 3 shows the Bode plot for G and Ĝ as well as the error system

E = G− Ĝ. We used norm command to identify the H∞ truncation error

as 1 (0 dB) at ω = 3.94 rad/sec. In comparing the modal versus the balanced

truncation we see that the balanced truncation produces a lower error. This

is accomplished because the balanced truncation retains the two vibrational

modes with the largest gain magnitude. The vibration modes with smallest
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natural frequency are not the modes with the largest gain magnitudes and

so the modal truncation produces a larger model approximation error.
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FIGURE 3. Balanced Truncation



CHAPTER 5

Feedback Theory for Linear Systems

Feedback is a useful mechanism that one uses to regulate and stabilize the

behavior of a dynamical system. Consider an LTI system

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

Feedback takes the output, y, and subtract it from a reference signal, r, to

form an error signal, e(t) = y(t) − r(t). Taking a linear combination of

these error terms generates an input u(t) = kT e(t), where k is a vector of

gains. We are interested in choosing k so the error, e, asymptotically goes

to zero (stability), thereby regulating the output, y, to track the reference

r. This chapter examines feedback mechanisms used to stabilize the states

and regulate the outputs of a linear system. These methods are also relevant

to the design of state estimators that we refer to as observers. The chapter

confines itself to continuous-time time-invariant linear systems.

1. State Feedback

Consider the continuous-time LTI system whose state space realization is

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

We say the realization can have its eigenvalues arbitrarily assigned by state

feedback if for any nth order polynomial αd(s), there is a matrix F ∈ Rm×n

such that the eigenvalues of A+BF are the roots of the polynomial equation
219
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αd(s) = 0. In other words, there is a state feedback law of the form

u(t) = Fx(t)

such that when this u is applied to our system, we obtain

ẋ(t) = (A+BF)x(t)

y(t) = Cx(t)

By requiring the characteristic polynomial of A + BF to equal αd(s) for

whatever nth order polynomial we select, we are using state feedback to

arbitrarily place the eigenvalues of the closed loop system matrix, A+BF.

We will show that the eigenvalues of (A,B) can be freely assigned in and

only if (A,B) is a controllable pair.

To prove this assertion, let us assume the eigenvalues of (A,B) can be

arbitrarily assigned, but that (A,B) is uncontrollable. Then we know there

exists a nonsingular matrix P that takes the system to its standard uncon-

trollable form

P−1AP =

[
A1 A12

0 A2

]
, P−1B =

[
B1

0

]
where (A1,B1) is a controllable pair.

Now consider a matrix F ∈ Rn×m and apply P to it as

FP =
[
F1 F2

]
where the block matrices are conformal with the standard form blocks. If

we then look at A + BF and apply our similarity transformation to it, we

get

P−1(A+BF)P = P−1AP+P−1BFP

=

[
A1 A12

0 A2

]
+

[
B1

0

] [
F1 F2

]
=

[
A+B1F1 A12 +B1F2

0 A2

]
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The characteristic polynomial is invariant under similarity transformations

so with the above block partition we have

det(sI− (A+BF)) = det(sI−P−1(A+BF)P)

= det

[
sI− (A1 +B1F1) −(A12 +B1F2)

0 sI−A2

]
= det(sI− (A1 +B1F1)) det(sI−A2)

This means that the eigenvalues of A+BF are either eigenvalues of A2 and

or are eigenvalues A1 + B1F1. Clearly the uncontrollable eigenvalues of

A2 cannot be freely reassigned by state feedback. This contradicts our ear-

lier assumption that the eigenvalues of (A,B) were freely assignable. The

contradiction arose because we required (A,B) to also be uncontrollable.

We can, therefore, conclude that if the eigenvalues of freely assignable then

the system must be controllable.

Controllability is not only necessary for free assignment, it is also suffi-

cient. This assertion can be verified as follows. Let us assume (A,B) is a

controllable pair, then it will have a controller companion form

(Ac,Bc) =





0 1 0 · · · 0

0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1

−a0 −a1 −a2 · · · −an−1


,



0

0
...

0

1




Now consider the state feedback gain matrix

Fc =
[
f0 · · · fn−1

]
and form (Ac +BcFc) as
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Ac +BcFc =



0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1

−a0 −a1 −a2 · · · −an−1


+



0

0

...

0

1


[

f0 · · · fn−1

]

=


0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

−(a0 − f0) −(a1 − f1) −(a2 − f2) · · · −(an−1 − fn−1)



Note that (Ac +BcFc,Bc) is still in controller companion form so that

det(sI− (Ac +BcFc)) = (a0 − f0) + (a1 − f1)s+ · · ·+ (an−1 − fn−1)s
n−1 + sn

So for any desired nth order polynomal, αd(s), there is a set of gains, Fc,

such that det(sI−(Ac+BcFc)) = αd(s) and so (Ac,Bc) has freely assign-

able eigenvalues. Since eigenvalues are invariant under similarity transfor-

mations, we can conclude (A,B) will also have freely assignable eigenval-

ues. The preceding discussion can be summarized in the following theorem

THEOREM 37. Consider a continuous-time LTI system with the pair

(A,B), then the pair has eignvalues that are arbitrarily assignable by state

feedback if and only if (A,B) is controllable.

Note that if P is the similarity transformation taking (A,B) to its stan-

dard form. Once we’ve selected gains for the standard form, the gains for

the original realization are

FP = Fc

In general we want to select F so that A+BF is Hurwitz. We say the pair

(A,B) is stabilizable if only if there exists an F such that all eigenvalues

of (A+BF) have negative real parts. A necessary and sufficient condition

for the existence of such a set of gains is that all uncontrollable modes of

the system are asymptotically stable.
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Example: Consider the system

ẋ(t) =

 1/3 1/3 −2/3

1/3 −2/3 1/3

−2/3 −5/3 −2/3

x(t) +

 1/3

1/3

1/3

u(t)

y(t) =
[
1 1 −2

]
x(t)

(41)

and determine a linear state feedback law

u(t) = Fx(t) + kr(42)

where F is the state feedback gain matrix and k is a scalar gain so that the ir-

reducible transfer function of the closed loop system formed from equations

(41-42) is equal to 1
s2+3s+2

. The other input, r, is an exogenous reference

signal that is supplied to the system.

Are the eigenvalues of (A,B) freely assignable? To answer this we first

check to see if the pair is controllable or not. Computing the controllability

matrix

C =
[
B AB A2B

]
=

 1/3 0 2/3

1/3 0 −1/3

1/3 −1 2/3


The eigenvalues of C are all nonzero and so C has full rank and we know

there exists a gain that can freely assign the eigenvalues.

Following what was done in the proof of the theorem, let us first con-

vert (A,B) to its standard form. From the preceding chapter we know the

desired transformation matrix to standard form is

P−1 =

 q

qA

qA2


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where q is a row vector obtained from the last row of C−1. We can readily

see that

C−1 =

 1/3 0 2/3

1/3 0 −1/3

1/3 −1 2/3


−1

=

 1 2 0

1 0 −1

1 −1 0


so that

q =
[
1 −1 0

]
and so we get

P−1 =

 q

qA

qA2

=

 1 −1 0

0 1 −1

1 1 1


and converting (A,B) to controllable companion form is

Ac = P−1AP =

 0 1 0

0 0 1

1 0 −1



Bc = P−1B =

 0

0

1


Cc = CP =

[
1 2 0

]
with Dc = 0.

So now consider

ẋc = Acxc +Bc(Fcxc + kr)

= (A+BcFc)xc +Bckr

=

 0 1 0

0 0 1

1 + f0c f1c −1 + f2c

xc +

 0

0

k


y(t) =

[
1 2 0

]
xc(t)
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where xc is the state of the controller companion realization.

Let us write out the transfer function for this system

Try(s) =
(2s+ 1)kc

s3 + (1− f2c)s2 + (−f1c)s+ (−1− f0c)
=

n(s)

d(s)

We will need to introduce a pole zero cancellation at −1/2 so the desired

characteristic polynomial we wish to match is

αd(s) = (s+ 1/2)(s2 + 3s+ 2) = s3 + 3.5s2 + 3.5s+ 1

which suggests we need

f2c = −2.5, f1c = −3.5, f0c = −2

and so Fc =
[
−2 −3.5 −2.5

]
. We will also need to select k = 1/2 to

get the desired numerator.

The actual gains we are going to use in our original system are

F = FcP

=
[
−2 −3.5 −2.5

] 1 −1 0

0 1 −1

1 1 1

 =
[
−4.5 −4 1

]

To check our work, compute the transfer function for the state space real-

ization of the closed-loop system

Try
s
=

[
A+BF Bk

C 0

]
=


−11

6
−1 −1

3
1
6

−11
6

−2 2
3

1
6

−21
6

−3 −1
3

1
6

1 1 −2 0


If we compute the transfer functions for this system we see it is

Try(s) =
s+ 0.5

(s+ 2)(s+ 1)(s+ 0.5)
=

1

(s+ 2)(s+ 1)

which matches our specification. As expected, the pole we added at −1/2

indeed cancelled out the transmission zero at −1/2.
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The preceding discussion showed how to select the gains F to arbitrarily

reassign the eigenvalues of the closed-loop system. This approach required

that we first transform the system to its controllable companion form. A

more direct “formula” for pole placement is known as Ackerman’s For-

mula. This formula directly computes the state feedback gains required

to arbitrarily assign the eigenvalues of A + BF. The following theorem

gives this formula

THEOREM 38. Assume that (A,B) is an n-dimensional controllable

pair and let αd(s) be an nth order monic polynomial. Then the eigenvalues

of (A+BF) will be equal to the roots of αd(s)= 0 if and only if

F = −eTnC−1αd(A)

where

en =


0
...

0

1

 ∈ Rn

αd(s) = desired characteristic polynomial

= sn + dn−1s
n−1 + · · ·+ d1s+ d0

Proof: To verify this formula, let us assume we already know the con-

trollable companion form, (Ac,Bc) of the given controllable pair (A,B).

We’ve already shown that

Fc =
[
a0 + d0 · · · an−1 + dn−1

]
where the characteristic polynomial of A is

pA(s) = sn + an−1s
n−1 + · · ·+ a1s+ a0

The matrix F is related to Fc through the similarity transformation F =

FcP where P = CcC−1 and

Cc = controllability matrix if (Ac,Bc)
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We will now show that

Fc = −eTnCT
c αd(Ac)

arbitarily assigns the n eigevalues of Ac to the roots of the desired plyno-

mial αd(s). Note that

αd(Ac) = An
c + dn−1A

n−1
c + · · ·+ d1Ac + d0I

through the Cayley- Hamilton theorem we know that

pA(Ac) = An
c + an−1A

n−1
c + · · ·+ a1Ac + a0I = 0

which means that

αd(Ac) =
n−1∑
i=0

(ai + di)A
i
c

Also note that

eT1 Cc =
[
1 0 · · · 0

]


0 0 · · · 1
...

...
...

0 1 · · · x

1 x · · · x


= eTn

or rather that eTnC−1
c = eT1 . Pre-multiply αd(Ac) by −eTnC−1

c to get

−eTnC−1
c αd(Ac) = −eT1

[
(d0 + a0)I+ · · ·+ (dn−1 + an−1)A

n−1
c

]
=

[
a0 + d0 a1 + d1 · · · an−1 + dn−1

]
= Fc

which verifies Ackerman’s formula when the system is in its controllable

companion form.
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To complete the proof, simply transform Fc back to the original realiza-

tion using the similarity transformation P = CcC−1. This gives

F = FcP = −eTnC−1
c αd(Ac)P

= −eTnC−1
c αd(PAP−1)P = −eTnC−1

c Pαd(A)

= −eTnC−1
c (CcC−1)αd(A)

= −eTnC−1αd(A)

which completes the proof. ♢

To illustrate the use of this method, let us return the earlier example

which had the state space realization,

G
s
=


1
3

1
3

−2
3

1
3

1
3

−2
3

1
3

1
3

−2
3

−5
3

−2
3

1
3

1 1 −2 0


The desired polynomial was

αd(s) = (s+ 1/2)(s2 + 3s+ 2) = s3 + 3.5s2 + 3.5s+ 1

and so the following script will compute the desired gain F directly without

having to first convert the realization to its controller companion form.

en = zeros(3,1); en(3)=1;

adA = Aˆ3+3.5*Aˆ2+3.5*A+eye(3,3);

F = -en’*inv(ctrb(A,B))*adA

which gives the output

F =

-4.5000 -4.0000 1.0000
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which is identical to what we computed before.

Remark: We used the MATLAB command ctrb to compute the con-

trollability matrix. The computations in Ackerman’s formula are easily en-

capsulated into a MATLAB function. In particular, MATLAB has already

done this using the command acker which is in MATLAB’s control sys-

tem toolbox.

2. Luenberger Observer

In many applications, one may not have direct access to the full state. In

this case, one would like to find a way to estimate the full state, x, from the

available observed outputs, y. Such a system is called an observer. This

section discusses methods used for building such observers. The tools we

developed above to identify stabilizing state feedback laws will be used to

determine such observers.

First let us consider an “open-loop” way of constructing a state observer

for a plant, G, with state space realization

ẋ(t) = Ax(t) +B1w(t) +B2u(t)

y(t) = Cx(t) +Du(t)
(43)

where x : R → Rn is the system state. We supply the other signals with the

following “physical” interpretations

u : R → R is a “known” control input

y : R → R is a “observed” system output

w : R → R is an “unknown” external disturbance

We assume that the state space realization for G
s
=

[
A B1 B2

C 0 D

]
is

known. Note that the “B” and “D” matrices have a block form determined

by the two types of inputs, u and w, that are driving the system.
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Since we know the system matrices, we can try to build a state estimator

that simply “mimics” the dynamics of the plant. If we let x̂ : R → Rn

denote the estimated state, then this would mean we might try an estimator

of the form

˙̂x(t) = Ax̂(t) +B2u(t)

ŷ(t) = Cx̂(t) +Du(t)
(44)

Note that we have not included the terms determined by the external distur-

bance w since this signal is not known. So the estimator is an LTI system

with input u (which is known) and an output ŷ which is the “estimated”

output based on the information in u and x̂.

We want to study how the state estimation error,

x̃(t)
def
= x(t)− x̂(t)

behaves. In particular, x̃, should satisfy the following differential equation

˙̃x(t) = ẋ(t)− ˙̂x(t)

= Ax(t) +B1w(t) +B2u(t)−Ax̂(t)−B2u(t)

= Ax̃(t) +B1w(t)

Note that if A’s eigenvalues all have negative real parts, then the origin of

the unforced system when w = 0 is asymptotically stable and so the esti-

mation error would go to zero asymptotically. Let H(s) denote the transfer

function from w to x̃. One can readily see that

H(s) = (sI−A)−1B1

If w is an L2 signal, then we know the L2 norm of the state estimation error

is bounded by

∥x̃∥L2 ≤ ∥H∥H∞
∥w∥L2

which allows us to show that the norm of the estimation error is bounded

above. Note that this bound again only exists if the system is finite gain L2

stable, which will always be the case if A is Hurwitz.
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What the preceding discussion showed is that we get useful estimates

of the state using the “open-loop” observer in equation (44) whenever A

is Hurwitz, i.e. the origin of the open-loop system (43) is asymptotically

stable. However, we would also like to build observers for unstable plants

since we will later try to use those estimated states in a state-feedback law to

stabilize the system. If we try our open-loop strategy on an unstable plant,

then the state estimates will become unbounded thereby leaving us with a

useless estimate of the state. To address this issue, we modify the observer

equation to use the observation error

ỹ(t)
def
= y(t)− ŷ(t)

as a state feedback term, just as it was done above with the state feedback

control law. The estimated output is taken to be

ŷ(t) = Cx̂(t) +Du(t)

The resulting closed-loop estimator is now called an observer and is defined

by the following state equations

˙̂x(t) = Ax̂(t) +B2u(t) + L(y(t)− ŷ(t))

ŷ(t) = Cx̂(t) +Du(t)
(45)

where L ∈ Rn is a matrix of observer gains. These observer gains must be

chosen by the designer to ensure that the estimation error, x̃(t), asymptoti-

cally goes to zero in the absence of any external disturbance, w and remains

sufficiently bounded when w is a bounded disturbance.

To determine the conditions needed for a “stable” observer, we write out

the state equations for the state estimation error, x̃,

˙̃x(t) = ẋ(t)− ˙̂x(t)

= Ax(t) +B1w(t) +B2u(t)

−Ax̂(t)−B2u(t)− L(Cx(t) +Du(t)−Cx̂(t)−Du(t))

= Ax̃(t)− LCx̃(t) +B1w(t)

= (A− LC)x̃(t) +B1w(t)(46)
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We obviously want to choose L so that all of the eigenvalues of A − LC

have negative real parts. If this is done then the estimation error goes to zero

asymptotically when w = 0 and remains bounded in L2 if w is also L2.

We call this observer in equation (45) a Luenberger observer. Note that

choosing L is equivalent to a pole placement problem. In particular, we can

see that A− LC and (A− LC)T have the same eigenvalues. Note that

(A− LC)T = AT −CTLT

So our ability to freely assign the eigenvalues of A−LC is equivalent to the

pair (AT ,CT ) being arbitrarily assignable. We know this is the case if and

only if (AT ,CT ) is controllable which means that (A−LC)’s eigenvalues

can be freely assigned if and only if (A,C) is observable. We can therefore

summarize our preceding discussion in the following theorem.

THEOREM 39. The eigenvalues of the Luenberger observer in equation

(45) can be freely assigned if and only if (A,C) is observable.

Clearly, we want to choose L so that A − LC is Hurwitz. When this

is the case then we say the pair (A,C) be detectable. A necessary and

sufficient condition for detectability is that all unobservable eigenvalues of

(A,C) have negative real parts.

Recall that asymptotic stability of the origin can only be assured if the

external disturbance, w(t) = 0. When w is not zero, then we require the

input/output system from w to the state estimation error x̃ be finite gain L2

stable. Let E denote the error system in equation (46) whose state space

realization is

E
s
=

[
A− LC B1

I 0

]
We are going to choose L so the origin of the unforced error system is

asymptotically stable. We know that this will also imply the input/output

system, E, is L2 stable. In this case, we will use the L2-induced gain of

E to characterize the “performance” level achieved by the estimator; with
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smaller gains being associated with better performance. In our earlier work

we showed that the L2 induced gain is given by the H∞ norm of the transfer

function matrix’, E(s), maximum gain magnitude.

∥E∥H∞
= sup

ω
|E(jω)|

which we can evaluate by an examination of the error system’s gain mag-

nitude plot, or through the use of the bounded real lemma in a bisection

search. There are certain applications where this approach is used to select

gains, L, that minimize the H∞ gain of E, thereby maximizing the estima-

tor’s performance. The resulting “optimal” H∞ filters are often used when

we want the estimator’s performance to be robust to model uncertainty.

There are a large number of applications where the input w is a unit

variance white noise process. In this case the state estimate {x̃(t)} is a

stochastic process that is normally distributed so we only need to determine

its mean and covariance matrix. In particular, let E{x̃(t)} = µ(t), then

because of the linearity of the expectation operator and because w is zero

mean, we can see

d

dt
E{x̃(t)} = µ̇(t) = (A− LC)E{x̃(t)}+B1E{w(t)} = (A− LC)µ(t)

If L is chosen so (A − LC) is Hurwitz then we can see that µ(t) → 0 as

t → ∞ for any particular input w that we have.

A full characterization of the state estimation process, however, also re-

quires us to determine its covariance matrix E{x̃(t)x̃T (t)} = P(t). De-

termination of the differential equation satisfied by the covariance matrix

requires that we use methods from the Ito stochastic calculus [Fleming and

Rishel (1972),Karatzas and Shreve (1998)]. Since these methods are be-

yond the scope of this course, we will simply summarize the results. In

particular, one can use the Ito calculus to show that P(t) satisfies the fol-

lowing ordinary matrix differential equation

Ṗ(t) = (A− LC)P(t) +P(t)(A− LC)T +B1B
T
1
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When A−LC is Hurwitz then as t → ∞ one can show that P(t) converges

asymptotically to a constant matrix, P

lim
t→∞

E
{
x̃(t)x̃T (t)

}
= P

that satisfies the following Lyapunov equation

0 = (A− LC)P+P(A− LC)T +B1B
T
1(47)

So in terms of characterizing the steady-state performance of the estima-

tor, we would simply need to solve equation (47) for P whose trace could

be used as a single number measuring the “performance” of the estimator.

Finding an L that minimizes the trace(P) yields an “optimal” observer that

minimizes the steady-state mean squared estimation estimation. The result-

ing observer is more commonly known as the steady state Kalman filter and

the equations characterizing this optimal L will be discussed below.

3. Linear Quadratic Regulator

The preceding section showed how state feedback can be used to freely

assign the eigenvalues of an LTI system. The next question, of course,

is why one would want to do this and where are the ”best” locations for

these eigenvalues. Rather than answering this directly, we will pose the

question as an optimization problem that seeks a state feedback gain matrix,

F, that optimizes some useful measure of how we believe the system should

perform. Consider the state space equation

ẋ = Ax+B1w +B2u

y = x

z =

[
Cx

u

]
with initial condition x(0) = x0. The signal, y, is our usual output signal

which, in this case, provides full access to the system state. We refer to this

as the Full Information or FI controller. The additional output signal, z, is

a signal used to characterize the performance of the system, with smaller z
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meaning better performing systems. There are two inputs; w and u. The

input w is a disturbance signal that we take to be a unit variance white noise

process. The other input u is the control input to be supplied by a controller

we need to design. Since we have full state access, we know our control

signal will be u = Fx. The problem is how do we go about selecting F in

an “optimal” manner? Optimality depends on how we wish to characterize

performance, but if we take z as a ”virtual” signal used to help use measure

system performance, then we will want to select F to minimize

E
[
∥z∥2L2

]
Namely we select a gain that minimized the mean squared energy in the

objective signal.

We first consider a finite horizon version of this optimization problem

that seeks to minimize the following cost functional,

J [u;T,M] ≡ ∥z∥2L2[0,T ] + xT (T )Mx(T )

=

∫ T

0

zT (τ)z(τ)dτ + xT (T )Mx(T )

where M is a symmetric positive definite matrix. The first term on the right-

hand side represents a path (running) cost and the final term is a terminal

cost associated with not zeroing the output by time T . This section finds a

u that minimizes this finite horizon cost and then examines how it behaves

as T goes to infinity.

We start by assuming a solution exists and then identify necessary condi-

tions that the solution must satisfy. These necessary conditions then provide

the means for determining the optimal control gain F. Let us first introduce

a matrix-valued function, X : R → Rn×n where X(t) ≥ 0 for all t ∈ [0, T ]

with X(T ) = M. We may then rewrite the cost functional, J , as

J [u ; T,M] =

∫ T

0

zT (τ)z(τ)dτ + xT (T )Mx(T )

=

∫ T

0

(
zT (τ)z(τ) +

d

dτ
xT (τ)X(τ)x(τ)

)
dτ + xT (0)X(0)x(0)
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Note that

d

dt
(xTXx) = ẋTXx+ xTXẋ+ xT Ẋx

Inserting this into the preceding expression for J [u ; T,M] yields,

J [u ; T,M] =

∫ T

0

(
xT (τ)CTCx(τ) + uT (τ)u(τ)

)
dτ

+

∫ T

0

[
2(xTAT + wTBT

1 + uTBT
2 )Xx+ xT Ẋx

]
dτ

+xT (0)X(0)x(0)

Collecting the quadratic terms in x yields

J [u ; T,M] =

∫ T

0
xT (CTC+ATX+XA+ Ẋ)xdτ

+

∫ T

0

(
uTu+ 2uTBT

2 Xx+ 2wTBT
1 Xx

)
dτ

+xT (0)X(0)x(0)

We complete the square of the first two terms on the second line by adding

and subtracting the term xTXBT
2B2Xx. This lets us rewrite J as

J [u ; T,M] =

∫ T

0

xT
(
CTC+ATX+XA+ Ẋ−XB2B

T
2X
)
xdτ

+

∫ T

0

(∣∣u+BT
2Xx

∣∣2 + 2wTBT
1Xx

)
dτ + xT (0)X(0)x(0)

If we select u∗ = −BT
2Xx and we let X satisfy the following matrix differ-

ential Riccati equation

−Ẋ = ATX+XA−XB2B
T
2X+CTC

X(T ) = M

then the first two terms vanish and we have

J [u∗ ; T,M] =

∫ T

0

2wTBT
1Xxdτ + xT (0)X(0)x(0)
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Since w is a zero mean white noise process that is statistically independent

from x, then if we take the expectation of J we get

E [J [u∗ ; T,M]] = E

[∫ T

0

2wTBT
1Xxdτ

]
+ xT (0)X(0)x(0)

= xT (0)X(0)x(0)

The first term vanishes because x and w are statistically independent. So

the optimal cost is simply xT (0)X(0)x(0) where x(0) is the initial state

and X(0) is obtained by solving the Riccati differential matrix equation

backward in time from T .

To summarize the finite horizon problem is solved by

u∗ = −BT
2X(t)x(t)

where

−Ẋ = ATX+XA−XB2B
T
2X+CTC

X(T ) = M

This has a solution provided CTC > 0.

If we let T go to infinity it can be shown [Green and Limebeer (2012)]

that if we choose M ≥ 0 such that

MA+ATM−MB2B
T
2M+CTC ≤ 0

then

lim
T→∞

X(t;T,M) = Π = constant matrix

This constant matrix must satisfy the algebraic Riccati equation

0 = ATΠ+ΠA−ΠB2B
T
2Π+CTC

which is the standard LQR Riccati equation. The control is “optimal” in the

sense of minimizing the expected value of J [u] and this control is given by

u∗ = −BT
2Πx
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The matrix −BT
2Π corresponds to the gain matrix, F, we discussed earlier

when studying pole placement methods. It can be further shown [Green and

Limebeer (2012)] that the origin of this controlled system is asymptotically

stable assuming that

(
A,

[
C

M

])
is detectable.

Example: Let us now give an example to illustrate the use of the LQR

regulator. In this case we consider the servo positioning system shown in

Fig. 1. The motor is used to move a load in a translational manner. The

angular position, θ, of the motor determines the position of the load. If we

ignore the electrical part of the motor and only focus on the mechanical

states, then the servo’s dynamics may be modeled as a double integrator

that is driven by the applied torque u generated by the motor, a disturbance

torque, w, that comes from the load, and a damping torque, αθ̇. The servo

position therefore satisfies the following ODE,

θ̈ = u+ w + αθ̇

where α is a known positive constant.

FIGURE 1. Servo Positioning System

To find the LQR controller, we first need to rewrite the preceding second

order ODE as a pair of first order differential equations. We first introduce
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the following state variable

x =

[
x1

x2

]
=

[
θ − θc

θ̇

]
The state equations governing x are

ẋ =

[
θ̇ − θ̇c

θ̈

]

=

[
x2

−αx2 + u(t) + w(t)

]

=

[
0 1

0 −α

][
x1

x2

]
+

[
0

1

]
(u(t) +

[
0

1

]
We can now see that in the LQR formalism our system matrices are

A =

[
0 1

0 −α

]
, B1 = B2 =

[
0

1

]
and our LQR cost functional takes the form

J [u] =

∫ ∞

0

(qx2
1 + u2)dt =

∫ ∞

0

(xTQx+ u2)

where Q =

[
q 0

0 0

]
and R = 1.

A MATLAB script was written to compute the LQR gains and simulate

the resulting system. The results from the simulation are shown in Fig. 2.

In this simulation, θc = −1 and the initial servo angle, θ(0) = 0, and an

initial servo rate θ̇(0) = 1. The damping ratio α was set to 0.1. Figure

2 shows the servo angle, θ, (top plot) and the servo rate, θ̇, and control u

(bottom plot) for q = .1, 1, and 10. A small amount of process noise w

was added into the simulation results also. As the weighting parameter q

increases, we expect a higher penalty on large deviations away from zero.

This means that for larger q, we expect θ(t) to converge more quickly to

θc with a smaller variation. This is exactly what is seen in the top plots.

For larger q, however, we also expect a smaller penalty to be paid for larger
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control effort and so for larger q we expect to see larger control torques u.

This is also seen in the bottom plots of Fig. 2
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FIGURE 2. Simulations of LQR controlled servo

One important thing to notice here is that the LQR control law takes the

form

u = f1(θ − θc) + f2(θ̇)

From Fig. 1, however, we see that the only sensor on the servo is an encoder

measuring the shaft position. In other words, we don’t have the angular rate

of the servo available for the control. This means, of course, that this par-

ticular control system is not “implementable”. Finding a way to physically

implement this control will be the subject of the next sections.

4. Steady State Kalman Filter

By duality [Green and Limebeer (2012)], one can develop optimal full state

observers. We will not do that here and will simply state the main result.

The optimal state observer is called a steady-state Kalman filter and seeks

to minimize the MSE limt→∞ E{zT (t)z(t)}.

We take the open loop plant to have the form,

ẋ = Ax+B1w +B2u

y = Cx+ v
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where w and v are uncorrelated white noise processes. The other signal u is

a control signal which we are assumed to know. The state equation for both

filters are

˙̂x =
(
A−QCTC

)
x̂+B2u+QCTy

where Q = QT > 0 satisfies an algebraic Riccati equation. For the H2 (i.e.

steady state Kalman filter) this ARE is

0 = QAT +AQ−QCTCQ+B1B
T
1

Note that the above equation for the observer can be rewritten to look

like a Luenberger observer; thereby emphasizing the feedback aspect of the

observer. In particular, since ŷ = Cx̂, it should be apparent that

˙̂x = Ax̂+B2u+QCT (y − ŷ)

ŷ = Cx̂

In this case we see that the optimal observer gains are

Loptimal = QCT

Let us see how well this filter works on the earlier LQR controlled servo

system. In this case, we use the LQR gains computed when q = 1 and

assume that the process noise and measurement noise both have unit co-

variance. The simulation starts with θc = −1 at t = 0 and then switches to

θc = 1 at t = 20. Fig. 3 plots the true state and estimated states as a function

of time. The top plot is for the position error θ−θc and the bottom plot is for

the angular rate θ̇c. Both plots show that the filter estimates track the actual

states. We see that the position error estimate responds more quickly to a

step change than the angular rate estimate, which is to be expected since we

have a direct measurement of the position error. Our estimate for the angu-

lar rate must rely on the past rate estimates, since we don’t directly observe

the motor’s rate.
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FIGURE 3. Kalman Filter simulation - Model matches noise

covariances

As mentioned above, the Kalman filter minimizes the mean square esti-

mation error. But that guarantee of optimality requires that we were truthful

in telling the Riccati equation about the system matrices and the noise co-

variances. Of particular concern to us are the noise covariances, for it may

be very difficult in practice to know exactly what these covariances might

be ahead of time. In practice this means that one may often design a filter

using only a best “guess” about the noise covariances. Such guesses can

greatly impact the filter’s performance.

To explore this sensitivity, let us assume the actual measurement and

process noise in the system have unit variance, but that we designed the

Kalman filter assuming V = 1 (accurate) and W being 0.1 or 10 (too small

or too big by an order of magnitude). If the filter were designed with W =

0.1, then we lied to the filter by saying there is less process noise than there

really is. This causes the filter to trust its past estimates more than the new

measurements and so the observer gains are smaller. We would also expect

to see the position estimate to converge more slowly with larger fluctuations

than the rate estimate. These predictions are borne out on the lefthand side

of Fig. 4. On the other hand, if we had designed the filter with W = 10,

then we lied by saying there is more process noise than there really is. This
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causes the filter to put more trust in new measurements than the past state

estimates and so the observer gains are larger, the filter converges more

quickly, and the rate estimates show greater fluctuations than the position

estimates. These observations are also borne out by the plots on the right

hand side of Fig. 4.
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FIGURE 4. Kalman filter sensitivity to variations in Process

Noise Covariance

We can repeat this experiment, but now look at how lying to the filter

about the measurement noise covariance impacts the filter’s performance.

In this case we let W = 1 and let V = 0.1 or 10. If we set V = 0.1, then

we are telling the filter there is less measurement noise than there really is

and so the filter will trust its measurement more than the past state estimates.

This means the observer gains will be larger, the position error will track the

true error closely, and the rate estimate will have a larger error in it. This

prediction is borne out on the left hand side of Fig. 5. On the other hand,

if the filter was designed with V = 10, then we are telling the filter there

is more measurement noise than there really is and so the filter trusts its

past state estimates more than the new measurements. This will be reflected

in smaller observer gains and will suggest that the rate estimate will more

closely track the position estimates. Again this prediction is borne out by

the plots on the right hand side of Fig. 5.
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FIGURE 5. Kalman filter sensitivity to variations in Mea-

surement Noise Covariance

The preceding empirical results show that the behavior of the Kalman

filter is extremely sensitive to the prior information we had regarding the

noise covariances. In general, these covariances are not exactly known.

This is particular true of the process noise covariance, w. Process noise is

really a term we use to approximate random inputs from the external envi-

ronment as well as additive disturbances due to dynamics in the ”physical”

system that were neglected in our linear model of that system. The fact

that we don’t really know these covariances exactly means that designing

Kalman filters is a recursive design procedure which often uses nonlinear

simulations of the physical plant to empirically fine tune the Kalman filter.

5. Linear Quadratic Gaussian Controller

When the estimates generated by a Kalman filter are used in the LQR state

feedback law, we obtain what is more commonly known as the Linear Qua-

dratic Gaussian or LQG controller. One important feature of LQG con-

trollers is that the performance achievable by the LQG controller is simply

the sum of the performance of the LQR and Kalman filter. This fact is

called the separation principle and it means that one can design the LQR

and Kalman filter separately with an assurance that the composition of these

two systems will still be optimal.
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We now look at how well the servo system in Fig. 1 is regulated using

the LQG controller. For this simulation we simply took the script used in

Fig. 3 and replaced the line computing the control u = Fx with u = Fx̂.

The results for the LQG and associated LQR controller are shown side by

side in Fig. 7. We see that both controllers are able to regulate the servo’s

position around the desired θc. The difference lies in how well they do this.

Since the LQG uses a noisy estimate of the state, rather than the true state,

we see a larger regulation error, which is to be expected.
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FIGURE 6. (left) LQG controlled servo (right) LQR con-

trolled servo

We now look at how well the servo system in Fig. 1 in chapter 1 is

regulated using the LQG controller. For this simulation we simply took the

script used in Fig. 3 and replaced the line computing the control u = Fx

with u = Fx̂. The results for the LQG and associated LQR controller are

shown side by side in Fig. 7. We see that both controllers are able to regulate

the servo’s position around the desired θc. The difference lies in how well

they do this. Since the LQG uses a noisy estimate of the state, rather than

the true state, we see a larger regulation error, which is to be expected.
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FIGURE 7. (left) LQG controlled servo (right) LQR con-

trolled servo
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