
Notebook Assignment 3 - Due Date TBD:
Deep Learning Software Frameworks (updated: November 14, 2024)

Python Classes for Neural Networks: Deep learning frameworks (TensorFlow) allow

us to easily train models with millions of parameters because of they use object oriented

programming (OOP) principles. OOPs methods provide a way to structure programs in

a modular manner by bundling related properties and behaviors in objects. An object is

like a ”software brick” with internal variables and methods (functions) that are available to

other ”bricks” through a well defined published interface. This means that these ”software

objects (bricks)” can be modularly stacked on top of each other in a way that allows one to

easily build large programs.

The main concept in OOP is the class. A class may be seen as a template for creating an

object. It defines what variables are held within the object, provides initialization functions

to create an instance of the class, and provides the functions (a.k.a. methods) that allow one

to change the object’s internal variables. Python has long used OOPs principles and this

is one of the reasons it has become the de facto language used by deep learning engineers.

This course will be using TensorFlow and the effective use of TensorFlow is made easier if

we understand how its objects are created.

In Python, one defines the ”class” blueprint using the class keyword followed by a name

and a colon. You then declare the init () method which is called when we create

an instance of the class. The init () method is called a class constructor. We will

now walk through a concrete example of two class definitions used in creating a sequential

neural network object.

The first class of interest is the SequentialModel class. The following Python script

defines the class template.

class SequentialModel:

#class constructor

def __init__(self,layers):

self.layers = layers

def __call__(self,inputs):
1

2

x = inputs

for layer in self.layers:

x = layer(x)

return x

@property

def weights(self):

weights = []

for layer in self.layers:

weights += layer.weights

return weights

The SequentialModel class has a single internal variable, layers, which is simply a list

of layer objects that we will define below. Our template has three functions (methods);

init , call , and weights. The init method is the constructor initializing

the internal variable self.layers with a list of layer objects that are passed as inputs

in the constructor’s call. The second method, call , is called on an existing instance

of the class and returns the sequential models output for a given input. Note that this

call simply calls the model’s layer objects in a recursive manner, using the output of one

layer as the input to the next layer. The last method weights is defined using a Python

@property decorator. This function provides access to the internal variables of the model

layer’s weights. We will need to use it when updating the weights of the model.

The second class we will have to define is a DenseLayer class. In particular, our se-

quential model will be built by concatenating several DenseLayer objects together. The

following Python script defines the DenseLayer class.

import tensorflow as tf

import numpy as np

class DenseLayer:

#class constructor

def __init__(self, input_size, output_size, activation):

self.activation = activation

3

w_shape = (input_size, output_size)

w_initial_value = tf.random.uniform(w_shape, minval = 0, maxval = 1e-1)

self.W = tf.Variable(w_initial_value)

b_shape = (output_size,)

b_initial_value = tf.zeros(b_shape)

self.b = tf.Variable(b_initial_value)

def __call__(self, inputs):

return self.activation(tf.matmul(inputs, self.W)+self.b)

@property

def weights(self):

return [self.W, self.b]

The DenseLayer object has three internal variables that are initialized by the class con-

structor using three arguments passed to the constructor. One of these variables, self.activation

is a pointer to an activation function. The second variable self.W is a matrix of layer

weights with the shape (input size, output size). In this code we initial self.W

randomly. The third variable self.b is a vector of biases with the shape (input size,).

Note that both of these variables, self.W and self.b, have been cast as TensorFlow

variables (tf.Variable). We do this because we will later use TensorFlow’s GradientTape

object to automate the computation of the model loss’ gradient with respect to these two

variables. The DenseLayer class uses the property decorator to declare a weights

method that returns the layer’s weights when called. Recall from our definition of the

SequentialModel class that we used this layer method when implement the Sequen-

tialModel’s weights method.

Problem 1:

(1) Create the input, X, and target, Y, data matrices from the ring data file, data

data = np.load("data/ring_data_-5.npy")

in the same way you did for a similar ring data file in assignment 1. Be sure to

normalize the input samples X so they are float32 numbers between −1 and 1.

Your final input data matrix X should have the shape (2000, 2). Be sure to convert

4

the target data, Y, so its components are int8 numbers 0 or 1. The original data

set has targets of −1 and 1, so you will need to convert the −1 targets to 0. Do a

scatter plot of the data samples with different colors for the 0 and 1 class (similar to

what you did in assignment 1). Your plot should show two half rings of points that

are not separable by a linear discriminant.
(2) Use the preceding class definitions to create an instance of a neural network using

the script,

layer1 = DenseLayer(2, 2, tf.nn.relu)

layer2 = DenseLayer(2, 2, tf.nn.softmax)

model = SequentialModel([layer1, layer2])

The two outputs of this model are the probability of the input being in class 0 or
class 1, so you are solving a logistic regression problem with this model. Write a
Python function

def evaluate(model, X,Y):

that takes the instantiated model, the input data X, and output targets Y and returns

the accuracy of the model (i.e. the percentage of correct model predictions). You

should get something between 50-75%

Problem 2:. In assignment 1 you analytically computed the gradient of your model’s

empirical risk function with respect to the model weights. That analytical approach is

impractical when we have extremely deep neural network models with tens or hundreds

of thousands of weights. In practice, we use a method known as automatic differentiation

to evaluate the empirical risk’s gradient for a specified model. This approach constructs a

computation graph that records the order of numerical operations performed in computing

the model’s output. This computation graph can then be used to automate the computation

of the empirical risk function’s gradient.

TensorFlow provides a GradientTape object to perform automatic differentiation. The fol-

lowing code shows how the GradientTape object is used to compute empirical risk’s gradi-

ent and then update the weights in the model.

#record the operations used to compute model’s loss

with tf.GradientTape() as tape:

Yhat = model(X)

5

loss = loss_function(Y, Yhat)

#compute the gradient

gradients = tape.gradient(loss, model.weights)

#use the gradient to update weights

learning_rate = 0.1

for g,w in zip(gradients, model.weights)

w.assign_sub(g * learning_rate)

In the preceding script loss function returns the loss for a given set of model predic-
tions, Yhat, and the data targets, Y. The loss function for your logistic regression problem
is the sparse categorical crossentropy function. This is one of the functions in the Keras
library. In particular, you could write this function as

def loss_function(Y,Yhat):

scce = tf.keras.losses.sparse_categorical_crossentropy

per_sample_losses = scce(Y, Yhat)

loss = tf.reduce_mean(per_sample_losses)

return loss

All of the operations within the scope of the statement

with tf.GradientTape() as tape:

are recorded on the tape object, so these are the operations used to compute the model’s
prediction and the loss function. The next statement outside of the scope of the tape

object actually computes the gradients

gradients = tape.gradient(loss, model.weights)

with respect to all of the model’s weights and biases. The last part of the above code then

updates the weights.

(1) Write a Python script that partitions the dataset, (X,Y), into training (X train,Y train)

and testing (X test, Y test) datasets. Assume a 80/20 split with 80% of the data

in the training set.
(2) Write a Python function

6

def fit(model, X_train, Y_train, X_test, Y_test, N, lr):

This function takes the training and testing datasets and trains the model using gra-

dient descent for N epochs and a learning rate of lr on the training data, (X train,Y train).

Have your function evaluate the training loss on (X train,Y train) after ev-

ery epoch. Have your function evaluate the testing loss on X test,Y test) after

every epoch. Your function should print the training and testing loss after every 10th

training epoch. Have your function return a numpy array, history, with shape

(N+1,2) where N is the number of epochs we trained for and history[k,:]

is the training and testing loss for the model after the kth training epoch.

(3) Use your fit function to train the original model (2 layers with the first layer

having 2 outputs) for 1000 epochs assuming a learning rate lr=0.1. You should

see the training and testing loss decrease from about 0.69 to a level of 0.20 (approx-

imately).

• Use the evaluate function you wrote above to evaluate the accuracy of your

final model on the testing dataset.

• Use the history array returned by your function to plot the training and

testing loss as a function of training epoch.

• Scatter plot all of the input samples, X, and color these points with your final

model’s predicted classification.

(4) Repeat the preceding problem using a model formed from 3 dense layers with the

middle layer having 512 inputs and 512 outputs using the ReLu activation function.

